JP2017208902A - 電力系統の設備計画支援装置および電力系統の配電監視制御装置 - Google Patents

電力系統の設備計画支援装置および電力系統の配電監視制御装置 Download PDF

Info

Publication number
JP2017208902A
JP2017208902A JP2016098689A JP2016098689A JP2017208902A JP 2017208902 A JP2017208902 A JP 2017208902A JP 2016098689 A JP2016098689 A JP 2016098689A JP 2016098689 A JP2016098689 A JP 2016098689A JP 2017208902 A JP2017208902 A JP 2017208902A
Authority
JP
Japan
Prior art keywords
processing unit
accident point
error range
location
error
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016098689A
Other languages
English (en)
Inventor
邦彦 恒冨
Kunihiko Tsunetomi
邦彦 恒冨
渡辺 雅浩
Masahiro Watanabe
雅浩 渡辺
健太 古川
Kenta Furukawa
健太 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016098689A priority Critical patent/JP2017208902A/ja
Publication of JP2017208902A publication Critical patent/JP2017208902A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Abstract

【課題】事故点の探索時間を目標値以下に抑制でき、かつ、測定装置および検出装置の設置数をできるだけ少なく設定できるようにする。
【解決手段】本発明の設備計画支援装置は、事故点評定処理部、誤差範囲計算処理部および最適化処理部を備える。事故点評定処理部は、測定装置および検出装置の設置候補の配置場所において、測定装置の測定値および検出装置の位置情報を基に事故点を特定する計算を行う。誤差範囲計算処理部は、測定装置の測定値の精度誤差に起因する、事故点評定処理部による事故点標定の計算結果の最小値および最大値を基に事故点標定の誤差範囲を計算するとともに、検出装置の設置候補の配置場所から、下流側の検出装置または測定装置の設置候補の配置場所までの距離を誤差範囲とする。最適化処理部は、電力系統の全体の誤差範囲に基づいて、測定装置および検出装置の配置場所の組み合わせを求める。
【選択図】図3

Description

本発明は、電力系統の設備計画支援装置および電力系統の配電監視制御装置に関し、特に、電力系統の設備の増設、移設、廃棄、リプレース計画の作成を支援する設備計画支援装置および電力系統の電流や電圧を監視する配電監視制御装置に関する。
配電変電所から需要家に電力を送配する電力系統において、事故が発生した地点(以下、「事故点」と記述する)を特定する事故点評定方式の一例として、シンプルインピーダンス方式(Simple impedance equation)が知られている(例えば、非特許文献1参照)。このシンプルインピーダンス方式では、変電所のブス(ブスバー)に、電流および電圧を測定する測定装置を設置し、事故発生時の電流および電圧を測定するというものである。より具体的には、電流と電圧とオームの法則を用いて、ブスから事故点までのインピーダンスを求め、これを単位長さあたりのインピーダンスで割り、ブスから事故点までの距離を算出することで、事故点の位置を特定するというものである。事故点評定方式には、シンプルインピーダンス方式以外にも、高木方式など複数存在する。
この事故点評定の技術の他に、フォールトインジケータ(故障表示器)と称される検出装置を複数用いて、検出装置に挟まれる電線路(以下、「区間」と記述する場合がある)単位で事故点が存在する区間(事故区間)を検出する技術がある(例えば、非特許文献2参照)。これは、電力系統上に検出装置を複数設置し、事故を検出した検出装置をたどることで、事故が発生した区間を見つけ出すという技術である。そして、この事故発生区間を見つけ出す技術と、事故点評定の技術とを組み合わせることにより、事故発生区間内の事故点の位置を特定することができる。
また、複数の検出装置を電力系統上に配置するにあたって、最適な配置を支援する技術がある(例えば、非特許文献3参照)。この技術の支援の下に配置される検出装置の数が多いほど、検出装置で挟まれる区間が短くなり、保守員の探索範囲が狭くなるため、事故点の探索時間が短くなるメリットがある。その反面、検出装置の初期コストや通信コストが増大するデメリットがある。そのため、設備コストやランニングコストを低減するために、限られた数の検出装置を配置する場所を遺伝的アルゴリズムなどによって最適化が行われている。
C37.114-2004 IEEE Guide for Determining Fault Location on AC Transmission and Distribution Lines Real-time Distribution System Analysis Integral Part of DMS Optimal Positioning of Geo-referenced Short Circuit Sensors for Faster Fault Finding Using Genetic Algorithm
ところで、電力系統上に検出装置のみを設置する場合、検出装置の設置数が少ないと各区間の亘長が長くなり、事故が発生したときに、保守員による事故点の探索時間が長くなる。その対策として、非特許文献2に示すように、複数の検出装置に加え、配電変電所に測定装置を設置し、事故電流および事故電圧を測定し、配電変電所から事故点までの距離を事故点評定の技術によって求める方法が採られている。しかし、この場合、測定装置の測定値の精度誤差の影響により、事故点が電力系統の終端に近づくにつれて誤差が大きくなるという問題がある。
そこで、複数の検出装置と配電変電所の測定装置に加えて、電線路の途中にも測定装置を設置し、事故点に近い測定装置の測定値に基づいて、事故点標定を行う方法が考えられる。この場合、保守員による事故点の探索範囲が狭くなるため、事故点の探索時間が短くなるメリットがある反面、検出装置よりも高価な測定装置を複数設置することになるため初期コストが上昇するというデメリットがある。
検出装置や測定装置は、電力系統の事故による停電時間を目標値(目標時間)以下に抑えるために、即ち停電時間をより短くするために設置される。ここで、検出装置や測定装置の設置数は初期コストに直結する。また、保守員による事故点の探索時間(探索範囲)は、電力系統の事故による停電時間に直結する。したがって、電力系統の増設、移設、廃棄、リプレース計画等の設備設計にあたって、事故点の探索時間を目標値以下に抑制でき、かつ、測定装置および検出装置の設置数をできるだけ少なく設定できる設備計画の支援が求められる。
本発明は、事故点の探索時間を目標値以下に抑制でき、かつ、測定装置および検出装置の設置数をできるだけ少なく設定できる電力系統の設備計画支援装置および電力系統の配電監視制御装置を提供することを目的とする。
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本願は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、
配電変電所から電力を送配する電力系統において、電流および電圧を測定する測定装置と、事故が発生したことを検出する検出装置とを設置する際の配置場所を決定する設備計画支援装置であって、事故点評定処理部、誤差範囲計算処理部および最適化処理部を備える。
事故点評定処理部は、測定装置および検出装置の設置候補の配置場所において、測定装置の測定値および検出装置の位置情報を基に、事故が発生した事故点を特定する計算を行う。
誤差範囲計算処理部は、測定装置の測定値の精度誤差に起因する、事故点評定処理部による事故点標定の計算結果の最小値および最大値を基に事故点標定の誤差範囲を計算するとともに、検出装置の設置候補の配置場所から、配電変電所より遠方の下流側の検出装置または測定装置の設置候補の配置場所までの距離を誤差範囲とする。
最適化処理部は、誤差範囲計算処理部が計算して求めた電力系統の全体の誤差範囲に基づいて、測定装置および検出装置の配置場所の組み合わせを求める。
本発明によれば、測定装置による事故点の評定と、検出装置による事故区間の検出に、事故点標定の誤差範囲を共通の指標として用いることにより、測定装置および検出装置の最適な配置場所を設定できる。したがって、事故点の探索時間を目標値以下に抑制でき、かつ、測定装置および検出装置の設置数をできるだけ少なく設定できる。
上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。
本発明に係る電力系統の設備計画支援装置および本発明に係る電力系統の配電監視制御装置を備える電力系統の構成を示す電力系統図の例である。 電流電圧計および検出装置の配置場所の候補を示す電力系統図の例である。 実施例1に係る設備計画支援装置のハードウェア構成を示すブロック図の例である。 実施例1に係るデータベース装置のハードウェア構成を示すブロック図の例である。 実施例1に係る設備設計支援処理プログラムの処理の流れを示すフローチャートの例である。 電流電圧計および故障表示器の配置場所の候補に関する説明図の例である。 プログラムファイルの最適化処理プログラムの処理の流れを示すフローチャートの例である。 プログラムファイルの誤差範囲計算処理プログラムの処理の流れを示すフローチャートの例である。 電流電圧計の直前での系統の分割方法についての説明図の例である。 分割系統誤差範囲計算処理の流れを示すフローチャート(その1)の例である。 分割系統誤差範囲計算処理の流れを示すフローチャート(その2)の例である。 配電区間リストの構造を示す図の例である。 電流電圧計がノードNode_nにあるときに、配電区間Line_nの誤差範囲を計算する説明図の例である。 実施例2に係る設備設計支援処理プログラムの処理の流れを示すフローチャートの例である。 実施例3に係る配電監視制御装置のハードウェア構成を示すブロック図の例である。 実施例3に係る配電監視制御装置の事故発生時の処理の流れを示すフローチャートの例である。 事故点テーブルおよび電流電圧計誤差テーブルについての説明図の例である。 実施例3に係る配電監視制御装置の事故点発見時の処理のフローチャートの例である。
以下、本発明の実施例について図面を用いて詳細に説明する。なお、以下の説明や各図において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。
<電力系統>
先ず、本発明に係る電力系統の設備計画支援装置および本発明に係る電力系統の配電監視制御装置を備える電力系統、即ち配電変電所から需要家に電力を送配する電力系統について説明する。図1は、本発明に係る電力系統の設備計画支援装置および本発明に係る電力系統の配電監視制御装置を備える電力系統の構成を示す電力系統図の例である。
ここで例示する電力系統は、配電変電所40、電線路(配電線)の一部である配電区間51〜54および配電区間51〜54の分岐や負荷の接続点であるノード61〜65から構成されている。この電力系統において、ノード61−ノード62間が配電区間51となり、ノード62−ノード63間が配電区間52となり、ノード61−ノード64間が配電区間53となり、ノード62−ノード65間が配電区間54となっている。
すなわち、配電変電所40に近い上流側のノード61と、配電変電所40から遠方の下流側のノード62が配電区間51の長さ(距離)を規定している。同様に、上流側のノード62と下流側のノード63が配電区間52の長さを規定し、上流側のノード61と下流側のノード64が配電区間53の長さを規定し、上流側のノード62と下流側のノード65間が配電区間54の長さを規定している。
また、電力系統の事故点を特定する事故点標定のために、測定装置の一例である電流電圧計(S)70と、検出装置の一例である故障表示器(FI)80とが電力系統上に設置されている。電流電圧計70は、電力系統の電流および電圧を測定する。この電流電圧計70の測定値に基づいて、事故点標定が行われる。故障表示器80は、電力系統の事故電流または事故電圧を検出することによって電力系統に事故が発生した区間(事故区間)を検出する検出装置であり、表示機能(表示部)を備えている。なお、図1では、配電区間54に事故点Pが存在する場合を例示している。
電流電圧計70および故障表示器80は、通信線91および広域ネットワーク92を介してイントラネット93と接続されている。イントラネット93には、設備計画支援装置10、配電監視制御装置20およびデータベース装置30が接続されている。配電監視制御装置20は、系統情報や最新の電流電圧計70の誤差情報などを、イントラネット93を介してデータベース装置30に保存する。電流電圧計70の誤差情報は、電流電圧計70の測定値の精度誤差を示す情報である。設備計画支援装置10は、データベース装置30から、最新の系統情報や電流電圧計70の誤差情報を得て、これらの情報を基に電流電圧計70および故障表示器80の配置場所について最適化のための支援を行う。
実施例1は、本発明を設備計画支援装置10に適用した例である。本実施例に係る設備計画支援装置10は、図2に示す配置場所の候補(設置候補の配置場所)の中から、電流電圧計70および故障表示器80の最適な配置場所を選択する。図2は、電流電圧計70および故障表示器80の配置場所の候補を示す電力系統図の例である。
電流電圧計70の配置場所の候補は、各配電区間51〜54の下流側のノード62〜65の直前の場所711〜714とする。この配置場所は、電流電圧計70を用いて事故点標定が可能な配電区間の数を多くすることができるためである。また、故障表示器80の配置候補は、配電区間51〜54の上流ノード61,62の直後の場所811〜814とする。これは、上流ノード61,62から分岐する他の配電区間から、事故点が存在する配電区間を特定するためである。また、このように、配電区間51〜54ごとに、一意に、電流電圧計70および故障表示器80の配置場所を特定することで、設備設計支援処理のフローを単純化できる。
以下に、実施例1に係る設備計画支援装置10およびデータベース装置30のハードウェア構成について説明する。
[設備計画支援装置のハードウェア構成]
図3は、実施例1に係る設備計画支援装置10のハードウェア構成を示すブロック図の例である。図3に示すように、実施例1に係る設備計画支援装置10は、例えば、CPU11、RAM12、タイマ13、通信装置14、プログラムファイル15およびデータファイル16が、システムバス17で接続されたコンピュータから構成されている。
コンピュータから構成される設備計画支援装置10において、CPU11は、プログラムファイル15の設備設計支援プログラムを実行する。RAM12は、設備設計支援プログラムの計算途中の結果データを一旦格納するメモリである。
プログラムファイル15およびデータファイル16は、フラッシュなどの不揮発性メモリや磁気ディスクで構成される。プログラムファイル15には、CPU11により実行される設備設計支援プログラムが格納される。設備設計支援プログラムは、誤差範囲計算処理プログラム151、最適化処理プログラム152、事故点標定処理プログラム153および設備設計支援処理プログラム154により構成されている。
データファイル16には、設備設計支援プログラムが使用する配電区間リスト161および配電区間ノード関係リスト162が保存されている。また、設備計画支援装置10にデータベース機能がある場合は、後述するデータベース装置30のデータファイル35(図4参照)に含まれるデータが、データファイル16に含まれてもよい。
タイマ13は、時間を計測する。通信装置14は、通常、イーサネットが使用される。ただし、通信装置14としては、イーサネットに限られるものではなく、CAN(登録商標)やLIN(登録商標)など他の有線ネットワークでもよいし、IEEE802やZigbee(登録商標)のような無線通信でもよい。これらは、公共通信網の整備状況やコストを考慮して選択される。
上記構成の設備計画支援装置10において、誤差範囲計算処理プログラム151は、電流電圧計70の測定値の精度誤差に起因する、事故点標定の計算結果の最小値および最大値を基に事故点標定の誤差範囲を計算する誤差範囲計算処理部の一例である。誤差範囲計算処理プログラム151はさらに、故障表示器80の設置候補の配置場所から、配電変電所40より遠方の下流側の故障表示器80または電流電圧計70の設置候補の配置場所までの距離を事故点標定の誤差範囲とする。より具体的には、誤差範囲計算処理プログラム151は、後述する事故点評定処理の計算結果の最小インピーダンスと最大インピーダンスとの偏差を、単位長さ当たりのインピーダンスで割ることによって事故点標定の誤差範囲を求める。
また、誤差範囲計算処理プログラム151は、電線路の長さ(距離)を規定するノード間の配電区間ごとに誤差範囲を求める計算を行う。このように、配電区間ごとに誤差範囲を求めることにより、設備設計支援処理のフローを単純化できる。そして、配電区間において電流電圧計70の設置候補の配置場所が配電変電所40に近い上流側の場合は、電流電圧計70の測定値の精度誤差を含む電圧の最大値と、当該精度誤差を含む電流の最小値とを用いた事故点標定の計算結果を最大インピーダンスとする。また、電流電圧計70の測定値の精度誤差を含む電圧の最小値と、当該精度誤差を含む電流の最大値とを用いた事故点標定の計算結果を最小インピーダンスとする。
また、誤差範囲計算処理プログラム151は、配電区間から分岐する分岐路がある場合、当該分岐路の誤差範囲を求める計算を行い、この求めた分岐路の誤差範囲を、配電区間の誤差範囲に加算する。これにより、配電区間から分岐する分岐路がある電力系統に対しても、本設備計画支援の技術を適用できる。
最適化処理プログラム152は、後述する事故点評定処理によって求めた電力系統の全体の誤差範囲に基づいて、電流電圧計70および故障表示器80の配置場所の組み合わせを求める最適化処理部の一例である。より具体的には、最適化処理プログラム152は、制約関数を満たし、目的関数を最小値とする、電流電圧計70および故障表示器80の配置場所の組み合わせが発見されるまで、当該配置場所の組み合わせを作成しつつ制約関数および目的関数を評価する。
ここで、「制約関数」とは、事故点の探索時間が目標値以下であることを示す関数である。具体的には、制約関数は、最適化処理により仮決めされた配置場所の組み合わせの電力系統において、電力系統の全配電区間の誤差範囲を合算した誤差範囲合計に、単位長さあたりの電線路の故障率を掛けて求めた単位時間あたりの事故点の探索時間が、目標値以下であることを示す関数である。
また、「目的関数」とは、事故点を探索する単位時間あたりのコストを示す関数である。具体的には、目的関数は、最適化処理により仮決めされた配置場所の組み合わせの電力系統において、制約関数で求めた誤差範囲合計、装置コスト情報から、仮決めされた配置場所の組み合わせの電流電圧計70および故障表示器80のコストを合計して求めた単位時間あたりの総コストを示す関数である。装置コストは、電流電圧計70および故障表示器80の価格である。
また、最適化処理プログラム152は、電流電圧計70および故障表示器80が予め設置されている電力系統について最適化を行う場合、電流電圧計70および故障表示器80の設置場所を初期の配置場所の組み合わせとして用いる。そして、次の配置場所の組み合わせを作成するとき、初期の配置場所の組み合わせから予め指定された個数の配置場所のみ変更した配置場所の組み合わせを作成する。
事故点標定処理プログラム153は、電流電圧計70および故障表示器80の設置候補の配置場所において、電流電圧計70の測定値および故障表示器80の位置情報を基に、事故点を特定する計算を行う事故点評定処理部の一例である。より具体的には、事故点標定処理プログラム153は、電流電圧計70の測定値および故障表示器80の位置情報を基に、配電変電所40または電流電圧計70から事故点までのインピーダンスを計算することによって事故点を特定する。
上述した、誤差範囲計算処理部の一例である誤差範囲計算処理プログラム151、最適化処理部の一例である最適化処理プログラム152、および、事故点標定処理部の一例である事故点標定処理プログラム153の各処理の詳細については後述する。
[データベースのハードウェア構成]
図4は、実施例1に係るデータベース装置30のハードウェア構成を示すブロック図の例である。図4に示すように、実施例1に係るデータベース装置30は、例えば、CPU31、RAM32、通信装置33、プログラムファイル34およびデータファイル35が、システムバス36で接続されたコンピュータから構成されている。
プログラムファイル34およびデータファイル35以外は、前述の設備計画支援装置10と同じ構成である。データファイル35には、設備計画支援装置10および配電監視制御装置20が共通で使用するデータが保存されている。具体的には、データファイル35には、ノード位置情報351、電流電圧計誤差テーブル352、系統情報353、コスト情報354、故障表示器配置情報355、電流電圧計配置情報356および保守員情報357が保存されている。
プログラムファイル34には、他のコンピュータから、通信装置33を介してデータファイル35の読出し/書込みを可能とする、CPU31により実行されるデータベース処理プログラム341が格納されている。データベース処理プログラム341が、設備計画支援装置10や配電監視制御装置20にある場合は、データファイル35のデータは、どちらかの装置に保存されている。
<設備計画支援装置の処理>
以下に、実施例1に係る設備計画支援装置10による設備設計支援の具体的な処理について処理順に説明する。
[設備設計支援処理]
設備計画支援装置10において、プログラムファイル15の設備設計支援処理プログラム154は、電流電圧計70および故障表示器80の配置場所について最適化のための支援を行う際に、CPU11による制御の下に、最初に実行されるプログラムである。
図5は、実施例1に係る設備設計支援処理プログラム154の処理の流れを示すフローチャートの例である。CPU11は、先ず、電流電圧計70および故障表示器80の配置場所の初期解を作成する(ステップS11)。図6に示すように、配置場所の解は、2×N行列(Nは配電区間の最大数)で示す。図6は、電流電圧計70および故障表示器80の配置場所の候補に関する説明図の例である。
図6において、1列は電流電圧計70を示し、2列は故障表示器80を示す。各行は、配電区間0〜Nを示す。各要素は0(なし)または1(あり)をとる。配電区間0は、配電変電所40の直下の配電区間であり、必ず電流電圧計70をありとする初期解にする。他の要素は、目標とする数の電流電圧計70および故障表示器80を、1からNの配電区間に均等に配置されるように初期解を作成する。
次に、CPU11は、電流電圧計70および故障表示器80の配置場所の最適化処理を行う(ステップS12)。本最適化処理については、後述する最適化処理フローチャート(図7参照)を用いて詳細に説明する。
最後に、CPU11は、ステップS12での最適化処理で得た、電流電圧計70および故障表示器80の最適配置場所、ならびに、その配置時の事故点の探索時間や年間平均コストを受け、モニタ、プロジェクタ、プリンタなどの告知手段(図示せず)を用いてオペレータに告知(表示)する(ステップS13)。また、後述する、初期コスト、ランニングコストおよび年間故障探索時間について、配置最適化前と配置最適化後の両方の値を表示する。これにより、オペレータにメリットを示すことができる。
[最適化処理]
設備計画支援装置10において、プログラムファイル15の最適化処理プログラム152は、電流電圧計70および故障表示器80の配置場所の最適化のための最適化アルゴリズムを実装するプログラムであり、CPU11による制御の下に実行される。
ここでは、最適化アルゴリズムとして、タブサーチを採用した例を示す。最適化アルゴリズムとしては、タブサーチの他、PSO(Particle Swarm Optimization)、山登り法、総探索を用いてもよい。
図7は、最適化処理プログラム152の処理の流れを示すフローチャートの例である。以下の説明において、「解」は、電流電圧計70および故障表示器80の仮決めされた配置場所を意味する。CPU11は、先ず、設備設計支援処理プログラム154から、電流電圧計70および故障表示器80の配置場所の初期解、予め設置されている電流電圧計70および故障表示器80の配置場所を得る(ステップS21)。次いで、CPU11は、電流電圧計70および故障表示器80の配置場所の近傍解を作成する(ステップS22)。近傍解は、図6に示すように、初期解または現在解で、1となっている要素の隣接する要素の0と値を交換する。ひとつの要素に隣接する要素は最大4種類あるので、近傍解は複数種類作成できる。
次に、CPU11は、近傍解の配置場所における事故点標定の誤差範囲を、誤差範囲計算処理プログラム251による誤差範囲計算処理により求める(ステップS23)。本誤差範囲計算処理については、後述する誤差範囲計算処理フローチャート(図8参照)を用いて詳細に説明する。
次に、CPU11は、目的関数である年間コストおよび制約関数である探索時間を計算する(ステップS24)。年間コストは、初期コストとランニングコストの合計から計算して求めることができる。初期コストは、近傍解の配置場所から電流電圧計70の台数と故障表示器80の台数を求めて、式(1)に代入して求める。なお、式(1)の電流電圧計70の価格および故障表示器80の価格は、データベース装置30のデータファイル35(図4参照)にコスト情報354として保持されている。
Figure 2017208902
また、ランニングコストは、誤差範囲計算処理プログラム251による誤差範囲計算処理によって求まる年間誤差範囲を式(2)に代入して求める。なお、式(2)の保守員時給は、事故点を探索する保守員の時給である。保守員探索速度は、保守員が配電区間に沿って事故点を探索する速度である。保守員固定費は、保守員を雇用するための固定費である。これらの情報は、データベース装置30のデータファイル35(図4参照)に保守員情報357として保持されている。
Figure 2017208902
次に、CPU11は、全ての近傍解が探索されているかどうかを確認し(ステップS25)、探索されていない近傍解があれば(S25のNO)、ステップS23に戻り、探索されていない近傍解がなければ(S25のYES)、最適な近傍解を現在解にする(ステップS26)。ここで、「最適な近傍解」とは、年間誤差範囲が目標範囲以内であり、かつ、年間コストが現在解よりも小さい近傍解のことである。
次に、CPU11は、タブリストを更新する(ステップS27)。このとき、現在解を更新していれば、前の現在解をタブリストに記入する。次に、CPU11は、規定回数タブサーチを実施したか否かを確認し(ステップS28)、規定回数に達していなければ(S28のNO)、ステップS22に戻る。規定回数に達していれば(S28のYES)、CPU11は、現在解を最適解として決定する(ステップS29)。
[誤差範囲計算処理]
設備計画支援装置10において、プログラムファイル15の誤差範囲計算処理プログラム151は、配電系統の事故点標定の誤差範囲を計算するプログラムであり、CPU11による制御の下に実行される。
図8は、プログラムファイル15の誤差範囲計算処理プログラム151の処理の流れを示すフローチャートの例である。CPU11は、先ず、近傍解に複数の電流電圧計70があるか否かを判定し(ステップS31)、電流電圧計70が0個あるいは1個であれば(S31のNO)、ステップS33にジャンプする。電流電圧計70が複数あれば(S31のYES)、CPU11は、電流電圧計70の直前で系統を分割し(ステップS32)、複数の分割系統とする。ただし、配電変電所40の直下の電流電圧計70では、系統の分割を行わない。
図9は、電流電圧計70の直前での系統の分割方法についての説明図の例である。この分割方法では、2つの電流電圧計70をもつオリジナルの系統が、上流に電流電圧計70をもつ2つの分割系統に分割される。
次に、CPU11は、「系統誤差範囲」変数を0クリアし(ステップS33)、次いで、分割した分割系統をひとつ選択する(ステップS34)。次に、CPU11は、分割系統の事故点標定の誤差範囲を計算する(ステップS35)。本分割系統誤差範囲計算処理については、後述する分割系統誤差範囲計算処理フローチャート(図10)を用いて詳細に説明する。
次に、CPU11は、ステップS35で求めた分割系統の誤差範囲を「系統誤差範囲」変数に加算し(ステップS36)、次いで、全分割系統を選択したか否かを確認する(ステップS37)。CPU11は、選択されていない分割系統があれば(S36のNO)、ステップS34に戻り、分割系統が全て選択されていれば(S36のYES)、「系統誤差範囲」を全系統の誤差範囲として最適化処理プログラム252(図3参照)に返す(ステップS38)。
[分割系統誤差範囲計算処理]
ステップS35の分割系統誤差範囲計算処理では、各配電区間の誤差範囲を計算し、故障表示器80の有無にしたがって適切に合算する。具体的には、故障表示器80がある分岐ノードがあれば、各配電区間の誤差範囲を故障発生確率で按分する。故障表示器80がない分岐ノードであれば、各配電区間の誤差範囲を合計する。
図10及び図11は、CPU11による制御の下に実行される、分割系統誤差範囲計算処理の流れを示すフローチャートの例である。CPU11は、電流電圧計70から配電区間の上流ノードまでのインピーダンスと、同じく下流ノードまでのインピーダンスを配電区間ごとに計算し、データファイル26の配電区間リスト161(図3参照)に保存する(ステップS41)。CPU11はさらに、上流ノード、下流ノードのID(識別情報)についても配電区間リスト161に保存する。図12は、配電区間リストの構造を示す図の例である。
次に、CPU11は、電流電圧計70からのインピーダンスが最も大きい配電区間の下流ノードを、配電区間リスト161から選択し、下流ノードN1として保存する(ステップS42)。次いで、CPU11は、下流ノードN1の次に電流電圧計70からのインピーダンスが大きいノード(上流、下流は問わない)を配電区間リスト161から選択し、ノードN2として保存する(ステップS43)。
次に、CPU11は、配電区間リスト161を走査し、N1−N2間の配電区間のIDを、配電区間ノード関係リスト162(図3参照)に保存する(ステップS44)。次いで、CPU11は、配電区間ノード関係リスト162の全ての配電区間から上流の電流電圧計70に至るまでに通過する全ての配電区間のIDを配電区間ノード関係リスト162に保存する(ステップS45)。
次に、CPU11は、配電区間ノード関係リスト162の上流から探索し、電流電圧計70のノードに接続される配電区間を全て選択する(ステップS46)。次いで、CPU11は、選択した配電区間に故障表示器80があるか否かを確認し(ステップS47)、故障表示器80があれば(S47のYES)、配電区間の誤差範囲を故障発生確率で按分する「按分計算」とし(ステップS48)、故障表示器80がなければ(S47のNO)、配電区間の誤差範囲を合計する「合計計算」とする(ステップS49)。「按分計算」の場合は、式(3)に基づく計算とする。
Figure 2017208902
式(3)は、分岐する配電区間が2本の場合を示しているが、3本の場合、故障表示器80が2個の場合も同様の式になる。故障表示器80が1個の場合は、式(4)との組み合わせになる。また、「合計計算」の場合は、式(4)に基づく計算とする。
Figure 2017208902
式(4)は、分岐する配電区間が2本の場合を示したが、3本でも同様である。
次に、CPU11は、ステップS48またはステップS49で求めた誤差範囲計算式を、元の誤差範囲計算式に代入する(ステップS50)。ステップS50の最初の実行では、誤差範囲計算式はないので、ステップS50では、式(3)または式(4)がそのまま代入される。ステップS50の次の実行では、配電区間1と配電区間2の式が求まっているので、これを、式(3)または式(4)に代入する。
次に、CPU11は、現在の配電区間の下流にさらに、配電区間があるか否かを確認し(ステップS51)、現在の配電区間の下流に配電区間があれば(S51のYES)、下流の配電区間を全て選択し(ステップS52)、しかる後、ステップS47に戻る。現在の配電区間の下流に配電区間がなければ(S51のNO)、CPU11は、N1−N2間の配電区間の誤差範囲を計算する(ステップS53)。誤差範囲の計算式については後述する。
次に、CPU11は、ステップS53で求めた誤差範囲を誤差範囲計算式に代入し、N1−N2間の配電区間の誤差範囲を求め(ステップS54)、しかる後、求めた誤差範囲を全系統の誤差に加算する(ステップS55)。次に、CPU11は、N2をN1に代入し(ステップS46)、次いで、N1の次にインピーダンスの大きいノードを配電区間リスト161より探索し(ステップS57)、N1の次にインピーダンスの大きいノードがあれば(S57のYES)、ステップS43に戻る。N1の次にインピーダンスの大きいノードがなければ(S57のNO)、CPU11は、分割系統誤差範囲計算のための一連の処理を終了する。
(誤差範囲の計算式)
次に、図13を用いて、配電区間の誤差範囲計算式について説明する。図13は、電流電圧計70がノードNode_nにあるときに、配電区間Line_nの誤差範囲を計算する説明図の例である。
事故点標定方式として、シンプルインピーダンス方式を採用し、三相短絡の事故点標定を行う場合を例に挙げて説明する。放射状系統の電力系統の配電変電所から、終端負荷までのインピーダンスをZ1L、電線路を三相4線方式とする。また、発生する事故の事故点抵抗は0Ωとする。配電変電所のブスに、電流、電圧を計測する電流電圧計70を設置し、事故時の電流、電圧を測定する。このとき、ブスから事故点までの距離mは、事故種別ごとに、次式(5)〜(11)のように求めることができる。
Figure 2017208902
Figure 2017208902
Figure 2017208902
Figure 2017208902
Figure 2017208902
Figure 2017208902
Figure 2017208902
ただし、
k :(Z0L−Z1L)/3Z1L
0L :系統終端までの零相インピーダンス
1L :系統終端までの正相インピーダンス
m :事故点までの距離
R :検出器の残留電流(零相事故電流)
事故点標定方式として、シンプルインピーダンス方式を採用し、三相短絡の事故点標定を行う場合は、式(11)を用いてインピーダンスZ1Lを求める。その後、単位長さあたりのインピーダンスで割ることにより、電流電圧計70から事故点までの距離を求める。また、電流電圧計70の測定値の精度誤差(比誤差)αについては、電流、電圧は各々異なるがその差は小さいので、今回は同一値α(0≦α≦1)とする。
このとき、事故点標定結果の最大誤差は、電圧が最小値V(1−α)、電流が最大値I(1+α)となる組み合わせのときの事故点標定結果と、電圧が最大値V(1+α)、電流が最小値I(1−α)となる組み合わせのときの事故点標定結果の差(偏差)となる。電圧が最小値V(1−α)、電流が最大値I(1+α)となる組み合わせのときの事故点標定結果、即ち最小インピーダンスDmin(n)は式(12)で得られる。また、電圧が最大値V(1+α)、電流が最小値I(1−α)となる組み合わせのときの事故点標定結果、即ち最大インピーダンスDmax(n)は式(13)で得られる。
Figure 2017208902
Figure 2017208902
つまり、ある地点での事故点標定の標定誤差DE(n)は、最小インピーダンスDmin(n)と最大インピーダンスDmax(n)との偏差、即ち式(14)になる。
Figure 2017208902
ただし、
E(n) :電線路nの負荷側の標定誤差(km)
α :電流電圧計70の比誤差(0〜1)
Z :電線路の単位長さあたりのインピーダンス(Ω/km)
n :ノードnの電流電圧計70で測定された電圧(V)
n :ノードnの電流電圧計70で測定された電流(A)
n :標定誤差を求める電線路の番号。
標定誤差を求める電線路の番号nは、配電変電所40からシリアルに付される。V/Iは、電流電圧計70から事故点までのインピーダンスZnとなるから、これを式(14)に代入すると式(15)となる。
Figure 2017208902
さらに、この標定誤差DE(n)に、年間の事故発生確率をかけた結果が、事故点標定誤差の期待値となる。これを、フィーダ長分だけ積分したものが、対象フィーダの年間の事故点標定誤差の期待値、即ちステップS53で求めるべき「誤差範囲」となる。
以上説明したように、実施例1に係る設備計画支援装置10では、電流電圧計70による事故点の評定と、故障表示器80による事故区間の検出に、事故点標定の誤差範囲を共通の指標として用いている。これにより、電流電圧計70と故障表示器80とが混在する電力系統であって、電流電圧計70および故障表示器80の配置場所として最適な配置場所を設定することができる。
その結果、事故点の探索時間(探索範囲)を目標値以下に抑制することができる。しかも、高価な電流電圧計70および故障表示器80の設置数をできるだけ少なく設定できるため、システムコストを低く抑えることができる。したがって、実施例1に係る設備計画支援装置10は、電力系統の設備の増設、移設、廃棄、リプレース計画の作成を支援することに用いて好適なものとなる。
なお、本実施例では、電流電圧計70の測定値の精度誤差が、電圧計と電流計で同一の値αであると仮定したが、異なる値βでもよい。この場合、式(12)、式(13)の式の分子のαをβに置き換えて、式(14)および式(15)を再計算するようにすればよい。
また、実施例1の例題系統は、図1に示すように、配電変電所40から伸びる1フィーダとなっており、フィーダ単位で電流電圧計70および故障表示器80の配置場所を最適化しているが、配電変電所40に複数の変圧器があるバンク構成の場合にも対応可能である。この場合は、フィーダごとに電流電圧計70を固定設置し、それ以下の電流電圧計70および故障表示器80の配置場所を最適化するようにする。この場合、ステップS32で、電流電圧計70ごとにフィーダを分割されることを除いて、上記の実施例と同じである。
実施例2は、実施例1の変形例である。本実施例では、設備計画支援装置10において、オペレータによって指定された電流電圧計70および故障表示器80の配置場所における、初期コスト、ランニングコストおよび事故点の探索範囲(探索時間)を表示する機能を実現する。この場合は、タブサーチなどの最適化処理は必要なく、事故点標定の誤差範囲と目的関数である年間コストを計算して求めればよい。
図14は、実施例2に係る設備設計支援処理プログラム154の処理の流れを示すフローチャートの例である。モニタ画面上でオペレータが、移動、新設、削除する電流電圧計70および故障表示器80を指定することで、CPU11による制御の下に、実施例2に係る設備設計支援処理プログラム154の処理が実行される。
移動、新設、削除する電流電圧計70および故障表示器80が指定されると、CPU11は、移動、新設、削除する電流電圧計70および故障表示器80の初期解を設定し(ステップS61)、次いで、設定した初期解を用いて配電系統の誤差範囲を計算する(ステップS62)。この誤差範囲の計算処理は、誤差範囲計算処理プログラム251(図3参照)による誤差範囲計算処理によって行われる。すなわち、ステップS62の処理は、図7のステップS23の処理、即ち図8の誤差範囲計算処理フローチャートの処理と同じである。
次に、CPU11は、目的関数である年間コスト(即ち、初期コストおよびランニングコスト)を計算する(ステップS63)。この目的関数の計算処理は、図7のステップS24での処理と同じである。次いで、CPU11は、ステップS62での計算結果である配電系統の誤差範囲(事故点の探索範囲)およびステップS63での計算結果である目的関数(年間コスト)を、モニタ、プロジェクタ、プリンタなどの告知手段を用いてオペレータに告知(表示)する(ステップS13)。
実施例3は、本発明を配電監視制御装置20に適用した例である。本実施例に係る配電監視制御装置20は、電流電圧計70および故障表示器80に関して、オンライン測定した測定結果に基づいて、電流電圧計70の測定値の精度誤差(以下、単に「電流電圧計70の誤差」と記述する)を求め、その求めた誤差を用いて電流電圧計70および故障表示器80の最適配置場所を再計算するようにする。最適配置場所については、実施例1の場合と同様に、図2に示す配置場所の候補(設置候補の配置場所)の中から、電流電圧計70および故障表示器80の配置場所を選択する。
[配電監視制御装置のハードウェア構成]
図15は、実施例3に係る配電監視制御装置20のハードウェア構成を示すブロック図の例である。図15に示すように、実施例3に係る配電監視制御装置20は、例えば、CPU21、RAM22、タイマ23、通信装置24、プログラムファイル25およびデータファイル26が、システムバス27で接続されたコンピュータから構成されている。
コンピュータから構成された配電監視制御装置20において、CPU21は、プログラムファイル25の配電制御監視プログラムを実行する。RAM22は、配電監視制御プログラムの計算途中の結果データを一旦格納するメモリである。
プログラムファイル25およびデータファイル26は、フラッシュなどの不揮発性メモリや磁気ディスクで構成される。プログラムファイル25には、CPU21により実行される配電監視制御プログラムが格納されている。配電監視制御プログラムは、誤差範囲計算処理プログラム251、最適化処理プログラム252、事故点標定処理プログラム253および配電監視制御処理プログラム254により構成されている。
データファイル26には、配電監視制御プログラムが使用する配電区間リスト261、配電区間ノード関係リスト262および事故点テーブル263が保存されている。また、配電監視制御装置20にデータベース機能がある場合は、先述したデータベース装置30のデータファイル35に含まれるデータが、データファイル26に含まれてもよい。
タイマ13は、時間を計測する。通信装置14は、通常、イーサネットが使用される。ただし、通信装置14としては、イーサネットに限られるものではなく、CAN(登録商標)やLIN(登録商標)など他の有線ネットワークでもよいし、IEEE802やZigbee(登録商標)のような無線通信でもよい。これらは、公共通信網の整備状況やコストを考慮して選択される。
上記構成の配電監視制御装置20において、誤差範囲計算処理部(誤差範囲計算処理プログラム151)、最適化処理部(最適化処理プログラム152)、および、事故点標定処理部(事故点標定処理プログラム153)に加えて、電流電圧計70の誤差を計算する精度誤差計算処理部を備えている。この精度誤差計算処理部の処理を実現するプログラムは、プログラムファイル25の配電制御監視プログラムに含まれている。
配電監視制御装置20は、オペレータによって入力される電流電圧計70および故障表示器80の配置場所の組み合わせの事故点の探索時間を制約関数により求める。そして、求めた事故点の探索時間と、最適化処理によって求めた電流電圧計70および故障表示器80の配置場所の組み合わせの事故点の探索時間との差分および/または比率を計算して表示する。これにより、事故点の探索時間の観点から、電流電圧計70および故障表示器80の配置に関して微調整を行うことができる。
また、オペレータによって入力される電流電圧計70および故障表示器80の配置場所の組み合わせの単位時間あたりのコストを目的関数より求める。そして、求めた単位時間あたりのコストと、最適化処理によって求めた電流電圧計70および故障表示器80の配置場所の組み合わせの単位時間あたりの総コストとの差分および/または比率を計算して表示する。これにより、コストの観点から、電流電圧計70および故障表示器80の配置に関して微調整を行うことができる。
ここで、単位時間あたりの総コストは、先述したように、最適化処理により仮決めされた配置場所の組み合わせの電力系統において、仮決めされた配置場所の組み合わせの電流電圧計70および故障表示器80のコストの合計である。
[配電監視制御装置の事故発生時の処理]
以下、実施例3に係る配電監視制御装置20の事故発生時の処理について、図16のフローチャートを用いて説明する。図16は、実施例3に係る配電監視制御装置20の事故発生時の処理の流れを示すフローチャートの例である。
電力系統で事故が発生すると、電力系統の事故電流や停電を検出した電流電圧計70および故障表示器80が、図1に示す通信線91および広域ネットワーク92を介して配電監視制御装置20に事故が発生した旨をオンラインにて通知する。この通知を受けて、配電監視制御装置20のCPU21は、図16のフローチャートに沿った事故発生時の処理を実行する。
CPU21は、電力系統の事故電流や停電を検出した電流電圧計70および故障表示器80からの通知を受けて、先ず、電流電圧計70および故障表示器80が検出した事故電流をたどることで、事故点に最寄りの電流電圧計70を探す(ステップS71)。ここで、事故点に最寄りの電流電圧計70は、停電している電流電圧計70や故障表示器80の上流ノードの電流電圧計70、または、故障電流を検出した、最も下流ノードの電流電圧計70である。
次に、CPU21は、事故点に最寄りの電流電圧計70から電流I1、電圧V1を受信するとともに、発生した事故に通し番号である事故点番号を付し、データファイル26の事故点テーブル263に、事故点番号、最寄りの電流電圧計番号、電流I1および電圧V1を保存する(ステップS72)。
次に、CPU21は、電流電圧計70の誤差(比誤差)αを、図17に示す電流電圧計誤差テーブル352より得る。この電流電圧計誤差テーブル352は、データベース装置30(図4参照)のデータファイルに保存されている。本実施例では、電流計と電圧計の誤差を等しいと仮定しているが、図17に示すように、電流電圧計誤差テーブル352に電流計と電圧計の誤差を個別に置くことで、異なる誤差を使用することもできる。
次に、CPU21は、電圧V1より、電圧計の誤差αによってとり得る最小の値V=(1−α)V1を求めるとともに、電流I1より、電流計の誤差αによってとり得る最大の値I=(1+α)I1を求める(ステップS74)。
次に、CPU21は、電圧Vと電流Iを用いて、事故点標定により電流電圧計70から事故点までの距離m1を求める(ステップS75)。事故点標定については、例えば、シンプルインピーダンス方式を選んだときには、事故種別に応じて式(5)〜式(11)のいずれかを使い、電流電圧計70から事故点までの距離m1を求める。また、距離m1を、図17に示す事故点テーブル263の事故点標定最小値に保存する。
次に、CPU21は、電圧V1より、電圧計の誤差αによってとり得る最大の値V=(1+α)V1を求めるとともに、電流I1より、電流計の誤差αによってとり得る最小の値I=(1−α)I1を求める(ステップS76)。
次に、CPU21は、電圧Vと電流Iを用いて、ステップS75と同様に、事故点標定により電流電圧計70からから事故点までの距離m2を求める。また、距離m2を、図17に示す事故点テーブル263の事故点標定最大値に保存する。
次に、CPU21は、事故点の位置Xが、電流電圧計70から、m1<X<m2の位置であるとモニタ(図示せず)に表示する(ステップS78)。また、標定結果をデータベース装置30に保存する。
次に、CPU21は、電圧V=V1、電流I=I1とし(ステップS79)、次いで、電圧Vと電流Iを用いて、ステップS75と同様に、事故点標定により電流電圧計70から事故点までの距離m3を求める(ステップS80)。また、距離m3を、図17に示す事故点テーブル263に事故点標定値m3として保存する。
[配電監視制御装置の事故点発見時の処理]
続いて、実施例3に係る配電監視制御装置20の事故点発見時の処理について、図18のフローチャートを用いて説明する。図18は、実施例3に係る配電監視制御装置20の事故点発見時の処理のフローチャートの例である。
配電監視制御装置20では、保守員が事故点標定結果の範囲を探索し、電力系統の事故点を発見すると、その事故点の位置情報に基づいて電流電圧計70の誤差αの計算が行われる。これにより、次の事故点標定に新しい誤差αを反映させることができるため、事故点標定の精度を向上させることができる。
保守員は、系統の事故点を発見すると、タブレット、スマートフォン、パーソナルコンピュータなどの端末装置から、最寄りの電流電圧計70から事故点までの実測距離Y1と、発見した事故点の事故番号を、配電監視制御装置20に入力する(ステップS81)。
保守員による実測距離Y1および事故点の事故番号の入力を受けて、CPU21は、実測距離Y1を、図17に示す事故点テーブル263の該当する事故番号の事故点実測距離Yに保存する(ステップS82)。
次に、CPU21は、事故点テーブル263の該当する事故番号から、電流I1、電圧V1、事故点標定値m3、単位インピーダンスZ1を読み出し(ステップS83)、次いで、実測距離Y1と事故点標定値m3とを比較する(ステップS84)。
次に、CPU21は、電流電圧計70の誤差αを計算する。具体的には、実測距離Y1の方が事故点標定値m3よりも大きければ(S84のYES)、誤差αが最大のケースであるとみなし、(1+α)V1/{((1−α)I1}=Y11を誤差αについて解く(ステップS85)。式を変換すると式(16)となるので、I1,V1,Z1を代入して誤差αを求める。
Figure 2017208902
実測距離Y1が事故点標定値m3以下であれば(S84のNO)、誤差αが最小のケースであるとみなし、(1−α)V1/{((1+α)I1}=Y11を誤差αについて解く(ステップS86)。式を変換すると式(17)となるので、I1,V1,Z1を代入して誤差αを求める。
Figure 2017208902
次に、CPU21は、求めた電流電圧計70の誤差αを、図17に示す電流電圧計誤差テーブル352に保存し(ステップS87)、次いで、標定装置配置再計算モードであるか否かを調べる(ステップS88)。標定装置再計算モードは、事故点の発見ごとに、電流電圧計70や故障表示器80の標定装置の最適配置計算を行うモードである。データベース装置30のデータファイル35に標定装置再計算フラグ(図示せず)を保持することで、現在のモードを記録する。もし、標定装置再計算モードであれば(S88のYES)、最適化処理を実行する(ステップS89)。具体的には、図7のステップS1にジャンプし、図7のフローチャートに沿った最適化処理を実行する。標定装置再計算モードでなければ(S88のNO)、CPU21は、事故点発見時の一連の処理を終了する。
以上説明したように、実施例3に係る配電監視制御装置20では、電流電圧計70および故障表示器80に関して、オンライン測定した測定結果を基に、電流電圧計70の誤差を求め、その求めた誤差を用いて電流電圧計70および故障表示器80の最適配置場所の再計算が行われる。これにより、電流電圧計70個体のばらつきを考慮した最適配置場所を提示することができる。
<変形例>
なお、本発明は、上述した実施例に限定するものではなく、様々な変形例が含まれる。例えば、上述した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定するものではない。また、ある実施例の構成の一手段を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一手段について、他の構成の追加、削除、置換をすることが可能である。
例えば、上述した実施例では、誤差範囲計算処理部、最適化処理部、事故点標定処理部および精度誤差計算処理部について、CPUがそれぞれの機能を実現するプログラムを解釈して実行することによって、ソフトウェアで実現するとしたが、これに限定するものではない。すなわち、誤差範囲計算処理部、最適化処理部、事故点標定処理部および精度誤差計算処理部について、それらの一部または全部を、例えば集積回路での設計等によってハードウェアで実現することも可能である。
10…設備計画支援装置、 11,21,31…CPU、 12,22,32…RAM、 13,23…タイマ、 14,24,33…通信装置、 15,25,34…プログラムファイル、 16,26,35…データファイル、 20…配電監視制御装置、 30…データベース装置、 40…配電変電所、 51〜54…配電区間、 61〜65…ノード、 70…電流電圧計、 80…故障表示器、 91…通信線、 92…広域ネットワーク、 93…イントラネット

Claims (14)

  1. 配電変電所から電力を送配する電力系統において、電流および電圧を測定する測定装置と、事故が発生したことを検出する検出装置とを設置する際の配置場所を決定する設備計画支援装置であって、
    前記測定装置および前記検出装置の設置候補の配置場所において、前記測定装置の測定値および前記検出装置の位置情報を基に、事故が発生した事故点を特定する計算を行う事故点評定処理部と、
    前記測定装置の測定値の精度誤差に起因する、前記事故点評定処理部による事故点標定の計算結果の最小値および最大値を基に事故点標定の誤差範囲を計算するとともに、前記検出装置の設置候補の配置場所から、前記配電変電所より遠方の下流側の前記検出装置または前記測定装置の設置候補の配置場所までの距離を前記誤差範囲とする誤差範囲計算処理部と、
    前記誤差範囲計算処理部が計算して求めた電力系統の全体の前記誤差範囲に基づいて、前記測定装置および前記検出装置の配置場所の組み合わせを求める最適化処理部と、
    を備えることを特徴とする電力系統の設備計画支援装置。
  2. 前記事故点評定処理部は、前記測定装置の測定値および前記検出装置の位置情報を基に、前記配電変電所または前記測定装置から事故点までのインピーダンスを計算することによって事故点を特定し、
    前記誤差範囲計算処理部は、前記事故点評定処理部の計算結果の最小インピーダンスと最大インピーダンスとの偏差を、単位長さあたりのインピーダンスで割ることによって前記誤差範囲を求める
    ことを特徴とする請求項1に記載の電力系統の設備計画支援装置。
  3. 前記誤差範囲計算処理部は、電線路の長さを規定するノード間の配電区間ごとに前記誤差範囲を求める計算を行い、
    前記配電区間において前記測定装置の設置候補の配置場所が前記配電変電所に近い上流側の場合は、前記精度誤差を含む電圧の最大値と、前記精度誤差を含む電流の最小値とを用いた前記事故点標定の計算結果を前記最大インピーダンスとし、
    前記精度誤差を含む電圧の最小値と、前記精度誤差を含む電流の最大値とを用いた前記事故点標定の計算結果を前記最小インピーダンスとする
    ことを特徴とする請求項2に記載の電力系統の設備計画支援装置。
  4. 前記誤差範囲計算処理部は、前記配電区間から分岐する分岐路がある場合、前記分岐路の誤差範囲を前記配電区間の誤差範囲に加算する
    ことを特徴とする請求項3に記載の電力系統の設備計画支援装置。
  5. 前記最適化処理部は、事故点の探索時間が目標値以下であることを示す制約関数を満たし、事故点を探索する単位時間あたりのコストを示す目的関数を最小値とする、前記測定装置および前記検出装置の配置場所の組み合わせを発見するまで、当該配置場所の組み合わせを作成しつつ前記制約関数および前記目的関数を評価する
    ことを特徴とする請求項1に記載の電力系統の設備計画支援装置。
  6. 前記最適化処理部は、前記測定装置および前記検出装置が予め設置されている電力系統について最適化を行う場合、前記測定装置および前記検出装置の設置場所を初期の配置場所の組み合わせとして用い、次の配置場所の組み合わせを作成するとき、前記初期の配置場所の組み合わせから予め指定された個数の配置場所のみ変更した配置場所の組み合わせを作成する
    ことを特徴とする請求項5に記載の電力系統の設備計画支援装置。
  7. 配電変電所から電力を送配する電力系統において、電流および電圧を測定する測定装置と、事故が発生したことを検出する検出装置との設置場所を、前記測定装置の測定値の精度誤差を考慮して決定する配電監視制御装置であって、
    前記測定装置および前記検出装置の設置候補の配置場所において、前記測定装置の測定値および前記検出装置の位置情報を基に、事故が発生した事故点を特定する計算を行う事故点評定処理部と、
    前記測定装置の測定値の精度誤差に起因する、前記事故点評定処理部による事故点標定の計算結果の最小値および最大値を基に事故点標定の誤差範囲を計算するとともに、前記検出装置の設置候補の配置場所から、前記配電変電所より遠方の下流側の前記検出装置または前記測定装置の設置候補の配置場所までの距離を前記誤差範囲とする誤差範囲計算処理部と、
    前記測定装置の測定値の精度誤差を計算する精度誤差計算処理部と、
    前記誤差範囲計算処理部が計算して求めた電力系統の全体の前記誤差範囲と、前記精度誤差計算処理部が計算して求めた前記精度誤差とに基づいて、前記測定装置および前記検出装置の配置場所の組み合わせを求める最適化処理部と、
    を備えることを特徴とする電力系統の配電監視制御装置。
  8. 前記事故点評定処理部は、前記測定装置の測定値および前記検出装置の位置情報を基に、前記配電変電所または前記測定装置から事故点までのインピーダンスを計算することによって事故点を特定し、
    前記誤差範囲計算処理部は、前記事故点評定処理部の計算結果の最小インピーダンスと最大インピーダンスとの偏差を、単位長さあたりのインピーダンスで割ることによって前記誤差範囲を求める
    ことを特徴とする請求項7に記載の電力系統の配電監視制御装置。
  9. 前記誤差範囲計算処理部は、電線路の長さを規定するノード間の配電区間ごとに前記誤差範囲を求める計算を行い、
    前記配電区間において前記測定装置の設置候補の配置場所が前記配電変電所に近い上流側の場合は、前記精度誤差を含む電圧の最大値と、前記精度誤差を含む電流の最小値とを用いた前記事故点標定の計算結果を前記最大インピーダンスとし、
    前記精度誤差を含む電圧の最小値と、前記精度誤差を含む電流の最大値とを用いた前記事故点標定の計算結果を前記最小インピーダンスとする
    ことを特徴とする請求項8に記載の電力系統の配電監視制御装置。
  10. 前記誤差範囲計算処理部は、前記配電区間から分岐する分岐路がある場合、前記分岐路の誤差範囲を前記配電区間の誤差範囲に加算する
    ことを特徴とする請求項9に記載の電力系統の配電監視制御装置。
  11. 前記最適化処理部は、事故点の探索時間が目標値以下であることを示す制約関数を満たし、事故点を探索する単位時間あたりのコストを示す目的関数を最小値とする、前記測定装置および前記検出装置の配置場所の組み合わせを発見するまで、当該配置場所の組み合わせを作成しつつ前記制約関数および前記目的関数を評価する
    ことを特徴とする請求項7に記載の電力系統の配電監視制御装置。
  12. 前記最適化処理部は、前記測定装置および前記検出装置が予め設置されている電力系統について最適化を行う場合、前記測定装置および前記検出装置の設置場所を初期の配置場所の組み合わせとして用い、次の配置場所の組み合わせを作成するとき、前記初期の配置場所の組み合わせから予め指定された個数の配置場所のみ変更した配置場所の組み合わせを作成する
    ことを特徴とする請求項11に記載の電力系統の配電監視制御装置。
  13. オペレータによって入力される前記測定装置および前記検出装置の配置場所の組み合わせの事故点の探索時間を前記制約関数により求め、この求めた事故点の探索時間と、前記最適化処理部の処理により求めた前記測定装置および前記検出装置の配置場所の組み合わせの事故点の探索時間との差分および/または比率を計算して表示する
    ことを特徴とする請求項11に記載の電力系統の配電監視制御装置。
  14. オペレータによって入力される前記測定装置および前記検出装置の配置場所の組み合わせの単位時間あたりのコストを目的関数より求め、この求めた単位時間あたりのコストと、前記最適化処理部の処理により求めた前記測定装置および前記検出装置の配置場所の組み合わせの単位時間あたりの総コストとの差分および/または比率を計算して表示する
    ことを特徴とする請求項11に記載の電力系統の配電監視制御装置。
JP2016098689A 2016-05-17 2016-05-17 電力系統の設備計画支援装置および電力系統の配電監視制御装置 Pending JP2017208902A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016098689A JP2017208902A (ja) 2016-05-17 2016-05-17 電力系統の設備計画支援装置および電力系統の配電監視制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016098689A JP2017208902A (ja) 2016-05-17 2016-05-17 電力系統の設備計画支援装置および電力系統の配電監視制御装置

Publications (1)

Publication Number Publication Date
JP2017208902A true JP2017208902A (ja) 2017-11-24

Family

ID=60416582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016098689A Pending JP2017208902A (ja) 2016-05-17 2016-05-17 電力系統の設備計画支援装置および電力系統の配電監視制御装置

Country Status (1)

Country Link
JP (1) JP2017208902A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167217A (zh) * 2021-12-09 2022-03-11 中国路桥工程有限责任公司 一种铁路配电网的多重故障诊断方法
JP2022049007A (ja) * 2020-09-15 2022-03-28 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 1つ以上の伝送線路におけるソースインピーダンスを推定するための方法および装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022049007A (ja) * 2020-09-15 2022-03-28 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト 1つ以上の伝送線路におけるソースインピーダンスを推定するための方法および装置
US11916367B2 (en) 2020-09-15 2024-02-27 Hitachi Energy Switzerland Ag Method and device for estimating source impedances across one or more transmission lines
CN114167217A (zh) * 2021-12-09 2022-03-11 中国路桥工程有限责任公司 一种铁路配电网的多重故障诊断方法

Similar Documents

Publication Publication Date Title
Trindade et al. Low voltage zones to support fault location in distribution systems with smart meters
US10120401B2 (en) System for real time power grid distribution network control
JP6164030B2 (ja) 相判定プログラム、相判定方法および相判定装置
US9292794B2 (en) Voltage-based clustering to infer connectivity information in smart grids
EP2940483B1 (en) Evaluation method for determining of the probability of an asymmetrical fault location in a distribution network and a monitoring system for performing such method
US20160011252A1 (en) Decision Support System for Outage Management and Automated Crew Dispatch
Luan et al. Distribution network topology error correction using smart meter data analytics
JP2015148610A (ja) 非接地の配電系統内の障害の場所を特定する方法およびシステム
CN107991580B (zh) 基于关联权重离散性多源信息的配电网故障定位方法
Moradi-Sepahvand et al. Optimal placement of a combination of single-phase and three-phase μPMUs for observability of smart distribution networks with asymmetrical structure
Bhowmik et al. A new power distribution system planning through reliability evaluation technique
Dashti et al. Applying dynamic load estimation and distributed-parameter line model to enhance the accuracy of impedance-based fault-location methods for power distribution networks
Mousavian et al. An investment decision model for the optimal placement of phasor measurement units
Ibrahim et al. Optimal placement of power quality monitors in distribution systems using the topological monitor reach area
JP2017208902A (ja) 電力系統の設備計画支援装置および電力系統の配電監視制御装置
CN114915546A (zh) 一种停电用户定位方法、装置、设备、介质
CN110532731A (zh) 一种电压暂降凹陷域快速计算方法
CN112345972B (zh) 基于停电事件的配电网线变关系异常诊断方法、装置及系统
Lazarou et al. A power system simulation platform for planning and evaluating distributed generation systems based on GIS
JP4906498B2 (ja) 地絡点標定方法および標定装置
US20230075892A1 (en) Method, system and software product to identify installations likely to exhibit an electrical non-conformity
Liu et al. A heuristic meter placement method for load estimation
Bala Krishna et al. Economic analysis of a power system network using optimal placement of PMUs and DULRs through complete and incomplete observability analysis
Fiaschetti et al. Fault location index for distribution power system restoration using voltage sags
JP6173193B2 (ja) センサ内蔵開閉器の配置計画支援装置および配置計画支援方法