JP2017210388A - Method for refining ferrous chloride aqueous solution and method for producing ferric oxide - Google Patents

Method for refining ferrous chloride aqueous solution and method for producing ferric oxide Download PDF

Info

Publication number
JP2017210388A
JP2017210388A JP2016104023A JP2016104023A JP2017210388A JP 2017210388 A JP2017210388 A JP 2017210388A JP 2016104023 A JP2016104023 A JP 2016104023A JP 2016104023 A JP2016104023 A JP 2016104023A JP 2017210388 A JP2017210388 A JP 2017210388A
Authority
JP
Japan
Prior art keywords
ferrous chloride
aqueous solution
silicon dioxide
chloride aqueous
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016104023A
Other languages
Japanese (ja)
Inventor
恭兵 菊池
Kyohei Kikuchi
恭兵 菊池
広幸 峰村
Hiroyuki Minemura
広幸 峰村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2016104023A priority Critical patent/JP2017210388A/en
Publication of JP2017210388A publication Critical patent/JP2017210388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Filtration Of Liquid (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for refining a ferrous chloride aqueous solution reducing the content of silicon dioxide in a ferrous chloride aqueous solution.SOLUTION: Provided is a method for refining a ferrous chloride aqueous solution comprising: a coarsening step where a ferrous chloride aqueous solution containing silicon dioxide as impurities is subjected to a concentration operation and a heating operation to coarsen the particles of the silicon dioxide; and a filtering step where the ferrous chloride aqueous solution in which the particles of the silicon dioxide are coarsened by the coarsening step is filtered using a diatom earth filter obtained by sticking diatom earth to the surface of a base material having a plurality of pores with a diameter of 0.5-2 μm, and the coarsened particles of the silicon dioxide are removed.SELECTED DRAWING: None

Description

本発明は塩化第一鉄水溶液の精製方法及び酸化第二鉄の製造方法に関する。   The present invention relates to a method for purifying an aqueous ferrous chloride solution and a method for producing ferric oxide.

酸化第二鉄(Fe2 3 )の製造方法として知られている塩酸酸洗廃液の噴霧焙焼法は、鋼材製造時の鋼材表面酸洗工程で副産する塩酸酸洗廃液(塩化第一鉄(FeCl2 )水溶液)を焙焼炉で噴霧焙焼し熱分解して酸化第二鉄を製造する方法である。噴霧焙焼法で製造された酸化第二鉄は、磁性材料(フェライト)の原料などに利用されている。
しかしながら、塩酸酸洗廃液には、鋼材中に含有される成分に由来して、二酸化ケイ素(SiO2 )、アルミニウム、クロム、リン、ホウ素等の不純物が大量に含有されている。そのため、塩酸酸洗廃液の噴霧焙焼法により製造された酸化第二鉄には、上記不純物が含有されている。二酸化ケイ素を含有する酸化第二鉄をフェライトの原料として使用すると、フェライトの結晶粒子が粗大化し、フェライト(特にソフトフェライト)の電磁気特性が低下するので、酸化第二鉄中の二酸化ケイ素の含有量の低減が望まれていた。
The spray roasting method of hydrochloric acid pickling waste liquid known as a manufacturing method of ferric oxide (Fe 2 O 3 ) is a hydrochloric acid pickling waste liquid (1st chloride) produced as a by-product in the steel surface pickling process at the time of manufacturing the steel material. This is a method of producing ferric oxide by spraying and roasting iron (FeCl 2 ) solution in a roasting furnace and pyrolyzing it. Ferric oxide produced by spray roasting is used as a raw material for magnetic materials (ferrites).
However, the hydrochloric acid pickling waste liquid contains a large amount of impurities such as silicon dioxide (SiO 2 ), aluminum, chromium, phosphorus, boron, etc., derived from components contained in the steel material. Therefore, the above impurities are contained in ferric oxide produced by spray roasting of hydrochloric acid pickling waste liquid. When ferric oxide containing silicon dioxide is used as a raw material for ferrite, the ferrite crystal grains become coarse and the electromagnetic properties of ferrite (especially soft ferrite) deteriorate, so the content of silicon dioxide in ferric oxide Reduction of this was desired.

特開昭61−222925号公報JP-A 61-222925

本発明は、塩化第一鉄水溶液中の二酸化ケイ素の含有量を低減する塩化第一鉄水溶液の精製方法、及び、二酸化ケイ素の含有量が低い酸化第二鉄の製造方法を提供することを課題とする。   An object of the present invention is to provide a method for purifying ferrous chloride aqueous solution that reduces the content of silicon dioxide in the aqueous ferrous chloride solution, and a method for producing ferric oxide having a low silicon dioxide content. And

本発明の一態様に係る塩化第一鉄水溶液の精製方法は、不純物として二酸化ケイ素を含有する塩化第一鉄水溶液に対して、濃縮操作及び加熱操作を行って、二酸化ケイ素の粒子を粗大化する粗大化工程と、粗大化工程で二酸化ケイ素の粒子が粗大化された塩化第一鉄水溶液を、直径0.5μm以上2μm以下の細孔を複数有する基材の表面に珪藻土を付着させた珪藻土フィルターを用いて濾過し、粗大化した二酸化ケイ素の粒子を除去する濾過工程と、を備えることを要旨とする。   In the method for purifying a ferrous chloride aqueous solution according to one embodiment of the present invention, the silicon dioxide particles are coarsened by performing a concentration operation and a heating operation on the ferrous chloride aqueous solution containing silicon dioxide as an impurity. A diatomaceous earth filter comprising a coarsening step and a ferrous chloride aqueous solution in which silicon dioxide particles are coarsened in the coarsening step, wherein diatomaceous earth is adhered to the surface of a substrate having a plurality of pores having a diameter of 0.5 μm to 2 μm. And a filtration step of removing the coarsened silicon dioxide particles.

また、本発明の他の態様に係る酸化第二鉄の製造方法は、上記一態様に係る塩化第一鉄水溶液の精製方法で精製した塩化第一鉄水溶液を噴霧焙焼して酸化第二鉄を得る噴霧焙焼工程を備えることを要旨とする。   In addition, the method for producing ferric oxide according to another aspect of the present invention includes ferric oxide aqueous solution obtained by spray roasting the ferrous chloride aqueous solution purified by the method for purifying ferrous chloride aqueous solution according to the above aspect. The gist is to provide a spray roasting step to obtain

本発明に係る塩化第一鉄水溶液の精製方法によれば、塩化第一鉄水溶液中の二酸化ケイ素の含有量を低減することができる。また、本発明に係る酸化第二鉄の製造方法によれば、二酸化ケイ素の含有量が低い酸化第二鉄を製造することができる。   According to the method for purifying ferrous chloride aqueous solution according to the present invention, the content of silicon dioxide in the ferrous chloride aqueous solution can be reduced. Moreover, according to the manufacturing method of ferric oxide which concerns on this invention, ferric oxide with low content of silicon dioxide can be manufactured.

本実施形態の塩化第一鉄水溶液の精製方法は、不純物として二酸化ケイ素を含有する塩化第一鉄水溶液に対して、濃縮操作及び加熱操作を行って、二酸化ケイ素の粒子を粗大化する粗大化工程と、粗大化工程で二酸化ケイ素の粒子が粗大化された塩化第一鉄水溶液を、直径0.5μm以上2μm以下の細孔を複数有する基材の表面に珪藻土を付着させた珪藻土フィルターを用いて濾過し、粗大化した二酸化ケイ素の粒子を除去する濾過工程と、を備える。   The purification method of the ferrous chloride aqueous solution of the present embodiment is a coarsening step of coarsening silicon dioxide particles by performing a concentration operation and a heating operation on the ferrous chloride aqueous solution containing silicon dioxide as an impurity. And a ferrous chloride aqueous solution in which silicon dioxide particles are coarsened in the coarsening step, using a diatomaceous earth filter in which diatomaceous earth is adhered to the surface of a substrate having a plurality of pores having a diameter of 0.5 μm to 2 μm. Filtering to remove the coarsened silicon dioxide particles by filtration.

鋼材製造時の鋼材表面酸洗工程で副産する塩酸酸洗廃液(塩化第一鉄水溶液)には、鋼材中に含有される成分に由来して、二酸化ケイ素の粒子が不純物として含有されている。したがって、本実施形態の塩化第一鉄水溶液の精製方法を用いれば、二酸化ケイ素の粒子を除去して、鋼材製造時の鋼材表面酸洗工程で副産する塩酸酸洗廃液を精製することができる。   Hydrochloric acid pickling waste liquid (ferrous chloride aqueous solution) by-produced in the steel surface pickling process at the time of steel material production contains silicon dioxide particles as impurities derived from the components contained in the steel material. . Therefore, if the purification method of ferrous chloride aqueous solution of this embodiment is used, the particles of silicon dioxide can be removed, and the hydrochloric acid pickling waste liquid produced as a by-product in the steel surface pickling process at the time of manufacturing the steel material can be purified. .

粗大化工程に供する塩化第一鉄水溶液に含有される二酸化ケイ素の粒子の量は特に限定されるものではないが、0.005g/100mL以上0.05g/100mL以下であってもよい。また、粗大化工程に供する塩化第一鉄水溶液に含有される鉄イオンの濃度や塩化水素の濃度は特に限定されるものではないが、鉄イオンの濃度は12g/100mL以上16g/100mL以下であってもよく、塩化水素の濃度は18g/100mL以上23g/100mL以下であってもよい。鋼材製造時の鋼材表面酸洗工程で副産する塩酸酸洗廃液は、通常は、上記のような数値範囲内の量の二酸化ケイ素の粒子、鉄イオン、塩化水素を含有している。   The amount of silicon dioxide particles contained in the ferrous chloride aqueous solution used for the coarsening step is not particularly limited, but may be 0.005 g / 100 mL or more and 0.05 g / 100 mL or less. Further, the concentration of iron ions and hydrogen chloride contained in the ferrous chloride aqueous solution used for the coarsening step are not particularly limited, but the concentration of iron ions is 12 g / 100 mL or more and 16 g / 100 mL or less. The concentration of hydrogen chloride may be 18 g / 100 mL or more and 23 g / 100 mL or less. The hydrochloric acid pickling waste liquid produced as a by-product in the steel surface pickling process at the time of steel production usually contains silicon dioxide particles, iron ions, and hydrogen chloride in amounts within the above numerical range.

粗大化工程の濃縮操作においては、塩化第一鉄水溶液中の水分を除去して濃縮する。濃縮方法は特に限定されるものではなく、加熱、減圧、送風等の手段のうち1つ又は複数を用いて濃縮することができる。例えば、焙焼炉(例えば、塩化第一鉄水溶液を噴霧焙焼して酸化第二鉄を製造する焙焼炉)から排出された排ガスと塩化第一鉄水溶液とを向流接触させることにより塩化第一鉄水溶液から水分を除去して濃縮を行ってもよい。   In the concentration operation of the coarsening step, the water in the ferrous chloride aqueous solution is removed and concentrated. The concentration method is not particularly limited, and the concentration can be performed by using one or a plurality of means such as heating, decompression, and air blowing. For example, the exhaust gas discharged from a roasting furnace (for example, a roasting furnace that produces ferric oxide by spray roasting ferrous chloride aqueous solution) and the ferrous chloride aqueous solution are counter-contacted with chlorination. Concentration may be performed by removing water from the ferrous aqueous solution.

濃縮倍率は特に限定されるものではないが、1.2倍以上1.4倍以下となるように塩化第一鉄水溶液を濃縮してもよい。このような濃縮倍率であれば、濃縮により液量が減少するため、後の濾過工程において塩化第一鉄水溶液を短時間で濾過することができるとともに、高濃縮ではないため、塩化第一鉄水溶液中の成分が凝固点降下現象により凝固することを抑制できる。塩化第一鉄水溶液中の成分が凝固すると、塩化第一鉄水溶液を送液する配管が閉塞する原因となる。   The concentration factor is not particularly limited, but the ferrous chloride aqueous solution may be concentrated so as to be 1.2 times or more and 1.4 times or less. With such a concentration ratio, the amount of liquid decreases due to concentration, so that the aqueous ferrous chloride solution can be filtered in a short time in the subsequent filtration step and is not highly concentrated. It is possible to suppress the internal components from solidifying due to the freezing point depression phenomenon. When the component in the ferrous chloride aqueous solution is solidified, it causes the piping for feeding the ferrous chloride aqueous solution to be blocked.

粗大化工程の加熱操作においては、塩化第一鉄水溶液を加熱して昇温する。塩化第一鉄水溶液を加熱することにより、二酸化ケイ素の粒子が凝集し粗大化する。加熱方法は特に限定されるものではなく、電磁誘導加熱等による直接昇温や、蒸気等の熱媒体を用いた間接昇温を採用することができる。塩化第一鉄水溶液の液温は特に限定されるものではないが、液温が70℃以上90℃以下となるように塩化第一鉄水溶液を加熱してもよい。このような液温に昇温すれば、二酸化ケイ素の粒子を効率良く粗大化することができる。また、塩化第一鉄水溶液を送液する配管の腐食を抑制することができる。   In the heating operation in the coarsening step, the aqueous ferrous chloride solution is heated to raise the temperature. By heating the ferrous chloride aqueous solution, the silicon dioxide particles are aggregated and coarsened. The heating method is not particularly limited, and direct temperature increase by electromagnetic induction heating or indirect temperature increase using a heat medium such as steam can be employed. Although the liquid temperature of ferrous chloride aqueous solution is not specifically limited, You may heat ferrous chloride aqueous solution so that liquid temperature may be 70 degreeC or more and 90 degrees C or less. When the temperature is raised to such a liquid temperature, the silicon dioxide particles can be efficiently coarsened. Moreover, corrosion of the piping which sends the ferrous chloride aqueous solution can be suppressed.

粗大化工程においては、平均粒径が5μm以上10μm以下となるように二酸化ケイ素の粒子を粗大化してもよい。そうすれば、後の濾過工程において塩化第一鉄水溶液を効率良く濾過することができるとともに、粗大化工程に要する時間やコストを抑えることができる。   In the coarsening step, the silicon dioxide particles may be coarsened so that the average particle diameter is 5 μm or more and 10 μm or less. Then, the ferrous chloride aqueous solution can be efficiently filtered in the subsequent filtration step, and the time and cost required for the coarsening step can be suppressed.

なお、粗大化工程における濃縮操作と加熱操作の順序は特に限定されるものではなく、二酸化ケイ素の粒子を粗大化することができるのであれば、どちらの操作を先に行っても差し支えない。ただし、加熱により塩化第一鉄水溶液の濃縮を行う場合には、濃縮操作時に二酸化ケイ素の粒子の粗大化も生じさせることができる。すなわち、濃縮操作と加熱操作を同時に行うことができる。   In addition, the order of the concentration operation and the heating operation in the coarsening step is not particularly limited, and any operation may be performed first as long as the silicon dioxide particles can be coarsened. However, when the ferrous chloride aqueous solution is concentrated by heating, the silicon dioxide particles can be coarsened during the concentration operation. That is, the concentration operation and the heating operation can be performed simultaneously.

濾過工程において、粗大化工程で二酸化ケイ素の粒子が粗大化された塩化第一鉄水溶液を、珪藻土フィルターを用いて濾過すれば、粗大化した二酸化ケイ素の粒子が珪藻土フィルターによって濾取され除去される。よって、塩化第一鉄水溶液中の二酸化ケイ素の含有量を低減することができる。二酸化ケイ素の粒子が粗大化されているので、二酸化ケイ素の粒子を効率良く除去することができる。また、二酸化ケイ素の粒子が粗大化されているので、塩化第一鉄水溶液の濾過性が優れており、高い濾過速度(例えば50L/min以上)で濾過を行うことができる。よって、濾過する塩化第一鉄水溶液の量に応じて珪藻土フィルターのサイズを適宜選択すれば、濾過時間を短時間に抑えることができる。   In the filtration step, if the ferrous chloride aqueous solution in which the silicon dioxide particles are coarsened in the coarsening step is filtered using a diatomaceous earth filter, the coarsened silicon dioxide particles are filtered and removed by the diatomaceous earth filter. . Therefore, the content of silicon dioxide in the ferrous chloride aqueous solution can be reduced. Since the silicon dioxide particles are coarsened, the silicon dioxide particles can be efficiently removed. Further, since the silicon dioxide particles are coarsened, the filterability of the ferrous chloride aqueous solution is excellent, and filtration can be performed at a high filtration rate (for example, 50 L / min or more). Therefore, if the size of the diatomaceous earth filter is appropriately selected according to the amount of ferrous chloride aqueous solution to be filtered, the filtration time can be suppressed to a short time.

濾過温度は特に限定されるものではなく、室温(例えば10〜30℃)で行ってもよいし、室温よりも高温(例えば50〜90℃)で行ってもよい。粗大化工程の加熱操作によって粗大化工程の終了時の塩化第一鉄水溶液が加熱されている場合には、そのままの液温で濾過を行ってもよい。ただし、濾過温度が高い方が、塩化第一鉄水溶液の濾過性が向上するので、濾過温度は室温よりも高温とすることが好ましい。   The filtration temperature is not particularly limited, and may be performed at room temperature (for example, 10 to 30 ° C.) or may be performed at a temperature higher than room temperature (for example, 50 to 90 ° C.). When the ferrous chloride aqueous solution at the end of the coarsening step is heated by the heating operation of the coarsening step, filtration may be performed at the same liquid temperature. However, the higher the filtration temperature, the better the filterability of the ferrous chloride aqueous solution, so the filtration temperature is preferably higher than room temperature.

濾過に用いる珪藻土フィルターは、直径0.5μm以上2μm以下の細孔を複数有する基材の表面に珪藻土を付着させたものである。細孔の直径(フィルターの目の大きさ)が0.5μm以上2μm以下であれば、二酸化ケイ素の粒子を効率良く濾取することができる。基材の材質は特に限定されるものではなく、紙、布、樹脂、金属、セラミック等を採用することができる。また、基材の厚さは特に限定されるものではないが、例えば200μm以上900μm以下としてもよい。さらに、珪藻土の基材への付着量は特に限定されるものではないが、基材の材質が紙、布、樹脂の場合は、珪藻土フィルター全体の質量の10質量%以上20質量%以下としてもよい。珪藻土の基材への付着量が上記のような量であれば、二酸化ケイ素の粒子を効率良く濾取することができる。   The diatomaceous earth filter used for filtration is obtained by attaching diatomaceous earth to the surface of a substrate having a plurality of pores having a diameter of 0.5 μm or more and 2 μm or less. If the diameter of the pores (filter size) is 0.5 μm or more and 2 μm or less, the silicon dioxide particles can be efficiently filtered. The material of the substrate is not particularly limited, and paper, cloth, resin, metal, ceramic, etc. can be employed. The thickness of the base material is not particularly limited, but may be, for example, 200 μm or more and 900 μm or less. Further, the amount of diatomaceous earth attached to the base material is not particularly limited. However, when the base material is paper, cloth, or resin, the mass of the diatomaceous earth filter may be 10% by mass or more and 20% by mass or less. Good. If the amount of diatomaceous earth attached to the base material is as described above, the silicon dioxide particles can be efficiently filtered.

ここで、珪藻土フィルターの製造方法の一例を示す。まず、珪藻土と水を混合して、40℃以上90℃以下の濾過助剤(スラリー)を作製する。珪藻土と混合する水に、40℃以上90℃以下の温水を用いる。温水を用いることにより、混合時に珪藻土が水に均一分散しやすくなり、撹拌時間を短縮することができる。40℃以上90℃以下の濾過助剤を得る方法として、40℃未満の水と珪藻土を混合した後に40℃以上90℃以下まで加熱する方法や、40℃未満の水と珪藻土を混合する際に加熱も同時に行う方法を用いてもよい。   Here, an example of the manufacturing method of a diatomaceous earth filter is shown. First, diatomaceous earth and water are mixed to produce a filter aid (slurry) of 40 ° C. or higher and 90 ° C. or lower. Hot water of 40 ° C. or more and 90 ° C. or less is used for water mixed with diatomaceous earth. By using warm water, diatomaceous earth is easily dispersed in water at the time of mixing, and the stirring time can be shortened. As a method of obtaining a filter aid of 40 ° C. or more and 90 ° C. or less, after mixing water of 40 ° C. and less than diatomaceous earth and heating to 40 ° C. or more and 90 ° C. or less, or when mixing water of less than 40 ° C. and diatomaceous earth A method of heating at the same time may be used.

次に、濾紙、濾布等の濾材(本発明の構成要件である「直径0.5μm以上2μm以下の細孔を複数有する基材」に相当する)を用いて、上記のようにして作製した40℃以上90℃以下の濾過助剤を濾過する。濾過は、例えば0.098MPaのフィルタ圧力で例えば120秒間行う。すると、珪藻土の層からなるプリコートが濾材上に均一に形成される。このプリコートが形成された濾材が、珪藻土フィルターである。珪藻土フィルターのプリコート上に塩化第一鉄水溶液を供給することにより、二酸化ケイ素の粒子を濾取することができる。   Next, using filter media such as filter paper and filter cloth (corresponding to “a base material having a plurality of pores having a diameter of 0.5 μm or more and 2 μm or less”, which is a constituent element of the present invention), it was produced as described above. A filter aid at 40 ° C. or higher and 90 ° C. or lower is filtered. Filtration is performed, for example, for 120 seconds at a filter pressure of 0.098 MPa, for example. Then, the precoat which consists of a layer of diatomaceous earth is uniformly formed on a filter medium. The filter medium on which this precoat is formed is a diatomaceous earth filter. By supplying a ferrous chloride aqueous solution onto the diatomaceous earth filter precoat, the silicon dioxide particles can be collected by filtration.

このようにして精製された塩化第一鉄水溶液は、不純物である二酸化ケイ素の含有量が低減されているので、この塩化第一鉄水溶液を用いれば、二酸化ケイ素の含有量が低い酸化第二鉄(例えば、二酸化ケイ素の含有量が50ppm以下の酸化第二鉄)を製造することができる。すなわち、上記のように精製された塩化第一鉄水溶液を焙焼炉内に噴霧して噴霧焙焼を行えば(噴霧焙焼工程)、二酸化ケイ素の含有量が低い酸化第二鉄を得ることができる。噴霧条件や焙焼条件は特に限定されるものではなく、一般的な条件を用いることができる。   Since the purified ferrous chloride aqueous solution has a reduced content of silicon dioxide, which is an impurity, if this ferrous chloride aqueous solution is used, ferric oxide having a low silicon dioxide content is used. (For example, ferric oxide having a silicon dioxide content of 50 ppm or less) can be produced. That is, when the aqueous ferrous chloride solution purified as described above is sprayed into a roasting furnace and spray roasting is performed (spray roasting process), ferric oxide having a low silicon dioxide content is obtained. Can do. Spray conditions and roasting conditions are not particularly limited, and general conditions can be used.

このようにして得られた酸化第二鉄は、二酸化ケイ素の含有量が低いので、磁性材料であるフェライト(特にソフトフェライト)の原料として特に好適である。二酸化ケイ素の含有量が低いと、フェライトの結晶粒子が粗大化しにくいため、電磁気特性の優れたフェライトを得ることができる。
なお、本実施形態は本発明の一例を示したものであって、本発明は本実施形態に限定されるものではない。また、本実施形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。
The ferric oxide thus obtained is particularly suitable as a raw material for ferrite (particularly soft ferrite) which is a magnetic material because of its low silicon dioxide content. If the content of silicon dioxide is low, ferrite crystal particles are difficult to coarsen, so that ferrite having excellent electromagnetic characteristics can be obtained.
In addition, this embodiment shows an example of this invention and this invention is not limited to this embodiment. In addition, various changes or improvements can be added to the present embodiment, and forms to which such changes or improvements are added can also be included in the present invention.

例えば、本実施形態においては、鋼材製造時の鋼材表面酸洗工程で副産する塩酸酸洗廃液の精製を行う例を示したが、本発明を適用できる塩化第一鉄水溶液は塩酸酸洗廃液に限定されるものではない。二酸化ケイ素の粒子を含有するものであれば、どのような塩化第一鉄水溶液に対してでも本発明を適用することができ、塩化第一鉄水溶液中の二酸化ケイ素の含有量を低減することができる。   For example, in the present embodiment, an example of purifying the hydrochloric acid pickling waste liquid by-produced in the steel surface pickling process at the time of manufacturing the steel material has been shown, but the ferrous chloride aqueous solution to which the present invention can be applied is a hydrochloric acid pickling waste liquid. It is not limited to. The present invention can be applied to any ferrous chloride aqueous solution as long as it contains silicon dioxide particles, and the content of silicon dioxide in the ferrous chloride aqueous solution can be reduced. it can.

〔実施例〕
以下に実施例及び比較例を示して、本発明をさらに具体的に説明する。
(比較例1)
二酸化ケイ素の粒子を含有し、且つ、鉄イオンの濃度が13.1g/100mLで、塩化水素の濃度が18.5g/100mLである塩化第一鉄水溶液を、濃縮及び加熱を行うことなくそのまま675℃の焙焼炉へ導入して噴霧焙焼し、酸化第二鉄を製造した。得られた酸化第二鉄中の二酸化ケイ素の含有率は1025ppmであった。
〔Example〕
The present invention will be described more specifically with reference to the following examples and comparative examples.
(Comparative Example 1)
A ferrous chloride aqueous solution containing silicon dioxide particles, having an iron ion concentration of 13.1 g / 100 mL, and a hydrogen chloride concentration of 18.5 g / 100 mL is directly 675 without being concentrated and heated. It was introduced into a roasting furnace at 0 ° C. and spray roasted to produce ferric oxide. The content of silicon dioxide in the obtained ferric oxide was 1025 ppm.

(比較例2)
二酸化ケイ素の粒子を含有し(二酸化ケイ素の粒子の含有量は、比較例1で用いた塩化第一鉄水溶液と同量である)、且つ、鉄イオンの濃度が14.5g/100mLで、塩化水素の濃度が19.3g/100mLである塩化第一鉄水溶液を、濃縮及び加熱を行うことなくそのまま珪藻土フィルターで濾過した。濾過は室温で行った。この珪藻土フィルターは、直径1.0μmの細孔を複数有する基材の表面に珪藻土を付着させたものである。濾過した塩化第一鉄水溶液を670℃の焙焼炉へ導入して噴霧焙焼し、酸化第二鉄を製造した。得られた酸化第二鉄中の二酸化ケイ素の含有率は550ppmであった。
(Comparative Example 2)
It contains silicon dioxide particles (the content of silicon dioxide particles is the same as the ferrous chloride aqueous solution used in Comparative Example 1), and the concentration of iron ions is 14.5 g / 100 mL. A ferrous chloride aqueous solution having a hydrogen concentration of 19.3 g / 100 mL was directly filtered through a diatomaceous earth filter without concentration and heating. Filtration was performed at room temperature. This diatomaceous earth filter is obtained by attaching diatomaceous earth to the surface of a substrate having a plurality of pores having a diameter of 1.0 μm. The filtered ferrous chloride aqueous solution was introduced into a 670 ° C. roasting furnace and spray roasted to produce ferric oxide. The content of silicon dioxide in the obtained ferric oxide was 550 ppm.

(比較例3)
二酸化ケイ素の粒子を含有し(二酸化ケイ素の粒子の含有量は、比較例1で用いた塩化第一鉄水溶液と同量である)、且つ、鉄イオンの濃度が12.1g/100mLで、塩化水素の濃度が18.4g/100mLである塩化第一鉄水溶液を、濃縮倍率1.31倍で濃縮した後に、加熱を行うことなくそのまま珪藻土フィルターで濾過した。濾過は室温で行った。この珪藻土フィルターは、直径1.0μmの細孔を複数有する基材の表面に珪藻土を付着させたものである。濾過した塩化第一鉄水溶液を670℃の焙焼炉へ導入して噴霧焙焼し、酸化第二鉄を製造した。得られた酸化第二鉄中の二酸化ケイ素の含有率は180ppmであった。
(Comparative Example 3)
It contains silicon dioxide particles (the content of silicon dioxide particles is the same as the ferrous chloride aqueous solution used in Comparative Example 1), and the concentration of iron ions is 12.1 g / 100 mL. An aqueous ferrous chloride solution having a hydrogen concentration of 18.4 g / 100 mL was concentrated at a concentration factor of 1.31 and then directly filtered through a diatomaceous earth filter without heating. Filtration was performed at room temperature. This diatomaceous earth filter is obtained by attaching diatomaceous earth to the surface of a substrate having a plurality of pores having a diameter of 1.0 μm. The filtered ferrous chloride aqueous solution was introduced into a 670 ° C. roasting furnace and spray roasted to produce ferric oxide. The content of silicon dioxide in the obtained ferric oxide was 180 ppm.

(実施例1)
二酸化ケイ素の粒子を含有し(二酸化ケイ素の粒子の含有量は、比較例1で用いた塩化第一鉄水溶液と同量である)、且つ、鉄イオンの濃度が13.4g/100mLで、塩化水素の濃度が18.9g/100mLである塩化第一鉄水溶液を、濃縮倍率1.28倍で濃縮した後に、82℃に直接昇温した。そして、この82℃の塩化第一鉄水溶液を珪藻土フィルターで濾過した。この珪藻土フィルターは、直径1.0μmの細孔を複数有する基材の表面に珪藻土を付着させたものである。濾過した塩化第一鉄水溶液を670℃の焙焼炉へ導入して噴霧焙焼し、酸化第二鉄を製造した。得られた酸化第二鉄中の二酸化ケイ素の含有率は32ppmであった。
Example 1
It contains silicon dioxide particles (the content of silicon dioxide particles is the same as the ferrous chloride aqueous solution used in Comparative Example 1), and the concentration of iron ions is 13.4 g / 100 mL. An aqueous ferrous chloride solution having a hydrogen concentration of 18.9 g / 100 mL was concentrated at a concentration factor of 1.28, and then directly heated to 82 ° C. And this 82 degreeC ferrous chloride aqueous solution was filtered with the diatomaceous earth filter. This diatomaceous earth filter is obtained by attaching diatomaceous earth to the surface of a substrate having a plurality of pores having a diameter of 1.0 μm. The filtered ferrous chloride aqueous solution was introduced into a 670 ° C. roasting furnace and spray roasted to produce ferric oxide. The content of silicon dioxide in the obtained ferric oxide was 32 ppm.

(実施例2)
二酸化ケイ素の粒子を含有し(二酸化ケイ素の粒子の含有量は、比較例1で用いた塩化第一鉄水溶液と同量である)、且つ、鉄イオンの濃度が14.7g/100mLで、塩化水素の濃度が20.0g/100mLである塩化第一鉄水溶液を、濃縮倍率1.34倍で濃縮した後に、85℃に直接昇温した。そして、この85℃の塩化第一鉄水溶液を珪藻土フィルターで濾過した。この珪藻土フィルターは、直径1.0μmの細孔を複数有する基材の表面に珪藻土を付着させたものである。濾過した塩化第一鉄水溶液を670℃の焙焼炉へ導入して噴霧焙焼し、酸化第二鉄を製造した。得られた酸化第二鉄中の二酸化ケイ素の含有率は40ppmであった。
(Example 2)
It contains silicon dioxide particles (the content of silicon dioxide particles is the same as the ferrous chloride aqueous solution used in Comparative Example 1), and the concentration of iron ions is 14.7 g / 100 mL. An aqueous ferrous chloride solution having a hydrogen concentration of 20.0 g / 100 mL was concentrated at a concentration factor of 1.34, and then directly heated to 85 ° C. And this 85 degreeC ferrous chloride aqueous solution was filtered with the diatomaceous earth filter. This diatomaceous earth filter is obtained by attaching diatomaceous earth to the surface of a substrate having a plurality of pores having a diameter of 1.0 μm. The filtered ferrous chloride aqueous solution was introduced into a 670 ° C. roasting furnace and spray roasted to produce ferric oxide. The content of silicon dioxide in the obtained ferric oxide was 40 ppm.

(実施例3)
二酸化ケイ素の粒子を含有し(二酸化ケイ素の粒子の含有量は、比較例1で用いた塩化第一鉄水溶液と同量である)、且つ、鉄イオンの濃度が15.4g/100mLで、塩化水素の濃度が21.1g/100mLである塩化第一鉄水溶液を、濃縮倍率1.30倍で濃縮した後に、88℃に直接昇温した。そして、この88℃の塩化第一鉄水溶液を珪藻土フィルターで濾過した。この珪藻土フィルターは、直径0.5μmの細孔を複数有する基材の表面に珪藻土を付着させたものである。濾過した塩化第一鉄水溶液を670℃の焙焼炉へ導入して噴霧焙焼し、酸化第二鉄を製造した。得られた酸化第二鉄中の二酸化ケイ素の含有率は18ppmであった。
(Example 3)
It contains silicon dioxide particles (the content of silicon dioxide particles is the same as the ferrous chloride aqueous solution used in Comparative Example 1), and the concentration of iron ions is 15.4 g / 100 mL. An aqueous ferrous chloride solution having a hydrogen concentration of 21.1 g / 100 mL was concentrated at a concentration factor of 1.30, and then directly heated to 88 ° C. And this 88 degreeC ferrous chloride aqueous solution was filtered with the diatomaceous earth filter. This diatomaceous earth filter is obtained by attaching diatomaceous earth to the surface of a substrate having a plurality of pores having a diameter of 0.5 μm. The filtered ferrous chloride aqueous solution was introduced into a 670 ° C. roasting furnace and spray roasted to produce ferric oxide. The content of silicon dioxide in the obtained ferric oxide was 18 ppm.

比較例1は、二酸化ケイ素の粒子の粗大化及び濾過を行っていないので、塩化第一鉄水溶液に含有されていた二酸化ケイ素の粒子のほとんどが酸化第二鉄に含有されることとなる。その結果、比較例1の酸化第二鉄の二酸化ケイ素の含有率は1025ppmと極めて高かった。また、比較例2、3は、二酸化ケイ素の粒子を粗大化を行っていないので、酸化第二鉄の二酸化ケイ素の含有率は550ppm、180ppmと高かった。ただし、濾過を行っているので、比較例1よりも二酸化ケイ素の含有率は低かった。
これに対して、実施例1〜3は、二酸化ケイ素の粒子の粗大化及び濾過を行っているので、塩化第一鉄水溶液に含有されていた二酸化ケイ素の粒子が効率良く除去され、酸化第二鉄の二酸化ケイ素の含有率は極めて低かった。
In Comparative Example 1, since the silicon dioxide particles were not coarsened and filtered, most of the silicon dioxide particles contained in the ferrous chloride aqueous solution were contained in the ferric oxide. As a result, the silicon dioxide content of ferric oxide of Comparative Example 1 was as extremely high as 1025 ppm. In Comparative Examples 2 and 3, since the silicon dioxide particles were not coarsened, the silicon dioxide content of ferric oxide was as high as 550 ppm and 180 ppm. However, since filtration was performed, the silicon dioxide content was lower than that of Comparative Example 1.
On the other hand, in Examples 1 to 3, since the silicon dioxide particles were coarsened and filtered, the silicon dioxide particles contained in the ferrous chloride aqueous solution were efficiently removed, and the second oxide was obtained. The content of iron silicon dioxide was very low.

Claims (6)

不純物として二酸化ケイ素を含有する塩化第一鉄水溶液に対して、濃縮操作及び加熱操作を行って、前記二酸化ケイ素の粒子を粗大化する粗大化工程と、
前記粗大化工程で前記二酸化ケイ素の粒子が粗大化された塩化第一鉄水溶液を、直径0.5μm以上2μm以下の細孔を複数有する基材の表面に珪藻土を付着させた珪藻土フィルターを用いて濾過し、粗大化した二酸化ケイ素の粒子を除去する濾過工程と、
を備える塩化第一鉄水溶液の精製方法。
For the ferrous chloride aqueous solution containing silicon dioxide as an impurity, a concentration operation and a heating operation are performed to coarsen the silicon dioxide particles, and
Using a diatomaceous earth filter in which the ferrous chloride aqueous solution in which the silicon dioxide particles are coarsened in the coarsening step is attached to the surface of a substrate having a plurality of pores having a diameter of 0.5 μm to 2 μm. A filtration step to remove the coarsened silicon dioxide particles by filtration;
A method for purifying an aqueous ferrous chloride solution.
前記加熱操作においては、液温が70℃以上90℃以下となるように前記塩化第一鉄水溶液を加熱する請求項1に記載の塩化第一鉄水溶液の精製方法。   2. The method for purifying an aqueous ferrous chloride solution according to claim 1, wherein in the heating operation, the aqueous ferrous chloride solution is heated such that the liquid temperature is 70 ° C. or higher and 90 ° C. or lower. 前記粗大化工程においては、平均粒径が5μm以上10μm以下となるように前記二酸化ケイ素の粒子を粗大化する請求項1又は請求項2に記載の塩化第一鉄水溶液の精製方法。   3. The method for purifying a ferrous chloride aqueous solution according to claim 1, wherein, in the coarsening step, the silicon dioxide particles are coarsened so that an average particle diameter is 5 μm or more and 10 μm or less. 前記粗大化工程に供する塩化第一鉄水溶液に含有される鉄イオンの濃度が12g/100mL以上16g/100mL以下であり、塩化水素の濃度が18g/100mL以上23g/100mL以下である請求項1〜3のいずれか一項に記載の塩化第一鉄水溶液の精製方法。   The concentration of iron ions contained in the ferrous chloride aqueous solution subjected to the coarsening step is 12 g / 100 mL or more and 16 g / 100 mL or less, and the concentration of hydrogen chloride is 18 g / 100 mL or more and 23 g / 100 mL or less. 4. The method for purifying an aqueous ferrous chloride solution according to any one of 3 above. 前記濃縮操作においては、濃縮倍率が1.2倍以上1.4倍以下となるように前記塩化第一鉄水溶液を濃縮する請求項1〜4のいずれか一項に記載の塩化第一鉄水溶液の精製方法。   In the said concentration operation, the ferrous chloride aqueous solution as described in any one of Claims 1-4 which concentrates the said ferrous chloride aqueous solution so that a concentration rate may be 1.2 times or more and 1.4 times or less. Purification method. 請求項1〜5のいずれか一項に記載の塩化第一鉄水溶液の精製方法で精製した塩化第一鉄水溶液を噴霧焙焼して酸化第二鉄を得る噴霧焙焼工程を備える酸化第二鉄の製造方法。   A ferric oxide provided with a spray roasting step in which ferric chloride aqueous solution purified by the method for purifying ferrous chloride aqueous solution according to any one of claims 1 to 5 is spray roasted to obtain ferric oxide. Iron manufacturing method.
JP2016104023A 2016-05-25 2016-05-25 Method for refining ferrous chloride aqueous solution and method for producing ferric oxide Pending JP2017210388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016104023A JP2017210388A (en) 2016-05-25 2016-05-25 Method for refining ferrous chloride aqueous solution and method for producing ferric oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016104023A JP2017210388A (en) 2016-05-25 2016-05-25 Method for refining ferrous chloride aqueous solution and method for producing ferric oxide

Publications (1)

Publication Number Publication Date
JP2017210388A true JP2017210388A (en) 2017-11-30

Family

ID=60474704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016104023A Pending JP2017210388A (en) 2016-05-25 2016-05-25 Method for refining ferrous chloride aqueous solution and method for producing ferric oxide

Country Status (1)

Country Link
JP (1) JP2017210388A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106580A (en) * 1983-11-08 1985-06-12 Kemiraito Kogyo Kk Removing method of silicon-containing compound in waste steel pickling liquid
JPS63315523A (en) * 1987-06-18 1988-12-23 Kemiraito Kogyo Kk Method for purifying aqueous solution of iron chloride
JP2016016349A (en) * 2014-07-07 2016-02-01 Jfeケミカル株式会社 Filter-medium coating method and filtration method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106580A (en) * 1983-11-08 1985-06-12 Kemiraito Kogyo Kk Removing method of silicon-containing compound in waste steel pickling liquid
JPS63315523A (en) * 1987-06-18 1988-12-23 Kemiraito Kogyo Kk Method for purifying aqueous solution of iron chloride
JP2016016349A (en) * 2014-07-07 2016-02-01 Jfeケミカル株式会社 Filter-medium coating method and filtration method

Similar Documents

Publication Publication Date Title
CN104556046B (en) A kind of production technology preparing high-purity silicon dioxide with quartz sand
CN104926316A (en) Porous silicon nitride-silicon carbide composite ceramic material and preparation method thereof
CN103818966B (en) Large-specific surface area superfine powdery iron oxide red spray roasting method
CN104475010B (en) Modified silica sand of porous silica and preparation method thereof
CN107117653A (en) A kind of method for preparing high-purity ammonium poly-vanadate
JP2017210388A (en) Method for refining ferrous chloride aqueous solution and method for producing ferric oxide
CN103896286B (en) The technique of high-purity quartz prepared by a kind of high tripoli
JP5418844B2 (en) Method for producing grain-oriented electrical steel sheet
CN103834957A (en) Separation purification method of high-Fe waste hydrochloric acid
CN107287531B (en) A kind of OCr17 continuous casting billet and its production method
CN106082205A (en) A kind of method of purifying gold hard rock
CN105621495A (en) Method for preparing high purity iron oxide red from picking waste liquid
TW201436948A (en) Method for recycling scraped polishing powder
CN102815952A (en) Antioxidation coating for high temperature billet
CN103848460B (en) The rear silicon removing method of a kind of Steel Plant spent pickle liquor regeneration byproduct brown iron oxide
JP4448286B2 (en) Manufacturing method of iron oxide for ferrite raw material
CN106587130A (en) Method for preparing praseodymium oxide with herbaceous plant precipitator
TWI439550B (en) Separation of steel intermediates in the material method
JP2008031018A (en) Method of producing iron oxide for ferrite
CN103880092B (en) Method for dephosphorizing ferric oxide powder of regenerated secondary product of pickling waste liquid of iron-steel plant
CN103050269A (en) Method for reducing core loss by chemical atmosphere
CN108187646B (en) Modified epidesmine and preparation method and application thereof
CN116785835A (en) Manufacturing process of microporous filter element
EP3231537B1 (en) Production of elemental iron powder from pickling solutions
CN101328074B (en) Ceramic particle adhesive, preparation thereof and method for preparing ceramic particle using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191001