JP2017208294A - Inspection method of electrode - Google Patents

Inspection method of electrode Download PDF

Info

Publication number
JP2017208294A
JP2017208294A JP2016101559A JP2016101559A JP2017208294A JP 2017208294 A JP2017208294 A JP 2017208294A JP 2016101559 A JP2016101559 A JP 2016101559A JP 2016101559 A JP2016101559 A JP 2016101559A JP 2017208294 A JP2017208294 A JP 2017208294A
Authority
JP
Japan
Prior art keywords
electrode
coating
edge
tip
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016101559A
Other languages
Japanese (ja)
Inventor
佳代子 沖本
Kayoko Okimoto
佳代子 沖本
木下 恭一
Kyoichi Kinoshita
恭一 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2016101559A priority Critical patent/JP2017208294A/en
Publication of JP2017208294A publication Critical patent/JP2017208294A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inspection method of an electrode, capable of stably acquiring a coating width in an intermittent coating.SOLUTION: In a case where a tip position of a projection part 50 of a coating part 19 is not detected by an image dimension measurement device, an arbitrary point of an X- direction and a Y-direction in the coating part 19 is set as reference points X0 and Y0 to an image obtained by the image dimension measurement device. In the image, approximate curve lines L1 and L2 of a function of the position of the X-direction and the Y-direction are formed with end part regions 51a and 51b sandwiching the tip of the projection part 50 in the image in the X-direction. An intersection point near the reference points X0 and Y0 in the Y-direction from the intersection points of the approximate curve lines L1 and L2 measured corresponding to each of the end part regions 51a and 51b is set as a position of the tip of the projection part 50.SELECTED DRAWING: Figure 6

Description

本発明は、塗工部と露出部とを交互に備える電極材料を切断して形成される電極の検査方法に関する。   The present invention relates to a method for inspecting an electrode formed by cutting an electrode material provided alternately with a coating portion and an exposed portion.

例えば、EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、駆動源としてのモータで使用される電力を蓄えるための蓄電装置が搭載されている。このような蓄電装置としては、例えばリチウムイオン二次電池やニッケル水素二次電池といった二次電池が知られている。二次電池は、活物質層を有する正極及び負極の電極が層状に重なった電極組立体を備える。電極組立体の構造としては、一定長の長尺な正極及び負極の電極を、重ね合わせた状態で筒状に巻き上げた捲回式と、概略矩形をなす正極及び負極の電極を、交互に多数積層した積層式と、が知られている。   For example, vehicles such as EV (Electric Vehicle) and PHV (Plug in Hybrid Vehicle) are equipped with a power storage device for storing electric power used by a motor as a drive source. As such a power storage device, for example, a secondary battery such as a lithium ion secondary battery or a nickel hydride secondary battery is known. The secondary battery includes an electrode assembly in which positive and negative electrodes each having an active material layer are layered. As the structure of the electrode assembly, a long positive electrode and a negative electrode of a certain length are wound in a cylindrical shape in an overlapping state, and a large number of positive and negative electrodes having a substantially rectangular shape are alternately arranged. A stacked type is known.

例えば、リチウムイオン二次電池などの電極では、矩形状の集電体の両面に活物質層を備えるとともに、集電体が露出した部分によって形成された未塗工部及びタブを備えたものがある。   For example, an electrode such as a lithium ion secondary battery includes an active material layer on both surfaces of a rectangular current collector, and an uncoated portion and a tab formed by a portion where the current collector is exposed. is there.

このような電極の製造方法の一例として、まず、長尺集電体の表面に、ペースト状の活物質合剤を長尺集電体の長手方向に塗工して電極材料を形成する。塗工方式としては、連続塗工と間欠塗工が知られており、連続塗工の場合、長尺集電体の長手方向に連続して塗工部が形成される。間欠塗工の方法としては、例えばリバースコータ型の塗工装置を用いた方法(例えば、特許文献1参照)がある。   As an example of a method for producing such an electrode, first, a paste-like active material mixture is applied to the surface of a long current collector in the longitudinal direction of the long current collector to form an electrode material. As the coating method, continuous coating and intermittent coating are known, and in the case of continuous coating, a coating portion is formed continuously in the longitudinal direction of the long current collector. As a method of intermittent coating, for example, there is a method using a reverse coater type coating apparatus (for example, see Patent Document 1).

リバースコータ型の塗工装置を用いて間欠する塗工部を形成する場合、バッキングロールによって長尺集電体を搬送させ、ドクターロールによってコーティングロールの外周面に活物質合剤を塗布し、バッキングロールとコーティングロールとが接触する転写位置で長尺集電体に活物質合剤を転写する。一方、露出部を形成する場合は、バッキングロールをコーティングロールから離すことにより、活物質合剤の転写を行わせず、長尺集電体をそのまま露出させる。   When forming an intermittent coating part using a reverse coater type coating device, a long current collector is conveyed by a backing roll, an active material mixture is applied to the outer peripheral surface of the coating roll by a doctor roll, and the backing is applied. The active material mixture is transferred to the long current collector at the transfer position where the roll and the coating roll come into contact. On the other hand, when forming the exposed portion, the long current collector is exposed as it is without transferring the active material mixture by separating the backing roll from the coating roll.

その他の間欠塗工の方法としては、スリットダイを用いた方法(例えば、特許文献2参照)がある。スリットダイを用いた場合は、スリットダイ内で活物質合剤の供給される流路を開放することにより、活物質合剤を吐出口から吐出させ、長尺集電体に活物質合剤を塗布して塗工部を形成する。その一方で、スリットダイ内の流路を遮断することにより、活物質合剤の吐出を停止させ、長尺集電体をそのまま露出させて露出部を形成する。その後、電極材料を電極形状に打ち抜く。その結果、塗工部から活物質層が形成されるとともに、露出部から未塗工部及びタブが形成され、電極が製造される。   As another intermittent coating method, there is a method using a slit die (for example, see Patent Document 2). When a slit die is used, the active material mixture is discharged from the discharge port by opening the flow path to which the active material mixture is supplied in the slit die, and the active material mixture is then applied to the long current collector. Apply to form the coated part. On the other hand, by blocking the flow path in the slit die, the discharge of the active material mixture is stopped, and the long current collector is exposed as it is to form an exposed portion. Thereafter, the electrode material is punched into an electrode shape. As a result, an active material layer is formed from the coated portion, an uncoated portion and a tab are formed from the exposed portion, and an electrode is manufactured.

特開2003−260931号公報JP 2003-260931 A 特開2007−66744号公報JP 2007-66744 A

製造される二次電池は、その電池容量が設計上定められた値を満たす必要がある。電池容量は、二次電池の組立後の検査工程で測定することができる。しかし、組立後に、電池容量が定められた値を満たさないことがわかり、不良品と判定された場合、二次電池そのものを廃棄することになり、損失が大きい。そこで、電極の製造工程において、電池容量に直接影響する活物質層の量を検査することも行われている。具体的には、塗工部又は活物質層の面積(又は塗工幅)と厚みを同時又は別個に測定し、所定値を下回る電極を不良品とする。塗工幅の検出方法としては、例えば、光学的検出装置によって塗工部を直接検査して行われる。   The manufactured secondary battery needs to satisfy the value determined by design in terms of battery capacity. The battery capacity can be measured in an inspection process after the secondary battery is assembled. However, after assembling, it is found that the battery capacity does not satisfy the predetermined value, and if it is determined as a defective product, the secondary battery itself is discarded, resulting in a large loss. Therefore, in the electrode manufacturing process, the amount of the active material layer that directly affects the battery capacity is also inspected. Specifically, the area (or coating width) and thickness of the coating part or active material layer are measured simultaneously or separately, and an electrode having a predetermined value or less is regarded as a defective product. As a method for detecting the coating width, for example, the coating portion is directly inspected by an optical detection device.

ところで、連続塗工に比較し、間欠塗工で形成された塗工部については、部分的に光学的検出装置で塗工幅を検出できない箇所が多くあった。該当する箇所を調べたところ、塗工部の縁に、先端が尖る形状の山形の突出部が形成されており、特に針状であったり、先端付近に活物質合剤が飛散したりしていた。このような状態により、光学的検出装置が、塗工部の境界を検出(判定)できなかったものと推定される。   By the way, compared with the continuous coating, there are many portions where the coating width cannot be partially detected by the optical detection device for the coating portion formed by intermittent coating. As a result of examining the corresponding part, a chevron-shaped protruding part with a sharp tip is formed at the edge of the coating part, and it is particularly needle-shaped or the active material mixture is scattered near the tip. It was. In such a state, it is presumed that the optical detection device could not detect (determine) the boundary of the coating part.

上記不具合は、特に間欠塗工で見受けられた。間欠塗工は、塗工部と露出部が交互に形成され、活物質合剤の塗工と非塗工が繰り返される。具体的には、リバースコータ型の塗工装置を用いた場合、連続塗工ではバッキングロールとコーティングロールとが常に接触しているのに対し、間欠塗工では接触と非接触を繰り返すため、振動が発生しやすい。このため、この振動を原因として、間欠塗工ではびびり(スティックスリップ現象)が発生しやすく、塗工部の端縁には山形状の突出部が形成される場合がある。   The above problems were observed especially in intermittent coating. In intermittent coating, coated portions and exposed portions are alternately formed, and coating and non-coating of the active material mixture are repeated. Specifically, when a reverse coater type coating device is used, the backing roll and coating roll are always in contact with continuous coating, whereas intermittent coating repeats contact and non-contact. Is likely to occur. For this reason, due to this vibration, chattering (stick-slip phenomenon) is likely to occur in intermittent coating, and a mountain-shaped protruding portion may be formed at the edge of the coated portion.

本発明の目的は、間欠塗工においても、安定して塗工幅を得ることができる電極の検査方法を提供することにある。   An object of the present invention is to provide an electrode inspection method capable of stably obtaining a coating width even in intermittent coating.

上記問題点を解決するための電極の検査方法は、長尺集電体の長手方向に沿って活物質合剤を塗布して形成された塗工部と、前記長尺集電体の露出した露出部とを、前記長尺集電体の長手方向に交互に備える電極材料を切断して形成される電極の検査方法において、前記塗工部と前記露出部の境界に沿う方向をX方向とし、前記塗工部の面方向に沿い、かつ前記X方向に直交する方向を前記塗工部のY方向とし、前記露出部との境界に位置する前記塗工部の端縁を第1の端縁、及び前記第1の端縁の対辺に存在する前記塗工部の端縁を第2の端縁とし、前記Y方向に沿って前記第1の端縁と前記第2の端縁を最短距離で結ぶ直線の寸法を塗工幅とすると、前記塗工幅の検出のために光学的検出装置で前記塗工部を検出した際、前記第1の端縁に存在し、かつ前記Y方向に突出した突出部の先端の位置を検出できなかった場合、前記光学的検出装置で得られた画像における前記塗工部に基準点X0,Y0を設定し、前記突出部の先端を前記X方向に挟む端部領域に関し、前記X方向の位置と前記Y方向の位置の関数の近似曲線を作成し、各端部領域について得られた近似曲線の交点のうち、前記Y方向において前記基準点Y0に近い交点を前記突出部の先端の位置として算出することを要旨とする。   The electrode inspection method for solving the above-described problems includes a coating part formed by applying an active material mixture along the longitudinal direction of the long current collector, and the long current collector exposed. In an inspection method of an electrode formed by cutting an electrode material having an exposed portion alternately in a longitudinal direction of the long current collector, a direction along a boundary between the coated portion and the exposed portion is an X direction. A direction along the surface direction of the coating part and perpendicular to the X direction is a Y direction of the coating part, and an edge of the coating part located at a boundary with the exposed part is a first end. An edge and an edge of the coating part existing on the opposite side of the first edge are defined as a second edge, and the first edge and the second edge are shortest along the Y direction. When the dimension of a straight line connected by a distance is the coating width, the first edge is detected when the coating portion is detected by an optical detection device for detection of the coating width. When the position of the tip of the protruding portion that exists and protrudes in the Y direction cannot be detected, reference points X0 and Y0 are set in the coated portion in the image obtained by the optical detection device, and the protruding For the end region sandwiching the tip of the part in the X direction, create an approximate curve of a function of the position in the X direction and the position in the Y direction, and among the intersections of the approximate curves obtained for each end region, The gist is to calculate an intersection point close to the reference point Y0 in the Y direction as the position of the tip of the protrusion.

これによれば、間欠塗工により、活物質合剤の塗工と非塗工が繰り返されると、振動が発生しやすく、振動を原因として、間欠塗工ではびびりが発生しやすく、塗工部の端縁には山形状の突出部が形成される場合がある。光学的検出装置によって突出部の先端の位置を検出できない場合には、光学的検出装置で得られた画像から、塗工部上の基準点、各端部領域上の任意の点を取得する。それらの点から各端部領域に沿う近似曲線を求め、それら近似曲線の交点のうち基準点に近い交点を、突出部の先端の座標とする。その結果、得られた画像を用いて突出部の位置を算出することができ、安定して塗工幅を得ることができる。   According to this, when application and non-coating of the active material mixture are repeated by intermittent coating, vibration is likely to occur, and due to vibration, chatter is likely to occur in intermittent coating, and the coating part In some cases, a mountain-shaped protrusion is formed on the edge of the. When the position of the tip of the protrusion cannot be detected by the optical detection device, a reference point on the coating portion and an arbitrary point on each end region are acquired from the image obtained by the optical detection device. An approximate curve along each end region is obtained from these points, and an intersection point close to the reference point among the intersection points of these approximate curves is used as the coordinates of the tip of the protrusion. As a result, the position of the protrusion can be calculated using the obtained image, and the coating width can be obtained stably.

また、電極の検査方法について、前記端部領域に沿う前記近似曲線は円弧状である。
これによれば、2つの近似曲線の交点を2つ導出でき、そのうち基準点に近い交点を突出部の先端の位置とすることができる。
In the electrode inspection method, the approximate curve along the end region has an arc shape.
According to this, two intersection points of two approximate curves can be derived, and the intersection point close to the reference point can be set as the position of the tip of the protruding portion.

また、電極の検査方法について、前記電極は正極電極であるのが好ましい。
これによれば、正極電極の活物質層となる塗工部は、負極電極の塗工部より硬い場合が多く、正極電極用の電極材料を製造した後、その電極材料を巻き取り可能とするためには、塗工部と露出部が交互に存在することが必要となる。このため、正極電極の製造方法において、活物質合剤の塗布は間欠塗工によって行われることとなる。間欠塗工の場合には、活物質合剤の塗工と非塗工が繰り返されることから、振動が発生しやすく、振動を原因として突出部が形成されやすい。しかし、電極の検査方法により、突出部の先端の位置を算出できるため、本実施形態の検査方法は、正極電極の検査用に適用するのがより好ましい。
Regarding the electrode inspection method, the electrode is preferably a positive electrode.
According to this, the coated part that becomes the active material layer of the positive electrode is often harder than the coated part of the negative electrode, and after the electrode material for the positive electrode is manufactured, the electrode material can be wound up. For this purpose, it is necessary that the coating part and the exposed part are alternately present. For this reason, in the manufacturing method of a positive electrode, application | coating of an active material mixture will be performed by intermittent coating. In the case of intermittent coating, since application and non-coating of the active material mixture are repeated, vibration is likely to occur, and a protrusion is likely to be formed due to vibration. However, since the position of the tip of the protrusion can be calculated by the electrode inspection method, the inspection method of the present embodiment is more preferably applied for the inspection of the positive electrode.

また、電極の検査方法について、前記電極材料を前記電極の形状に切断して電極前駆体を形成した後で、かつ前記電極を積層する前に、前記突出部の先端の位置を検出するのが好ましい。   Also, regarding the electrode inspection method, after the electrode material is cut into the shape of the electrode to form an electrode precursor and before the electrode is laminated, the position of the tip of the protruding portion is detected. preferable.

これによれば、電極前駆体の塗工部は、そのまま電極の活物質層となる部位である。よって、例えば、活物質合剤を長尺金属箔に塗工した直後であり、その後のプレス工程や切断工程を行って塗工幅が変化する前に検査を行う場合と比べると、より安定して塗工幅を得ることができる。   According to this, the coating part of an electrode precursor is a site | part used as an active material layer of an electrode as it is. Therefore, for example, immediately after coating the active material mixture on the long metal foil, it is more stable than the case where the inspection is performed before the coating width is changed by performing the subsequent pressing process or cutting process. Coating width can be obtained.

本発明によれば、間欠塗工においても、安定して塗工幅を得ることができる。   According to the present invention, a coating width can be stably obtained even in intermittent coating.

正極電極を示す斜視図。The perspective view which shows a positive electrode. 間欠塗工された状態を示す部分平面図。The partial top view which shows the state by which intermittent coating was carried out. 電極前駆体を形成する状態を示す模式図。The schematic diagram which shows the state which forms an electrode precursor. 電極前駆体を示す平面図。The top view which shows an electrode precursor. 突出部を含む塗工部の第1端縁を拡大して示す図。The figure which expands and shows the 1st edge of the coating part containing a protrusion part. 近似曲線を用いて突出部の先端を検出する方法を示す図。The figure which shows the method of detecting the front-end | tip of a protrusion part using an approximated curve.

以下、電極の検査方法を具体化した一実施形態を図1〜図6にしたがって説明する。
図示しないが、蓄電装置としての二次電池は、例えばリチウムイオン二次電池である。二次電池は、電極組立体と、電解液と、電極組立体及び電解液を収容しているケースと、を備える。電極組立体は、電極としての複数の正極電極と、電極としての複数の負極電極(図示せず)と、複数のセパレータ(図示せず)と、を備える。正極電極と負極電極とは、セパレータによって相互に絶縁された状態で層状に重なっている。
Hereinafter, an embodiment in which an electrode inspection method is embodied will be described with reference to FIGS.
Although not shown, the secondary battery as the power storage device is, for example, a lithium ion secondary battery. The secondary battery includes an electrode assembly, an electrolytic solution, and a case containing the electrode assembly and the electrolytic solution. The electrode assembly includes a plurality of positive electrodes as electrodes, a plurality of negative electrodes (not shown) as electrodes, and a plurality of separators (not shown). The positive electrode and the negative electrode overlap each other in a state of being insulated from each other by the separator.

図1に示すように、正極電極11は、矩形シート状である。正極電極11は、正極集電箔12を備える。正極集電箔12は、例えばアルミニウム箔である。正極電極11は、正極集電箔12の両面を覆う正極活物質層13を備える。正極電極11は、正極集電箔12の一辺から突出した形状の正極タブ14を備える。正極電極11は、正極タブ14の突出した辺に沿って正極未塗工部15を備える。正極未塗工部15は、正極活物質層13が存在せず、正極集電箔12が露出した部分である。   As shown in FIG. 1, the positive electrode 11 has a rectangular sheet shape. The positive electrode 11 includes a positive electrode current collector foil 12. The positive electrode current collector foil 12 is, for example, an aluminum foil. The positive electrode 11 includes a positive electrode active material layer 13 that covers both surfaces of the positive electrode current collector foil 12. The positive electrode 11 includes a positive electrode tab 14 having a shape protruding from one side of the positive electrode current collector foil 12. The positive electrode 11 includes a positive electrode uncoated portion 15 along the protruding side of the positive electrode tab 14. The positive electrode uncoated portion 15 is a portion where the positive electrode active material layer 13 is not present and the positive electrode current collector foil 12 is exposed.

図示しないが、負極電極は、矩形シート状である。負極電極は、負極集電箔を備える。負極集電箔は、例えば銅箔である。負極電極は、負極集電箔の両面を覆う負極活物質層を備える。負極電極は、負極集電箔の一辺から突出した形状の負極タブを備える。   Although not shown, the negative electrode has a rectangular sheet shape. The negative electrode includes a negative electrode current collector foil. The negative electrode current collector foil is, for example, a copper foil. The negative electrode includes a negative electrode active material layer that covers both surfaces of the negative electrode current collector foil. The negative electrode includes a negative electrode tab having a shape protruding from one side of the negative electrode current collector foil.

次に、正極電極11の製造方法について説明する。
正極電極11の製造方法は、塗布工程と、乾燥工程と、スリット工程と、プレス工程と、真空乾燥工程と、切断工程と、検査工程と、を有する。
Next, a method for manufacturing the positive electrode 11 will be described.
The manufacturing method of the positive electrode 11 includes a coating process, a drying process, a slit process, a pressing process, a vacuum drying process, a cutting process, and an inspection process.

図2に示すように、塗布工程では、長尺集電体としての長尺金属箔18が長手方向に搬送された状態で、その長尺金属箔18の両面(図2では片面のみ図示)に対し、図示しない塗工装置から活物質合剤が間隔を空けて塗工される。塗工装置としては、リバースコータ型の塗工装置を用いてもよいし、スリットダイ方式の塗工装置を採用してもよく、間欠塗工が可能であれば、塗工装置は特に限定されない。その結果、活物質合剤の塗工部19と、長尺金属箔18の露出した露出部20とが、長尺金属箔18の長手方向に交互に形成される。すると、塗工部19と露出部20が長尺金属箔18の長手方向に交互に並設される。なお、活物質合剤は、活物質、導電助剤、及びバインダ(結着剤)を混合し、溶剤を添加して混練したペースト状のものである。   As shown in FIG. 2, in the coating process, the long metal foil 18 as a long current collector is conveyed in the longitudinal direction, and on both sides of the long metal foil 18 (only one side is shown in FIG. 2). On the other hand, the active material mixture is applied at intervals from a coating apparatus (not shown). As the coating apparatus, a reverse coater type coating apparatus may be used, or a slit die type coating apparatus may be employed. If intermittent coating is possible, the coating apparatus is not particularly limited. . As a result, the coating portions 19 of the active material mixture and the exposed portions 20 where the long metal foil 18 is exposed are alternately formed in the longitudinal direction of the long metal foil 18. Then, the coating parts 19 and the exposed parts 20 are alternately arranged in the longitudinal direction of the long metal foil 18. The active material mixture is a paste in which an active material, a conductive additive, and a binder (binder) are mixed and a solvent is added and kneaded.

また、塗布工程では、長尺金属箔18の面に沿い、かつ長手方向に直交する短手方向において、各塗工部19の両側には、余白部21が形成されるように活物質合剤が塗布される。そして、塗工部19、露出部20及び余白部21が形成されることにより電極材料23が形成される。   Further, in the coating process, the active material mixture is formed such that blank portions 21 are formed on both sides of each coating portion 19 in the short direction perpendicular to the longitudinal direction along the surface of the long metal foil 18. Is applied. And the electrode material 23 is formed by the coating part 19, the exposed part 20, and the blank part 21 being formed.

次に、図示しない乾燥工程では、電極材料23は、乾燥機内を通過する。乾燥機内には、例えば、80度前後の熱風が供給されている。電極材料23は、乾燥機内部を通過する間に、塗工部19に含まれる溶剤の大半が蒸発する。   Next, in a drying process (not shown), the electrode material 23 passes through the dryer. For example, hot air of about 80 degrees is supplied into the dryer. While the electrode material 23 passes through the inside of the dryer, most of the solvent contained in the coating unit 19 evaporates.

次工程のスリット工程では、電極材料23の短手方向両側の余白部21が切り落とされる。次工程のプレス工程は、一対のプレスローラで電極材料23を挟み込んで加圧することによって行われる。塗工部19は、それぞれ所定の厚みまで圧縮される。プレスされた電極材料23は、図示しない巻取リールに巻取られる。   In the slit process of the next process, the blank portions 21 on both sides in the short direction of the electrode material 23 are cut off. The next pressing step is performed by sandwiching and pressing the electrode material 23 with a pair of press rollers. The coating parts 19 are each compressed to a predetermined thickness. The pressed electrode material 23 is taken up on a take-up reel (not shown).

次工程の真空乾燥工程は、塗工部19に残った僅かな溶剤を取り除くために行われる。真空乾燥工程は、巻取リールに巻き取られた電極材料23を図示しない乾燥炉内に配置して行われる。そして、真空乾燥工程は、乾燥炉内を減圧するとともに、塗工部19を加熱することによって行われ、塗工部19に残存する僅かな溶剤が揮発するとともに、バインダが硬化する。次工程の切断工程は、電極材料23を長手方向に沿って等間隔おきに切断し、電極材料23を正極電極11の形状に打ち抜く。   The next vacuum drying step is performed to remove a slight amount of solvent remaining in the coating unit 19. The vacuum drying process is performed by placing the electrode material 23 taken up on the take-up reel in a drying furnace (not shown). And a vacuum drying process is performed by depressurizing the inside of a drying furnace and heating the coating part 19, and a little solvent which remains in the coating part 19 volatilizes, and a binder hardens | cures. In the next cutting step, the electrode material 23 is cut at regular intervals along the longitudinal direction, and the electrode material 23 is punched into the shape of the positive electrode 11.

図3に示すように、切断工程を行う切断装置30には、真空乾燥工程後の巻取リール31がセットされるとともに、巻取リール31に巻き取られた電極材料23を巻き取る別の巻取リール(図示せず)がセットされる。巻取リール31は、図示しない駆動装置に回転可能に支持される。切断装置30は、電極材料23を正極電極11の形状に打ち抜くカット装置33を備える。カット装置33は、電極材料23の搬送方向において巻取リール31より下流側に配置されている。   As shown in FIG. 3, in the cutting device 30 that performs the cutting process, the winding reel 31 after the vacuum drying process is set, and another winding for winding the electrode material 23 wound up on the winding reel 31 A take-up reel (not shown) is set. The take-up reel 31 is rotatably supported by a driving device (not shown). The cutting device 30 includes a cutting device 33 that punches the electrode material 23 into the shape of the positive electrode 11. The cutting device 33 is arranged downstream of the take-up reel 31 in the conveying direction of the electrode material 23.

そして、切断装置30では、巻取リール31に巻き取られた電極材料23を、別の巻取リールで巻き取ることで、電極材料23を搬送する。カット装置33によって、電極材料23を打ち抜くと、正極電極11の前駆体である電極前駆体24が形成される。   And in the cutting device 30, the electrode material 23 is conveyed by winding up the electrode material 23 wound up by the winding reel 31 with another winding reel. When the electrode material 23 is punched out by the cutting device 33, an electrode precursor 24 that is a precursor of the positive electrode 11 is formed.

図4に示すように、電極前駆体24は、正極電極11と同形状である。なお、電極前駆体24は、検査工程を経る前の状態を示し、検査工程を経た電極前駆体24が正極電極11となる。このため、電極前駆体24の塗工部19は、正極活物質層13と同じ形状であり、電極前駆体24の露出部20は、正極未塗工部15及び正極タブ14と同じ形状である。   As shown in FIG. 4, the electrode precursor 24 has the same shape as the positive electrode 11. The electrode precursor 24 shows a state before undergoing the inspection process, and the electrode precursor 24 that has undergone the inspection process becomes the positive electrode 11. For this reason, the coating part 19 of the electrode precursor 24 has the same shape as the positive electrode active material layer 13, and the exposed part 20 of the electrode precursor 24 has the same shape as the positive electrode uncoated part 15 and the positive electrode tab 14. .

次に、検査工程について説明する。
図3に示すように、検査工程は、切断装置30によって電極前駆体24を形成した直後に行われる。検査工程は、電極材料23の搬送方向における切断装置30の下流側に配置された光学的検出装置としての画像寸法測定器40を用いて行われる。検査工程は、電極前駆体24の塗工部19の塗工幅を測定する工程である。
Next, the inspection process will be described.
As shown in FIG. 3, the inspection process is performed immediately after the electrode precursor 24 is formed by the cutting device 30. The inspection process is performed using an image dimension measuring device 40 as an optical detection device disposed on the downstream side of the cutting device 30 in the conveying direction of the electrode material 23. The inspection process is a process of measuring the coating width of the coating part 19 of the electrode precursor 24.

二次電池においては、その電池容量が設計上定められた値を満たす必要がある。正極電極11及び負極電極の製造工程において、電池容量に直接影響する塗工部19の量を検査して、所定値を下回る電極は不良品となる。正極電極11及び負極電極の検査は、電極前駆体24における塗工部19の塗工幅を算出することで行われる。   In a secondary battery, the battery capacity needs to satisfy a value determined by design. In the manufacturing process of the positive electrode 11 and the negative electrode, the amount of the coating part 19 that directly affects the battery capacity is inspected, and an electrode below a predetermined value becomes a defective product. The inspection of the positive electrode 11 and the negative electrode is performed by calculating the coating width of the coating part 19 in the electrode precursor 24.

図4に示すように、電極前駆体24について、塗工部19と露出部20との境界に沿う方向を塗工部19のX方向とする。塗工部19の面方向に沿い、かつX方向に直交する方向を塗工部19のY方向とする。また、電極前駆体24において、露出部20との境界に位置する塗工部19の端縁を第1の端縁19a、及び第1の端縁19aの対辺に存在する塗工部19の端縁を第2の端縁19bとする。電極前駆体24の塗工部19において、Y方向に沿って第1の端縁19aと第2の端縁19bを最短距離で結ぶ直線の寸法を塗工幅Wとする。   As shown in FIG. 4, for the electrode precursor 24, the direction along the boundary between the coating part 19 and the exposed part 20 is defined as the X direction of the coating part 19. A direction along the surface direction of the coating unit 19 and perpendicular to the X direction is defined as a Y direction of the coating unit 19. Moreover, in the electrode precursor 24, the edge of the coating part 19 located on the boundary with the exposed part 20 is the first edge 19a and the edge of the coating part 19 existing on the opposite side of the first edge 19a. Let the edge be the second end edge 19b. In the coating part 19 of the electrode precursor 24, the dimension of a straight line connecting the first edge 19a and the second edge 19b along the Y direction at the shortest distance is defined as a coating width W.

図3に示すように、検査工程に用いられる画像寸法測定器40は、電極前駆体24の塗工部19の塗工幅Wを測定する。画像寸法測定器40は、電極前駆体24の塗工部19の画像を取得する測定部41と、測定部41に信号接続された制御部42を備える。制御部42には、測定部41で測定された画像情報が入力される。   As shown in FIG. 3, the image dimension measuring device 40 used in the inspection process measures the coating width W of the coating part 19 of the electrode precursor 24. The image dimension measuring device 40 includes a measuring unit 41 that acquires an image of the coating unit 19 of the electrode precursor 24, and a control unit 42 that is signal-connected to the measuring unit 41. Image information measured by the measurement unit 41 is input to the control unit 42.

ところで、図5に示すように、塗工部19の第1の端縁19aには、Y方向に沿って山形状に突出した形状の突出部50が形成されている場合がある。突出部50が形成される原因は、塗布工程における振動現象が原因と推測される。塗布工程時、発生した振動により塗工装置と長尺金属箔18との距離が変化してしまい、塗工部19の第1の端縁19aに山形の突出部50が形成されると推測される。   By the way, as shown in FIG. 5, the 1st edge 19a of the coating part 19 may be formed with the protrusion part 50 of the shape which protruded in the mountain shape along the Y direction. The cause of the protrusion 50 being formed is presumed to be due to the vibration phenomenon in the coating process. It is presumed that the distance between the coating device and the long metal foil 18 changes due to the generated vibration during the coating process, and the angled protrusion 50 is formed on the first edge 19a of the coating part 19. The

突出部50は、先端ほど細くなる形状であったり、突出部50の先端付近に活物質合剤の飛散した「飛び」といわれる現象が起きたりし、画像寸法測定器40によって、塗工部19と露出部20の境界を検出できず、塗工部19の塗工幅Wを検出できない場合がある。突出部50の先端の位置を含む塗工幅Wを測定できない場合、突出部50の先端の位置を座標として検出する工程が行われる。   The protrusion 50 has a shape that becomes narrower toward the tip, or a phenomenon called “flying” in which the active material mixture is scattered near the tip of the protrusion 50, and the coating portion 19 is applied by the image size measuring instrument 40. And the exposed portion 20 cannot be detected, and the coating width W of the coating portion 19 may not be detected. When the coating width W including the position of the tip of the protrusion 50 cannot be measured, a step of detecting the position of the tip of the protrusion 50 as a coordinate is performed.

図6に示すように、突出部50は、突出方向の先端に繋がる一方の側部に第1の端部領域51aを備え、先端に繋がる他方の側部に第2の端部領域51bを備える。第1の端部領域51a及び第2の端部領域51bは、それぞれY方向に沿って突出部50の先端に向かって円弧状に変形している。   As shown in FIG. 6, the protrusion 50 includes a first end region 51a on one side connected to the tip in the protruding direction, and a second end region 51b on the other side connected to the tip. . The first end region 51a and the second end region 51b are each deformed in an arc shape toward the tip of the protruding portion 50 along the Y direction.

次に、突出部50の先端の位置を検出する方法を記載する。
まず、制御部42は、塗工部19上の位置のうち、第1の端縁19aに近い位置において、X方向における任意の基準点X0を設定する。また、塗工部19上の位置のうち、基準点X0におけるY方向の位置を基準点Y0と設定する。これにより、塗工部19上に任意の基準点(X0,Y0)が設定される。なお、基準点は、画像寸法測定器40の測定部41によって測定された塗工部19の画像から取得される。
Next, a method for detecting the position of the tip of the protrusion 50 will be described.
First, the control unit 42 sets an arbitrary reference point X0 in the X direction at a position close to the first edge 19a among the positions on the coating unit 19. Moreover, the position of the Y direction in the reference | standard point X0 among the positions on the coating part 19 is set with the reference | standard point Y0. Thereby, an arbitrary reference point (X0, Y0) is set on the coating part 19. The reference point is acquired from the image of the coating unit 19 measured by the measuring unit 41 of the image dimension measuring device 40.

次に、制御部42は、測定部41によって測定された画像から、第1の端部領域51aに関し、基準点Y0からY方向に離れた任意の2点(Xr1,Yr1)、(Xr2,Yr2)を取得する。そして、制御部42は、これら2点(Xr1,Yr1)、(Xr2,Yr2)に一次回帰分析法(典型的には最小二乗法)を適用して円弧に近似した第1の近似曲線L1を求める。第1の近似曲線L1は、第1の端部領域51aの円弧に沿う楕円状である。   Next, the control unit 42 determines any two points (Xr1, Yr1), (Xr2, Yr2) separated from the reference point Y0 in the Y direction with respect to the first end region 51a from the image measured by the measurement unit 41. ) To get. Then, the control unit 42 applies a first regression analysis method (typically, the least square method) to these two points (Xr1, Yr1) and (Xr2, Yr2) to obtain a first approximate curve L1 approximated to an arc. Ask. The first approximate curve L1 is elliptical along the arc of the first end region 51a.

同様に、制御部42は、第2の端部領域51bに関し、基準点Y0からY方向に離れた任意の2点(Xb1,Yb1)、(Xb2,Yb2)を取得する。そして、制御部42は、これら2点(Xb1,Yb1)、(Xb2,Yb2)に一次回帰分析法(典型的には最小二乗法)を適用して円弧に近似した第2の近似曲線L2を求める。第2の近似曲線L2は、第2の端部領域51bの円弧に沿う楕円状である。   Similarly, the control unit 42 acquires arbitrary two points (Xb1, Yb1) and (Xb2, Yb2) that are separated from the reference point Y0 in the Y direction with respect to the second end region 51b. Then, the control unit 42 applies a first regression analysis method (typically, the least square method) to these two points (Xb1, Yb1) and (Xb2, Yb2) to obtain a second approximate curve L2 approximated to an arc. Ask. The second approximate curve L2 has an elliptical shape along the arc of the second end region 51b.

次に、制御部42は、第1の近似曲線L1の軌跡と、第2の近似曲線L2の軌跡の交点のうち、基準点(X0,Y0)に近い方の交点を、突出部50の先端の座標(Xc,Yc)とする。これにより、突出部50の先端に関し、基準点X0からのX方向への寸法と、基準点Y0からのY方向への寸法T2が取得され、突出部50の位置が検出される。   Next, the control unit 42 sets the intersection closer to the reference point (X0, Y0) among the intersections of the trajectory of the first approximate curve L1 and the trajectory of the second approximate curve L2 to the tip of the protrusion 50. Coordinates (Xc, Yc). Thereby, with respect to the tip of the protrusion 50, the dimension in the X direction from the reference point X0 and the dimension T2 in the Y direction from the reference point Y0 are acquired, and the position of the protrusion 50 is detected.

次に、制御部42は、図5に示す第2の端縁19bから基準点までのY方向への寸法T1と、図6に示す基準点Y0から突出部50の先端までのY方向への寸法T2とを加算して、突出部50の先端を含む塗工部19の塗工幅Wを算出する。   Next, the control unit 42 measures the dimension T1 in the Y direction from the second edge 19b to the reference point shown in FIG. 5 and the Y direction from the reference point Y0 to the tip of the protrusion 50 shown in FIG. The coating width W of the coating part 19 including the tip of the protruding part 50 is calculated by adding the dimension T2.

塗工部19において、突出部50の存在しない部位は、画像寸法測定器40によって塗工幅Wが検出される。そして、塗工部19のX方向全体に亘り塗工幅Wを検出する。
その後、得られた塗工部19の塗工幅Wに関し、予め設定された塗工幅Wの閾値と比較する。塗工幅Wの閾値は正極電極11に規定の容量を確保するのに必要な塗工幅の値である。検出された塗工幅Wの中に、閾値未満の塗工幅Wがあれば、その塗工部19を含む正極電極11を不良品とする。
In the coating unit 19, the coating width W is detected by the image size measuring device 40 at a portion where the protruding portion 50 does not exist. And the coating width W is detected over the whole X direction of the coating part 19. FIG.
Thereafter, the coating width W of the obtained coating part 19 is compared with a preset threshold value of the coating width W. The threshold value of the coating width W is a value of the coating width necessary to ensure a prescribed capacity for the positive electrode 11. If the detected coating width W has a coating width W less than the threshold value, the positive electrode 11 including the coating portion 19 is regarded as a defective product.

その後、良品とされた正極電極11及び負極電極を用い、それら正極電極11と負極電極とがセパレータによって相互に絶縁された状態で積層され、電極組立体が形成される。
上記実施形態によれば、以下のような効果を得ることができる。
Thereafter, the positive electrode 11 and the negative electrode, which are regarded as non-defective products, are used, and the positive electrode 11 and the negative electrode are stacked in a state of being insulated from each other by a separator, thereby forming an electrode assembly.
According to the above embodiment, the following effects can be obtained.

(1)正極電極11の良否を判定するため、画像寸法測定器40によって塗工部19の塗工幅Wを測定する際、突出部50の先端の位置を検出できず、塗工幅Wを検出できない場合がある。この場合、画像寸法測定器40で得られた画像から、塗工部19上の基準点、各端部領域51a,51b上の任意の2点を取得する。それらの点から各端部領域51a,51bに沿う近似曲線L1,L2を求め、それら近似曲線L1,L2の交点のうち基準点に近い交点を、突出部50の先端の座標とし、突出部50の先端の位置を算出する。よって、画像寸法測定器40によって、突出部50の先端の位置を検出できなくても、得られた画像を用いて突出部50の先端の位置を算出し、検出できる。したがって、画像寸法測定器40以外の装置を別に設けることなく、突出部50の先端の位置を算出し、安定して塗工幅Wを得ることができる。   (1) When measuring the coating width W of the coating part 19 by the image size measuring instrument 40 in order to determine the quality of the positive electrode 11, the position of the tip of the protruding part 50 cannot be detected, and the coating width W is It may not be detected. In this case, a reference point on the coating unit 19 and two arbitrary points on each of the end regions 51a and 51b are acquired from the image obtained by the image size measuring device 40. From these points, approximate curves L1 and L2 along the end regions 51a and 51b are obtained, and the intersection point close to the reference point among the intersection points of these approximate curves L1 and L2 is the coordinates of the tip of the projection 50, and the projection 50 The position of the tip of is calculated. Therefore, even if the position of the tip of the protrusion 50 cannot be detected by the image size measuring instrument 40, the position of the tip of the protrusion 50 can be calculated and detected using the obtained image. Therefore, the position of the tip of the protruding portion 50 can be calculated and the coating width W can be obtained stably without providing a device other than the image size measuring instrument 40.

(2)各端部領域51a,51bに沿う近似曲線L1,L2は楕円状である。このため、第1の近似曲線L1と第2の近似曲線L2の2つの交点を導出でき、そのうち基準点Y0に近い交点を突出部50の先端の位置とすることができる。   (2) The approximate curves L1 and L2 along the end regions 51a and 51b are elliptical. For this reason, two intersections of the first approximate curve L1 and the second approximate curve L2 can be derived, and the intersection close to the reference point Y0 can be set as the position of the tip of the protruding portion 50.

(3)本実施形態の検査方法を正極電極11に適用した。正極電極11の塗工部19は、負極電極の塗工部より硬い場合が多く、正極電極11用の電極材料23を巻き取り可能とするためには、塗工部19と露出部20が交互に存在することが必要となる。このため、正極電極11の製造方法において、活物質合剤の塗布は間欠塗工によって行われることとなる。間欠塗工の場合には、活物質合剤の塗工と非塗工が繰り返されることから振動が発生しやすく、振動を原因としたびびりが発生しやすく、山形状の突出部50が形成されやすい。しかし、本実施形態では、突出部50の先端の位置を算出できるため、本実施形態の検査方法は、正極電極11に適用するのがより好ましい。   (3) The inspection method of this embodiment was applied to the positive electrode 11. The coating part 19 of the positive electrode 11 is often harder than the coating part of the negative electrode, and the coating part 19 and the exposed part 20 are alternately arranged so that the electrode material 23 for the positive electrode 11 can be wound. Must be present. For this reason, in the manufacturing method of the positive electrode 11, application | coating of an active material mixture will be performed by intermittent coating. In the case of intermittent coating, since active material mixture coating and non-coating are repeated, vibration is likely to occur, chatter due to vibration is likely to occur, and a mountain-shaped protrusion 50 is formed. Cheap. However, in this embodiment, since the position of the tip of the protrusion 50 can be calculated, the inspection method of this embodiment is more preferably applied to the positive electrode 11.

(4)検査工程は、電極材料23を正極電極11の形状に打ち抜いて電極前駆体24を形成した直後であり、電極の積層の前に行われる。電極前駆体24の塗工部19は、そのまま正極電極11の正極活物質層13となる部位である。よって、例えば、活物質合剤を長尺金属箔18に塗工した直後に検査工程を行う場合と比べると、突出部50の先端の位置を算出した後、塗工幅Wを精度良く検出することができ、正極電極11の良否を精度良く判定できる。   (4) The inspection step is immediately after the electrode material 23 is punched into the shape of the positive electrode 11 to form the electrode precursor 24, and is performed before the electrodes are stacked. The coating part 19 of the electrode precursor 24 is a part that becomes the positive electrode active material layer 13 of the positive electrode 11 as it is. Therefore, for example, compared with the case where the inspection process is performed immediately after the active material mixture is applied to the long metal foil 18, the position of the tip of the protrusion 50 is calculated, and then the coating width W is detected with high accuracy. The quality of the positive electrode 11 can be determined with high accuracy.

なお、上記実施形態は以下のように変更してもよい。
○ 実施形態では、塗工部19の塗工幅Wの検出を、第2の端縁19bから基準点までのY方向への寸法T1と、基準点から突出部50の先端までのY方向への寸法T2とを加算して行ったが、塗工幅Wの検出は他の方法で行ってもよい。
In addition, you may change the said embodiment as follows.
In the embodiment, the detection of the coating width W of the coating part 19 is performed in the dimension T1 in the Y direction from the second edge 19b to the reference point, and in the Y direction from the reference point to the tip of the protrusion 50. However, the coating width W may be detected by other methods.

○ 突出部50の各端部領域51a,51bに沿う近似曲線L1,L2は真円状であってもよい。
○ 実施形態では、突出部50の検査工程を、電極材料23を電極の形状に打ち抜いて電極前駆体24を形成した直後に行ったが、検査工程を行う時期は適宜変更してもよい。例えば、スリット工程やプレス工程直後でもよい。
The approximate curves L1 and L2 along the end regions 51a and 51b of the protrusion 50 may be a perfect circle.
In the embodiment, the inspection process of the protrusion 50 is performed immediately after the electrode material 23 is punched into the shape of the electrode to form the electrode precursor 24. However, the timing of performing the inspection process may be changed as appropriate. For example, it may be immediately after the slitting process or the pressing process.

○ 長尺集電体は、長尺の金属箔以外でもよく、長尺状であり、パンチングメタルや3次元構造を持つ金属繊維などであってもよい。
○ 負極電極に関し、その活物質合剤の塗布工程が間欠塗工で行われ、かつ負極電極が活物質層の端縁に沿う未塗工部を備える構成であれば、負極電極の製造過程に検査工程を設けてもよい。
The long current collector may be other than a long metal foil, is a long shape, and may be a punching metal or a metal fiber having a three-dimensional structure.
○ Regarding the negative electrode, if the application process of the active material mixture is performed by intermittent coating, and the negative electrode has a structure including an uncoated portion along the edge of the active material layer, the negative electrode is manufactured. An inspection process may be provided.

○ 設定する基準点の位置、各端部領域51a,51b上の2点の位置は適宜変更してもよい。
○ 光学的検出装置は、画像寸法測定器40以外の装置でもよく、例えば静電容量や、圧電素子や、レーザ光及びこれらの干渉や組み合わせを応用した非接触式検出装置、さらには探触子による接触式検出装置でもよい。
The position of the reference point to be set and the positions of the two points on the end regions 51a and 51b may be changed as appropriate.
The optical detection device may be a device other than the image size measuring instrument 40, for example, a non-contact detection device using a capacitance, a piezoelectric element, a laser beam, and interference and combinations thereof, and a probe. It may be a contact type detecting device.

○ 電極材料23は、長尺金属箔18の片面だけに塗工部19を備える構成であってもよい。この場合、正極電極11は正極集電箔12の片面に正極活物質層13を備え、負極電極は、負極集電箔の片面に負極活物質層を備える構成となる。   The electrode material 23 may be configured to have the coating part 19 only on one side of the long metal foil 18. In this case, the positive electrode 11 includes a positive electrode active material layer 13 on one surface of the positive electrode current collector foil 12, and the negative electrode includes a negative electrode active material layer on one surface of the negative electrode current collector foil.

○ 前述の正極電極11及び負極電極は、各電極を外部端子などと接続するために、一辺から突出した形状のタブを備えているが、これに限定されるものではなく、例えば、電極の一辺に沿って一定幅の未塗工部が形成され、未塗工部を接続に用いる構造であってもよい。   ○ The positive electrode 11 and the negative electrode described above are provided with tabs having a shape protruding from one side in order to connect each electrode to an external terminal or the like, but are not limited to this. For example, one side of the electrode A structure in which an uncoated part having a certain width is formed along the line and the uncoated part is used for connection may be used.

○ 本発明は、ニッケル水素電池など、リチウムイオン二次電池以外の二次電池にも適用可能である。
○ 例えばキャパシタなど、二次電池以外の蓄電装置にも適用できる。
(Circle) this invention is applicable also to secondary batteries other than a lithium ion secondary battery, such as a nickel metal hydride battery.
○ It can also be applied to power storage devices other than secondary batteries, such as capacitors.

次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
(1)前記電極は蓄電装置用である電極の検査方法。
(2)前記蓄電装置は二次電池である電極の検査方法。
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.
(1) A method for inspecting an electrode in which the electrode is for a power storage device.
(2) The method for inspecting an electrode in which the power storage device is a secondary battery.

L1,L2…近似曲線、X0,Y0…基準点、W…塗工幅、11…電極としての正極電極、18…長尺集電体としての長尺金属箔、19…塗工部、19a…第1の端縁、19b…第2の端縁、20…露出部、23…電極材料、24…電極前駆体、40…光学的検出装置としての画像寸法測定器、50…突出部、51a,51b…端部領域。   L1, L2 ... approximate curve, X0, Y0 ... reference point, W ... coating width, 11 ... positive electrode as electrode, 18 ... long metal foil as long current collector, 19 ... coating part, 19a ... 1st edge, 19b ... 2nd edge, 20 ... exposed part, 23 ... electrode material, 24 ... electrode precursor, 40 ... image dimension measuring device as an optical detection device, 50 ... projecting part, 51a, 51b ... end region.

Claims (4)

長尺集電体の長手方向に沿って活物質合剤を塗布して形成された塗工部と、前記長尺集電体の露出した露出部とを、前記長尺集電体の長手方向に交互に備える電極材料を切断して形成される電極の検査方法において、
前記塗工部と前記露出部の境界に沿う方向をX方向とし、前記塗工部の面方向に沿い、かつ前記X方向に直交する方向を前記塗工部のY方向とし、前記露出部との境界に位置する前記塗工部の端縁を第1の端縁、及び前記第1の端縁の対辺に存在する前記塗工部の端縁を第2の端縁とし、前記Y方向に沿って前記第1の端縁と前記第2の端縁を最短距離で結ぶ直線の寸法を塗工幅とすると、
前記塗工幅の検出のために光学的検出装置で前記塗工部を検出した際、前記第1の端縁に存在し、かつ前記Y方向に突出した突出部の先端の位置を検出できなかった場合、
前記光学的検出装置で得られた画像における前記塗工部に基準点X0,Y0を設定し、
前記突出部の先端を前記X方向に挟む端部領域に関し、前記X方向の位置と前記Y方向の位置の関数の近似曲線を作成し、各端部領域について得られた近似曲線の交点のうち、前記Y方向において前記基準点Y0に近い交点を前記突出部の先端の位置として算出することを特徴とする電極の検査方法。
A coating portion formed by applying an active material mixture along the longitudinal direction of the long current collector, and an exposed portion of the long current collector exposed to the longitudinal direction of the long current collector In the inspection method of the electrode formed by cutting the electrode material alternately provided to,
The direction along the boundary between the coated part and the exposed part is the X direction, the direction along the surface direction of the coated part and perpendicular to the X direction is the Y direction of the coated part, and the exposed part The edge of the coating part located at the boundary of the first part is the first edge, and the edge of the coating part existing on the opposite side of the first edge is the second edge, in the Y direction When the coating width is a dimension of a straight line connecting the first edge and the second edge along the shortest distance along the line,
When the coating part is detected by an optical detection device for detecting the coating width, the position of the tip of the projecting part that exists in the first edge and projects in the Y direction cannot be detected. If
Set reference points X0, Y0 in the coating part in the image obtained by the optical detection device,
Regarding an end region sandwiching the tip of the protruding portion in the X direction, an approximate curve of a function of the position in the X direction and the position in the Y direction is created, and among the intersections of the approximate curves obtained for each end region A method of inspecting an electrode, wherein an intersection point close to the reference point Y0 in the Y direction is calculated as a position of a tip of the protruding portion.
前記端部領域に沿う前記近似曲線は円弧状である請求項1に記載の電極の検査方法。   The electrode inspection method according to claim 1, wherein the approximate curve along the end region has an arc shape. 前記電極は正極電極である請求項1又は請求項2に記載の電極の検査方法。   The electrode inspection method according to claim 1, wherein the electrode is a positive electrode. 前記電極材料を前記電極の形状に切断して電極前駆体を形成した後で、かつ前記電極を積層する前に、前記突出部の先端の位置を検出する請求項1〜請求項3のうちいずれか一項に記載の電極の検査方法。   The position of the front-end | tip of the said protrusion part is detected after forming the electrode precursor by cut | disconnecting the said electrode material in the shape of the said electrode, and before laminating | stacking the said electrode. The electrode inspection method according to claim 1.
JP2016101559A 2016-05-20 2016-05-20 Inspection method of electrode Pending JP2017208294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016101559A JP2017208294A (en) 2016-05-20 2016-05-20 Inspection method of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016101559A JP2017208294A (en) 2016-05-20 2016-05-20 Inspection method of electrode

Publications (1)

Publication Number Publication Date
JP2017208294A true JP2017208294A (en) 2017-11-24

Family

ID=60416420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016101559A Pending JP2017208294A (en) 2016-05-20 2016-05-20 Inspection method of electrode

Country Status (1)

Country Link
JP (1) JP2017208294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117969533A (en) * 2024-03-27 2024-05-03 宁德时代新能源科技股份有限公司 Insulation coating detection method, device, system, equipment and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117969533A (en) * 2024-03-27 2024-05-03 宁德时代新能源科技股份有限公司 Insulation coating detection method, device, system, equipment and storage medium

Similar Documents

Publication Publication Date Title
JP6402308B2 (en) Method and apparatus for detecting displacement of electrode plate in electrode laminate
KR101775241B1 (en) Electrode body and electrode body manufacturing method
JP6103220B2 (en) Marking device, inspection device, and electrode manufacturing method
JP5383471B2 (en) Electrode manufacturing system
US20230402722A1 (en) Battery cell with a tabless electrode
JP6705126B2 (en) Method for manufacturing electrode plate
JP2013051035A (en) Manufacturing method of electrode for battery, and electrode for battery
JP6167854B2 (en) Electrode for power storage device and electrode assembly for power storage device
JP2014022102A (en) Power storage device and secondary battery and manufacturing method for electrode
JP2015060698A (en) Method of manufacturing electrode, and electrode manufacturing device
JP2016181409A (en) Power storage element
JP2018113110A (en) Battery manufacturing method
JP2017196669A (en) Electrode manufacturing facility
US10236497B2 (en) Intermittently coated battery electrode manufacturing method
JP2017208294A (en) Inspection method of electrode
JP2014102897A (en) Power storage device and manufacturing method for power storage device
JP2019212461A (en) Electrode manufacturing method and electrode manufacturing device
JP5862508B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
JP2014202600A (en) Electrode inspection device and method of manufacturing electrode
CN109841907B (en) Method for manufacturing wound electrode assembly
JP2016181469A (en) Method for manufacturing electrode sheet of power storage device, and inspection method
JP2015146232A (en) Method for manufacturing electrode, and electrode
JP2014220196A (en) Method and device for manufacturing electrode
JP2015115116A (en) Press apparatus and manufacturing method of electrode material
US20190013511A1 (en) Electrode sheet manufacturing method