JP2017210970A - Channel changeover valve - Google Patents

Channel changeover valve Download PDF

Info

Publication number
JP2017210970A
JP2017210970A JP2016102391A JP2016102391A JP2017210970A JP 2017210970 A JP2017210970 A JP 2017210970A JP 2016102391 A JP2016102391 A JP 2016102391A JP 2016102391 A JP2016102391 A JP 2016102391A JP 2017210970 A JP2017210970 A JP 2017210970A
Authority
JP
Japan
Prior art keywords
valve
shaft
valve body
communication
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016102391A
Other languages
Japanese (ja)
Other versions
JP6739230B2 (en
Inventor
佑樹 小泉
Yuki Koizumi
佑樹 小泉
柳澤 秀
Hide Yanagisawa
秀 柳澤
健資 田渕
Takemoto Tabuchi
健資 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2016102391A priority Critical patent/JP6739230B2/en
Priority to CN201710266038.7A priority patent/CN107421174B/en
Publication of JP2017210970A publication Critical patent/JP2017210970A/en
Application granted granted Critical
Publication of JP6739230B2 publication Critical patent/JP6739230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/0655Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with flat slides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Multiple-Way Valves (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Mechanically-Actuated Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a channel changeover valve capable of changing-over a flow direction (a channel) of fluid efficiently by a simple configuration.SOLUTION: There is provided an ascending or descending driving part for ascending or descending a valve shaft 20 in a direction of axis line O. An inner housing 9A is provided with at least two inner ports p1 to p3 opened into a valve chamber 7A while being spaced apart in the direction of axis line O and opened there and at the same time at least one of communicating ports p11, p12 always communicating the valve chamber 7A and a communicating space 8A is opened, an outside port p10 always communicated with the communicating space is opened at an outer housing 9B, an upper back pressure chamber 30 and a lower back pressure chamber 31 are always communicated to each other, the valve shaft is ascended or descended in the valve chamber under a state in which at least two valve bodies 21 to 23 arranged at the valve shaft are internally contacted with the inner housing, thereby the communicated state between at least two of inner ports and the outer port is changed over.SELECTED DRAWING: Figure 18

Description

本発明は、流路切換弁に係り、例えばヒートポンプ式冷暖房システムに使用される電動弁等の流路切換弁に関する。   The present invention relates to a flow path switching valve, for example, a flow path switching valve such as an electric valve used in a heat pump air conditioning system.

この種の流路切換弁として、従来から、ソレノイドコイルを用いたパイロット電磁弁によって、冷媒流路切換用六方弁ないし八方弁における弁本体内でスライド弁体を移動させ、弁座に設けられたポートの連通状態、すなわち、冷媒の流れ方向(流路)を切り換えて、冷房運転(除霜運転)と暖房運転との切換を行うものが知られている(例えば、下記特許文献1参照)。   As this type of flow path switching valve, conventionally, a pilot solenoid valve using a solenoid coil is used to move the slide valve body within the valve body in the refrigerant flow path switching six-way valve or eight-way valve, and is provided in the valve seat. It is known to switch between a cooling operation (defrosting operation) and a heating operation by switching the communication state of the ports, that is, the refrigerant flow direction (flow path) (for example, see Patent Document 1 below).

特開平8−170864号公報JP-A-8-170864

ところで、上記従来の流路切換弁では、パイロット電磁弁のソレノイドコイルへの通電状態を制御することによって、弁本体内に設けられたピストンの両側に形成された圧力変換室への高圧の導入・導出を制御し、それにより、ピストンに固定されたスライド弁体を弁本体内で移動させるようになっている。そのため、流路切換時にスライド弁体を駆動させるためのパイロット電磁弁を別個に用意する必要があり、構成が煩雑になる、小型化が難しい等といった問題がある。また、パイロット弁として電磁弁を使用する場合、当該切り換え時に、両ポートの開口面積が急激に変化するとともに、高圧の冷媒が低圧側のポート(導管)に一気に流れ込み、ヒートポンプ式冷暖房システム内において急激な圧力変動が発生し、大きな騒音(切換音)が発生するという問題もある。   By the way, in the conventional flow path switching valve, by introducing a high pressure into the pressure conversion chamber formed on both sides of the piston provided in the valve body by controlling the energization state of the solenoid coil of the pilot solenoid valve, The derivation is controlled, whereby the slide valve element fixed to the piston is moved within the valve body. Therefore, it is necessary to separately prepare a pilot electromagnetic valve for driving the slide valve body at the time of switching the flow path, and there are problems that the configuration becomes complicated and miniaturization is difficult. In addition, when an electromagnetic valve is used as a pilot valve, the opening area of both ports changes abruptly at the time of switching, and high-pressure refrigerant flows into the low-pressure side port (conduit) all at once. There is also a problem that a large pressure fluctuation occurs and a loud noise (switching sound) is generated.

本発明は、上記事情に鑑みてなされたものであって、その目的とするところは、比較的シンプルな構成でもって効率的に流体の流れ方向(流路)の切り換えを行うことができ、更なる小型化、大容量化、省電力化等にも寄与し得る流路切換弁を提供することにある。   The present invention has been made in view of the above circumstances. The object of the present invention is to enable efficient switching of the fluid flow direction (flow path) with a relatively simple configuration. An object of the present invention is to provide a flow path switching valve that can contribute to downsizing, large capacity, power saving, and the like.

上記する課題を解決するために、本発明に係る流路切換弁は、弁室を有する筒状の内側ハウジングと、前記内側ハウジングの外側に連通空間を形成すべく、該内側ハウジングの外側に配在された外側ハウジングと、前記弁室に昇降可能に配在されるとともに、前記内側ハウジングに内接せしめられた少なくとも2つの弁体が軸線方向に離間して設けられた弁軸と、前記弁室内で前記弁軸を前記軸線方向に昇降させるための昇降駆動部と、を備え、前記昇降駆動部が、前記軸線方向に垂直な方向に延びる回転軸線周りで回転自在に配在されたロータと該ロータを回転させるためのステータとを有するステッピングモータと、前記ロータと一体に回転される回転軸と、該回転軸の回転運動を前記弁軸の昇降運動に変換する運動変換機構と、を有するとともに、前記内側ハウジングには、前記弁室に開口する少なくとも2つの内側ポートが軸線方向に離間して開口せしめられるとともに、前記弁室と前記連通空間とを常時連通する少なくとも1つの連通ポートが開口せしめられ、前記外側ハウジングには、前記連通空間に常時連通する外側ポートが開口せしめられ、前記弁室における前記少なくとも2つの弁体より上側に画成される上側背圧室と前記弁室における前記少なくとも2つの弁体より下側に画成される下側背圧室とは常時連通せしめられており、前記少なくとも2つの弁体が前記内側ハウジングに内接せしめられた状態で前記昇降駆動部により前記弁室内で前記弁軸を昇降させることにより、前記少なくとも2つの内側ポート及び前記外側ポートの間の連通状態が切り換えられるようになっていることを特徴としている。   In order to solve the above-described problems, a flow path switching valve according to the present invention is arranged on the outside of a cylindrical inner housing having a valve chamber and an outer side of the inner housing so as to form a communication space outside the inner housing. An outer housing, a valve shaft disposed in the valve chamber so as to be movable up and down, and having at least two valve bodies inscribed in the inner housing spaced apart in the axial direction, and the valve A lift drive unit for raising and lowering the valve shaft in the axial direction indoors, and the lift drive unit is rotatably arranged around a rotation axis extending in a direction perpendicular to the axial direction; A stepping motor having a stator for rotating the rotor, a rotary shaft that is rotated integrally with the rotor, and a motion conversion mechanism that converts the rotary motion of the rotary shaft into the vertical motion of the valve shaft. You In addition, the inner housing has at least two inner ports that open to the valve chamber spaced apart in the axial direction, and at least one communication port that always communicates the valve chamber and the communication space. The outer housing is opened with an outer port that is always in communication with the communication space, and an upper back pressure chamber defined above the at least two valve bodies in the valve chamber and the valve chamber in the valve chamber. The lower back pressure chamber defined below the at least two valve bodies is always in communication with the at least two valve bodies in the state where the at least two valve bodies are inscribed in the inner housing. The communication state between the at least two inner ports and the outer port is switched by raising and lowering the valve shaft in the valve chamber. It is characterized in that that is so.

好ましい態様では、前記運動変換機構は、前記回転軸の外周に形成された駆動歯と、前記弁軸に形成され、前記駆動歯と噛合する従動歯とで構成される。   In a preferred aspect, the motion conversion mechanism is composed of drive teeth formed on the outer periphery of the rotating shaft and driven teeth that are formed on the valve shaft and mesh with the drive teeth.

別の好ましい態様では、前記回転軸は、前記回転軸線方向への移動が阻止された状態で、前記回転軸線周りで回転するようにされる。   In another preferred embodiment, the rotation shaft is rotated around the rotation axis while being prevented from moving in the direction of the rotation axis.

他の好ましい態様では、前記ステッピングモータは、前記外側ハウジングの端部開口に取り付けられた基台部材の側方に横倒しで取り付けられる。   In another preferred aspect, the stepping motor is attached to the side of a base member attached to the end opening of the outer housing.

更なる好ましい態様では、前記基台部材の内部に、前記回転軸が挿入される横穴と前記弁軸が挿入される縦穴とが設けられる。   In a further preferred aspect, a lateral hole into which the rotating shaft is inserted and a vertical hole into which the valve shaft is inserted are provided inside the base member.

別の好ましい態様では、前記連通空間は、前記内側ハウジングの外周に形成される、又は、前記内側ハウジングの外周の一部に形成される。   In another preferred embodiment, the communication space is formed on the outer periphery of the inner housing or formed on a part of the outer periphery of the inner housing.

別の好ましい態様では、前記内側ハウジンングの外周にDカット面が設けられ、該Dカット面と前記外側ハウジングの内周面とによって前記連通空間が形成される。   In another preferred embodiment, a D-cut surface is provided on the outer periphery of the inner housing, and the communication space is formed by the D-cut surface and the inner peripheral surface of the outer housing.

他の好ましい態様では、前記少なくとも2つの内側ポートと前記外側ポートとが、軸線方向で視て反対側もしくは同じ側に開口せしめられる。   In another preferred embodiment, the at least two inner ports and the outer port are opened on opposite sides or the same side as viewed in the axial direction.

他の好ましい態様では、前記連通ポートは、前記少なくとも2つの内側ポートより上側及び前記少なくとも2つの内側ポートより下側に、前記少なくとも2つの弁体のうち最も上側の弁体と最も下側の弁体との間隔と同間隔をあけて開口せしめられる。   In another preferred embodiment, the communication port is located above the at least two inner ports and below the at least two inner ports, the uppermost valve body and the lowermost valve of the at least two valve bodies. It is opened at the same distance as the body.

他の好ましい態様では、前記弁軸が所定位置にあるときに、前記外側ポートが前記少なくとも2つの内側ポートのうち最も上側の内側ポートと最も下側の内側ポートの双方に連通するようにされる。   In another preferred embodiment, the outer port communicates with both the uppermost inner port and the lowermost inner port of the at least two inner ports when the valve stem is in a predetermined position. .

他の好ましい態様では、前記外側ポートは、前記連通空間に開口せしめられて前記連通空間に常時連通するようになっている、あるいは、前記内側ハウジングにおける前記連通ポートと同じ高さに開口せしめられた開口を介して前記連通空間に常時連通するようになっている。   In another preferred aspect, the outer port is opened in the communication space so as to always communicate with the communication space, or is opened at the same height as the communication port in the inner housing. It always communicates with the communication space through the opening.

他の好ましい態様では、前記上側背圧室と前記下側背圧室とは、前記弁軸内に設けられた連通路を介して常時連通せしめられる。   In another preferred embodiment, the upper back pressure chamber and the lower back pressure chamber are always communicated with each other via a communication passage provided in the valve shaft.

他の好ましい態様では、前記上側背圧室と前記下側背圧室とは、前記連通空間を介して常時連通せしめられる。   In another preferred embodiment, the upper back pressure chamber and the lower back pressure chamber are always communicated with each other via the communication space.

他の好ましい態様では、前記少なくとも2つの弁体の外周にシール部材が装着されるとともに、該シール部材の外側に該シール部材より硬度の高いパッキンが装着される。   In another preferred embodiment, a seal member is attached to the outer periphery of the at least two valve bodies, and a packing having a hardness higher than that of the seal member is attached to the outside of the seal member.

他の好ましい態様では、前記内側ハウジングの内周における前記少なくとも2つの内側ポート及び前記少なくとも1つの連通ポートが形成された部分に凹面部が設けられる。   In another preferred embodiment, a concave surface portion is provided in a portion where the at least two inner ports and the at least one communication port are formed on the inner periphery of the inner housing.

更なる好ましい態様では、前記凹面部の上面及び/又は下面にテーパ面部が設けられる。   In a further preferred aspect, a tapered surface portion is provided on the upper surface and / or the lower surface of the concave surface portion.

他の好ましい態様では、前記弁軸が、それぞれに1つの弁体が設けられた複数の連結軸構成体を含んで構成される。   In another preferred aspect, the valve shaft includes a plurality of connecting shaft components each provided with one valve body.

他の好ましい態様では、前記外側ハウジング又は前記内側ハウジングに、前記弁軸の下降を制限するストッパ部を有する蓋状部材が取り付けられる。   In another preferred embodiment, a lid-like member having a stopper portion for restricting the lowering of the valve shaft is attached to the outer housing or the inner housing.

更なる好ましい態様では、前記蓋状部材には、前記ストッパ部に前記弁軸が衝接して停止せしめられたときに、前記上側背圧室と前記下側背圧室とを常時連通すべく前記弁軸内に設けられた連通路と連通する縦孔及び横孔が設けられる。   In a further preferred aspect, the lid-like member is configured to always communicate the upper back pressure chamber and the lower back pressure chamber when the valve shaft is brought into contact with the stopper portion and stopped. A vertical hole and a horizontal hole communicating with a communication path provided in the valve shaft are provided.

本発明の流路切換弁によれば、弁軸に設けられた少なくとも2つの弁体を内側ハウジングに内接せしめた状態で昇降駆動部によって弁室内で弁軸を昇降させることにより、内側ハウジングに設けられた少なくとも2つの内側ポート及び外側ハウジングに設けられた外側ポートの間の連通状態(流れ方向)が切り換えられるので、比較的シンプルな構成でもって効率的に流体の流れ方向(流路)の切り換えを行うことができるとともに、少なくとも2つの弁体より上側に画成される上側背圧室と少なくとも2つの弁体より下側に画成される下側背圧室とが常時連通せしめられているので、その流路切換時に弁体に作用する荷重を可及的に小さくして、弁体の駆動トルクを低減でき、もって、更なる小型化、大容量化、省電力化等を図ることもできる。   According to the flow path switching valve of the present invention, the valve shaft is moved up and down in the valve chamber by the lift drive unit in a state where at least two valve bodies provided on the valve shaft are inscribed in the inner housing. Since the communication state (flow direction) between the at least two inner ports provided and the outer port provided in the outer housing is switched, the flow direction (flow path) of the fluid can be efficiently controlled with a relatively simple configuration. The upper back pressure chamber defined above the at least two valve bodies and the lower back pressure chamber defined below the at least two valve bodies are always in communication with each other. As a result, the load acting on the valve body when switching the flow path can be made as small as possible to reduce the drive torque of the valve body, thereby further reducing the size, increasing the capacity, and reducing power consumption. Mode That.

また、弁軸を昇降させるための昇降駆動部が、軸線方向に垂直な方向に延びる回転軸線周りで回転自在に配在されたロータと該ロータを回転させるためのステータとを有するステッピングモータと、ロータと一体に回転される回転軸と、回転軸の回転運動を弁軸の昇降運動に変換する運動変換機構と、を有しているので、例えば、暖房運転から除霜運転へ及び除霜運転から暖房運転への切り換え時に、高圧側と低圧側の圧力差を小さくでき、そのため、騒音を効果的に低減することができるとともに、昇降駆動部を構成するステッピングモータを弁本体の側方に横倒しで(横向きで)配置でき、当該流路切換弁の全長を短縮できる、全体構成を簡素化できる、連通状態(流路)の切換に要する時間を短縮できるなどの効果も得られる。   A stepping motor having a rotor disposed to rotate around a rotation axis extending in a direction perpendicular to the axial direction and a stator for rotating the rotor; For example, from a heating operation to a defrosting operation and a defrosting operation because it has a rotating shaft that is rotated integrally with the rotor, and a motion conversion mechanism that converts the rotary motion of the rotating shaft into a lifting motion of the valve shaft When switching from heating to heating, the pressure difference between the high pressure side and the low pressure side can be reduced, so noise can be effectively reduced and the stepping motor that constitutes the lift drive unit can be laid sideways on the valve body. (Transversely), the overall length of the flow path switching valve can be shortened, the overall configuration can be simplified, and the time required for switching the communication state (flow path) can be shortened.

本発明に係る流路切換弁の第1実施形態の、第1流れ状態(弁軸:下降位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 1st flow state (valve shaft: descending position) of 1st Embodiment of the flow-path switching valve which concerns on this invention. 図1に示される流路切換弁の、第2流れ状態(弁軸:上昇位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 2nd flow state (valve shaft: ascending position) of the flow-path switching valve shown by FIG. 図1に示される流路切換弁の蓋状部材を示す斜視図。The perspective view which shows the cover-like member of the flow-path switching valve shown by FIG. 本発明に係る流路切換弁の第2実施形態の、第1流れ状態(弁軸:下降位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 1st flow state (valve shaft: descending position) of 2nd Embodiment of the flow-path switching valve which concerns on this invention. 図4に示される流路切換弁の、第2流れ状態(弁体:上昇位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 2nd flow state (valve body: ascending position) of the flow-path switching valve shown by FIG. 図4に示される第2実施形態の流路切換弁の変形形態(その1)を示す縦断面図。The longitudinal cross-sectional view which shows the modification (the 1) of the flow-path switching valve of 2nd Embodiment shown by FIG. (A)は、図4に示される第2実施形態の流路切換弁の変形形態(その2)を示す縦断面図、(B)は、(A)のU−U矢視断面図。(A) is a longitudinal cross-sectional view which shows the deformation | transformation form (the 2) of the flow-path switching valve of 2nd Embodiment shown by FIG. 4, (B) is UA arrow sectional drawing of (A). 本発明に係る流路切換弁の第3実施形態の、第1流れ状態(弁軸:下降位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 1st flow state (valve shaft: descending position) of 3rd Embodiment of the flow-path switching valve which concerns on this invention. 図8に示される流路切換弁の、第2流れ状態(弁軸:上昇位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 2nd flow state (valve shaft: ascending position) of the flow-path switching valve shown by FIG. 図8のV−V矢視断面図。VV arrow sectional drawing of FIG. 本発明に係る流路切換弁の第4実施形態の、第1流れ状態(弁軸:下降位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 1st flow state (valve shaft: descending position) of 4th Embodiment of the flow-path switching valve which concerns on this invention. 図11に示される流路切換弁の、第2流れ状態(弁軸:上昇位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 2nd flow state (valve shaft: ascending position) of the flow-path switching valve shown by FIG. 本発明に係る流路切換弁の第5実施形態の、第1流れ状態(弁軸:下降位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 1st flow state (valve shaft: descending position) of 5th Embodiment of the flow-path switching valve which concerns on this invention. 図13に示される流路切換弁の、第2流れ状態(弁軸:上昇位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 2nd flow state (valve shaft: ascending position) of the flow-path switching valve shown by FIG. 図13に示される流路切換弁における弁体が流路切換時に内側ポート上を通過するときの様子を拡大して示す要部拡大図。The principal part enlarged view which expands and shows a mode when the valve body in the flow-path switching valve shown by FIG. 13 passes on an inner side port at the time of flow-path switching. 本発明に係る流路切換弁の第6実施形態の、第1流れ状態(弁軸:下降位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 1st flow state (valve shaft: descending position) of 6th Embodiment of the flow-path switching valve which concerns on this invention. 図16に示される流路切換弁の、第2流れ状態(弁軸:上昇位置)を示す縦断面図。The longitudinal cross-sectional view which shows the 2nd flow state (valve shaft: ascending position) of the flow-path switching valve shown by FIG. 本発明に係る流路切換弁の第7実施形態の、第1流れ状態(弁軸:下降位置)を示す図であり、(A)は縦断面図、(B)は(A)のX−X矢視断面図、(C)は(A)のY−Y矢視断面図。It is a figure which shows the 1st flow state (valve shaft: descending position) of 7th Embodiment of the flow-path switching valve concerning this invention, (A) is a longitudinal cross-sectional view, (B) is X- of (A). X arrow sectional drawing, (C) is the YY arrow sectional drawing of (A). 図18に示される流路切換弁の、第2流れ状態(弁軸:上昇位置)を示す図であり、(A)は縦断面図、(B)は(A)のX−X矢視断面図。It is a figure which shows the 2nd flow state (valve shaft: raise position) of the flow-path switching valve shown by FIG. 18, (A) is a longitudinal cross-sectional view, (B) is a XX arrow directional cross section of (A). Figure. 本発明に係る流路切換弁の第8実施形態の、第1流れ状態(弁軸:下降位置)を示す図であり、(A)は縦断面図、(B)は(A)のX−X矢視断面図。It is a figure which shows the 1st flow state (valve shaft: descending position) of 8th Embodiment of the flow-path switching valve which concerns on this invention, (A) is a longitudinal cross-sectional view, (B) is X- of (A). X arrow sectional drawing. 図20に示される流路切換弁の、第2流れ状態(弁軸:上昇位置)を示す図であり、(A)は縦断面図、(B)は(A)のX−X矢視断面図。It is a figure which shows the 2nd flow state (valve shaft: ascending position) of the flow-path switching valve shown by FIG. 20, (A) is a longitudinal cross-sectional view, (B) is a XX arrow cross section of (A). Figure. 図20に示される流路切換弁の、第3流れ状態(弁軸:中間位置)を示す図であり、(A)は縦断面図、(B)は(A)のX−X矢視断面図。It is a figure which shows the 3rd flow state (valve shaft: intermediate position) of the flow-path switching valve shown by FIG. 20, (A) is a longitudinal cross-sectional view, (B) is a XX arrow cross section of (A). Figure.

以下、本発明に係る流路切換弁の実施形態を図面を参照して説明する。   Hereinafter, an embodiment of a flow path switching valve according to the present invention will be described with reference to the drawings.

[第1実施形態]
図1及び図2は、本発明に係る流路切換弁の第1実施形態を示す縦断面図であり、図1は、第1流れ状態(弁軸:下降位置)、図2は、第2流れ状態(弁軸:上昇位置)を示している。
[First Embodiment]
1 and 2 are longitudinal sectional views showing a first embodiment of a flow path switching valve according to the present invention. FIG. 1 shows a first flow state (valve shaft: lowered position), and FIG. The flow state (valve shaft: raised position) is shown.

なお、本明細書において、上下、左右、前後等の位置、方向を表わす記述は、説明が煩瑣になるのを避けるために図面に従って便宜上付けたものであり、実際の使用状態での位置、方向を指すとは限らない。   In this specification, descriptions representing positions and directions such as up and down, left and right, and front and rear are given for the sake of convenience in accordance with the drawings in order to avoid complicated explanation, and the positions and directions in the actual use state. Does not necessarily mean

また、各図において、部材間に形成される隙間や部材間の離隔距離等は、発明の理解を容易にするため、また、作図上の便宜を図るため、各構成部材の寸法に比べて大きくあるいは小さく描かれている場合がある。   In each drawing, the gap formed between the members, the separation distance between the members, etc. are larger than the dimensions of each constituent member for easy understanding of the invention and for convenience of drawing. Or it may be drawn small.

本実施形態の流路切換弁1は、例えばヒートポンプ式冷暖房システム等において流体(冷媒)の流れ方向(流路)を多方向に切り換える電動式の多方切換弁(第1実施形態では、四方切換弁)である。   The flow path switching valve 1 of the present embodiment is an electric multi-way switching valve (in the first embodiment, a four-way switching valve) that switches the flow direction (flow path) of fluid (refrigerant) in multiple directions, for example, in a heat pump air conditioning system or the like. ).

図示実施形態の流路切換弁1は、主として、同軸上に配置された板金製の筒状基体(内径は一定)からなる外側ハウジング9B及び内側ハウジング9Aを有する弁本体10と、弁本体10に固着されたキャン58と、弁本体10及びキャン58によって画成された内部空間で弁本体10に固定配置された支持部材19と、支持部材19により支持されて前記内部空間に昇降可能に配置された弁体(上側から、第1弁体21、第2弁体22、第3弁体23)を有する弁軸20と、弁軸20を昇降させるべく弁本体10の上方に取り付けられたステッピングモータ(昇降駆動部)50と、を備えている。   The flow path switching valve 1 of the illustrated embodiment is mainly composed of a valve body 10 having an outer housing 9B and an inner housing 9A made of a sheet metal cylindrical base (having a constant inner diameter) disposed coaxially. The fixed can 58, the support member 19 fixedly disposed in the valve body 10 in the internal space defined by the valve body 10 and the can 58, and supported by the support member 19 so as to be movable up and down in the internal space. A valve shaft 20 having a valve body (from the upper side, the first valve body 21, the second valve body 22, and the third valve body 23), and a stepping motor attached above the valve body 10 to raise and lower the valve shaft 20 (Elevating drive unit) 50.

弁本体10の外側ハウジング9Bの下部開口には、例えば金属製の蓋状部材11が、溶接、かしめ、ろう付け等により気密的に取り付けられている。詳細には、蓋状部材11は、図1及び図2と併せて図3を参照すればよく分かるように、段付き短円柱状を呈しており、下側から、大径接合部11c、中径嵌合部11b、及び小径突設部11aを有している。この蓋状部材11は、中径嵌合部11bを内側ハウジング9Aの下部開口に気密的に嵌合させた状態で(言い換えれば、内側ハウジング9Aの下部開口を中径嵌合部11bで気密的に封止するように)、大径接合部11cの外周下端に設けられた鍔状部11dに外側ハウジング9Bの下端部が溶接等により接合されており、内側ハウジング9Aの内部に円筒状空所からなる弁室7Aが画成されるとともに、内側ハウジング9Aと外側ハウジング9Bの間に、円筒状の連通空間8Aが画成されている。また、小径突設部11aには、その中心部に、(弁軸20が下降位置にあるときに)後述する弁軸20の連結軸29の貫通孔29aに連通するとともに前記貫通孔29aより若干大径の縦孔11vが形成され、その側部に複数個(図示例では、90°の角度間隔をあけて4個)の横孔11uが形成されている。また、ここでは、小径突設部11aの上端は、流路切換時に、第3弁体23に衝接して弁軸20の下方移動(下降)を制限する(言い換えれば、弁軸20の下降位置を規定する)ストッパ部11sとされている。   For example, a metal lid-like member 11 is hermetically attached to the lower opening of the outer housing 9B of the valve body 10 by welding, caulking, brazing, or the like. Specifically, the lid-like member 11 has a stepped short columnar shape, as can be understood by referring to FIG. 3 in conjunction with FIG. 1 and FIG. It has a diameter fitting portion 11b and a small diameter protruding portion 11a. The lid-like member 11 is in a state in which the medium diameter fitting portion 11b is airtightly fitted to the lower opening of the inner housing 9A (in other words, the lower opening of the inner housing 9A is airtightly sealed by the medium diameter fitting portion 11b. The lower end of the outer housing 9B is joined by welding or the like to the flange-shaped portion 11d provided at the lower end of the outer periphery of the large-diameter joint 11c, and a cylindrical space is formed inside the inner housing 9A. 7A is defined, and a cylindrical communication space 8A is defined between the inner housing 9A and the outer housing 9B. The small-diameter protruding portion 11a communicates with a through-hole 29a of a connecting shaft 29 of the valve shaft 20 described later (when the valve shaft 20 is in the lowered position) at the center thereof, and slightly from the through-hole 29a. A large-diameter vertical hole 11v is formed, and a plurality of (four in the illustrated example, with 90 ° angular intervals) lateral holes 11u are formed on the side thereof. In addition, here, the upper end of the small-diameter protruding portion 11a abuts against the third valve body 23 to restrict the downward movement (lowering) of the valve shaft 20 when the flow path is switched (in other words, the lowering position of the valve shaft 20). The stopper portion 11s is defined.

外側ハウジング9Bの内側に配在された内側ハウジング9Aは、外側ハウジング9Bより若干厚肉に形成されており、その側部の中央付近には、軸線O方向(縦方向)に並んで3つの内側ポートp1、p2、p3が開口せしめられるとともに、上側の内側ポートp1より上側に、弁室7Aと連通空間8Aを連通する連通ポートp11が開口せしめられ、下側の内側ポートp3より下側に、弁室7Aと連通空間8Aを連通する連通ポートp12が開口せしめられている。より詳細には、連通ポートp11は、弁軸20が下降位置にあるときにおいて第1弁体21の上側かつ弁軸20が上昇位置にあるときにおいて第1弁体21の下側に位置するように形成され、連通ポートp12は、弁軸20が下降位置にあるときにおいて第3弁体23の上側かつ弁軸20が上昇位置にあるときにおいて第3弁体23の下側に位置するように形成されるとともに、連通ポートp11と連通ポートp12は、第1弁体21と第3弁体23との間隔と同間隔をあけて開口せしめられている(詳細は後述)。   The inner housing 9A disposed inside the outer housing 9B is formed to be slightly thicker than the outer housing 9B, and there are three inner sides arranged in the direction of the axis O (vertical direction) near the center of the side portion. The ports p1, p2, and p3 are opened, and the communication port p11 that communicates with the valve chamber 7A and the communication space 8A is opened above the upper inner port p1, and below the lower inner port p3. A communication port p12 communicating with the valve chamber 7A and the communication space 8A is opened. More specifically, the communication port p11 is positioned above the first valve body 21 when the valve shaft 20 is in the lowered position and below the first valve body 21 when the valve shaft 20 is in the raised position. The communication port p12 is positioned above the third valve body 23 when the valve shaft 20 is in the lowered position and below the third valve body 23 when the valve shaft 20 is in the raised position. While being formed, the communication port p11 and the communication port p12 are opened at the same interval as the interval between the first valve body 21 and the third valve body 23 (details will be described later).

また、外側ハウジング9Bの側部の中央付近には、連通空間8Aに開口する横向きの外側ポートp10が形成されており、外側ポートp10は、前記連通空間8Aと常時連通せしめられている。   A laterally facing outer port p10 that opens to the communication space 8A is formed near the center of the side portion of the outer housing 9B. The outer port p10 is always in communication with the communication space 8A.

なお、本例では、平面視(すなわち、軸線O方向)で視たときに、軸線O方向に離間して設けられた3つの内側ポートp1、p2、p3が同じ位置に形成され、2つの連通ポートp11、p12が同じ位置に形成され、3つの内側ポートp1、p2、p3と2つの連通ポートp11、p12とは反対側(180°の角度間隔をあけて)形成されている。また、外側ポートp10は、平面視で視たときに前記した内側ポートp1、p2、p3と反対側(言い換えれば、2つの連通ポートp11、p12と同じ側)に形成されている。   In this example, when viewed in a plan view (that is, in the direction of the axis O), the three inner ports p1, p2, and p3 provided apart from each other in the direction of the axis O are formed at the same position, so The ports p11 and p12 are formed at the same position, and are formed on the side opposite to the three inner ports p1, p2 and p3 and the two communication ports p11 and p12 (at an angular interval of 180 °). The outer port p10 is formed on the side opposite to the inner ports p1, p2, and p3 (in other words, on the same side as the two communication ports p11 and p12) when viewed in a plan view.

3つの内側ポートp1、p2、p3にはそれぞれ、(外側ハウジング9Bを貫通するようにして)導管継手#1、#2、#3がろう付け等により横向きに取り付けられ、外側ポートp10には、導管継手#10がろう付け等により横向きに取り付けられている。   Pipe joints # 1, # 2, and # 3 are attached to the three inner ports p1, p2, and p3 sideways by brazing or the like (through the outer housing 9B). A conduit joint # 10 is attached sideways by brazing or the like.

弁本体10の外側ハウジング9Bの上部開口には、段付きの筒状基台13が取り付けられ、その筒状基台13の下面は前記連通空間8Aの天井面を形成している。筒状基台13の上端部には、天井部付き円筒状のキャン58の下端部が溶接等により接合されている。   A stepped cylindrical base 13 is attached to the upper opening of the outer housing 9B of the valve body 10, and the lower surface of the cylindrical base 13 forms the ceiling surface of the communication space 8A. The lower end of a cylindrical can 58 with a ceiling is joined to the upper end of the cylindrical base 13 by welding or the like.

支持部材19は、底壁14c付き筒状保持部材14及び雌ねじ15i付き軸受部材15を有し、前記筒状基台13の内側に、筒状保持部材14が圧入等により固定され、筒状保持部材14の上部に、内周下半部に雌ねじ15iが螺設された筒状の軸受部材15がかしめ等により固定されている。筒状保持部材14の底壁14cには、内側ハウジング9Aの上部開口に気密的に嵌合(内嵌)されるとともに、後述する円筒状の引き上げばね受け体28が摺動可能に挿通される筒状嵌合部14bが下方に向けて突設されている。また、軸受部材15の外周は段付きで形成されており、筒状保持部材14と軸受部材15との間にばね室14aが画成され、該ばね室14aに、弁軸20を上方に付勢する圧縮コイルばね25が収納されている。軸受部材15の内周のうち雌ねじ15iより上側部分は、後述する減速機構40の出力軸46の下部基体部が嵌挿される嵌挿穴15aとされている。   The support member 19 includes a cylindrical holding member 14 with a bottom wall 14c and a bearing member 15 with an internal thread 15i. The cylindrical holding member 14 is fixed inside the cylindrical base 13 by press-fitting or the like, and is held cylindrical. A cylindrical bearing member 15 in which a female screw 15i is screwed to an inner peripheral lower half portion is fixed to the upper portion of the member 14 by caulking or the like. The bottom wall 14c of the cylindrical holding member 14 is airtightly fitted (internally fitted) into the upper opening of the inner housing 9A, and a cylindrical lifting spring receiver 28 described later is slidably inserted. A cylindrical fitting portion 14b is projected downward. The outer periphery of the bearing member 15 is stepped, and a spring chamber 14a is defined between the cylindrical holding member 14 and the bearing member 15, and the valve shaft 20 is attached to the spring chamber 14a. An energizing compression coil spring 25 is accommodated. A portion of the inner periphery of the bearing member 15 above the female screw 15i is an insertion hole 15a into which a lower base portion of an output shaft 46 of the speed reduction mechanism 40 described later is inserted.

一方、ステッピングモータ50は、ヨーク51、ボビン52、コイル53、樹脂モールドカバー54等からなるステータ55と、キャン58の内部に該キャン58に対して回転自在に配置され、ロータ支持部材56がその上部内側に固着されたロータ57と、を有している。ステータ55は、キャン58に外嵌固定されている。また、ロータ57の内周側には、ロータ支持部材56に一体に形成された太陽歯車41、筒状保持部材14の上部に固着された筒状体43の上端に固定された固定リング歯車47、太陽歯車41と固定リング歯車47との間に配置されてそれぞれに歯合する遊星歯車42、遊星歯車42を回転自在に支持するキャリア44、遊星歯車42に外側から歯合する有底リング状の出力歯車45、出力歯車45の底部に形成された孔にその上部嵌合部が圧入等によって固着された出力軸46等からなる不思議遊星歯車式減速機構40が設けられている。ここで、固定リング歯車47の歯数は、出力歯車45の歯数とは僅かに異なるように設定されている。   On the other hand, the stepping motor 50 is disposed inside a can 58 so as to be rotatable with respect to the can 58 and a rotor support member 56. And a rotor 57 fixed inside the upper portion. The stator 55 is externally fixed to the can 58. Further, on the inner peripheral side of the rotor 57, a sun gear 41 formed integrally with the rotor support member 56, and a fixed ring gear 47 fixed to the upper end of the cylindrical body 43 fixed to the upper part of the cylindrical holding member 14. A planetary gear 42 that is disposed between the sun gear 41 and the fixed ring gear 47 and meshes with each other, a carrier 44 that rotatably supports the planetary gear 42, and a bottomed ring shape that meshes with the planetary gear 42 from the outside. Output gear 45, and a strange planetary gear type speed reduction mechanism 40 including an output shaft 46 and the like having an upper fitting portion fixed to a hole formed at the bottom of the output gear 45 by press fitting or the like. Here, the number of teeth of the fixed ring gear 47 is set to be slightly different from the number of teeth of the output gear 45.

出力軸46の上部嵌合部の中心部には孔が形成され、該孔には太陽歯車41(ロータ支持部材56)とキャリア44の中心部を挿通した支持軸49の下部が挿通されている。この支持軸49の上部は、キャン58の内径と略同一の外径を有し、ロータ支持部材56の上側でキャン58に内接して配置される支持部材48の中心部に形成された孔に挿通されている。ロータ57自体は、支持部材48等によってキャン58の内部で上下動しないようになっており、キャン58に外嵌固定されたステータ55との位置関係が常に一定に維持されている。   A hole is formed at the center of the upper fitting portion of the output shaft 46, and the lower portion of the support shaft 49 inserted through the center of the sun gear 41 (rotor support member 56) and the carrier 44 is inserted into the hole. . The upper portion of the support shaft 49 has an outer diameter that is substantially the same as the inner diameter of the can 58, and is formed in a hole formed at the center of the support member 48 that is disposed on the upper side of the rotor support member 56 and inscribed in the can 58. It is inserted. The rotor 57 itself does not move up and down inside the can 58 by the support member 48 or the like, and the positional relationship with the stator 55 that is externally fitted and fixed to the can 58 is always maintained constant.

減速機構40の出力軸46の下部基体部は、雌ねじ15i付き軸受部材15の上部に形成された嵌挿穴15aに回転自在に嵌挿され、出力軸46の下部基体部には、その中心を通るように横方向に延びる縦長スリット状の嵌合部46aが形成されている。軸受部材15の内周に螺設された雌ねじ15iと螺合する雄ねじ17aが螺設された回転昇降軸17の上端には板状部17cが突設され、板状部17cが縦長スリット状の嵌合部46aに摺動自在に嵌合されている。出力軸46がロータ57の回転に応じて回転すると、出力軸46の回転が回転昇降軸17に伝達され、軸受部材15の雌ねじ15iと回転昇降軸17の雄ねじ17aのねじ送りによって回転昇降軸17が回転しながら昇降する。   The lower base portion of the output shaft 46 of the speed reduction mechanism 40 is rotatably inserted into a fitting insertion hole 15a formed in the upper portion of the bearing member 15 with the internal thread 15i, and the center of the lower base portion of the output shaft 46 is centered. A vertically long fitting portion 46a extending in the horizontal direction so as to pass therethrough is formed. A plate-like portion 17c projects from the upper end of the rotary elevating shaft 17 in which a male screw 17a screwed with an internal screw 15i screwed on the inner periphery of the bearing member 15 is provided, and the plate-like portion 17c has a vertically long slit shape. The fitting part 46a is slidably fitted. When the output shaft 46 rotates according to the rotation of the rotor 57, the rotation of the output shaft 46 is transmitted to the rotary elevating shaft 17, and the rotary elevating shaft 17 is driven by screw feed of the female screw 15 i of the bearing member 15 and the male screw 17 a of the rotary elevating shaft 17. Moves up and down while rotating.

回転昇降軸17の下方には、該回転昇降軸17の下方への推力がボール18、ボール受座16を介して伝達される弁軸20が軸線O(昇降方向)に沿って配置されている。   Below the rotary lift shaft 17, a valve shaft 20 is disposed along the axis O (lifting direction) in which thrust downward of the rotary lift shaft 17 is transmitted through the ball 18 and the ball seat 16. .

ここで、上述のように、筒状保持部材14の底壁14cより上側のばね室14aに収納された圧縮コイルばね25は、その下端を底壁14cに当接させた状態で配置されるとともに、この圧縮コイルばね25の付勢力(引き上げ力)を弁軸20に伝達すべく、上下に鍔状の引っ掛け部を有する円筒状の引き上げばね受け体28が配在されている。この引き上げばね受け体28は、軸受部材15(の下部小径部)に摺動自在に外嵌されるとともに、筒状保持部材14の底壁14cから下方に延びる筒状嵌合部14bに摺動自在に内嵌され、その上側の引っ掛け部は圧縮コイルばね25の上部に載置され、下側の引っ掛け部は弁軸20(の推力伝達軸27の大径上部27aの下端段差面)に掛止される。つまり、引き上げばね受け体28は、軸受部材15(の下部小径部)及び筒状保持部材14の筒状嵌合部14bにガイドされて軸線O方向(昇降方向)に移動する。また、筒状保持部材14には、前記ばね室14aとキャン58の内部を連通する連通孔14dが形成されている。   Here, as described above, the compression coil spring 25 housed in the spring chamber 14a above the bottom wall 14c of the cylindrical holding member 14 is disposed with its lower end in contact with the bottom wall 14c. In order to transmit the urging force (lifting force) of the compression coil spring 25 to the valve shaft 20, a cylindrical lifting spring receiving body 28 having a hook-like hook portion on the top and bottom is arranged. The lifting spring receiver 28 is slidably fitted to the bearing member 15 (the lower small diameter portion thereof) and slid to the cylindrical fitting portion 14 b extending downward from the bottom wall 14 c of the cylindrical holding member 14. The upper hook is placed on the upper portion of the compression coil spring 25, and the lower hook is hooked on the valve shaft 20 (the lower end step surface of the large diameter upper portion 27a of the thrust transmission shaft 27). Stopped. That is, the pulling spring receiving body 28 is guided by the bearing member 15 (the lower small diameter portion thereof) and the cylindrical fitting portion 14b of the cylindrical holding member 14 and moves in the axis O direction (up and down direction). The cylindrical holding member 14 is formed with a communication hole 14d that allows the spring chamber 14a and the can 58 to communicate with each other.

弁軸20は、基本的に、ボール18及びボール受座16を介して前記回転昇降軸17に連結される段付き円筒状の推力伝達軸27と、該推力伝達軸27(の小径下部27c)に連結される合成樹脂製かつ円筒状の連結軸29とを有し、その連結軸29に、軸線O方向に離間して短円柱状の3つの弁体(第1弁体21、第2弁体22、第3弁体23)が一体的に形成されている。   The valve shaft 20 basically includes a stepped cylindrical thrust transmission shaft 27 connected to the rotary elevating shaft 17 via a ball 18 and a ball seat 16 and a thrust transmission shaft 27 (small diameter lower portion 27c). And a cylindrical connecting shaft 29 made of a synthetic resin, which is connected to the connecting shaft 29, and is separated from the connecting shaft 29 in the direction of the axis O by three short columnar valve bodies (first valve body 21, second valve). The body 22 and the third valve body 23) are integrally formed.

推力伝達軸27は、上側から、内周に前記ボール受座16が嵌め込まれる大径上部27a、引き上げばね受け体28の下側に形成された引っ掛け部に挿通される中間胴部27b、連結軸29の中央に(軸線Oに沿って)設けられた貫通孔29aに嵌挿されて圧入、ろう付け等により固定される前記中間胴部27bより小径の小径下部27cから構成され、その内部には、弁軸20内に設けられた連通路32の上部を構成する縦向きの貫通孔27d及び後述する上側背圧室30に開口する複数個の横孔27eが形成されている。なお、貫通孔27dの上端開口はボール受座16によって閉塞されている。   The thrust transmission shaft 27 includes, from above, a large-diameter upper portion 27a into which the ball seat 16 is fitted on the inner periphery, an intermediate body portion 27b inserted into a hook portion formed on the lower side of the lifting spring receiver 28, and a connecting shaft. 29 includes a small-diameter lower portion 27c having a smaller diameter than the intermediate body portion 27b that is fitted into a through-hole 29a provided in the center (along the axis O) and fixed by press-fitting, brazing, or the like. A vertical through hole 27d constituting an upper portion of the communication passage 32 provided in the valve shaft 20 and a plurality of lateral holes 27e opening in the upper back pressure chamber 30 described later are formed. The upper end opening of the through hole 27d is closed by the ball seat 16.

連結軸29は、縦方向(軸線O方向)に沿って配在されており、各弁体(第1弁体21、第2弁体22、第3弁体23)は、内側ハウジング9Aの内径と略同径に形成されるとともに、各弁体間に、内側ハウジング9Aに開口せしめられた3個の内側ポートp1〜p3のうちの隣り合うポートp1−p2間、p2−p3間を連通させ得るような大きさの空間を画成するように、前記連結軸29に配設されている。また、上述のように、第1弁体21は、弁軸20が下降位置にあるときにおいて連通ポートp11の下側かつ弁軸20が上昇位置にあるときにおいて連通ポートp11の上側に位置するように連結軸29に配設され、第3弁体23は、弁軸20が下降位置にあるときにおいて連通ポートp12の下側かつ弁軸20が上昇位置にあるときにおいて連通ポートp12の上側に位置するように連結軸29に配設されている。   The connecting shaft 29 is disposed along the vertical direction (axis O direction), and each valve body (the first valve body 21, the second valve body 22, and the third valve body 23) has an inner diameter of the inner housing 9A. And between the valve bodies, the adjacent ports p1-p2 and the p2-p3 of the three inner ports p1-p3 opened in the inner housing 9A are communicated with each other. The connecting shaft 29 is disposed so as to define a space having a size that can be obtained. Further, as described above, the first valve body 21 is positioned below the communication port p11 when the valve shaft 20 is in the lowered position and above the communication port p11 when the valve shaft 20 is in the raised position. The third valve body 23 is disposed on the lower side of the communication port p12 when the valve shaft 20 is in the lowered position and on the upper side of the communication port p12 when the valve shaft 20 is in the raised position. In this way, the connecting shaft 29 is disposed.

本例では、連結軸29の上端部に第1弁体21が形成され、その下端部に第3弁体23が形成され、その上下中央に第2弁体22が形成され、第1弁体21と第2弁体22の間に形成される空間と第2弁体22と第2弁体23の間に形成される空間とが略同一に設計されている。   In this example, the first valve body 21 is formed at the upper end portion of the connecting shaft 29, the third valve body 23 is formed at the lower end portion thereof, the second valve body 22 is formed at the upper and lower centers thereof, and the first valve body is formed. The space formed between 21 and the second valve body 22 and the space formed between the second valve body 22 and the second valve body 23 are designed to be substantially the same.

また、各弁体(第1弁体21、第2弁体22、第3弁体23)の外周に形成された環状溝には、各弁体と内側ハウジング9Aとの間の摺動面隙間を封止すべく、Oリング等のシール部材21A、22A、23Aが装着されるとともに、内側ハウジング9Aに対する各弁体の摺動抵抗を低減すべく、各シール部材の21A、22A、23Aの外側には、PTFE(テフロン(登録商標))等からなるリング状のパッキン(キャップシールともいう)21B、22B、23Bが装着されている。   Further, an annular groove formed on the outer periphery of each valve body (the first valve body 21, the second valve body 22, and the third valve body 23) has a sliding surface clearance between each valve body and the inner housing 9A. The sealing members 21A, 22A, 23A such as O-rings are mounted to seal the inner surface of the sealing member 21 and the outer sides of the sealing members 21A, 22A, 23A to reduce the sliding resistance of the valve elements with respect to the inner housing 9A. Are attached with ring-shaped packings (also referred to as cap seals) 21B, 22B, 23B made of PTFE (Teflon (registered trademark)) or the like.

そして、推力伝達軸27の横孔27e及び貫通孔27d、連結軸29の貫通孔29aによって、弁軸20に作用する押し下げ力と弁軸20に作用する押し上げ力とをバランス(差圧をキャンセル)させるべく、弁室7Aにおける第1弁体21の上側に画成される上側背圧室30と弁室7Aにおける第3弁体23の下側に画成される下側背圧室31とを常時連通する連通路32が構成されている。   Then, the push-down force acting on the valve shaft 20 and the push-up force acting on the valve shaft 20 are balanced (cancel the differential pressure) by the lateral hole 27e and the through-hole 27d of the thrust transmission shaft 27 and the through-hole 29a of the connecting shaft 29. Therefore, an upper back pressure chamber 30 defined above the first valve body 21 in the valve chamber 7A and a lower back pressure chamber 31 defined below the third valve body 23 in the valve chamber 7A are provided. A communication path 32 that is always in communication is configured.

かかる構成の流路切換弁1では、ステッピングモータ50のロータ57を回転駆動させると、回転昇降軸17が回転しながら昇降するが、回転昇降軸17と弁軸20との間にボール18を介在させることにより、回転昇降軸17から弁軸20へ下方への推力のみが伝達されて(回転力は伝達されない)、回転昇降軸17と弁軸20とが一体となって軸線O方向へ昇降する。ここで、弁軸20に設けられた各弁体(第1弁体21、第2弁体22、第3弁体23)は、内側ハウジング9A(の内周)に対接せしめられており、各弁体(第1弁体21、第2弁体22、第3弁体23)が内側ハウジング9Aに内接せしめられた状態で弁室7A内で弁軸20が昇降することにより、3つの内側ポートp1、p2、p3及び外側ポートp10の間の連通状態(流れ方向、流路)が切り換えられる。   In the flow path switching valve 1 having such a configuration, when the rotor 57 of the stepping motor 50 is rotationally driven, the rotary lift shaft 17 moves up and down while rotating, but the ball 18 is interposed between the rotary lift shaft 17 and the valve shaft 20. As a result, only the downward thrust is transmitted from the rotary lift shaft 17 to the valve shaft 20 (rotational force is not transmitted), and the rotary lift shaft 17 and the valve shaft 20 are integrally moved up and down in the direction of the axis O. . Here, each valve body (the first valve body 21, the second valve body 22, and the third valve body 23) provided on the valve shaft 20 is brought into contact with the inner housing 9A (the inner periphery thereof), The valve shaft 20 moves up and down in the valve chamber 7A in a state where each valve body (the first valve body 21, the second valve body 22, and the third valve body 23) is inscribed in the inner housing 9A. The communication state (flow direction, flow path) between the inner ports p1, p2, p3 and the outer port p10 is switched.

すなわち、ステッピングモータ50のロータ57を一方向に回転駆動させると、減速機構40の出力軸46を介してロータ57の回転が回転昇降軸17に減速されて伝達され、軸受部材15の雌ねじ15iと回転昇降軸17の雄ねじ17aによるねじ送りによって回転昇降軸17が回転しながら例えば下降され、回転昇降軸17の推力により弁軸20が圧縮コイルばね25の付勢力に抗して押し下げられて下降位置(ここでは、弁軸20の下端部に設けられ第3弁体23が蓋状部材11のストッパ部11sに衝接して停止せしめられた位置)がとられる。この下降位置では、第1弁体21が連通ポートp11と内側ポートp1との間に位置し、第2弁体22が内側ポートp2と内側ポートp3との間に位置し、第3弁体23が連通ポートp12の下側に位置せしめられ、第1弁体21と第2弁体22の間の空間が、内側ポートp1と内側ポートp2の真横に位置し、第2弁体22と第3弁体23の間の空間が、内側ポートp3と連通ポートp12の間に位置せしめられるので、内側ポートp1と内側ポートp2が、第1弁体21と第2弁体22の間の空間を介して連通し、内側ポートp3と外側ポートp10が、第2弁体22と第3弁体23の間の空間、連通ポートp12、連通空間8Aを介して連通する(図1に示す第1流れ状態)。   That is, when the rotor 57 of the stepping motor 50 is rotationally driven in one direction, the rotation of the rotor 57 is decelerated and transmitted to the rotary lift shaft 17 via the output shaft 46 of the speed reduction mechanism 40, and the female screw 15 i of the bearing member 15 is transmitted. The rotary lift shaft 17 is lowered, for example, while being rotated by screw feed by the male screw 17a of the rotary lift shaft 17, and the valve shaft 20 is pushed down against the urging force of the compression coil spring 25 by the thrust of the rotary lift shaft 17, so that the lowered position is reached. (Here, the third valve body 23 provided at the lower end of the valve shaft 20 is brought into contact with the stopper 11s of the lid-like member 11 and stopped). In this lowered position, the first valve body 21 is positioned between the communication port p11 and the inner port p1, the second valve body 22 is positioned between the inner port p2 and the inner port p3, and the third valve body 23 Is positioned below the communication port p12, and the space between the first valve body 21 and the second valve body 22 is positioned directly beside the inner port p1 and the inner port p2, and the second valve body 22 and the third valve body 22 Since the space between the valve bodies 23 is positioned between the inner port p3 and the communication port p12, the inner port p1 and the inner port p2 pass through the space between the first valve body 21 and the second valve body 22. The inner port p3 and the outer port p10 communicate with each other via the space between the second valve body 22 and the third valve body 23, the communication port p12, and the communication space 8A (first flow state shown in FIG. 1). ).

それに対し、ステッピングモータ50のロータ57を他方向に回転駆動させると、減速機構40の出力軸46を介してロータ57の回転が回転昇降軸17に減速されて伝達され、前記雌ねじ15iと雄ねじ17aによるねじ送りによって回転昇降軸17が回転しながら例えば上昇され、それに伴い弁軸20が圧縮コイルばね25の付勢力によって引き上げられて上昇位置がとられる。この上昇位置では、第1弁体21が連通ポートp11の上側に位置し、第2弁体22が内側ポートp1と内側ポートp2との間に位置し、第3弁体23が内側ポートp3と連通ポートp12の間に位置せしめられ、第1弁体21と第2弁体22の間の空間が、連通ポートp11と内側ポートp1の間に位置し、第2弁体22と第3弁体23の間の空間が、内側ポートp2と内側ポートp3の真横に位置せしめられるので、内側ポートp2と内側ポートp3が、第2弁体22と第3弁体23の間の空間を介して連通し、内側ポートp1と外側ポートp10が、第1弁体21と第2弁体22の間の空間、連通ポートp11、連通空間8Aを介して連通する(図2に示す第2流れ状態)。   On the other hand, when the rotor 57 of the stepping motor 50 is rotationally driven in the other direction, the rotation of the rotor 57 is decelerated and transmitted to the rotary lift shaft 17 via the output shaft 46 of the speed reduction mechanism 40, and the female screw 15i and the male screw 17a are transmitted. For example, the rotary elevating shaft 17 is raised while being rotated by the screw feed, and the valve shaft 20 is raised by the urging force of the compression coil spring 25 to take the raised position. In this raised position, the first valve body 21 is positioned above the communication port p11, the second valve body 22 is positioned between the inner port p1 and the inner port p2, and the third valve body 23 is connected to the inner port p3. The space between the first valve body 21 and the second valve body 22 is positioned between the communication port p12, the space between the communication port p11 and the inner port p1, and the second valve body 22 and the third valve body. 23, since the space between the inner port p2 and the inner port p3 is positioned directly beside the inner port p2 and the inner port p3, the inner port p2 and the inner port p3 communicate with each other via the space between the second valve body 22 and the third valve body 23. Then, the inner port p1 and the outer port p10 communicate with each other via the space between the first valve body 21 and the second valve body 22, the communication port p11, and the communication space 8A (second flow state shown in FIG. 2).

ここで、本実施形態では、弁軸20内に設けられた連通路32を介して、第1弁体21の上側に画成される上側背圧室30(弁室7Aの上部)と第3弁体23の下側に画成される下側背圧室31(弁室7Aの下部)とが常時連通している。すなわち、前記第1弁体21の上面(上側背圧室30側の面)と前記第3弁体23の下面(下側背圧室31側の面)とが均圧されるとともに、各弁体(第1弁体21、第2弁体22、第3弁体23)の上下方向で対向する面同士も均圧されている。そのため、弁体(第1弁体21、第2弁体22、第3弁体23)の軸線O方向への移動による流路切換時に弁体の移動方向(弁軸20の軸線O方向)に作用する力(弁体に作用する押し下げ力と押し上げ力)をバランス(差圧を全てキャンセル)させられる。   Here, in the present embodiment, the upper back pressure chamber 30 (the upper portion of the valve chamber 7A) defined on the upper side of the first valve body 21 and the third through the communication passage 32 provided in the valve shaft 20. The lower back pressure chamber 31 (the lower portion of the valve chamber 7A) defined on the lower side of the valve body 23 is always in communication. That is, the upper surface of the first valve body 21 (the surface on the upper back pressure chamber 30 side) and the lower surface of the third valve body 23 (the surface on the lower back pressure chamber 31 side) are equalized, and each valve The surfaces facing each other in the vertical direction of the body (the first valve body 21, the second valve body 22, and the third valve body 23) are also equalized. Therefore, when the flow path is switched by movement of the valve bodies (the first valve body 21, the second valve body 22, and the third valve body 23) in the direction of the axis O, the valve body moves in the direction of movement (the direction of the axis O of the valve shaft 20). The acting force (pressing force acting on the valve body and pushing force) can be balanced (all the differential pressures are canceled).

このように、本実施形態においては、弁軸20に設けられた3つの弁体(第1弁体21、第2弁体22、第3弁体23)を内側ハウジング9Aに内接せしめた状態でステッピングモータ50を制御して弁室7A内で弁軸20を昇降させることにより、内側ハウジング9Aに設けられた3つの内側ポートp1、p2、p3及び外側ハウジング9Bに設けられた外側ポートp10の間の連通状態(流れ方向)が切り換えられるので、比較的シンプルな構成でもって効率的に流体の流れ方向(流路)の切り換えを行うことができるとともに、3つの弁体のうち最も上側の第1弁体21より上側の上側背圧室30と最も下側の第3弁体23より下側の下側背圧室31とが常時連通せしめられているので、その流路切換時に弁体に作用する荷重を可及的に小さくして、弁体の駆動トルクを低減でき、もって、更なる小型化、大容量化、省電力化等を図ることもできる。   Thus, in the present embodiment, the three valve bodies (the first valve body 21, the second valve body 22, and the third valve body 23) provided on the valve shaft 20 are inscribed in the inner housing 9A. Thus, the stepping motor 50 is controlled to raise and lower the valve shaft 20 in the valve chamber 7A, whereby the three inner ports p1, p2, p3 provided in the inner housing 9A and the outer port p10 provided in the outer housing 9B. Since the communication state (flow direction) is switched, the flow direction (flow path) of the fluid can be efficiently switched with a relatively simple configuration, and the uppermost one of the three valve bodies can be switched. Since the upper back pressure chamber 30 above the one valve body 21 and the lower back pressure chamber 31 below the lowermost third valve body 23 are always in communication with each other, the valve body is used when the flow path is switched. As much as possible the acting load And small, can be reduced driving torque of the valve body, has been, further miniaturization, larger capacity, it is also possible to achieve power saving or the like.

また、本実施形態では、各弁体の外周(内側ハウジング9Aとの摺動面)に設けられたシール部材21A、22A、23Aの外側に、内側ハウジング9Aに対する各弁体の摺動抵抗を低減するとともに、シール部材21A、22A、23Aの弾性変形を抑制すべく(特に、流路切換時にシール部材21A、22A、23Aが各内側ポート及び連通ポート上を通過するときに生じる弾性変形を抑制して、当該シール部材21A、22A、23Aが各内側ポート及び連通ポート上を通過するときの抵抗を低減すべく)、比較的硬度の高いPTFE(テフロン(登録商標))等からなるパッキン21B、22B、23Bが装着されているので、これによっても、流路切換時に弁体に作用する荷重を可及的に小さくでき、弁体の駆動トルクをより効果的に低減することができる。   In the present embodiment, the sliding resistance of each valve body with respect to the inner housing 9A is reduced outside the seal members 21A, 22A, and 23A provided on the outer periphery of each valve body (sliding surface with the inner housing 9A). In addition, to suppress the elastic deformation of the seal members 21A, 22A, and 23A (particularly, the elastic deformation that occurs when the seal members 21A, 22A, and 23A pass over the inner ports and the communication port when switching the flow path is suppressed. Packing 21B, 22B made of PTFE (Teflon (registered trademark)) or the like having a relatively high hardness, in order to reduce resistance when the seal members 21A, 22A, 23A pass over the inner ports and the communication ports. , 23B is mounted, so that the load acting on the valve body when switching the flow path can be reduced as much as possible, and the driving torque of the valve body can be reduced more effectively. Can be reduced.

さらに、本実施形態では、ステッピングモータ50を制御して弁軸20を弁室7A内で徐々に昇降させるように構成されているので、例えば、暖房運転から除霜運転へ及び除霜運転から暖房運転への切り換え時に、高圧側と低圧側の圧力差を小さくでき、そのため、騒音を効果的に低減することができるという効果もある。   Furthermore, in the present embodiment, the stepping motor 50 is controlled so that the valve shaft 20 is gradually moved up and down in the valve chamber 7A. For example, from the heating operation to the defrosting operation and from the defrosting operation to the heating. At the time of switching to operation, the pressure difference between the high pressure side and the low pressure side can be reduced, so that noise can be effectively reduced.

[第2実施形態]
図4及び図5は、本発明に係る流路切換弁の第2実施形態を示す縦断面図であり、図4は、第1流れ状態(弁軸:下降位置)、図5は、第2流れ状態(弁軸:上昇位置)を示している。
[Second Embodiment]
4 and 5 are longitudinal sectional views showing a second embodiment of the flow path switching valve according to the present invention. FIG. 4 shows a first flow state (valve shaft: lowered position), and FIG. The flow state (valve shaft: raised position) is shown.

本第2実施形態の流路切換弁2は、上記第1実施形態における流路切換弁1に対し、基本的に、内側ハウジングに形成された内側ポート及び弁軸に形成された弁体の数のみが相違している。したがって、第1実施形態と同様の機能を有する構成については同様の符号を付してその詳細な説明は省略し、以下では、前記した相違点のみについて詳細に説明する。   The flow path switching valve 2 of the second embodiment is basically the same as the flow path switching valve 1 of the first embodiment with the number of valve bodies formed on the inner port and the valve shaft formed on the inner housing. Only the difference is. Therefore, components having the same functions as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted, and only the differences described above will be described in detail below.

本実施形態の流路切換弁2は、例えばヒートポンプ式冷暖房システム等において六方切換弁として使用されるものであり、その内側ハウジング9Aの側部に、軸線O方向(縦方向)に並んで5つの内側ポートp1、p2、p3、p4、p5が開口せしめられるとともに、上側の内側ポートp1より上側に、弁室7Aと連通空間8Aを連通する連通ポートp11が開口せしめられ、下側の内側ポートp5より下側に、弁室7Aと連通空間8Aを連通する連通ポートp12が開口せしめられている。なお、各内側ポートp1、p2、p3、p4、p5にはそれぞれ、(外側ハウジング9Bを貫通するようにして)導管継手#1、#2、#3、#4、#5がろう付け等により横向きに取り付けられている。   The flow path switching valve 2 of the present embodiment is used as, for example, a six-way switching valve in a heat pump air conditioning system or the like, and has five side by side in the axis O direction (vertical direction) on the side of the inner housing 9A. The inner ports p1, p2, p3, p4, and p5 are opened, and the communication port p11 that communicates the valve chamber 7A and the communication space 8A is opened above the upper inner port p1, and the lower inner port p5 is opened. A communication port p12 communicating with the valve chamber 7A and the communication space 8A is opened further downward. In addition, each of the inner ports p1, p2, p3, p4, and p5 is provided with conduit joints # 1, # 2, # 3, # 4, and # 5 by brazing or the like (through the outer housing 9B). It is installed sideways.

また、弁軸20を構成する連結軸29には、軸線O方向に離間して短円柱状の4つの弁体(第1弁体21、第2弁体22、第3弁体23、第4弁体24)が一体的に形成されている。本例では、連結軸29の上端部に第1弁体21が形成され、その下端部に第4弁体24が形成され、各弁体(第1弁体21、第2弁体22、第3弁体23、第4弁体24)は、軸線O方向で略等間隔に配設されている。また、本例でも、各弁体(第1弁体21、第2弁体22、第3弁体23、第4弁体24)の外周に形成された環状溝には、Oリング等のシール部材21A、22A、23A、24Aが装着されるとともに、各シール部材21A、22A、23A、24Aの外側には、PTFE(テフロン(登録商標))等からなるリング状のパッキン(キャップシールともいう)21B、22B、23B、24Bが装着されている。   In addition, the connecting shaft 29 constituting the valve shaft 20 has four short columnar valve bodies (first valve body 21, second valve body 22, third valve body 23, fourth, spaced apart in the direction of the axis O). A valve body 24) is integrally formed. In this example, the first valve body 21 is formed at the upper end portion of the connecting shaft 29, the fourth valve body 24 is formed at the lower end portion thereof, and each valve body (the first valve body 21, the second valve body 22, the first valve body 24) is formed. The three valve bodies 23 and the fourth valve bodies 24) are arranged at substantially equal intervals in the axis O direction. Also in this example, the annular groove formed on the outer periphery of each valve body (the first valve body 21, the second valve body 22, the third valve body 23, the fourth valve body 24) has a seal such as an O-ring. The members 21A, 22A, 23A, and 24A are mounted, and ring-shaped packings (also referred to as cap seals) made of PTFE (Teflon (registered trademark)) or the like are provided outside the seal members 21A, 22A, 23A, and 24A. 21B, 22B, 23B, and 24B are attached.

かかる構成の流路切換弁2でも、ステッピングモータ50のロータ57を回転駆動させると、各弁体(第1弁体21、第2弁体22、第3弁体23、第4弁体24)が内側ハウジング9Aに内接せしめられた状態で弁室7A内で弁軸20が昇降することにより、5つの内側ポートp1、p2、p3、p4、p5及び外側ポートp10の間の連通状態(流れ方向、流路)が切り換えられる。   Even in the flow path switching valve 2 configured as described above, when the rotor 57 of the stepping motor 50 is rotationally driven, each valve body (first valve body 21, second valve body 22, third valve body 23, fourth valve body 24). Is in contact with the inner housing 9A, the valve shaft 20 moves up and down in the valve chamber 7A, so that communication between the five inner ports p1, p2, p3, p4, p5 and the outer port p10 (flow) Direction, flow path).

すなわち、ステッピングモータ50のロータ57を一方向に回転駆動させると、上記第1実施形態と同様、弁軸20が下降位置(ここでは、弁軸20の下端部に設けられ第4弁体24が蓋状部材11のストッパ部11sに衝接して停止せしめられた位置)をとるが、この下降位置では、第1弁体21が連通ポートp11と内側ポートp1との間に位置し、第2弁体22が内側ポートp2と内側ポートp3との間に位置し、第3弁体23が内側ポートp4と内側ポートp5との間に位置し、第4弁体24が連通ポートp12の下側に位置せしめられ、第1弁体21と第2弁体22の間の空間が、内側ポートp1と内側ポートp2の真横に位置し、第2弁体22と第3弁体23の間の空間が、内側ポートp3と内側ポートp4の真横に位置し、第3弁体23と第4弁体24の間の空間が、内側ポートp5と連通ポートp12の間に位置せしめられる。これにより、内側ポートp1と内側ポートp2が、第1弁体21と第2弁体22の間の空間を介して連通し、内側ポートp3と内側ポートp4が、第2弁体22と第3弁体23の間の空間を介して連通し、内側ポートp5と外側ポートp10が、第3弁体23と第4弁体24の間の空間、連通ポートp12、連通空間8Aを介して連通する(図4に示す第1流れ状態)。   That is, when the rotor 57 of the stepping motor 50 is rotationally driven in one direction, the valve shaft 20 is in the lowered position (here, the fourth valve body 24 is provided at the lower end portion of the valve shaft 20 as in the first embodiment). In this lowered position, the first valve body 21 is located between the communication port p11 and the inner port p1, and the second valve is stopped. The body 22 is located between the inner port p2 and the inner port p3, the third valve body 23 is located between the inner port p4 and the inner port p5, and the fourth valve body 24 is located below the communication port p12. The space between the first valve body 21 and the second valve body 22 is positioned directly beside the inner port p1 and the inner port p2, and the space between the second valve body 22 and the third valve body 23 is , Located directly beside the inner port p3 and the inner port p4, The space between the valve element 23 and the fourth valve element 24, is caused to position between the inner port p5 and the communication port p12. Accordingly, the inner port p1 and the inner port p2 communicate with each other through the space between the first valve body 21 and the second valve body 22, and the inner port p3 and the inner port p4 are connected to the second valve body 22 and the third valve body 22. The inner port p5 and the outer port p10 communicate with each other through the space between the valve bodies 23, and the space between the third valve body 23 and the fourth valve body 24, the communication port p12, and the communication space 8A. (First flow state shown in FIG. 4).

それに対し、ステッピングモータ50のロータ57を他方向に回転駆動させると、上記第1実施形態と同様、弁軸20が上昇位置をとるが、この上昇位置では、第1弁体21が連通ポートp11の上側に位置し、第2弁体22が内側ポートp1と内側ポートp2との間に位置し、第3弁体23が内側ポートp3と内側ポートp4との間に位置し、第4弁体24が内側ポートp5と連通ポートp12の間に位置せしめられ、第1弁体21と第2弁体22の間の空間が、連通ポートp11と内側ポートp1の間に位置し、第2弁体22と第3弁体23の間の空間が、内側ポートp2と内側ポートp3の真横に位置し、第3弁体23と第4弁体24の間の空間が、内側ポートp4と内側ポートp5の真横に位置せしめられる。これにより、内側ポートp2と内側ポートp3が、第2弁体22と第3弁体23の間の空間を介して連通し、内側ポートp4と内側ポートp5が、第3弁体23と第4弁体24の間の空間を介して連通し、内側ポートp1と外側ポートp10が、第1弁体21と第2弁体22の間の空間、連通ポートp11、連通空間8Aを介して連通する(図5に示す第2流れ状態)。   On the other hand, when the rotor 57 of the stepping motor 50 is rotationally driven in the other direction, the valve shaft 20 takes the raised position as in the first embodiment. At this raised position, the first valve body 21 is connected to the communication port p11. The second valve element 22 is positioned between the inner port p1 and the inner port p2, the third valve element 23 is positioned between the inner port p3 and the inner port p4, and the fourth valve element. 24 is positioned between the inner port p5 and the communication port p12, and the space between the first valve body 21 and the second valve body 22 is positioned between the communication port p11 and the inner port p1, and the second valve body The space between the second valve body 23 and the third valve body 23 is located directly beside the inner port p2 and the inner port p3, and the space between the third valve body 23 and the fourth valve body 24 is the inner port p4 and the inner port p5. It is positioned right next to As a result, the inner port p2 and the inner port p3 communicate with each other via the space between the second valve body 22 and the third valve body 23, and the inner port p4 and the inner port p5 communicate with the third valve body 23 and the fourth valve body. The inner port p1 and the outer port p10 communicate with each other through the space between the valve bodies 24, and the space between the first valve body 21 and the second valve body 22, the communication port p11, and the communication space 8A. (Second flow state shown in FIG. 5).

ここで、本実施形態においても、弁軸20内に設けられた連通路32を介して、第1弁体21の上側に画成される上側背圧室30と第4弁体24の下側に画成される下側背圧室31とが常時連通しているので、上記第1実施形態と同様の作用効果が得られる。   Here, also in the present embodiment, the upper back pressure chamber 30 defined above the first valve body 21 and the lower side of the fourth valve body 24 via the communication passage 32 provided in the valve shaft 20. Since the lower back pressure chamber 31 defined in the above is always in communication, the same effect as the first embodiment can be obtained.

なお、本例では、外側ポートp10が、平面視で視たときに内側ポートp1、p2、p3、p4、p5と反対側(言い換えれば、2つの連通ポートp11、p12と同じ側)に形成されているが、外側ポートp10、内側ポートp1〜p5、及び連通ポートp11、p12の位置は、流路切換弁2の適用箇所等に応じて適宜に変更できることは勿論である。例えば、図6に示される如くに、外側ポートp10及び内側ポートp1〜p5を平面視で視て同じ側に形成してもよい。なお、図6に示す例では、外側ポートp10が内側ポートp1〜p5の上側に形成されているが、外側ポートp10を内側ポートp1〜p5の下側に形成してもよいことは当然である。   In this example, the outer port p10 is formed on the side opposite to the inner ports p1, p2, p3, p4, p5 when viewed in plan (in other words, the same side as the two communication ports p11, p12). However, it goes without saying that the positions of the outer port p10, the inner ports p1 to p5, and the communication ports p11 and p12 can be appropriately changed according to the application location of the flow path switching valve 2 and the like. For example, as shown in FIG. 6, the outer port p10 and the inner ports p1 to p5 may be formed on the same side when viewed in a plan view. In the example shown in FIG. 6, the outer port p10 is formed on the upper side of the inner ports p1 to p5, but the outer port p10 may be formed on the lower side of the inner ports p1 to p5. .

また、本例では、同軸上に配置された筒状基体からなる外側ハウジング9B及び内側ハウジング9Aによって、内側ハウジング9Aと外側ハウジング9Bの間(内側ハウジング9Aの外周)に、円筒状の連通空間8Aが形成されているが、例えば、図7(A)、(B)に示される如くに、内側ハウジング9Aの外周(詳細には、内側ハウジング9Aに形成された連通ポートp11、p12を覆う位置)に例えば横断面コの字状の筐体からなる外側ハウジング9Bを(溶接、ろう付け等により)接続し、その外側ハウジング9Bと筒状基体からなる内側ハウジング9Aの間(内側ハウジング9Aの外周の一部)に、略ストレート状の連通空間8Aを形成してもよい。なお、この場合、図7(A)、(B)に示す例では、内側ハウジング9Aの下端部が、蓋状部材11の大径接合部11cと中径嵌合部11bの間に形成された段差部に溶接等により接合されるとともに、内側ハウジング9Aの上端に拡径部9Cが設けられ、その拡径部9Cに、段付きの筒状基台13が取り付けられている。   Further, in this example, the cylindrical communication space 8A is formed between the inner housing 9A and the outer housing 9B (outer periphery of the inner housing 9A) by the outer housing 9B and the inner housing 9A made of a cylindrical base disposed coaxially. For example, as shown in FIGS. 7A and 7B, the outer periphery of the inner housing 9A (specifically, the position covering the communication ports p11 and p12 formed in the inner housing 9A). For example, an outer housing 9B composed of a U-shaped housing having a U-shaped cross section is connected (by welding, brazing, etc.), and between the outer housing 9B and an inner housing 9A composed of a cylindrical base (on the outer periphery of the inner housing 9A). A substantially straight communication space 8 </ b> A may be formed in a part). In this case, in the example shown in FIGS. 7A and 7B, the lower end portion of the inner housing 9A is formed between the large-diameter joint portion 11c of the lid-like member 11 and the medium-diameter fitting portion 11b. While being joined to the stepped portion by welding or the like, an enlarged diameter portion 9C is provided at the upper end of the inner housing 9A, and a stepped cylindrical base 13 is attached to the enlarged diameter portion 9C.

[第3実施形態]
図8及び図9は、本発明に係る流路切換弁の第3実施形態を示す縦断面図であり、図8は、第1流れ状態(弁軸:下降位置)、図9は、第2流れ状態(弁軸:上昇位置)を示している。
[Third Embodiment]
8 and 9 are longitudinal sectional views showing a third embodiment of the flow path switching valve according to the present invention. FIG. 8 shows a first flow state (valve shaft: lowered position), and FIG. The flow state (valve shaft: raised position) is shown.

本第3実施形態の流路切換弁3は、上記第2実施形態における流路切換弁2に対し、基本的に、外側ポートの開口位置及び外側ハウジングと内側ハウジングの間の連通空間の形状が相違している。したがって、第2実施形態と同様の機能を有する構成については同様の符号を付してその詳細な説明は省略し、以下では、前記した相違点のみについて詳細に説明する。   The flow path switching valve 3 of the third embodiment basically has an opening position of the outer port and a shape of the communication space between the outer housing and the inner housing with respect to the flow path switching valve 2 of the second embodiment. It is different. Therefore, components having the same functions as those of the second embodiment are denoted by the same reference numerals and detailed description thereof is omitted, and only the differences described above will be described in detail below.

本実施形態の流路切換弁3は、上記第2実施形態と同様、例えばヒートポンプ式冷暖房システム等において六方切換弁として使用されるものであり、内側ハウジング9Aの外径が外側ハウジング9Bの内径と略同一に形成され、内側ハウジング9Aが外側ハウジング9Bに内嵌されるとともに、内側ハウジング9Aの外周(詳細には、連通ポートp11、p12が形成された部分)に(上下方向に亘って)Dカット面9Dが形成され、そのDカット面9Dと外側ハウジング9Bの内周面とによって前記連通空間8Aが形成されている(図10も併せて参照)。   Similarly to the second embodiment, the flow path switching valve 3 of the present embodiment is used as a six-way switching valve in, for example, a heat pump air conditioning system, and the outer diameter of the inner housing 9A is equal to the inner diameter of the outer housing 9B. The inner housing 9A is fitted into the outer housing 9B and is formed on the outer periphery of the inner housing 9A (specifically, the portion where the communication ports p11 and p12 are formed) (in the vertical direction) D. A cut surface 9D is formed, and the communication space 8A is formed by the D cut surface 9D and the inner peripheral surface of the outer housing 9B (see also FIG. 10).

なお、本例においては、内側ハウジング9Aの上部開口と筒状保持部材14(の底壁14c)に設けられた筒状嵌合部14bとの間に、Oリング等からなるシール部材14Aが介装されている。   In this example, a seal member 14A made of an O-ring or the like is interposed between the upper opening of the inner housing 9A and the cylindrical fitting portion 14b provided on the cylindrical holding member 14 (the bottom wall 14c). It is disguised.

また、外側ポートp10は、外側ハウジング9Bにおける内側ポートp1〜p5の上側であって連通ポートp11と略同じ高さに形成されており、外側ポートp10に連設するように内側ハウジング9Aに設けられた開口p10a及び連通ポートp11を介して前記連通空間8Aと常時連通せしめられている。   The outer port p10 is formed above the inner ports p1 to p5 in the outer housing 9B and at substantially the same height as the communication port p11, and is provided in the inner housing 9A so as to be connected to the outer port p10. Through the opening p10a and the communication port p11, the communication space 8A is always in communication.

かかる構成の流路切換弁3でも、ステッピングモータ50のロータ57を回転駆動させると、各弁体(第1弁体21、第2弁体22、第3弁体23、第4弁体24)が内側ハウジング9Aに内接せしめられた状態で弁室7A内で弁軸20が昇降することにより、5つの内側ポートp1、p2、p3、p4、p5及び外側ポートp10の間の連通状態(流れ方向、流路)が切り換えられる。   Even in the flow path switching valve 3 having such a configuration, when the rotor 57 of the stepping motor 50 is rotationally driven, each valve body (first valve body 21, second valve body 22, third valve body 23, fourth valve body 24). Is in contact with the inner housing 9A, the valve shaft 20 moves up and down in the valve chamber 7A, so that communication between the five inner ports p1, p2, p3, p4, p5 and the outer port p10 (flow) Direction, flow path).

すなわち、ステッピングモータ50のロータ57を一方向に回転駆動させると、上記第2実施形態と同様、弁軸20が下降位置(ここでは、弁軸20の下端部に設けられ第4弁体24が蓋状部材11のストッパ部11sに衝接して停止せしめられた位置)をとるが、この下降位置では、第1弁体21が連通ポートp11及び外側ポートp10に連なる開口p10aと内側ポートp1との間に位置し、第2弁体22が内側ポートp2と内側ポートp3との間に位置し、第3弁体23が内側ポートp4と内側ポートp5との間に位置し、第4弁体24が連通ポートp12の下側に位置せしめられ、第1弁体21と第2弁体22の間の空間が、内側ポートp1と内側ポートp2の真横に位置し、第2弁体22と第3弁体23の間の空間が、内側ポートp3と内側ポートp4の真横に位置し、第3弁体23と第4弁体24の間の空間が、内側ポートp5と連通ポートp12の間に位置せしめられる。これにより、内側ポートp1と内側ポートp2が、第1弁体21と第2弁体22の間の空間を介して連通し、内側ポートp3と内側ポートp4が、第2弁体22と第3弁体23の間の空間を介して連通し、内側ポートp5と外側ポートp10が、第3弁体23と第4弁体24の間の空間、連通ポートp12、連通空間8A、連通ポートp12、第1弁体21より上側の上側背圧室30、開口p10aを介して連通する(図8に示す第1流れ状態)。   That is, when the rotor 57 of the stepping motor 50 is rotationally driven in one direction, the valve shaft 20 is moved to the lowered position (here, the fourth valve body 24 is provided at the lower end portion of the valve shaft 20 as in the second embodiment). The position where the first valve element 21 is connected to the communication port p11 and the outer port p10 and the inner port p1 is in this lowered position. The second valve element 22 is positioned between the inner port p2 and the inner port p3, the third valve element 23 is positioned between the inner port p4 and the inner port p5, and the fourth valve element 24 Is positioned below the communication port p12, and the space between the first valve body 21 and the second valve body 22 is positioned directly beside the inner port p1 and the inner port p2, and the second valve body 22 and the third valve body 22 The space between the valve bodies 23 is the inner port Located just beside the p3 and inner port p4, the space between the third valve body 23 of the fourth valve element 24, is caused to position between the inner port p5 and the communication port p12. Accordingly, the inner port p1 and the inner port p2 communicate with each other through the space between the first valve body 21 and the second valve body 22, and the inner port p3 and the inner port p4 are connected to the second valve body 22 and the third valve body 22. The inner port p5 and the outer port p10 communicate with each other through the space between the valve bodies 23, the space between the third valve body 23 and the fourth valve body 24, the communication port p12, the communication space 8A, the communication port p12, The upper back pressure chamber 30 above the first valve body 21 communicates with the opening p10a (first flow state shown in FIG. 8).

それに対し、ステッピングモータ50のロータ57を他方向に回転駆動させると、上記第2実施形態と同様、弁軸20が上昇位置をとるが、この上昇位置では、第1弁体21が連通ポートp11及び外側ポートp10に連なる開口p10aの上側に位置し、第2弁体22が内側ポートp1と内側ポートp2との間に位置し、第3弁体23が内側ポートp3と内側ポートp4との間に位置し、第4弁体24が内側ポートp5と連通ポートp12の間に位置せしめられ、第1弁体21と第2弁体22の間の空間が、連通ポートp11及び開口p10aと内側ポートp1の間に位置し、第2弁体22と第3弁体23の間の空間が、内側ポートp2と内側ポートp3の真横に位置し、第3弁体23と第4弁体24の間の空間が、内側ポートp4と内側ポートp5の真横に位置せしめられる。これにより、内側ポートp2と内側ポートp3が、第2弁体22と第3弁体23の間の空間を介して連通し、内側ポートp4と内側ポートp5が、第3弁体23と第4弁体24の間の空間を介して連通し、内側ポートp1と外側ポートp10が、第1弁体21と第2弁体22の間の空間を介して連通する(図9に示す第2流れ状態)。   On the other hand, when the rotor 57 of the stepping motor 50 is rotationally driven in the other direction, the valve shaft 20 takes the raised position as in the second embodiment. At this raised position, the first valve body 21 is connected to the communication port p11. And the second valve element 22 is located between the inner port p1 and the inner port p2, and the third valve element 23 is located between the inner port p3 and the inner port p4. The fourth valve body 24 is positioned between the inner port p5 and the communication port p12, and the space between the first valve body 21 and the second valve body 22 is defined as the communication port p11 and the opening p10a and the inner port. p1 and the space between the second valve element 22 and the third valve element 23 is located directly beside the inner port p2 and the inner port p3, and between the third valve element 23 and the fourth valve element 24. The inner space is inside port p4 and inside It is caused to position just beside the over door p5. As a result, the inner port p2 and the inner port p3 communicate with each other via the space between the second valve body 22 and the third valve body 23, and the inner port p4 and the inner port p5 communicate with the third valve body 23 and the fourth valve body. The inner port p1 and the outer port p10 communicate with each other through a space between the valve bodies 24, and a space between the first valve body 21 and the second valve body 22 (second flow shown in FIG. 9). State).

ここで、本実施形態においても、弁軸20内に設けられた連通路32を介して、第1弁体21の上側に画成される上側背圧室30と第4弁体24の下側に画成される下側背圧室31とが常時連通しているので、上記第1及び第2実施形態と同様の作用効果が得られる。   Here, also in the present embodiment, the upper back pressure chamber 30 defined above the first valve body 21 and the lower side of the fourth valve body 24 via the communication passage 32 provided in the valve shaft 20. Since the lower back pressure chamber 31 defined in the above is always in communication, the same effect as the first and second embodiments can be obtained.

なお、本例では、外側ポートp10が、外側ハウジング9Bにおける内側ポートp1〜p5の上側であって連通ポートp11と略同じ高さに形成されているが、例えば、外側ポートp10を、外側ハウジング9Bにおける内側ポートp1〜p5の下側であって連通ポートp12と略同じ高さに形成し、連通ポートp12を介して前記連通空間8Aと常時連通するようにしてもよいことは言うまでも無い。   In this example, the outer port p10 is formed above the inner ports p1 to p5 in the outer housing 9B and at substantially the same height as the communication port p11. For example, the outer port p10 is connected to the outer housing 9B. Needless to say, it may be formed below the inner ports p1 to p5 at approximately the same height as the communication port p12 so as to always communicate with the communication space 8A via the communication port p12.

[第4実施形態]
図11及び図12は、本発明に係る流路切換弁の第4実施形態を示す縦断面図であり、図11は、第1流れ状態(弁軸:下降位置)、図12は、第2流れ状態(弁軸:上昇位置)を示している。
[Fourth Embodiment]
FIGS. 11 and 12 are longitudinal sectional views showing a fourth embodiment of the flow path switching valve according to the present invention. FIG. 11 shows a first flow state (valve shaft: lowered position), and FIG. The flow state (valve shaft: raised position) is shown.

本第4実施形態の流路切換弁4は、上記第2実施形態における流路切換弁2に対し、基本的に、上側背圧室30と下側背圧室31とを常時連通する連通路32の構成が相違している。したがって、第2実施形態と同様の機能を有する構成については同様の符号を付してその詳細な説明は省略し、以下では、前記した相違点のみについて詳細に説明する。   The flow path switching valve 4 of the fourth embodiment is basically a communication path that constantly communicates the upper back pressure chamber 30 and the lower back pressure chamber 31 with respect to the flow path switching valve 2 in the second embodiment. The configuration of 32 is different. Therefore, components having the same functions as those of the second embodiment are denoted by the same reference numerals and detailed description thereof is omitted, and only the differences described above will be described in detail below.

本実施形態の流路切換弁4は、上記第2実施形態と同様、例えばヒートポンプ式冷暖房システム等において六方切換弁として使用されるものであり、ここでは、弁軸20を構成する連結軸29がほぼ中実に形成され、連結軸29の上端部に形成された中心穴29bに、段付き円筒状の推力伝達軸27の小径下部27cが嵌挿されて圧入、ろう付け等により連結されている。   The flow path switching valve 4 of the present embodiment is used as a six-way switching valve in, for example, a heat pump air conditioning system or the like, similar to the second embodiment, and here, the connecting shaft 29 constituting the valve shaft 20 is The small-diameter lower portion 27c of the stepped cylindrical thrust transmission shaft 27 is inserted into a center hole 29b formed in the upper end portion of the connection shaft 29 and is connected by press fitting, brazing, or the like.

また、筒状保持部材14(の底壁14c)に設けられた筒状嵌合部14bが若干長く形成され、底壁14cと内側ハウジング9Aの上端部との間に隙間を持つように前記筒状嵌合部14bが内側ハウジング9Aの上部開口に嵌合(内嵌)されるとともに、その筒状嵌合部14bの上部(詳細には、筒状嵌合部14bのうち前記隙間に対応する部分)に横孔32aが形成されている。なお、この横孔32aは、内側ハウジング9Aにおける連通ポートp11より上側であって弁軸20が上昇位置にあるときの第1弁体21より上側に形成してもよい。   Further, the cylindrical fitting member 14b provided on the cylindrical holding member 14 (the bottom wall 14c thereof) is formed to be slightly longer, and the cylinder is formed so that a gap is provided between the bottom wall 14c and the upper end portion of the inner housing 9A. The cylindrical fitting portion 14b is fitted (internally fitted) into the upper opening of the inner housing 9A, and the upper portion of the cylindrical fitting portion 14b (specifically, corresponds to the gap in the cylindrical fitting portion 14b). A lateral hole 32a is formed in the portion. The lateral hole 32a may be formed above the communication port p11 in the inner housing 9A and above the first valve body 21 when the valve shaft 20 is in the raised position.

さらに、内側ハウジング9Aにおける連通ポートp12より下側であって蓋状部材11の小径突設部11aの側方(すなわち、下側背圧室31に対応する部分)に横孔32bが形成されている。   Further, a lateral hole 32b is formed in the inner housing 9A below the communication port p12 and on the side of the small-diameter protruding portion 11a of the lid-like member 11 (that is, the portion corresponding to the lower back pressure chamber 31). Yes.

これにより、本実施形態の流路切換弁4では、筒状保持部材14の筒状嵌合部14bの横孔32a、内側ハウジング9Aの上端部と筒状保持部材14の底壁14cとの間に形成される隙間を含む内側ハウジング9Aと外側ハウジング9Bとの間(言い換えれば、内側ハウジング9Aの外側)の連通空間8A、及び、内側ハウジング9Aの横孔32bによって、上側背圧室30と下側背圧室31とを常時連通する連通路32が構成されている。   Thereby, in the flow path switching valve 4 of the present embodiment, the space between the horizontal hole 32a of the cylindrical fitting portion 14b of the cylindrical holding member 14, the upper end portion of the inner housing 9A, and the bottom wall 14c of the cylindrical holding member 14 is determined. The upper back pressure chamber 30 and the lower side are formed by the communication space 8A between the inner housing 9A and the outer housing 9B (in other words, the outer side of the inner housing 9A) including the gap formed in the inner housing 9A and the lateral hole 32b of the inner housing 9A. A communication path 32 that always communicates with the side back pressure chamber 31 is configured.

かかる構成の流路切換弁4でも、ステッピングモータ50のロータ57を回転駆動させると、各弁体(第1弁体21、第2弁体22、第3弁体23、第4弁体24)が内側ハウジング9Aに内接せしめられた状態で弁室7A内で弁軸20が昇降することにより、上述の第2実施形態と同様に、5つの内側ポートp1、p2、p3、p4、p5及び外側ポートp10の間の連通状態(流れ方向、流路)が切り換えられるが、内側ハウジング9Aと外側ハウジング9Bとの間の連通空間8Aを含む連通路32を介して、第1弁体21の上側に画成される上側背圧室30と第4弁体24の下側に画成される下側背圧室31とが常時連通しているので、上記第1、第2、及び第3実施形態と同様の作用効果が得られる。   Even in the flow path switching valve 4 having such a configuration, when the rotor 57 of the stepping motor 50 is rotationally driven, each valve body (first valve body 21, second valve body 22, third valve body 23, fourth valve body 24). As the valve shaft 20 moves up and down in the valve chamber 7A with the inner housing 9A being inscribed in the inner housing 9A, the five inner ports p1, p2, p3, p4, p5, and Although the communication state (flow direction, flow path) between the outer ports p10 is switched, the upper side of the first valve body 21 is connected via the communication passage 32 including the communication space 8A between the inner housing 9A and the outer housing 9B. Since the upper back pressure chamber 30 defined at the bottom and the lower back pressure chamber 31 defined at the lower side of the fourth valve body 24 are always in communication, the first, second, and third implementations described above are performed. The same effect as the form can be obtained.

また、本実施形態では、弁軸20を構成する連結軸29における貫通孔を省略できるので、弁軸20自体を比較的シンプルな構成とすることもできるといった効果もある。   Moreover, in this embodiment, since the through-hole in the connection shaft 29 which comprises the valve shaft 20 can be abbreviate | omitted, there also exists an effect that valve shaft 20 itself can also be set as a comparatively simple structure.

なお、この場合、上側背圧室30と下側背圧室31とは、内側ハウジング9Aの外側の連通空間8A等を含む連通路32を介して常時連通しているので、内側ハウジング9Aの連通ポートp11、p12の一方を省略してもよいし、前記連通ポートp11、p12とは異なる位置に弁室7Aと連通空間8Aとを連通する連通ポートを形成してもよい。   In this case, the upper back pressure chamber 30 and the lower back pressure chamber 31 are always in communication with each other via the communication path 32 including the communication space 8A and the like outside the inner housing 9A. One of the ports p11 and p12 may be omitted, or a communication port that connects the valve chamber 7A and the communication space 8A may be formed at a position different from the communication ports p11 and p12.

[第5実施形態]
図13及び図14は、本発明に係る流路切換弁の第5実施形態を示す縦断面図であり、図13は、第1流れ状態(弁軸:下降位置)、図14は、第2流れ状態(弁軸:上昇位置)を示している。
[Fifth Embodiment]
FIGS. 13 and 14 are longitudinal sectional views showing a fifth embodiment of the flow path switching valve according to the present invention. FIG. 13 shows a first flow state (valve shaft: lowered position), and FIG. The flow state (valve shaft: raised position) is shown.

本第5実施形態の流路切換弁5は、上記第4実施形態における流路切換弁4に対し、基本的に、内側ハウジング9Aに形成された内側ポートp1〜p5や連通ポートp11、p12の内周付近の形状が相違している。したがって、第4実施形態と同様の機能を有する構成については同様の符号を付してその詳細な説明は省略し、以下では、前記した相違点のみについて詳細に説明する。   The flow path switching valve 5 of the fifth embodiment is basically the same as the flow path switching valve 4 of the fourth embodiment of the inner ports p1 to p5 and the communication ports p11 and p12 formed in the inner housing 9A. The shape near the inner circumference is different. Therefore, components having the same functions as those in the fourth embodiment are denoted by the same reference numerals and detailed description thereof is omitted, and only the differences described above will be described in detail below.

本実施形態の流路切換弁5は、上記第4実施形態と同様、例えばヒートポンプ式冷暖房システム等において六方切換弁として使用されるものであり、ここでは、弁軸20を構成する連結軸29が、3つの第1連結軸構成体29A〜29Cと1つの第2連結軸構成体29Dとから構成されている。   The flow path switching valve 5 of the present embodiment is used as a six-way switching valve in, for example, a heat pump type air conditioning system or the like, as in the fourth embodiment. Here, the connecting shaft 29 constituting the valve shaft 20 is a connecting shaft 29. It is comprised from three 1st connection shaft structure bodies 29A-29C and one 2nd connection shaft structure body 29D.

各第1連結軸構成体29A〜29Cの上端部には、短円柱状の弁体(第1弁体21、第2弁体22、第3弁体23)が一体的に形成されるとともに、その下端部には、推力伝達軸27の小径下部27cと同形の小径嵌挿部29Aa〜29Caが形成されている。また、第2連結軸構成体29Dの上端部には、短円柱状の弁体(第4弁体24)が一体的に形成されている。   A short columnar valve body (first valve body 21, second valve body 22, third valve body 23) is integrally formed at the upper end of each of the first connecting shaft constituting bodies 29A to 29C, Small-diameter fitting insertion portions 29Aa to 29Ca having the same shape as the small-diameter lower portion 27c of the thrust transmission shaft 27 are formed at the lower end portion. In addition, a short cylindrical valve body (fourth valve body 24) is integrally formed at the upper end portion of the second connecting shaft constituting body 29D.

第1連結軸構成体29Aの上端部に形成された中心穴29Abに、推力伝達軸27の小径下部27cが上側から嵌合されて圧入、ろう付け等により一体的に連結され、第1連結軸構成体29Bの上端部に形成された中心穴29Bbに、第1連結軸構成体29Aの小径嵌挿部29Aaが上側から嵌合されて一体的に連結され、第1連結軸構成体29Cの上端部に形成された中心穴29Cbに、第1連結軸構成体29Bの小径嵌挿部29Baが上側から嵌合されて一体的に連結され、第2連結軸構成体29Dの上端部に形成された中心穴29Dbに、第1連結軸構成体29Cの小径嵌挿部29Caが上側から嵌合されて一体的に連結されることで、軸線O方向に沿って配在されるとともに、軸線O方向に離間して短円柱状の4つの弁体(第1弁体21、第2弁体22、第3弁体23、第4弁体24)が設けられた前記弁軸20が構成されている。   A small-diameter lower portion 27c of the thrust transmission shaft 27 is fitted from above to a center hole 29Ab formed in the upper end portion of the first connecting shaft constituting body 29A, and is integrally connected by press fitting, brazing, or the like. The small-diameter fitting insertion portion 29Aa of the first connecting shaft constituting body 29A is fitted from above and integrally connected to the center hole 29Bb formed in the upper end portion of the constituting body 29B, and the upper end of the first connecting shaft constituting body 29C. A small-diameter fitting portion 29Ba of the first connecting shaft constituting body 29B is fitted from above and integrally connected to the center hole 29Cb formed in the portion, and is formed at the upper end portion of the second connecting shaft constituting body 29D. The small-diameter fitting insertion portion 29Ca of the first connecting shaft constituting body 29C is fitted and integrally connected to the center hole 29Db from above, so that it is distributed along the axis O direction and in the axis O direction. 4 valve bodies (first valve body spaced apart) 1, the second valve body 22, the third valve body 23, a fourth the valve shaft 20 to the valve body 24) is provided is configured.

また、ここでは、第1連結軸構成体29Aの第1弁体21の上端面と推力伝達軸27の中間胴部27bの下端段差面との間に、小径下部27cの圧入時において押さえ部材21Cが挟み込まれて固定され、この押さえ部材21Cと第1弁体21の上端外周に形成された段差部とで形成される環状溝に、第1弁体21(の外周面)と内側ハウジング9A(の内周面)との間(に形成される摺動面隙間)をシールする前記シール部材21Aが装着されるとともに、そのシール部材21Aの外側に、PTFE(テフロン(登録商標))等からなる前記パッキン21Bが装着されている。   Further, here, when the small diameter lower portion 27c is press-fitted between the upper end surface of the first valve body 21 of the first connecting shaft constituting body 29A and the lower end step surface of the intermediate body portion 27b of the thrust transmission shaft 27, the pressing member 21C. Is inserted and fixed, and the first valve body 21 (the outer peripheral surface thereof) and the inner housing 9 </ b> A ( The seal member 21A for sealing (the sliding surface gap formed between) is attached to the inner peripheral surface), and is formed of PTFE (Teflon (registered trademark)) or the like outside the seal member 21A. The packing 21B is attached.

また、第1連結軸構成体29Bの第2弁体22と第1連結軸構成体29Aとの間、第1連結軸構成体29Cの第3弁体23と第1連結軸構成体29Bとの間、及び、第2連結軸構成体29Dの第4弁体24と第1連結軸構成体29Cとの間にも、同様に、押さえ部材22C〜24Cが挟み込まれて固定されており、各押さえ部材22C〜24Cと第2〜第4弁体22〜24とで形成される環状溝に、前記シール部材22A〜24A及び前記パッキン22B〜24Bが装着されている。   Further, between the second valve body 22 of the first connecting shaft constituting body 29B and the first connecting shaft constituting body 29A, between the third valve body 23 of the first connecting shaft constituting body 29C and the first connecting shaft constituting body 29B. Similarly, the pressing members 22C to 24C are sandwiched and fixed between the fourth valve body 24 and the first connecting shaft constituting body 29C of the second connecting shaft constituting body 29D. The seal members 22A to 24A and the packings 22B to 24B are mounted in an annular groove formed by the members 22C to 24C and the second to fourth valve bodies 22 to 24.

また、本実施形態では、内側ハウジング9Aの内周における内側ポートp1〜p5及び連通ポートp11、p12が形成された部分が、全周に亘って凹状に形成されており(凹面部s1〜s5、s11、s12)(リセス加工ともいう)、その凹面部s1〜s5、s11、s12の上面及び下面に、円錐台面からなるテーパ面部t1〜t5、t11、t12が設けられている。   Further, in the present embodiment, the portions where the inner ports p1 to p5 and the communication ports p11 and p12 are formed on the inner periphery of the inner housing 9A are formed in a concave shape over the entire periphery (concave surface portions s1 to s5, s11, s12) (also referred to as recess processing), and tapered surface portions t1 to t5, t11, and t12 each having a truncated cone surface are provided on the upper and lower surfaces of the concave surface portions s1 to s5, s11, and s12.

なお、図示例では、テーパ面部t1〜t5、t11、t12が円錐台面から構成され、縦断面で視たときに直線状を有しているが、例えば、テーパ面部t1〜t5、t11、t12を、縦断面で視たときに内側へ向かって凸あるいは外側へ向かって凸となるような曲線状に形成してもよい。また、内側ポートp1〜p5及び連通ポートp11、p12と内側ハウジング9Aとの境界部分、あるいは、テーパ面部t1〜t5、t11、t12と内側ハウジング9Aとの境界部分をR付けしてもよい。   In the illustrated example, the tapered surface portions t1 to t5, t11, and t12 are formed of a truncated cone surface and have a straight shape when viewed in a longitudinal section. For example, the tapered surface portions t1 to t5, t11, and t12 are Alternatively, it may be formed in a curved shape that is convex inward or convex outward when viewed in a longitudinal section. Further, the boundary portions between the inner ports p1 to p5 and the communication ports p11 and p12 and the inner housing 9A, or the boundary portions between the tapered surface portions t1 to t5, t11 and t12 and the inner housing 9A may be rounded.

かかる構成の流路切換弁5でも、ステッピングモータ50のロータ57を回転駆動させると、各弁体(第1弁体21、第2弁体22、第3弁体23、第4弁体24)が内側ハウジング9Aに内接せしめられた状態で弁室7A内で弁軸20が昇降することにより、上述の第4実施形態と同様に、5つの内側ポートp1、p2、p3、p4、p5及び外側ポートp10の間の連通状態(流れ方向、流路)が切り換えられるが、内側ハウジング9Aと外側ハウジング9Bとの間(言い換えれば、内側ハウジング9Aの外側)の連通空間8Aを含む連通路32を介して、第1弁体21の上側に画成される上側背圧室30と第4弁体24の下側に画成される下側背圧室31とが常時連通しているので、上記第4実施形態と同様の作用効果が得られる。   Even in the flow path switching valve 5 having such a configuration, when the rotor 57 of the stepping motor 50 is rotationally driven, each valve body (first valve body 21, second valve body 22, third valve body 23, fourth valve body 24). As the valve shaft 20 moves up and down in the valve chamber 7A with the inner housing 9A being inscribed in the inner housing 9A, the five inner ports p1, p2, p3, p4, p5, and Although the communication state (flow direction, flow path) between the outer ports p10 is switched, the communication path 32 including the communication space 8A between the inner housing 9A and the outer housing 9B (in other words, outside the inner housing 9A) is provided. The upper back pressure chamber 30 defined on the upper side of the first valve body 21 and the lower back pressure chamber 31 defined on the lower side of the fourth valve body 24 are always in communication with each other. The same effect as the fourth embodiment can be obtained.

また、本実施形態では、内側ハウジング9Aの内周における内側ポートp1〜p5及び連通ポートp11、p12が形成された部分に、全周に亘って凹面部s1〜s5、s11、s12が設けられているので、流路切換時における各弁体の外周(各弁体の外周に設けられたパッキン21B、22B、23B、24Bやシール部材21A、22A、23A、24Aを含む)と内側ハウジング9Aの内周との摺動抵抗を低減できるため、これによっても、流路切換時に弁体に作用する荷重を可及的に小さくでき、弁体の駆動トルクをより効果的に低減することができる。   Further, in the present embodiment, concave portions s1 to s5, s11, and s12 are provided over the entire circumference in the portion where the inner ports p1 to p5 and the communication ports p11 and p12 are formed on the inner periphery of the inner housing 9A. Therefore, the outer periphery of each valve body (including packings 21B, 22B, 23B, 24B and seal members 21A, 22A, 23A, 24A provided on the outer periphery of each valve body) and the inner housing 9A at the time of switching the flow path Since the sliding resistance with the circumference can be reduced, the load acting on the valve body when switching the flow path can be reduced as much as possible, and the driving torque of the valve body can be reduced more effectively.

また、各弁体の外周に設けられたシール部材21A、22A、23A、24Aの外側には、シール部材21A、22A、23A、24Aの弾性変形を抑制すべく、比較的硬度の高いPTFE(テフロン(登録商標))等からなるパッキン21B、22B、23B、24Bが装着されているものの、流路切換時にシール部材21A、22A、23A、24Bが各内側ポート及び連通ポート上を通過するときに弾性変形して、パッキン21B、22B、23B、24Bやシール部材21A、22A、23A、24Aの外周部分が、各弁体の外周に形成された環状溝から突出する可能性はある。本実施形態では、内側ハウジング9Aの内周における内側ポートp1〜p5及び連通ポートp11、p12が形成された部分(の上部及び下部)に、円錐台面からなるテーパ面部t1〜t5、t11、t12が設けられているので、例えば図15に拡大図示されている如くに、流路切換時にパッキン21B、22B、23B、24Bやシール部材21A、22A、23A、24Aが各内側ポート及び連通ポート上を滑らかに通過するようになり、パッキン21B、22B、23B、24Bやシール部材21A、22A、23A、24Aが各内側ポート及び連通ポート上を通過するときの抵抗(図示例では、各内側ポート及び連通ポートが形成された部分に設けられた凹面部と内側ハウジングの内周との間の段差に起因する抵抗)を更に低減できるため、これによっても、流路切換時に弁体に作用する荷重を可及的に小さくでき、弁体の駆動トルクを更に効果的に低減することができる。   Further, PTFE (Teflon) having a relatively high hardness is provided on the outer side of the seal members 21A, 22A, 23A, and 24A provided on the outer periphery of each valve body so as to suppress elastic deformation of the seal members 21A, 22A, 23A, and 24A. (Registered Trademark)) or other packings 21B, 22B, 23B, 24B are mounted, but elastic when the seal members 21A, 22A, 23A, 24B pass over the respective inner ports and communication ports when the flow path is switched. There is a possibility that the outer peripheral portions of the packings 21B, 22B, 23B, and 24B and the seal members 21A, 22A, 23A, and 24A protrude from the annular grooves formed on the outer periphery of each valve body by being deformed. In the present embodiment, taper surface portions t1 to t5, t11, and t12 each having a truncated cone surface are formed on (in the upper and lower portions of) the inner ports p1 to p5 and the communication ports p11 and p12 on the inner periphery of the inner housing 9A. For example, as shown in an enlarged view in FIG. 15, the packings 21B, 22B, 23B, and 24B and the seal members 21A, 22A, 23A, and 24A smoothly move on the inner ports and the communication ports when the flow path is switched. Resistance when the packings 21B, 22B, 23B, 24B and the sealing members 21A, 22A, 23A, 24A pass over the inner ports and the communication ports (in the illustrated example, the inner ports and the communication ports) Can further reduce the resistance caused by the step between the concave surface provided in the portion formed with the inner periphery of the inner housing. Because, this also, the flow path switching can be reduced as much as possible the loads acting on the valve element, can be further effectively reduce the driving torque of the valve body.

[第6実施形態]
図16及び図17は、本発明に係る流路切換弁の第6実施形態を示す縦断面図であり、図16は、第1流れ状態(弁軸:下降位置)、図17は、第2流れ状態(弁軸:上昇位置)を示している。
[Sixth Embodiment]
16 and 17 are longitudinal sectional views showing a sixth embodiment of the flow path switching valve according to the present invention. FIG. 16 shows a first flow state (valve shaft: lowered position), and FIG. The flow state (valve shaft: raised position) is shown.

本第6実施形態の流路切換弁6は、上記第1実施形態における流路切換弁1に対し、基本的に、内側ハウジングに形成された内側ポート及び弁軸に形成された弁体の数が相違している。したがって、第1実施形態と同様の機能を有する構成については同様の符号を付してその詳細な説明は省略し、以下では、前記した相違点のみについて詳細に説明する。   The flow path switching valve 6 according to the sixth embodiment is basically the same as the flow path switching valve 1 according to the first embodiment, except that the number of valve bodies formed on the inner port and the valve shaft is formed on the inner housing. Is different. Therefore, components having the same functions as those in the first embodiment are denoted by the same reference numerals and detailed description thereof is omitted, and only the differences described above will be described in detail below.

本実施形態の流路切換弁6は、例えばヒートポンプ式冷暖房システム等において三方切換弁として使用されるものであり、その内側ハウジング9Aの側部に、軸線O方向(縦方向)に並んで2つの内側ポートp1、p2が開口せしめられるとともに、上側の内側ポートp1より上側に、弁室7Aと連通空間8Aを連通する連通ポートp11が開口せしめられ、下側の内側ポートp2より下側に、弁室7Aと連通空間8Aを連通する連通ポートp12が開口せしめられている。より詳細には、連通ポートp11は、弁軸20が上昇位置にあるときにおいて第1弁体21の上側に位置するように形成され、連通ポートp12は、弁軸20が下降位置にあるときにおいて第2弁体22の下側に位置するように形成されている。すなわち、ここでは、連通ポートp11は、第1弁体21より常時上側に位置するように形成され、連通ポートp12は、第2弁体22より常時下側に位置するように形成されている。各内側ポートp1、p2にはそれぞれ、(外側ハウジング9Bを貫通するようにして)導管継手#1、#2がろう付け等により横向きに取り付けられている。   The flow path switching valve 6 of this embodiment is used as, for example, a three-way switching valve in a heat pump air conditioning system or the like, and two side by side in the axis O direction (vertical direction) are arranged on the side of the inner housing 9A. The inner ports p1, p2 are opened, and the communication port p11 communicating with the valve chamber 7A and the communication space 8A is opened above the upper inner port p1, and the valve is opened below the lower inner port p2. A communication port p12 that communicates between the chamber 7A and the communication space 8A is opened. More specifically, the communication port p11 is formed so as to be positioned above the first valve body 21 when the valve shaft 20 is in the raised position, and the communication port p12 is formed when the valve shaft 20 is in the lowered position. It is formed so as to be located below the second valve body 22. That is, here, the communication port p11 is formed so as to be always located above the first valve body 21, and the communication port p12 is formed so as to be always located below the second valve body 22. Pipe joints # 1 and # 2 are attached to the inner ports p1 and p2 sideways by brazing or the like (through the outer housing 9B).

また、弁軸20を構成する推力伝達軸27の中間胴部27bが若干長く形成されるとともに、推力伝達軸27(の小径下部27c)に連結される連結軸29には、軸線O方向に離間して短円柱状の2つの弁体(第1弁体21、第2弁体22)が一体的に形成されている。各弁体(第1弁体21、第2弁体22)は、内側ハウジング9Aに開口せしめられた2個の内側ポートp1、p2の穴径とほぼ同じ距離だけ離間して、言い換えれば、各弁体間に、内側ハウジング9Aに開口せしめられた2個の内側ポートp1、p2のうちの一方に連通される大きさの空間を画成するように、前記連結軸29に配設されている。また、第1弁体21は、弁軸20が下降位置にあるときにおいて2つの内側ポートp1、p2の間かつ弁軸20が上昇位置にあるときにおいて内側ポートp1と連通ポートP11との間に位置するように連結軸29に配設され、第2弁体22は、弁軸20が下降位置にあるときにおいて内側ポートp2と連通ポートp12との間かつ弁軸20が上昇位置にあるときにおいて2つの内側ポートp1、p2の間に位置するように連結軸29に配設されている。   Further, the intermediate body portion 27b of the thrust transmission shaft 27 constituting the valve shaft 20 is formed to be slightly longer, and the connecting shaft 29 coupled to the thrust transmission shaft 27 (the smaller diameter lower portion 27c) is spaced apart in the axis O direction. Thus, two short cylindrical valve bodies (first valve body 21 and second valve body 22) are integrally formed. Each valve body (the first valve body 21 and the second valve body 22) is separated by approximately the same distance as the hole diameters of the two inner ports p1 and p2 opened in the inner housing 9A. Between the valve bodies, the connecting shaft 29 is disposed so as to define a space having a size communicating with one of the two inner ports p1 and p2 opened in the inner housing 9A. . Further, the first valve body 21 is located between the two inner ports p1, p2 when the valve shaft 20 is in the lowered position and between the inner port p1 and the communication port P11 when the valve shaft 20 is in the raised position. The second valve element 22 is disposed between the inner port p2 and the communication port p12 when the valve shaft 20 is in the lowered position and when the valve shaft 20 is in the raised position. The connecting shaft 29 is disposed between the two inner ports p1 and p2.

本例では、連結軸29の上端部に第1弁体21が形成され、その下端部に第2弁体22が形成されている。また、本例でも、各弁体(第1弁体21、第2弁体22)の外周に形成された環状溝には、Oリング等のシール部材21A、22Aが装着されるとともに、各シール部材の21A、22Aの外側には、PTFE(テフロン(登録商標))等からなるリング状のパッキン(キャップシールともいう)21B、22Bが装着されている。   In this example, the first valve body 21 is formed at the upper end portion of the connecting shaft 29, and the second valve body 22 is formed at the lower end portion thereof. Also in this example, seal members 21A and 22A such as O-rings are mounted on the annular grooves formed on the outer periphery of each valve body (first valve body 21 and second valve body 22), and each seal Ring-shaped packings (also referred to as cap seals) 21B and 22B made of PTFE (Teflon (registered trademark)) or the like are mounted on the outside of the members 21A and 22A.

かかる構成の流路切換弁6でも、ステッピングモータ50のロータ57を回転駆動させると、各弁体(第1弁体21、第2弁体22)が内側ハウジング9Aに内接せしめられた状態で弁室7A内で弁軸20が昇降することにより、2つの内側ポートp1、p2及び外側ポートp10の間の連通状態(流れ方向、流路)が切り換えられる。   Even in the flow path switching valve 6 having such a configuration, when the rotor 57 of the stepping motor 50 is rotationally driven, each valve body (the first valve body 21 and the second valve body 22) is in contact with the inner housing 9A. As the valve shaft 20 moves up and down in the valve chamber 7A, the communication state (flow direction, flow path) between the two inner ports p1, p2 and the outer port p10 is switched.

すなわち、ステッピングモータ50のロータ57を一方向に回転駆動させると、上記第1実施形態と同様、弁軸20が下降位置(ここでは、弁軸20の下端部に設けられ第2弁体22が蓋状部材11のストッパ部11sに衝接して停止せしめられた位置)をとるが、この下降位置では、第1弁体21が内側ポートp1と内側ポートp2との間に位置し、第2弁体22が内側ポートp2と連通ポートp12との間に位置せしめられ、第1弁体21と第2弁体22の間の空間が、内側ポートp2の真横に位置せしめられる。これにより、内側ポートp1と外側ポートp10が、弁室7Aにおける第1弁体21より上側の空間(上側背圧室30)、連通ポートp11、連通空間8Aを介して連通するとともに、弁室7Aにおける第1弁体21より上側の空間(上側背圧室30)、弁軸20内に設けられた連通路32A(推力伝達軸27の横孔27e及び貫通孔27d、連結軸29の貫通孔29a)、蓋状部材11(の小径突設部11a)の縦孔11v及び横孔11u、弁室7Aにおける第2弁体22より下側の空間(下側背圧室31)、連通ポートp12、連通空間8Aを介して連通する(図16に示す第1流れ状態)。   That is, when the rotor 57 of the stepping motor 50 is rotationally driven in one direction, the valve shaft 20 is in the lowered position (here, the second valve body 22 provided at the lower end portion of the valve shaft 20 is the same as in the first embodiment). In this lowered position, the first valve body 21 is located between the inner port p1 and the inner port p2, and the second valve is stopped. The body 22 is positioned between the inner port p2 and the communication port p12, and the space between the first valve body 21 and the second valve body 22 is positioned directly beside the inner port p2. As a result, the inner port p1 and the outer port p10 communicate with each other via the space above the first valve body 21 (upper back pressure chamber 30), the communication port p11, and the communication space 8A in the valve chamber 7A, and the valve chamber 7A. A space above the first valve body 21 (upper back pressure chamber 30), a communication path 32A provided in the valve shaft 20 (a lateral hole 27e and a through hole 27d of the thrust transmission shaft 27, a through hole 29a of the connecting shaft 29). ), The vertical hole 11v and the horizontal hole 11u of the lid-like member 11 (its small-diameter protruding portion 11a), the space below the second valve body 22 in the valve chamber 7A (lower back pressure chamber 31), the communication port p12, It communicates via the communication space 8A (first flow state shown in FIG. 16).

それに対し、ステッピングモータ50のロータ57を他方向に回転駆動させると、上記第1実施形態と同様、弁軸20が上昇位置をとるが、この上昇位置では、第1弁体21が連通ポートp11と内側ポートp1との間に位置し、第2弁体22が内側ポートp1と内側ポートp2との間に位置せしめられ、第1弁体21と第2弁体22の間の空間が、内側ポートp1の真横に位置せしめられる。これにより、内側ポートp2と外側ポートp10が、弁室7Aにおける第2弁体22の下側の空間(下側背圧室31)、連通ポートp12、連通空間8Aを介して連通するとともに、弁室7Aにおける第2弁体22の下側の空間(下側背圧室31)、弁軸20内に設けられた連通路32A(推力伝達軸27の横孔27e及び貫通孔27d、連結軸29の貫通孔29a)、弁室7Aにおける第1弁体21より上側の空間(上側背圧室30)、連通ポートp11、連通空間8Aを介して連通する(図17に示す第2流れ状態)。   On the other hand, when the rotor 57 of the stepping motor 50 is rotationally driven in the other direction, the valve shaft 20 takes the raised position as in the first embodiment. At this raised position, the first valve body 21 is connected to the communication port p11. The second valve body 22 is positioned between the inner port p1 and the inner port p2, and the space between the first valve body 21 and the second valve body 22 is located on the inner side. It is positioned right next to the port p1. As a result, the inner port p2 and the outer port p10 communicate with each other via the space below the second valve body 22 (lower back pressure chamber 31), the communication port p12, and the communication space 8A in the valve chamber 7A. The space below the second valve body 22 in the chamber 7A (lower back pressure chamber 31), the communication path 32A provided in the valve shaft 20 (the lateral hole 27e and the through hole 27d of the thrust transmission shaft 27, the connecting shaft 29) Through hole 29a), a space above the first valve body 21 in the valve chamber 7A (upper back pressure chamber 30), a communication port p11, and a communication space 8A (second flow state shown in FIG. 17).

ここで、本実施形態においても、弁軸20内に設けられた連通路32A、及び、内側ハウジング9Aと外側ハウジング9Bとの間の連通空間8Aを含む連通路32B(詳細には、内側ハウジング9Aの2つの連通ポートp11、p12、及び、内側ハウジング9Aと外側ハウジング9Bとの間の連通空間8Aによって構成される連通路32B)を介して、第1弁体21の上側に画成される上側背圧室30と第2弁体22の下側に画成される下側背圧室31とが常時連通しているので、上記第1実施形態と同様の作用効果が得られる。   Here, also in this embodiment, the communication path 32B including the communication path 32A provided in the valve shaft 20 and the communication space 8A between the inner housing 9A and the outer housing 9B (in detail, the inner housing 9A). The upper side defined on the upper side of the first valve body 21 through the two communication ports p11, p12 and the communication path 32B formed by the communication space 8A between the inner housing 9A and the outer housing 9B. Since the back pressure chamber 30 and the lower back pressure chamber 31 defined on the lower side of the second valve body 22 are always in communication, the same effects as those of the first embodiment can be obtained.

なお、この場合、上側背圧室30と下側背圧室31とは、内側ハウジング9Aの外側の連通空間8A等を含む連通路32Bを介して常時連通しているので、上記第4実施形態と同様に、弁軸20を構成する連結軸29をほぼ中実に形成する等して、弁軸20内に設けられた連通路32Aを省略してもよいことは勿論である。   In this case, the upper back pressure chamber 30 and the lower back pressure chamber 31 are always in communication with each other via the communication path 32B including the communication space 8A on the outside of the inner housing 9A. Of course, the communication passage 32A provided in the valve shaft 20 may be omitted, for example, by forming the connecting shaft 29 constituting the valve shaft 20 substantially solid.

また、本第6実施形態の流路切換弁6と同様の構成を採用することにより、五方切換弁等といった流体(冷媒)の流れ方向(流路)を奇数方向に切り換える流路切換弁を構成し得ることは言うまでも無い。   In addition, by adopting the same configuration as the flow path switching valve 6 of the sixth embodiment, a flow path switching valve that switches the flow direction (flow path) of fluid (refrigerant) such as a five-way switching valve to an odd number direction. Needless to say, it can be configured.

[第7実施形態]
図18及び図19は、本発明に係る流路切換弁の第7実施形態を示す図であり、図18は、第1流れ状態(弁軸:下降位置)、図19は、第2流れ状態(弁軸:上昇位置)を示している。なお、本例においては、弁本体10の軸線Oとステッピングモータ50の中心線(回転軸線)Lとが、捩れの位置関係でずれて設定されているので(後で詳述)、図18(A)及び図19(A)は、図18(C)のZ−z1−z2−Z矢視線に従う断面図を示している。
[Seventh Embodiment]
18 and 19 are views showing a seventh embodiment of the flow path switching valve according to the present invention. FIG. 18 shows a first flow state (valve shaft: lowered position), and FIG. 19 shows a second flow state. (Valve shaft: ascending position). In this example, the axis O of the valve body 10 and the center line (rotation axis) L of the stepping motor 50 are set so as to be shifted due to the positional relationship of twist (details will be described later). FIGS. 19A and 19A are cross-sectional views taken along the line Z-z1-z2-Z in FIG. 18C.

本第7実施形態の流路切換弁7は、上記第5実施形態における流路切換弁5に対し、基本的に、内側ハウジングに形成された内側ポート及び弁軸に形成された弁体の数、外側ハウジングの下部開口に取り付けられる蓋状部材の構成、昇降駆動部を構成するステッピングモータの配置構成、及びそれに付随する各部の構成が相違している。したがって、第5実施形態と同様の機能を有する構成については同様の符号を付してその詳細な説明は省略し、以下では、前記した相違点のみについて詳細に説明する。   The flow path switching valve 7 according to the seventh embodiment is basically the same as the flow path switching valve 5 according to the fifth embodiment with the number of valve bodies formed on the inner port and the valve shaft formed on the inner housing. The configuration of the lid-like member attached to the lower opening of the outer housing, the arrangement configuration of the stepping motor that configures the elevating drive unit, and the configuration of each part associated therewith are different. Therefore, components having the same functions as those in the fifth embodiment are denoted by the same reference numerals and detailed description thereof is omitted, and only the differences described above will be described in detail below.

本実施形態の流路切換弁7は、例えばヒートポンプ式冷暖房システム等において四方切換弁として使用されるものであり、その内側ハウジング9Aの側部に、軸線O方向(縦方向)に並んで3つの内側ポートp1、p2、p3が開口せしめられるとともに、上側の内側ポートp1より上側に、弁室7Aと連通空間8Aを連通する連通ポートp11が開口せしめられ、下側の内側ポートp3より下側に、弁室7Aと連通空間8Aを連通する連通ポートp12が開口せしめられている。なお、各内側ポートp1、p2、p3にはそれぞれ、(外側ハウジング9Bを貫通するようにして)導管継手#1、#2、#3がろう付け等により横向きに取り付けられている。   The flow path switching valve 7 of the present embodiment is used as, for example, a four-way switching valve in a heat pump air conditioning system or the like, and has three side by side in the axis O direction (vertical direction) on the side of the inner housing 9A. The inner ports p1, p2, and p3 are opened, and the communication port p11 that communicates with the valve chamber 7A and the communication space 8A is opened above the upper inner port p1, and below the lower inner port p3. A communication port p12 that communicates the valve chamber 7A and the communication space 8A is opened. In addition, conduit joints # 1, # 2, and # 3 are attached to the inner ports p1, p2, and p3 sideways by brazing or the like (through the outer housing 9B).

また、弁軸20を構成する連結軸29が、2つの第1連結軸構成体29A、29Bと1つの第2連結軸構成体29Cとから構成されており、各第1連結軸構成体29A、29Bの上端部に、短円柱状の弁体(第1弁体21、第2弁体22)が一体的に形成されるとともに、第2連結軸構成体29Cの上端部に、短円柱状の弁体(第3弁体23)が一体的に形成され、軸線O方向に離間して短円柱状の3つの弁体(第1弁体21、第2弁体22、第3弁体23)が配在されている。また、本例でも、各弁体(第1弁体21、第2弁体22、第3弁体23)の外周に形成された環状溝には、シール部材21A、22A、23Aが装着されるとともに、各シール部材21A、22A、23Aの外側には、PTFE(テフロン(登録商標))等からなるパッキン21B、22B、23Bが装着されている。   The connecting shaft 29 constituting the valve shaft 20 includes two first connecting shaft constituting bodies 29A and 29B and one second connecting shaft constituting body 29C, and each first connecting shaft constituting body 29A, A short cylindrical valve body (first valve body 21 and second valve body 22) is integrally formed at the upper end portion of 29B, and a short cylindrical shape is formed at the upper end portion of the second connecting shaft constituting body 29C. A valve body (third valve body 23) is integrally formed, and three valve bodies (first valve body 21, second valve body 22, and third valve body 23) are separated in the direction of the axis O and are short cylindrical. Is distributed. Also in this example, seal members 21A, 22A, and 23A are attached to the annular grooves formed on the outer periphery of each valve body (the first valve body 21, the second valve body 22, and the third valve body 23). In addition, packings 21B, 22B, and 23B made of PTFE (Teflon (registered trademark)) or the like are attached to the outside of the seal members 21A, 22A, and 23A.

なお、第5実施形態の流路切換弁5と比べて内側ポート及び弁体の数が相違している(内側ポートの数が5個から3個に変更され、弁体の数が4個から3個に変更されている)点については、図1〜図4に示した第1及び第2実施形態等も併せて参照されたい。   It should be noted that the number of inner ports and valve bodies is different from the flow path switching valve 5 of the fifth embodiment (the number of inner ports is changed from five to three, and the number of valve bodies is changed from four. Regarding the points that are changed to three), refer also to the first and second embodiments shown in FIGS.

外側ハウジング9Bの下部開口に取り付けられる蓋状部材11は、ここでは、内側ハウジング9Aの下部に外挿される外嵌部11Abが(上向きに)突設された短円筒状の外周部材11Aと、該外周部材11Aに内挿固定される断面凸状の内周部材11Bとからなる2部品構成とされている。この蓋状部材11は、外周部材11Aの外嵌部11Abを内側ハウジング9Aの下部に外挿させ、内周部材11Bの上部突設部11Baを内側ハウジング9Aの下部開口に(所定の隙間を持って)内挿させた状態で、外周部材11Aの外周下端に設けられた鍔状部11Adに外側ハウジング9Bの下端部が溶接等により接合されている。内周部材11Bの上部突設部11Baの上端は、流路切換時に、前記した第3弁体23に衝接して弁軸20の下方移動(下降)を制限する(言い換えれば、弁軸20の下降位置を規定する)ストッパ部11Bsとされている。   Here, the lid-like member 11 attached to the lower opening of the outer housing 9B includes a short cylindrical outer peripheral member 11A in which an outer fitting portion 11Ab that is extrapolated to the lower portion of the inner housing 9A is projected (upward), It has a two-part configuration including an inner peripheral member 11B having a convex cross section that is inserted and fixed to the outer peripheral member 11A. The lid-like member 11 has an outer fitting portion 11Ab of the outer peripheral member 11A extrapolated to the lower portion of the inner housing 9A, and an upper protruding portion 11Ba of the inner peripheral member 11B is inserted into the lower opening of the inner housing 9A (with a predetermined gap). In the inserted state, the lower end portion of the outer housing 9B is joined to the flange-shaped portion 11Ad provided at the lower end of the outer periphery of the outer peripheral member 11A by welding or the like. The upper end of the upper projecting portion 11Ba of the inner peripheral member 11B abuts against the third valve body 23 to restrict the downward movement (downward movement) of the valve shaft 20 when the flow path is switched (in other words, the valve shaft 20 The stopper portion 11Bs defines the lowered position.

また、本実施形態においては、弁本体10の外側ハウジング9Bの上部開口に、該外側ハウジング9Bの上端部が接合される短円柱状の接合部13Aaと、縦方向(軸線O方向)に長い略四角柱状の基体部13Acとからなる基台部材13Aが取り付けられ、その基台部材13A(の接合部13Aa)の下面が連通空間8Aの天井面を形成している。この基台部材13Aの下面には、内側ハウジング9Aの上部開口に気密的に嵌合(内嵌)されるとともに、後述する推力伝達軸27(の大径上部27a)が摺動可能に挿通される筒状嵌合部13Abが下方に向けて突設されており、その筒状嵌合部13Abの上部(つまり、基台部材13Aの下面に隣接する部分)に横孔32a(内側ハウジング9Aと外側ハウジング9Bとの間の連通空間8A、及び、内側ハウジング9Aの横孔32bとともに、上側背圧室30と下側背圧室31とを常時連通する連通路32を構成する孔)が形成されている。   Further, in the present embodiment, the upper opening of the outer housing 9B of the valve body 10 is joined to the short cylindrical joint portion 13Aa to which the upper end portion of the outer housing 9B is joined, and is substantially long in the vertical direction (axis O direction). A base member 13A composed of a quadrangular columnar base portion 13Ac is attached, and the lower surface of the base member 13A (joint portion 13Aa thereof) forms the ceiling surface of the communication space 8A. A lower surface of the base member 13A is airtightly fitted (internally fitted) into the upper opening of the inner housing 9A, and a thrust transmission shaft 27 (a large-diameter upper portion 27a) described later is slidably inserted. The cylindrical fitting portion 13Ab protrudes downward, and a horizontal hole 32a (with the inner housing 9A) is formed in an upper portion of the cylindrical fitting portion 13Ab (that is, a portion adjacent to the lower surface of the base member 13A). The communication space 8A between the outer housing 9B and the lateral hole 32b of the inner housing 9A, as well as a hole that forms a communication path 32 that always communicates the upper back pressure chamber 30 and the lower back pressure chamber 31) are formed. ing.

また、弁軸20を構成する推力伝達軸27における大径上部27a(本例では、ボール受座は備えておらず、中実とされている)が、縦方向に比較的長く形成されており、前記基台部材13A(の内部)には、前記大径上部27aが下側から挿入されて軸線O方向(上下方向)に摺動自在に配在される縦穴13Avが設けられている。前記大径上部27aの上部外周(縦穴13Avに挿入される部分の外周の一部分)には、後述するラックピニオン式の運動変換機構60の一方を構成するラックギアとしての従動歯62が(上下方向に所定の長さ分だけ)形成されている。   Further, the large-diameter upper portion 27a (in this example, which is not provided with a ball seat and is solid) of the thrust transmission shaft 27 constituting the valve shaft 20 is formed relatively long in the vertical direction. The base member 13A (inside) is provided with a vertical hole 13Av into which the large-diameter upper portion 27a is inserted from below and is slidably disposed in the axis O direction (vertical direction). On the outer periphery of the upper portion of the large-diameter upper portion 27a (a part of the outer periphery of the portion inserted into the vertical hole 13Av) is a driven tooth 62 as a rack gear that constitutes one of the rack-and-pinion type motion conversion mechanisms 60 described later (in the vertical direction). For a predetermined length).

また、本実施形態では、昇降駆動部を構成するステッピングモータ50が、前記弁本体10の基台部材13A(の基体部13Ac)の側方に横倒しで(言い換えれば、側面から視たときに、ステッピングモータ50の中心線(ロータ57の回転軸線)Lが弁本体10の軸線Oに垂直となる状態で)取り付けられている。   Further, in the present embodiment, the stepping motor 50 that constitutes the lifting drive unit lies sideways on the side of the base member 13A (the base portion 13Ac) of the valve body 10 (in other words, when viewed from the side, A center line (rotation axis of the rotor 57) L of the stepping motor 50 is attached (in a state where the center line L is perpendicular to the axis O of the valve body 10).

前記ステッピングモータ50及び不思議遊星歯車式減速機構40の構成自体は、縦置き(中心線が上下方向に向く配置)から横置き(中心線が左右方向に向く配置)に変えた以外は、上記第1〜第6実施形態における流路切換弁1〜6のステッピングモータ50及び不思議遊星歯車式減速機構40とほぼ同じであるが、ここでは、段付きの筒状保持部材14に、減速機構40の出力軸46の下部基体部が嵌挿される嵌挿穴15aを持つ(筒状の)軸受部材15(本例では、雌ねじ部分が設けられていない)がかしめ等により固定されている。この筒状保持部材14は、ステッピングモータ50側から、軸受部材15に外嵌固定されるとともに減速機構40の筒状体43が固着された小径部14e、中間胴部14f、大径部14gを有し、小径部14eと中間胴部14fとの間に形成される段差部14sに、リング状部材14hが圧入等により外嵌固定されており、そのリング状部材14hの外周部に、キャン58の下端部(開口端部)が溶接等により接合されている。また、前記筒状保持部材14における中間胴部14fには、当該筒状保持部材14を弁本体10の基台部材13A(の基体部13Ac)に取付固定すべく、内側へ向けて係止部14jが突設され、かつ、内周に雌ねじ部が形成された円筒状(後述する基台部材13Aの連結部13Adの厚み分だけ中間胴部14fより大径の円筒状)の装着部材14iが(中心線L方向に摺動自在に)外挿されている。   The configuration itself of the stepping motor 50 and the strange planetary gear speed reduction mechanism 40 is the same as that described above except that it is changed from vertical installation (arrangement of the center line in the vertical direction) to horizontal installation (arrangement of the center line in the horizontal direction). Although it is substantially the same as the stepping motor 50 and the mysterious planetary gear type reduction mechanism 40 of the flow path switching valves 1 to 6 in the first to sixth embodiments, here, the stepped cylindrical holding member 14 is connected to the reduction mechanism 40. A (cylindrical) bearing member 15 (in this example, which is not provided with a female thread portion) having a fitting hole 15a into which the lower base portion of the output shaft 46 is fitted is fixed by caulking or the like. The cylindrical holding member 14 includes, from the stepping motor 50 side, a small-diameter portion 14e, an intermediate body portion 14f, and a large-diameter portion 14g that are fitted and fixed to the bearing member 15 and to which the cylindrical body 43 of the speed reduction mechanism 40 is fixed. The ring-shaped member 14h is fitted and fixed to the step portion 14s formed between the small-diameter portion 14e and the intermediate body portion 14f by press-fitting or the like. Are joined by welding or the like. Further, the intermediate barrel portion 14f of the cylindrical holding member 14 has a locking portion facing inward to fix the cylindrical holding member 14 to the base member 13A (base portion 13Ac) of the valve body 10. A mounting member 14i having a cylindrical shape (a cylindrical shape having a diameter larger than that of the intermediate body portion 14f by the thickness of a connecting portion 13Ad of a base member 13A to be described later) is provided with a projecting portion 14j and a female screw portion formed on the inner periphery. It is extrapolated (slidable in the direction of the center line L).

前記軸受部材15及び筒状保持部材14で構成される支持部材19の内側には、減速機構40の出力軸46の下部基体部に形成されたスリット状の嵌合部46aに嵌挿される板状部17cを持つ段付きの回転軸17(本例では、雄ねじ部分が設けられていない)が配在されている。この回転軸17は、中心線(回転軸線)L周りで回転はするが中心線L方向への移動は阻止された状態で、支持部材19の内側に配在されている(詳細は後述)。また、回転軸17(の板状部17cが設けられた端部とは反対側の端部)には、当該筒状保持部材14が弁本体10に取り付けられたときに当該弁本体10の基台部材13Aの内部(後述する横穴13Au)に挿入されるセレーション軸部17eが設けられている。このセレーション軸部17eの先端部外周には、後述するラックピニオン式の運動変換機構60の一方を構成するピニオンギアとしての駆動歯61が形成されている。   On the inner side of the support member 19 composed of the bearing member 15 and the cylindrical holding member 14, a plate shape that is fitted into a slit-like fitting portion 46 a formed in the lower base portion of the output shaft 46 of the speed reduction mechanism 40. A stepped rotation shaft 17 having a portion 17c (in this example, no male screw portion is provided) is disposed. The rotating shaft 17 rotates around a center line (rotating axis) L but is prevented from moving in the direction of the center line L, and is disposed inside the support member 19 (details will be described later). Further, the rotary shaft 17 (the end opposite to the end provided with the plate-like portion 17 c) has a base of the valve main body 10 when the cylindrical holding member 14 is attached to the valve main body 10. A serration shaft portion 17e to be inserted into the inside of the base member 13A (a lateral hole 13Au to be described later) is provided. A drive tooth 61 as a pinion gear constituting one of a rack and pinion type motion converting mechanism 60 described later is formed on the outer periphery of the tip end portion of the serration shaft portion 17e.

一方、前記弁本体10の基台部材13Aの基体部13Acの一側面(本例では、平面視で視たときに導管継手#1、#2、#3と同じ側の側面)には、内径が前記筒状保持部材14の大径部14gとほぼ同じとされ、かつ、外周に雄ねじ部が形成された円筒状の連結部13Adが突設されるとともに、その円筒状の連結部13Adの中央に、前記回転軸17のセレーション軸部17eが挿入される横穴13Auが設けられている。ここで、この円筒状の連結部13Ad及び横穴13Auの中心線(つまり、ステッピングモータ50の中心線(ロータ57の回転軸線)L)は、弁本体10の軸線Oに対して捩れの位置関係(交差しない位置関係)で設定されるが、(横方向に延びる)横穴13Auと(縦方向に延びる)縦穴13Avとは、互いに一部がラップするように形成されている(特に、図18(C)参照)。これにより、縦穴13Avに内挿された推力伝達軸27の大径上部27aに設けられた従動歯62に、横穴13Auに内挿された回転軸17のセレーション軸部17eに設けられた駆動歯61が噛合するようになっている。この回転軸17に設けられた駆動歯61と弁軸20の推力伝達軸27に設けられた従動歯62とによって、回転軸17の(正逆両方向の)回転運動を弁軸20の昇降運動(往復直線運動)に変換する運動変換機構60が(ラックピニオン式で)構成されるとともに、前記したステッピングモータ50、回転軸17、運動変換機構60等によって、弁軸20を軸線O方向(縦方向)に昇降させるための昇降駆動部が構成される。   On the other hand, on one side surface of the base portion 13Ac of the base member 13A of the valve body 10 (in this example, the side surface on the same side as the conduit joints # 1, # 2, and # 3 when viewed in a plan view) Is substantially the same as the large-diameter portion 14g of the cylindrical holding member 14, and a cylindrical connecting portion 13Ad having a male screw portion formed on the outer periphery thereof is projected, and the center of the cylindrical connecting portion 13Ad is Further, a horizontal hole 13Au into which the serration shaft portion 17e of the rotating shaft 17 is inserted is provided. Here, the center line of the cylindrical connecting portion 13Ad and the lateral hole 13Au (that is, the center line of the stepping motor 50 (rotation axis of the rotor 57) L) is a torsional positional relationship with respect to the axis O of the valve body 10 ( The horizontal hole 13Au (extending in the horizontal direction) and the vertical hole 13Av (extending in the vertical direction) are formed so as to partially overlap each other (in particular, FIG. 18C). )reference). As a result, the drive teeth 61 provided on the serration shaft portion 17e of the rotary shaft 17 inserted in the lateral hole 13Au are connected to the driven teeth 62 provided on the large diameter upper portion 27a of the thrust transmission shaft 27 inserted in the vertical hole 13Av. Are designed to mesh. By the drive teeth 61 provided on the rotary shaft 17 and the driven teeth 62 provided on the thrust transmission shaft 27 of the valve shaft 20, the rotary motion (in both forward and reverse directions) of the rotary shaft 17 is moved up and down ( A motion conversion mechanism 60 that converts to a reciprocating linear motion) is configured (rack and pinion type), and the valve shaft 20 is moved in the axis O direction (longitudinal direction) by the stepping motor 50, the rotary shaft 17, the motion conversion mechanism 60, and the like. ) Is configured to move up and down.

前記横穴13Auに前記回転軸17のセレーション軸部17eを挿入し、前記円筒状の連結部13Adに前記筒状保持部材14の大径部14gを内挿して位置決めし、その連結部13Adに設けられた雄ねじ部に、前記筒状保持部材14の中間胴部14fに外挿された装着部材14iに設けられた雌ねじ部を螺合させることにより、前記筒状保持部材14の大径部14g(の段差部14t)に装着部材14iの係止部14j(の内端)が当接し、その大径部14gが基台部材13Aの基体部13Ac(の側面)と装着部材14iの係止部14jとで挟持されることで、弁本体10の基台部材13A(の基体部13Ac)に対して、ステッピングモータ50、不思議遊星歯車式減速機構40、支持部材19(筒状保持部材14、軸受部材15)、回転軸17等からなる組立体が組付固定される。なお、筒状保持部材14の大径部14g(の端面)と基台部材13Aの基体部13Ac(の側面)との間(詳細には、基台部材13Aの基体部13Acの側面における横穴13Au周りに形成された環状溝)には、シール材としてのOリング13Aeが介装されている。   The serration shaft portion 17e of the rotating shaft 17 is inserted into the horizontal hole 13Au, and the large-diameter portion 14g of the cylindrical holding member 14 is inserted into the cylindrical connecting portion 13Ad for positioning, and provided at the connecting portion 13Ad. By screwing a female thread portion provided on a mounting member 14i externally inserted into the intermediate body portion 14f of the cylindrical holding member 14 into the male screw portion, the large-diameter portion 14g (of the cylindrical holding member 14) The locking portion 14j (the inner end) of the mounting member 14i comes into contact with the stepped portion 14t), and the large-diameter portion 14g has a base portion 13Ac (the side surface) of the base member 13A and the locking portion 14j of the mounting member 14i. With respect to the base member 13A (base portion 13Ac) of the valve main body 10, the stepping motor 50, the mysterious planetary gear speed reduction mechanism 40, the support member 19 (the cylindrical holding member 14 and the bearing member 15) are supported. ) The assembly consisting of the rotating shaft 17, etc. are fixed assembled. In addition, between the large-diameter portion 14g (the end surface thereof) of the cylindrical holding member 14 and the base portion 13Ac (the side surface) of the base member 13A (specifically, the lateral hole 13Au on the side surface of the base portion 13Ac of the base member 13A) An O-ring 13Ae as a sealing material is interposed in an annular groove formed around.

また、本例では、前記横穴13Auの開口端付近と前記筒状保持部材14の大径部14gにおける開口端(回転軸17を挿通するための挿通孔の開口端)付近とが拡径されており、横穴13Auにおける拡径部13Arと大径部14g(の挿通孔)における拡径部14rとで画成される空間に、回転軸17(のセレーション軸部17eのステッピングモータ50側に隣接する部分)に設けられた大径嵌合部17dが嵌め込まれている(回転摺動可能に内嵌されている)。前記回転軸17は、横穴13Auにおける拡径部13Arと大径部14g(の挿通孔)における拡径部14rとで形成される段差(ストッパ部)によって、中心線L方向への移動が阻止された状態で、当該中心線L周りで回転するようになっている。   In this example, the diameter of the vicinity of the opening end of the horizontal hole 13Au and the vicinity of the opening end (opening end of the insertion hole for inserting the rotating shaft 17) in the large-diameter portion 14g of the cylindrical holding member 14 are increased. In addition, the space defined by the enlarged diameter portion 13Ar in the horizontal hole 13Au and the enlarged diameter portion 14r in the large diameter portion 14g (the insertion hole) is adjacent to the rotary shaft 17 (the serration shaft portion 17e on the stepping motor 50 side). The large-diameter fitting portion 17d provided in the portion) is fitted (internally fitted so as to be slidable). The rotation shaft 17 is prevented from moving in the direction of the center line L by a step (stopper portion) formed by the enlarged diameter portion 13Ar in the horizontal hole 13Au and the enlarged diameter portion 14r in the large diameter portion 14g (the insertion hole). In this state, it rotates around the center line L.

かかる構成の流路切換弁7では、ステッピングモータ50のロータ57を回転駆動させると、減速機構40の出力軸46を介してロータ57の回転が回転軸17に減速されて伝達され、弁本体10の基台部材13A内で噛合する回転軸17の駆動歯61と推力伝達軸27の従動歯62による運動変換機構60によって弁軸20が軸線O方向へ昇降せしめられる。ここでも、弁軸20に設けられた各弁体(第1弁体21、第2弁体22、第3弁体23)が内側ハウジング9Aに内接せしめられた状態で弁室7A内で弁軸20が昇降することにより、上述の第5実施形態と同様に、3つの内側ポートp1、p2、p3及び外側ポートp10の間の連通状態(流れ方向、流路)が切り換えられるが、内側ハウジング9Aと外側ハウジング9Bとの間(言い換えれば、内側ハウジング9Aの外側)の連通空間8Aを含む連通路32を介して、第1弁体21の上側に画成される上側背圧室30と第3弁体23の下側に画成される下側背圧室31とが常時連通しているので、上記第5実施形態と同様の作用効果が得られる。   In the flow path switching valve 7 having such a configuration, when the rotor 57 of the stepping motor 50 is driven to rotate, the rotation of the rotor 57 is transmitted to the rotary shaft 17 by being decelerated via the output shaft 46 of the speed reduction mechanism 40. The valve shaft 20 is moved up and down in the direction of the axis O by the motion conversion mechanism 60 by the drive teeth 61 of the rotating shaft 17 and the driven teeth 62 of the thrust transmission shaft 27 meshing in the base member 13A. Also here, each valve body (the first valve body 21, the second valve body 22, and the third valve body 23) provided on the valve shaft 20 is in contact with the inner housing 9A in the valve chamber 7A. As the shaft 20 moves up and down, the communication state (flow direction, flow path) between the three inner ports p1, p2, p3 and the outer port p10 is switched as in the fifth embodiment. The upper back pressure chamber 30 defined on the upper side of the first valve body 21 and the first back pressure chamber 30 are connected via a communication passage 32 including a communication space 8A between 9A and the outer housing 9B (in other words, outside the inner housing 9A). Since the lower back pressure chamber 31 defined on the lower side of the three-valve body 23 is always in communication, the same effect as the fifth embodiment can be obtained.

また、本実施形態では、弁軸20を昇降させるための昇降駆動部が、軸線O方向に垂直な方向に延びる回転軸線L周りで回転自在に配在されたロータ57と該ロータ57を回転させるためのステータ55とを有するステッピングモータ50と、ロータ57と一体に回転される回転軸17と、回転軸17の回転運動を弁軸20の昇降運動に変換する運動変換機構60と、を有し、その運動変換機構60として、回転軸17の外周に形成されたピニオンギアとしての駆動歯61と、弁軸20(の推力伝達軸27)に形成され、駆動歯61と噛合するラックギアとしての従動歯62とで構成されるラックピニオン式を採用したので、例えば、暖房運転から除霜運転へ及び除霜運転から暖房運転への切り換え時に、一時的に外側ポートp10と内側ポートp2とを連通することで高圧側と低圧側の圧力差を小さくでき、そのため、騒音を効果的に低減することができるとともに、昇降駆動部を構成するステッピングモータ50を弁本体10の基台部材13Aの側方に横倒しで(横向きで)配置でき、当該流路切換弁7の全長を短縮できる、全体構成を簡素化できる、連通状態(流路)の切換に要する時間を短縮できるなどの効果も得られる。また、ラックピニオン式を採用した構成は、前述のねじ送り機構を採用した構成に比べて弁軸20の昇降速度を大きく変更できるため、暖房運転と除霜運転とを切り換えるときに弁軸20をゆっくり動かすことで高圧側と低圧側の圧力差を徐々に小さくでき、騒音をさらに低減できる。   Further, in the present embodiment, the raising / lowering drive unit for raising and lowering the valve shaft 20 rotates the rotor 57 disposed rotatably around the rotation axis L extending in the direction perpendicular to the axis O direction and the rotor 57. A stepping motor 50 having a stator 55 for rotating, a rotary shaft 17 that is rotated integrally with the rotor 57, and a motion conversion mechanism 60 that converts the rotary motion of the rotary shaft 17 into a lifting motion of the valve shaft 20. As the motion converting mechanism 60, a drive tooth 61 as a pinion gear formed on the outer periphery of the rotating shaft 17 and a driven gear as a rack gear which is formed on the valve shaft 20 (thrust transmission shaft 27) and meshes with the drive tooth 61. Since the rack and pinion type constituted by the teeth 62 is adopted, for example, when switching from the heating operation to the defrosting operation and from the defrosting operation to the heating operation, the outer port p10 and the inner port are temporarily provided. The pressure difference between the high pressure side and the low pressure side can be reduced by communicating with the top p2, so that the noise can be effectively reduced and the stepping motor 50 constituting the lifting drive unit is mounted on the base of the valve body 10. It can be placed sideways (sideways) on the side of the member 13A, the overall length of the flow path switching valve 7 can be shortened, the overall configuration can be simplified, the time required for switching the communication state (flow path) can be shortened, etc. An effect is also obtained. Further, the configuration employing the rack and pinion type can greatly change the ascending / descending speed of the valve shaft 20 as compared with the configuration employing the above-described screw feed mechanism, so that the valve shaft 20 is changed when switching between the heating operation and the defrosting operation. By moving slowly, the pressure difference between the high pressure side and the low pressure side can be gradually reduced, and noise can be further reduced.

[第8実施形態]
図20〜図22は、本発明に係る流路切換弁の第8実施形態を示す図であり、図20は、第1流れ状態(弁軸:下降位置)、図21は、第2流れ状態(弁軸:上昇位置)、図22は、第3流れ状態(弁軸:中間位置)を示している。なお、本例においても、弁本体10の軸線Oとステッピングモータ(昇降駆動部)50の中心線(回転軸線)Lとが、捩れの位置関係でずれて設定されているので、図20(A)、図21(A)、及び図22(A)は、図18(C)のZ−z1−z2−Z矢視線に従う断面図を示している。
[Eighth Embodiment]
20-22 is a figure which shows 8th Embodiment of the flow-path switching valve based on this invention, FIG. 20 is a 1st flow state (valve shaft: descending position), FIG. 21 is a 2nd flow state. FIG. 22 shows the third flow state (valve shaft: intermediate position). In this example as well, the axis O of the valve body 10 and the center line (rotation axis) L of the stepping motor (lifting / lowering drive unit) 50 are set so as to be shifted due to the positional relationship of torsion. ), FIG. 21 (A), and FIG. 22 (A) are cross-sectional views taken along line Z-z1-z2-Z in FIG. 18 (C).

本第8実施形態の流路切換弁8は、上記第7実施形態における流路切換弁7に対し、基本的に、内側ハウジングに形成された内側ポート及び弁軸に形成された弁体の配置構成、上側背圧室30と下側背圧室31とを常時連通する連通路32の構成(図11及び図12に示した第4実施形態等も併せて参照されたい)が相違している。したがって、第7実施形態と同様の機能を有する構成については同様の符号を付してその詳細な説明は省略し、以下では、前記した相違点のみについて詳細に説明する。   The flow path switching valve 8 of the eighth embodiment is basically an arrangement of an inner port formed in the inner housing and a valve body formed in the valve shaft with respect to the flow path switching valve 7 in the seventh embodiment. The configuration is different in the configuration of the communication path 32 that always communicates the upper back pressure chamber 30 and the lower back pressure chamber 31 (see also the fourth embodiment shown in FIGS. 11 and 12). . Accordingly, components having the same functions as those of the seventh embodiment are denoted by the same reference numerals and detailed description thereof is omitted, and only the differences described above will be described in detail below.

本実施形態の流路切換弁8は、上記第7実施形態と同様、例えばヒートポンプ式冷暖房システム等において四方切換弁として使用されるものであり、3つの内側ポートp1、p2、p3のうちの上側の内側ポートp1より上側に開口せしめられた連通ポートp11が、弁軸20が上昇位置にあるときにおいて第1弁体21の上側に位置するように形成され(図21参照)、下側の内側ポートp3より下側に開口せしめられた連通ポートp12が、弁軸20が下降位置にあるときにおいて第2弁体22の下側に位置するように形成されている(図20参照)。また、ここでは、3つの内側ポートp1、p2、p3が(軸線O方向(縦方向)に)離れて開口せしめられるとともに、上側の内側ポートp1と下側の内側ポートp3とは、弁軸20に設けられた2つの弁体(第1弁体21、第2弁体22)間の(縦方向における)距離よりも離れて開口せしめられており、弁軸20が中間位置(下降位置と上昇位置との間の位置)にあるときに外側ハウジング9Bに形成された外側ポートp10が(連通空間8A等を介して)上側の内側ポートp1と下側の内側ポートp3の双方に連通するようになっている(図22参照)。   The flow path switching valve 8 of the present embodiment is used as a four-way switching valve in, for example, a heat pump type air conditioning system or the like, similar to the seventh embodiment, and is an upper side of the three inner ports p1, p2, and p3. The communication port p11 opened above the inner port p1 is formed so as to be positioned above the first valve body 21 when the valve shaft 20 is in the raised position (see FIG. 21). The communication port p12 opened below the port p3 is formed to be positioned below the second valve body 22 when the valve shaft 20 is in the lowered position (see FIG. 20). In addition, here, the three inner ports p1, p2, and p3 are opened apart (in the axis O direction (vertical direction)), and the upper inner port p1 and the lower inner port p3 are connected to the valve shaft 20. The two valve bodies (the first valve body 21 and the second valve body 22) provided in the opening are opened apart from each other (in the vertical direction), and the valve shaft 20 is in the intermediate position (the lowered position and the raised position). The outer port p10 formed in the outer housing 9B communicates with both the upper inner port p1 and the lower inner port p3 (via the communication space 8A and the like). (See FIG. 22).

また、本例では、基台部材13Aの筒状嵌合部13Abにおける横孔32aと内側ハウジング9A(の連通ポートp12より下側)における横孔32bとが省略されている。   Further, in this example, the horizontal hole 32a in the cylindrical fitting portion 13Ab of the base member 13A and the horizontal hole 32b in the inner housing 9A (below the communication port p12) are omitted.

一方、弁軸20を構成する推力伝達軸27(における中間胴部27b等)が長く形成されるとともに、推力伝達軸27(の小径下部27c)に連結される連結軸29が、比較的長い第1連結軸構成体29Aと第2連結軸構成体29Bとから構成されている。第1連結軸構成体29Aと第2連結軸構成体29Bの上端部にそれぞれ、短円柱状の第1弁体21と第2弁体22が一体的に形成され、軸線O方向に離間して短円柱状の2つの弁体(第1弁体21、第2弁体22)が配在されている。   On the other hand, the thrust transmission shaft 27 (the intermediate body portion 27b and the like) in the valve shaft 20 is formed long, and the connecting shaft 29 connected to the thrust transmission shaft 27 (the small diameter lower portion 27c) is relatively long. It is composed of a first connecting shaft constituting body 29A and a second connecting shaft constituting body 29B. A short cylindrical first valve body 21 and a second valve body 22 are integrally formed at the upper ends of the first connecting shaft constituting body 29A and the second connecting shaft constituting body 29B, respectively, and separated from each other in the axis O direction. Two short cylindrical valve bodies (first valve body 21 and second valve body 22) are arranged.

かかる構成の流路切換弁8でも、ステッピングモータ50のロータ57を回転駆動させると、各弁体(第1弁体21、第2弁体22)が内側ハウジング9Aに内接せしめられた状態で弁室7A内で弁軸20が昇降することにより、3つの内側ポートp1、p2、p3及び外側ポートp10の間の連通状態(流れ方向、流路)が切り換えられる。   Even in the flow path switching valve 8 having such a configuration, when the rotor 57 of the stepping motor 50 is rotationally driven, each valve body (the first valve body 21 and the second valve body 22) is in contact with the inner housing 9A. As the valve shaft 20 moves up and down in the valve chamber 7A, the communication state (flow direction, flow path) between the three inner ports p1, p2, p3 and the outer port p10 is switched.

すなわち、ステッピングモータ50のロータ57を一方向に回転駆動させると、減速機構40の出力軸46を介してロータ57の回転が回転軸17に減速されて伝達され、ロータ57と一体に回転される回転軸17の駆動歯61と推力伝達軸27の従動歯62による運動変換機構60によって弁軸20が例えば下降されて下降位置(ここでは、弁軸20の下部に設けられ第2連結軸構成体29Bが蓋状部材11の内周部材11Bのストッパ部11Bsに衝接して停止せしめられた位置)がとられる。この下降位置では、第1弁体21が内側ポートp1と内側ポートp2との間に位置し、第2弁体22が内側ポートp3と連通ポートp12との間に位置せしめられ、第1弁体21と第2弁体22の間の空間が、内側ポートp2と内側ポートp3の真横に位置せしめられる。これにより、内側ポートp2と内側ポートp3が、第1弁体21と第2弁体22の間の空間を介して連通し、内側ポートp1と外側ポートp10が、弁室7Aにおける第1弁体21より上側の空間(上側背圧室30)、連通ポートp11、連通空間8Aを介して連通する(図20に示す第1流れ状態)。   That is, when the rotor 57 of the stepping motor 50 is driven to rotate in one direction, the rotation of the rotor 57 is decelerated and transmitted to the rotary shaft 17 via the output shaft 46 of the speed reduction mechanism 40 and is rotated integrally with the rotor 57. The valve shaft 20 is lowered, for example, by the motion conversion mechanism 60 by the drive teeth 61 of the rotating shaft 17 and the driven teeth 62 of the thrust transmission shaft 27, and is in a lowered position (here, a second connecting shaft structure provided at the lower portion of the valve shaft 20). The position 29B is brought into contact with the stopper portion 11Bs of the inner peripheral member 11B of the lid member 11 and stopped. In this lowered position, the first valve body 21 is positioned between the inner port p1 and the inner port p2, and the second valve body 22 is positioned between the inner port p3 and the communication port p12. The space between 21 and the second valve body 22 is positioned directly beside the inner port p2 and the inner port p3. Thereby, the inner port p2 and the inner port p3 communicate with each other via the space between the first valve body 21 and the second valve body 22, and the inner port p1 and the outer port p10 are the first valve body in the valve chamber 7A. It communicates via the space above 21 (upper back pressure chamber 30), the communication port p11, and the communication space 8A (first flow state shown in FIG. 20).

それに対し、ステッピングモータ50のロータ57を他方向に回転駆動させると、減速機構40の出力軸46を介してロータ57の回転が回転軸17に減速されて伝達され、ロータ57と一体に回転される回転軸17の駆動歯61と推力伝達軸27の従動歯62による運動変換機構60によって弁軸20が例えば上昇されて上昇位置がとられる。この上昇位置では、第1弁体21が連通ポートp11と内側ポートp1との間に位置し、第2弁体22が内側ポートp2と内側ポートp3との間に位置せしめられ、第1弁体21と第2弁体22の間の空間が、内側ポートp1と内側ポートp2の真横に位置せしめられる。これにより、内側ポートp1と内側ポートp2が、第1弁体21と第2弁体22の間の空間を介して連通し、内側ポートp3と外側ポートp10が、弁室7Aにおける第2弁体22より下側の空間(下側背圧室31)、連通ポートp12、連通空間8Aを介して連通する(図21に示す第2流れ状態)。   On the other hand, when the rotor 57 of the stepping motor 50 is driven to rotate in the other direction, the rotation of the rotor 57 is decelerated and transmitted to the rotary shaft 17 via the output shaft 46 of the speed reduction mechanism 40 and is rotated integrally with the rotor 57. For example, the valve shaft 20 is raised by the motion conversion mechanism 60 by the driving tooth 61 of the rotating shaft 17 and the driven tooth 62 of the thrust transmission shaft 27 to take the raised position. In this raised position, the first valve body 21 is positioned between the communication port p11 and the inner port p1, and the second valve body 22 is positioned between the inner port p2 and the inner port p3. The space between 21 and the 2nd valve body 22 is located just beside the inner side port p1 and the inner side port p2. Thus, the inner port p1 and the inner port p2 communicate with each other through the space between the first valve body 21 and the second valve body 22, and the inner port p3 and the outer port p10 are the second valve body in the valve chamber 7A. 22 communicates via a space (lower back pressure chamber 31), a communication port p12, and a communication space 8A (second flow state shown in FIG. 21).

また、本実施形態では、弁軸20を途中で静止させることによって上記下降位置と上昇位置との間の中間位置がとられるようになっている。この中間位置では、第1弁体21が内側ポートp1と内側ポートp2との間に位置し、第2弁体22が内側ポートp2と内側ポートp3との間に位置せしめられ、第1弁体21と第2弁体22の間の空間が、内側ポートp2の真横に位置せしめられる。これにより、内側ポートp1と外側ポートp10が、弁室7Aにおける第1弁体21より上側の空間(上側背圧室30)、連通ポートp11、連通空間8Aを介して連通するとともに、内側ポートp3と外側ポートp10が、弁室7Aにおける第2弁体22より下側の空間(下側背圧室31)、連通ポートp12、連通空間8Aを介して連通する(図22に示す第3流れ状態)。   Moreover, in this embodiment, the intermediate position between the said fall position and a raise position is taken by making the valve shaft 20 stop in the middle. In this intermediate position, the first valve body 21 is positioned between the inner port p1 and the inner port p2, and the second valve body 22 is positioned between the inner port p2 and the inner port p3. The space between 21 and the 2nd valve body 22 is located just beside the inner side port p2. As a result, the inner port p1 and the outer port p10 communicate with each other via the space above the first valve body 21 (upper back pressure chamber 30), the communication port p11, the communication space 8A in the valve chamber 7A, and the inner port p3. And the outer port p10 communicate with each other via a space (lower back pressure chamber 31) below the second valve body 22 in the valve chamber 7A, a communication port p12, and a communication space 8A (third flow state shown in FIG. 22). ).

ここで、本実施形態においても、内側ハウジング9Aと外側ハウジング9Bとの間(言い換えれば、内側ハウジング9Aの外側)の連通空間8Aを含む連通路32を介して、第1弁体21の上側に画成される上側背圧室30と第2弁体22の下側に画成される下側背圧室31とが常時連通しているので、上記第7実施形態と同様の作用効果が得られる。   Here, also in the present embodiment, the first valve body 21 is disposed above the first valve body 21 via the communication passage 32 including the communication space 8A between the inner housing 9A and the outer housing 9B (in other words, outside the inner housing 9A). Since the upper back pressure chamber 30 defined and the lower back pressure chamber 31 defined below the second valve body 22 are always in communication, the same effects as the seventh embodiment can be obtained. It is done.

なお、上記の各実施形態では、弁軸20の下端部(例えば、第8実施形態においては第2連結軸構成体29B)がストッパ部(例えば、第8実施形態においてはストッパ部11Bs)に衝接して停止せしめられた位置(下降位置)を基準として、ステッピングモータ50を所定角度回転させることで、弁軸20を所定位置(上昇位置や中間位置など)に停止させる制御を行っている。   In each of the above embodiments, the lower end portion of the valve shaft 20 (for example, the second connecting shaft constituting body 29B in the eighth embodiment) is opposed to the stopper portion (for example, the stopper portion 11Bs in the eighth embodiment). Control is performed to stop the valve shaft 20 at a predetermined position (such as an ascending position or an intermediate position) by rotating the stepping motor 50 by a predetermined angle with respect to the position (downward position) stopped in contact.

また、上記第1〜第6実施形態では、主に、弁体を昇降させるための昇降駆動部としてステータとロータとを有するステッピングモータを用いた電動式の流路切換弁を採用しているが、例えば昇降駆動部としてソレノイド等を用いた電磁式の流路切換弁を採用してもよいことは勿論である。   Moreover, in the said 1st-6th embodiment, although the electrically driven flow-path switching valve using the stepping motor which has a stator and a rotor as a raising / lowering drive part for raising / lowering a valve body is mainly employ | adopted. Of course, for example, an electromagnetic flow path switching valve using a solenoid or the like may be employed as the elevating drive unit.

1 流路切換弁(第1実施形態)
2 流路切換弁(第2実施形態)
3 流路切換弁(第3実施形態)
4 流路切換弁(第4実施形態)
5 流路切換弁(第5実施形態)
6 流路切換弁(第6実施形態)
7 流路切換弁(第7実施形態)
8 流路切換弁(第8実施形態)
7A 弁室
8A 連通空間
9A 内側ハウジング
9B 外側ハウジング
10 弁本体
11 蓋状部材
17 回転昇降軸(第1〜第6実施形態)
17 回転軸(第7、第8実施形態)
20 弁軸
21 第1弁体
22 第2弁体
23 第3弁体
24 第4弁体
21A〜24A シール部材
21B〜24B パッキン
27 推力伝達軸
29 連結軸
30 上側背圧室
31 下側背圧室
32 連通路
40 不思議遊星歯車式減速機構
50 ステッピングモータ
55 ステータ
57 ロータ
58 キャン
60 運動変換機構
61 駆動歯
62 従動歯
p1〜p5 内側ポート
p10 外側ポート
p10a 開口
p11、p12 連通ポート
#1〜#5、#10 導管継手
1 flow path switching valve (first embodiment)
2 Channel switching valve (second embodiment)
3 Channel switching valve (Third embodiment)
4 Channel switching valve (fourth embodiment)
5 Channel switching valve (fifth embodiment)
6 Channel switching valve (sixth embodiment)
7 Channel switching valve (seventh embodiment)
8 Channel switching valve (8th embodiment)
7A Valve chamber 8A Communication space 9A Inner housing 9B Outer housing 10 Valve body 11 Lid-like member 17 Rotating lift shaft (first to sixth embodiments)
17 Rotating shaft (seventh and eighth embodiments)
20 valve shaft 21 first valve body 22 second valve body 23 third valve body 24 fourth valve bodies 21A to 24A seal members 21B to 24B packing 27 thrust transmission shaft 29 connecting shaft 30 upper back pressure chamber 31 lower back pressure chamber 32 Communication path 40 Strange planetary gear type reduction mechanism 50 Stepping motor 55 Stator 57 Rotor 58 Can 60 Motion conversion mechanism 61 Drive tooth 62 Driven teeth p1 to p5 Inner port p10 Outer port p10a Opening p11, p12 Communication ports # 1 to # 5, # 10 Conduit fitting

Claims (19)

弁室を有する筒状の内側ハウジングと、
前記内側ハウジングの外側に連通空間を形成すべく、該内側ハウジングの外側に配在された外側ハウジングと、
前記弁室に昇降可能に配在されるとともに、前記内側ハウジングに内接せしめられた少なくとも2つの弁体が軸線方向に離間して設けられた弁軸と、
前記弁室内で前記弁軸を前記軸線方向に昇降させるための昇降駆動部と、を備え、
前記昇降駆動部が、前記軸線方向に垂直な方向に延びる回転軸線周りで回転自在に配在されたロータと該ロータを回転させるためのステータとを有するステッピングモータと、前記ロータと一体に回転される回転軸と、該回転軸の回転運動を前記弁軸の昇降運動に変換する運動変換機構と、を有するとともに、
前記内側ハウジングには、前記弁室に開口する少なくとも2つの内側ポートが軸線方向に離間して開口せしめられるとともに、前記弁室と前記連通空間とを常時連通する少なくとも1つの連通ポートが開口せしめられ、
前記外側ハウジングには、前記連通空間に常時連通する外側ポートが開口せしめられ、
前記弁室における前記少なくとも2つの弁体より上側に画成される上側背圧室と前記弁室における前記少なくとも2つの弁体より下側に画成される下側背圧室とは常時連通せしめられており、
前記少なくとも2つの弁体が前記内側ハウジングに内接せしめられた状態で前記昇降駆動部により前記弁室内で前記弁軸を昇降させることにより、前記少なくとも2つの内側ポート及び前記外側ポートの間の連通状態が切り換えられるようになっていることを特徴とする流路切換弁。
A cylindrical inner housing having a valve chamber;
An outer housing disposed outside the inner housing to form a communication space outside the inner housing;
A valve shaft provided in the valve chamber so as to be movable up and down, and provided with at least two valve bodies inscribed in the inner housing separated in the axial direction;
An elevating drive unit for elevating the valve shaft in the axial direction in the valve chamber,
The elevating drive unit is rotated integrally with the rotor, and a stepping motor having a rotor disposed rotatably around a rotation axis extending in a direction perpendicular to the axial direction and a stator for rotating the rotor. And a motion conversion mechanism for converting the rotary motion of the rotary shaft into the vertical motion of the valve shaft,
In the inner housing, at least two inner ports that open to the valve chamber are opened apart in the axial direction, and at least one communication port that always communicates the valve chamber and the communication space is opened. ,
In the outer housing, an outer port that always communicates with the communication space is opened,
The upper back pressure chamber defined above the at least two valve bodies in the valve chamber and the lower back pressure chamber defined below the at least two valve bodies in the valve chamber are always in communication. And
The communication between the at least two inner ports and the outer ports is achieved by raising and lowering the valve shaft in the valve chamber by the raising and lowering drive unit in a state where the at least two valve bodies are inscribed in the inner housing. A flow path switching valve characterized in that the state can be switched.
前記運動変換機構は、前記回転軸の外周に形成された駆動歯と、前記弁軸に形成され、前記駆動歯と噛合する従動歯とで構成されていることを特徴とする請求項1に記載の流路切換弁。   The said motion conversion mechanism is comprised by the drive tooth formed in the outer periphery of the said rotating shaft, and the driven tooth which is formed in the said valve shaft and meshes with the said drive tooth. Flow path switching valve. 前記回転軸は、前記回転軸線方向への移動が阻止された状態で、前記回転軸線周りで回転するようにされていることを特徴とする請求項1又は2に記載の流路切換弁。   3. The flow path switching valve according to claim 1, wherein the rotation shaft is configured to rotate around the rotation axis while being prevented from moving in the direction of the rotation axis. 前記ステッピングモータは、前記外側ハウジングの端部開口に取り付けられた基台部材の側方に横倒しで取り付けられていることを特徴とする請求項1から3のいずれか一項に記載の流路切換弁。   The flow path switching according to any one of claims 1 to 3, wherein the stepping motor is attached to a side of a base member attached to an end opening of the outer housing. valve. 前記基台部材の内部に、前記回転軸が挿入される横穴と前記弁軸が挿入される縦穴とが設けられていることを特徴とする請求項4に記載の流路切換弁。   The flow path switching valve according to claim 4, wherein a horizontal hole into which the rotating shaft is inserted and a vertical hole into which the valve shaft is inserted are provided inside the base member. 前記連通空間は、前記内側ハウジングの外周に形成されている、又は、前記内側ハウジングの外周の一部に形成されていることを特徴とする請求項1から5のいずれか一項に記載の流路切換弁。   6. The flow according to claim 1, wherein the communication space is formed on an outer periphery of the inner housing, or is formed on a part of an outer periphery of the inner housing. Road switching valve. 前記内側ハウジンングの外周にDカット面が設けられ、該Dカット面と前記外側ハウジングの内周面とによって前記連通空間が形成されていることを特徴とする請求項1から5のいずれか一項に記載の流路切換弁。   The D-cut surface is provided on the outer periphery of the inner housing, and the communication space is formed by the D-cut surface and the inner peripheral surface of the outer housing. The flow path switching valve according to 1. 前記少なくとも2つの内側ポートと前記外側ポートとが、軸線方向で視て反対側もしくは同じ側に開口せしめられていることを特徴とする請求項1から7のいずれか一項に記載の流路切換弁。   The flow path switching according to any one of claims 1 to 7, wherein the at least two inner ports and the outer port are opened to opposite sides or the same side as viewed in the axial direction. valve. 前記連通ポートは、前記少なくとも2つの内側ポートより上側及び前記少なくとも2つの内側ポートより下側に、前記少なくとも2つの弁体のうち最も上側の弁体と最も下側の弁体との間隔と同間隔をあけて開口せしめられていることを特徴とする請求項1から8のいずれか一項に記載の流路切換弁。   The communication port is located above the at least two inner ports and below the at least two inner ports, and has the same distance between the uppermost valve body and the lowermost valve body among the at least two valve bodies. The flow path switching valve according to any one of claims 1 to 8, wherein the flow path switching valve is opened at an interval. 前記弁軸が所定位置にあるときに、前記外側ポートが前記少なくとも2つの内側ポートのうち最も上側の内側ポートと最も下側の内側ポートの双方に連通するようにされていることを特徴とする請求項1から8のいずれか一項に記載の流路切換弁。   When the valve shaft is in a predetermined position, the outer port communicates with both the uppermost inner port and the lowermost inner port of the at least two inner ports. The flow path switching valve according to any one of claims 1 to 8. 前記外側ポートは、前記連通空間に開口せしめられて前記連通空間に常時連通するようになっている、あるいは、前記内側ハウジングにおける前記連通ポートと同じ高さに開口せしめられた開口を介して前記連通空間に常時連通するようになっていることを特徴とする請求項1から10のいずれか一項に記載の流路切換弁。   The outer port is opened in the communication space so as to always communicate with the communication space, or the communication through the opening opened at the same height as the communication port in the inner housing. The flow path switching valve according to any one of claims 1 to 10, wherein the flow path switching valve is always in communication with a space. 前記上側背圧室と前記下側背圧室とは、前記弁軸内に設けられた連通路を介して常時連通せしめられていることを特徴とする請求項1から11のいずれか一項に記載の流路切換弁。   12. The upper back pressure chamber and the lower back pressure chamber are always in communication with each other via a communication path provided in the valve shaft. The flow path switching valve described. 前記上側背圧室と前記下側背圧室とは、前記連通空間を介して常時連通せしめられていることを特徴とする請求項1から11のいずれか一項に記載の流路切換弁。   The flow path switching valve according to any one of claims 1 to 11, wherein the upper back pressure chamber and the lower back pressure chamber are always in communication with each other through the communication space. 前記少なくとも2つの弁体の外周にシール部材が装着されるとともに、該シール部材の外側に該シール部材より硬度の高いパッキンが装着されていることを特徴とする請求項1から13のいずれか一項に記載の流路切換弁。   The seal member is mounted on the outer periphery of the at least two valve bodies, and the packing having higher hardness than the seal member is mounted on the outside of the seal member. The flow path switching valve according to Item. 前記内側ハウジングの内周における前記少なくとも2つの内側ポート及び前記少なくとも1つの連通ポートが形成された部分に凹面部が設けられていることを特徴とする請求項1から14のいずれか一項に記載の流路切換弁。   The concave surface portion is provided in a portion where the at least two inner ports and the at least one communication port are formed on the inner periphery of the inner housing. Flow path switching valve. 前記凹面部の上面及び/又は下面にテーパ面部が設けられていることを特徴とする請求項15に記載の流路切換弁。   The flow path switching valve according to claim 15, wherein a tapered surface portion is provided on an upper surface and / or a lower surface of the concave surface portion. 前記弁軸が、それぞれに1つの弁体が設けられた複数の連結軸構成体を含んで構成されていることを特徴とする請求項1から16のいずれか一項に記載の流路切換弁。   The flow path switching valve according to any one of claims 1 to 16, wherein the valve shaft includes a plurality of connecting shaft components each provided with one valve body. . 前記外側ハウジング又は前記内側ハウジングに、前記弁軸の下降を制限するストッパ部を有する蓋状部材が取り付けられていることを特徴とする請求項1に記載の流路切換弁。   The flow path switching valve according to claim 1, wherein a lid-like member having a stopper portion that restricts the lowering of the valve shaft is attached to the outer housing or the inner housing. 前記蓋状部材には、前記ストッパ部に前記弁軸が衝接して停止せしめられたときに、前記上側背圧室と前記下側背圧室とを常時連通すべく前記弁軸内に設けられた連通路と連通する縦孔及び横孔が設けられていることを特徴とする請求項18に記載の流路切換弁。   The lid-like member is provided in the valve shaft so that the upper back pressure chamber and the lower back pressure chamber are always in communication when the valve shaft is brought into contact with the stopper and stopped. The flow path switching valve according to claim 18, wherein a vertical hole and a horizontal hole communicating with the communication path are provided.
JP2016102391A 2016-05-23 2016-05-23 Flow path switching valve Active JP6739230B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016102391A JP6739230B2 (en) 2016-05-23 2016-05-23 Flow path switching valve
CN201710266038.7A CN107421174B (en) 2016-05-23 2017-04-21 Flow path switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016102391A JP6739230B2 (en) 2016-05-23 2016-05-23 Flow path switching valve

Publications (2)

Publication Number Publication Date
JP2017210970A true JP2017210970A (en) 2017-11-30
JP6739230B2 JP6739230B2 (en) 2020-08-12

Family

ID=60423966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016102391A Active JP6739230B2 (en) 2016-05-23 2016-05-23 Flow path switching valve

Country Status (2)

Country Link
JP (1) JP6739230B2 (en)
CN (1) CN107421174B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203560A (en) * 2018-05-24 2019-11-28 株式会社不二工機 Four-way switch valve
CN112428774A (en) * 2020-11-06 2021-03-02 三花控股集团有限公司 Fluid control element and thermal management system thereof
WO2021153799A1 (en) * 2020-01-31 2021-08-05 三菱重工サーマルシステムズ株式会社 Air conditioning device for vehicle
WO2021153672A1 (en) * 2020-01-31 2021-08-05 三菱重工業株式会社 Air conditioning device for vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6954855B2 (en) * 2018-03-01 2021-10-27 株式会社鷺宮製作所 Electric valve
JP6933388B2 (en) * 2019-03-13 2021-09-08 株式会社不二工機 Flow path switching valve

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582563U (en) * 1978-12-05 1980-06-06
JPH02154879A (en) * 1988-11-03 1990-06-14 Yamatake Honeywell Co Ltd Selector valve
JPH02113076U (en) * 1989-02-27 1990-09-10
JPH06185657A (en) * 1991-01-28 1994-07-08 Tohoku Oki Denki Kk Fluid shut-off device
JPH11141697A (en) * 1997-11-11 1999-05-25 Smc Corp Spool
JP2002081557A (en) * 2000-09-07 2002-03-22 Advance Denki Kogyo Kk Mixing ratio control valve structure
JP2002206659A (en) * 2001-01-11 2002-07-26 Denso Corp Spool valve type hydraulic control valve
EP2357350A1 (en) * 2010-02-16 2011-08-17 Kamtec Inc. Exhaust gas recirculation valve in vehicle
JP2012522201A (en) * 2009-03-30 2012-09-20 ボーグワーナー インコーポレーテッド Die-cast sleeve with stability-enhancing features that occupy a small package space
JP2015057564A (en) * 2013-08-12 2015-03-26 株式会社テクノ高槻 Multidirectional selector valve
JP2016080115A (en) * 2014-10-21 2016-05-16 株式会社鷺宮製作所 Fluid control valve

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5582563U (en) * 1978-12-05 1980-06-06
JPH02154879A (en) * 1988-11-03 1990-06-14 Yamatake Honeywell Co Ltd Selector valve
JPH02113076U (en) * 1989-02-27 1990-09-10
JPH06185657A (en) * 1991-01-28 1994-07-08 Tohoku Oki Denki Kk Fluid shut-off device
JPH11141697A (en) * 1997-11-11 1999-05-25 Smc Corp Spool
JP2002081557A (en) * 2000-09-07 2002-03-22 Advance Denki Kogyo Kk Mixing ratio control valve structure
JP2002206659A (en) * 2001-01-11 2002-07-26 Denso Corp Spool valve type hydraulic control valve
JP2012522201A (en) * 2009-03-30 2012-09-20 ボーグワーナー インコーポレーテッド Die-cast sleeve with stability-enhancing features that occupy a small package space
EP2357350A1 (en) * 2010-02-16 2011-08-17 Kamtec Inc. Exhaust gas recirculation valve in vehicle
JP2015057564A (en) * 2013-08-12 2015-03-26 株式会社テクノ高槻 Multidirectional selector valve
JP2016080115A (en) * 2014-10-21 2016-05-16 株式会社鷺宮製作所 Fluid control valve

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019203560A (en) * 2018-05-24 2019-11-28 株式会社不二工機 Four-way switch valve
JP7109057B2 (en) 2018-05-24 2022-07-29 株式会社不二工機 four-way switching valve
WO2021153799A1 (en) * 2020-01-31 2021-08-05 三菱重工サーマルシステムズ株式会社 Air conditioning device for vehicle
WO2021153672A1 (en) * 2020-01-31 2021-08-05 三菱重工業株式会社 Air conditioning device for vehicle
JP2021123131A (en) * 2020-01-31 2021-08-30 三菱重工サーマルシステムズ株式会社 Air conditioner for vehicle
JP7463119B2 (en) 2020-01-31 2024-04-08 三菱重工サーマルシステムズ株式会社 Vehicle air conditioning system
CN112428774A (en) * 2020-11-06 2021-03-02 三花控股集团有限公司 Fluid control element and thermal management system thereof
CN112428774B (en) * 2020-11-06 2022-03-18 三花控股集团有限公司 Fluid control element and thermal management system thereof

Also Published As

Publication number Publication date
CN107421174A (en) 2017-12-01
CN107421174B (en) 2021-04-02
JP6739230B2 (en) 2020-08-12

Similar Documents

Publication Publication Date Title
JP2017210970A (en) Channel changeover valve
JP2017133641A (en) Flow passage selector valve
EP3336396A1 (en) Electronic expansion valve
JP6574467B2 (en) Direct-acting motor-operated valve and mounting method thereof
JP6684599B2 (en) Flow path switching valve
EP2182260B1 (en) Multi-way selector valve
EP2933540B1 (en) Electronic expansion valve
JP6091903B2 (en) Motorized valve
CN108343749B (en) Electronic expansion valve
KR20180108401A (en) Flow control valve
CN105276205B (en) Motor-driven valve
JP5907506B2 (en) Rotary valve device
KR102222565B1 (en) Control valve
CN108869794A (en) Flow channel switching valve
JP2017009025A (en) Electric valve
JP2017223247A (en) Motor valve
EP3260745A1 (en) Flow control valve
JP6387495B2 (en) Butterfly valve
JP6332945B2 (en) Flow path switching valve
JP5175135B2 (en) Flow control valve
JP6715879B2 (en) 3-way switching valve
JP2018105387A (en) Electrical drive valve
WO2019193932A1 (en) Motor-operated valve
WO2020095591A1 (en) Flow path switching valve
JP6387494B2 (en) Butterfly valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200721

R150 Certificate of patent or registration of utility model

Ref document number: 6739230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250