JP2017207361A - Road surface state detection unit, road surface state discrimination system, and moving body - Google Patents

Road surface state detection unit, road surface state discrimination system, and moving body Download PDF

Info

Publication number
JP2017207361A
JP2017207361A JP2016099544A JP2016099544A JP2017207361A JP 2017207361 A JP2017207361 A JP 2017207361A JP 2016099544 A JP2016099544 A JP 2016099544A JP 2016099544 A JP2016099544 A JP 2016099544A JP 2017207361 A JP2017207361 A JP 2017207361A
Authority
JP
Japan
Prior art keywords
road surface
surface state
image
imaging
illumination light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016099544A
Other languages
Japanese (ja)
Other versions
JP6776614B2 (en
Inventor
伊藤 泉
Izumi Ito
泉 伊藤
小林 正典
Masanori Kobayashi
正典 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2016099544A priority Critical patent/JP6776614B2/en
Publication of JP2017207361A publication Critical patent/JP2017207361A/en
Application granted granted Critical
Publication of JP6776614B2 publication Critical patent/JP6776614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a new road surface state detection unit for detecting a road surface state on the basis of polarization information acquired by imaging means.SOLUTION: The road surface state detection unit includes: an illumination light source LS for lighting a road surface ER in a spot shape; and one or more imaging means CM for imaging a P polarization component image and an S polarization component image of reflected light by the road surface lit in the spot shape by the illumination light source. The optical axis of the image formation optical system of at least one of the imaging means is directed to a center CSP of an illumination object lit in the spot shape and is set at an installation angle: θC in an angle range of ±0.2θL from the regular reflection direction of an illumination light flux by the illumination light source with respect to a regular reflection angle: θL of the illumination light flux.SELECTED DRAWING: Figure 1

Description

この発明は路面状態検知ユニットおよび路面状態判別システムおよび移動体に関する。   The present invention relates to a road surface state detection unit, a road surface state determination system, and a moving body.

撮像手段の撮像素子上に、領域分割した偏光フィルタを設置し、ピクセル毎に取得する光の偏光方向を変えて、撮影した画像の偏光情報を得ることにより、路面状態の判別を行うことが知られている(特許文献1、2)。   It is known that a road surface state is discriminated by installing a polarization filter divided into regions on the imaging device of the imaging means, changing the polarization direction of the light acquired for each pixel, and obtaining the polarization information of the captured image. (Patent Documents 1 and 2).

この発明は、撮像手段により取得される偏光情報により路面状態を検知する新規な路面状態検知ユニットの実現を課題とする。   This invention makes it a subject to implement | achieve the novel road surface state detection unit which detects a road surface state by the polarization information acquired by an imaging means.

この発明の路面状態検知ユニットは、路面をスポット状に照明する照明光源と、該照明光源によりスポット状に照明された前記路面による反射光のP偏光成分画像とS偏光成分画像を撮像する1以上の撮像手段と、を有し、前記撮像手段の少なくとも1つは、その結像光学系の光軸が前記スポット状に照明された被照明部の中心に向かい、且つ、前記照明光源による照明光束の正反射角:θLに対して、前記照明光束の正反射方向から±0.2θLの角範囲にある設置角:θCに設定されている。   The road surface state detection unit of the present invention captures an illumination light source that illuminates the road surface in a spot shape, and picks up a P-polarized component image and an S-polarized component image of reflected light from the road surface illuminated in a spot shape by the illumination light source. At least one of the imaging means, the optical axis of the imaging optical system is directed to the center of the illuminated part illuminated in the spot shape, and the illumination light beam by the illumination light source Is set to an installation angle: θC that is within an angular range of ± 0.2θL from the regular reflection direction of the illumination light beam.

この発明によれば、撮像手段により取得される偏光情報により路面状態を検知する新規な路面状態検知ユニットを実現できる。   According to the present invention, it is possible to realize a novel road surface state detection unit that detects a road surface state based on polarization information acquired by an imaging unit.

路面状態検知ユニットの実施の1形態を説明するための概念図である。It is a conceptual diagram for demonstrating one Embodiment of a road surface state detection unit. 撮像手段の1形態例を説明するための図である。It is a figure for demonstrating one example of an imaging means. 路面情報判別システムの実施の1形態を概念図として示す図である。It is a figure which shows one form of implementation of a road surface information discrimination system as a conceptual diagram. 路面状態の判別を行う工程を説明する図である。It is a figure explaining the process of discriminating a road surface state. 反射光におけるS偏光、P偏光の強度と差分偏光度を示す図である。It is a figure which shows the intensity | strength and differential polarization degree of S polarized light and P polarized light in reflected light. 特徴量としてのヒストグラムを説明するための図である。It is a figure for demonstrating the histogram as a feature-value. 特徴量としての輝度平均値および差分偏光度画像平均値を説明するための図である。It is a figure for demonstrating the brightness | luminance average value and difference polarization degree image average value as a feature-value. 図7の輝度平均値、差分偏光度画像平均値を特徴量として、路面状態の判別を行う手順の1例を示す判別フロー図である。FIG. 8 is a determination flowchart showing an example of a procedure for determining a road surface state using the luminance average value and the differential polarization degree image average value of FIG. 7 as feature amounts. 路面状態検知ユニットの実施の別形態を説明するための図である。It is a figure for demonstrating another form of implementation of a road surface state detection unit. 路面による反射光のP偏光とS偏向の反射角による変化の1例を示す図である。It is a figure which shows an example of the change by the reflection angle of P polarization of the reflected light by a road surface, and S deflection | deviation. 路面状態に応じた撮像手段CMA、CMB間の撮像手段間差分輝度Pの値と、撮像手段間差分輝度Sの値の1例を示す図である。It is a figure which shows an example of the value of the difference brightness | luminance P between the imaging means between the imaging means CMA and CMB according to a road surface state, and the value of the difference brightness | luminance S between imaging means. 路面状態判別システムの使用例を2例示す図である。It is a figure which shows two examples of use of a road surface state determination system.

以下、実施の形態を説明する。
図1は、路面状態検知ユニットの実施の1形態を説明するための概念図である。
図1(a)において、符号UTで示す部分が「路面状態検知ユニット」を示す。
路面状態検知ユニットUTは、照明光源LSと撮像手段CMとを有する。照明光源LSは、路面ERをスポット状に照明するものであり「LEDやハロゲンランプ等、無偏光の照明光束を放射する発光源」を用いる公知の適宜の光源装置を用いることができる。
図1(a)において、符号LPは「照明光束の主光線(照明光束中で「最大の光強度」を持つ光線)」を示す。
照明光束の主光線LPは路面ERにおける位置CSPに入射する。
路面ERは照明光束によりスポット状に照明されるが、主光線LPが入射する位置CSPを「スポット状の被照明部の中心」と称する。「照明光束」は、平行光束、収束光束、発散光束等、種々の光束形態が許容されるが、光利用効率の観点からは「被照射部におけるスポット形状があまり大きくない」ことが好ましく、この観点からすると、照明光束の光束形態は、平行光束や「弱い発散性もしくは弱い収束性」の光束形態が好適である。
Hereinafter, embodiments will be described.
FIG. 1 is a conceptual diagram for explaining one embodiment of a road surface state detection unit.
In FIG. 1A, the portion indicated by the symbol UT indicates a “road surface state detection unit”.
The road surface state detection unit UT includes an illumination light source LS and an imaging unit CM. The illumination light source LS illuminates the road surface ER in a spot shape, and a known appropriate light source device using a “light emitting source that emits an unpolarized illumination light beam such as an LED or a halogen lamp” can be used.
In FIG. 1A, the symbol LP indicates “a principal ray of an illumination light beam (a light ray having“ maximum light intensity ”in the illumination light beam)”.
The principal ray LP of the illumination light beam enters the position CSP on the road surface ER.
The road surface ER is illuminated in a spot shape by the illumination light beam, and the position CSP where the principal ray LP is incident is referred to as “the center of the spot-shaped illuminated portion”. The “illumination light beam” may be in various light beam forms such as a parallel light beam, a convergent light beam, and a divergent light beam. However, from the viewpoint of light utilization efficiency, it is preferable that “the spot shape at the irradiated portion is not so large”. From the viewpoint, the luminous flux of the illumination luminous flux is preferably a parallel luminous flux or a “weakly divergent or weakly convergent” luminous flux.

図1(a)において、符号「n」は、位置CSPにおいて路面に立てた法線を示し、角:θ1は「主光線LPと法線nとがなす角」であり、この角:θ1をもって「照明光束の入射角」とする。
図1(a)において、符号LRPは、照明光束の主光線LPの路面ERによる正反射光を示し、正反射光LRPと法線nとのなす角:θLを「照明光束の正反射角」と言う。
撮像手段CMについては後述するが、撮像素子と「路面ERの被照明部の像を撮像素子上に結像する結像光学系」を有しており、図1(a)における符号「AX」は、撮像手段CMにおける結像光学系の光軸を示している。撮像手段CMは、光軸AXが、路面ER状の位置CSP、即ち「スポット状に照明された被照明部の中心」を通るように向きを定められる。図中の角:θCは「光軸AXと法線nとがなす角」であり、この角:θCを「撮像手段CMの設置角」と呼ぶ。
In FIG. 1A, the symbol “n” indicates a normal line standing on the road surface at the position CSP, and the angle: θ1 is “the angle formed by the principal ray LP and the normal line n”. Let it be the “incident angle of the illumination beam”.
In FIG. 1A, symbol LRP indicates regular reflection light by the road surface ER of the principal ray LP of the illumination light beam, and an angle θL between the regular reflection light LRP and the normal line n is “a regular reflection angle of the illumination light beam”. Say.
Although the imaging means CM will be described later, it has an imaging device and an “imaging optical system that forms an image of the illuminated portion of the road surface ER on the imaging device”. Reference numeral “AX” in FIG. Indicates the optical axis of the imaging optical system in the imaging means CM. The imaging means CM is oriented so that the optical axis AX passes through the position CSP in the ER shape of the road surface, that is, “the center of the illuminated part illuminated in a spot shape”. In the figure, an angle: θC is an “angle formed by the optical axis AX and the normal line n”, and this angle: θC is referred to as an “installation angle of the imaging means CM”.

付言すると、一般に、路面の状態は、乾燥状態および湿潤状態では「凹凸を持つ粗面」であり、凍結状態では「平面に近い状態」となる。   In addition, in general, the road surface state is a “rough surface with unevenness” in a dry state and a wet state, and “a state close to a flat surface” in a frozen state.

上記法線n、入射角:θ1、正反射角:θL、設置角:θCは何れも、上記粗面を「平面と見做した状態」で定義される。
撮像手段CMの設置角:θCは、照明光束の正反射方向、即ち、正反射光LRPの正反射角:θLに対して「±0.2θL」の角範囲にある。
即ち「撮像手段CMの光軸(位置CSPを通る。)と正反射光LRPとがなす角」は「±0.2θL」の範囲に含まれる。
図1(b)を参照すると、この図は、正反射光LRPを軸、位置CSPを頂点とし、頂角が|0.4θL|である円錐状領域を示している。
撮像手段CMの設置角:θCが「照明光束の正反射角:θLに対して、照明光束の正反射方向から±0.2θLの角範囲にある」とは、撮像手段CMの結像光学系の光軸AXが位置CSPを通り、図1(b)に示す円錐状領域内に含まれることを意味する。
特別の場合として、図1(a)に示す「主光線LPと法線n、正反射光LRPを含む平面内」で考えれば、設置角:θLは、
θL−0.2θL≦θC≦θL+0.2θL
の範囲にあることになる。
撮像手段CMの設置角:θCに関する上記条件は、撮像手段CMの光軸AXが「正反射光LRPと合致」する場合を含むことは言うまでもない。
The normal n, the incident angle: θ1, the regular reflection angle: θL, and the installation angle: θC are all defined in the “state where the rough surface is regarded as a plane”.
The installation angle: θC of the imaging means CM is in the angular range of “± 0.2θL” with respect to the regular reflection direction of the illumination light beam, that is, the regular reflection angle of the regular reflected light LRP: θL.
That is, “the angle formed by the optical axis of the imaging unit CM (passing through the position CSP) and the specularly reflected light LRP” is included in the range of “± 0.2θL”.
Referring to FIG. 1B, this figure shows a conical region having the specularly reflected light LRP as an axis, the position CSP as an apex, and an apex angle of | 0.4θL |.
The installation angle of the imaging means CM: θC is “within the angular range of ± 0.2θL from the regular reflection direction of the illumination light beam with respect to the regular reflection angle of the illumination light beam: θL”. Means that the optical axis AX passes through the position CSP and is included in the conical region shown in FIG.
As a special case, when considered in “in the plane including the principal ray LP, the normal n, and the regular reflection light LRP” shown in FIG.
θL−0.2θL ≦ θC ≦ θL + 0.2θL
Will be in the range.
Needless to say, the above-mentioned condition regarding the installation angle: θC of the imaging unit CM includes a case where the optical axis AX of the imaging unit CM “matches the regular reflection light LRP”.

図2を参照して撮像手段の1形態を説明する。
図2(a)は、撮像手段CMの概念図である。
撮像手段CMは、照明光源によりスポット状に照明された路面による反射光の偏光情報として「P偏光成分画像とS偏光成分画像」を撮像する手段である。
撮像手段CMは、図2(a)に示すように、「結像光学系」であるレンズLNと、撮像素子ISと、光学フィルタFLとをケーシング内に有している。
図2(c)は、撮像素子ISと光学フィルタFLを横方向から見た状態を示す。
撮像素子ISは、基板ST上にピクセルの2次元配列による受光部12を有している。説明中の例では、受光部12のピクセルの配列は正方行列配置となっている。
光学フィルタFLは、偏光フィルタ132を、透明基板131と充填層133で挟持した構成となっている。図1(c)では、離れたように描かれている光学フィルタFLと撮像素子ISは、実際には互いに密着している。
即ち、偏光フィルタ132と撮像素子ISの近接部に充填層133が「接着剤」として充填されて両者を一体化している。
偏光フィルタ132は、偏光方向の異なる複数種の偏光フィルタ素子を撮像素子ISのピクセルに併せて2次元的に配列してなる所謂「領域分割偏光フィルタ」である。
One form of the imaging means will be described with reference to FIG.
FIG. 2A is a conceptual diagram of the imaging means CM.
The imaging unit CM is a unit that captures a “P-polarized component image and an S-polarized component image” as polarization information of reflected light from a road surface illuminated in a spot shape by an illumination light source.
As shown in FIG. 2A, the imaging means CM includes a lens LN that is an “imaging optical system”, an imaging element IS, and an optical filter FL in a casing.
FIG. 2C shows a state in which the image sensor IS and the optical filter FL are viewed from the lateral direction.
The imaging element IS has a light receiving unit 12 having a two-dimensional array of pixels on a substrate ST. In the example in the description, the pixel arrangement of the light receiving unit 12 is a square matrix arrangement.
The optical filter FL has a configuration in which a polarizing filter 132 is sandwiched between a transparent substrate 131 and a filling layer 133. In FIG. 1C, the optical filter FL and the image sensor IS which are drawn apart are actually in close contact with each other.
In other words, the filling layer 133 is filled as an “adhesive” in the vicinity of the polarizing filter 132 and the image pickup element IS to integrate the two.
The polarizing filter 132 is a so-called “region-dividing polarizing filter” in which a plurality of types of polarizing filter elements having different polarization directions are two-dimensionally arranged along with the pixels of the imaging element IS.

図2(b)において、受光部12における隣接する4つのピクセルPC1、PC2、PC3、PC4に対応して、偏光フィルタ素子POL1、POL2、POL3、POL4が重ね合わされている。
偏光フィルタ132に用いられた「偏光フィルタ素子」の種類は、P偏光を透過させるものと、S偏光を透過させるものの2種類である。
これら2種の偏光フィルタ素子は、図2(b)における撮像素子ISのピクセル配列の縦方向(2次元行列配列の列方向)を長手方向とする短冊状である。
これら短冊状の偏光フィルタ素子は、横方向(行方向)へ交互に配列されている。
図2(b)に示すように、ピクセルPC1とPC2が配列する縦方向には、S偏光成分を透過させる偏光フィルタ素子POL1、POL2が配列されてピクセルPC1、PC2に対応する。また、ピクセルPC3とPC4が配列する縦方向には、P偏光成分を透過させる偏光フィルタ素子POL3、POL4が、ピクセルPC3、PC4に対応するように配列している。
In FIG. 2B, polarization filter elements POL1, POL2, POL3, and POL4 are overlapped corresponding to the four adjacent pixels PC1, PC2, PC3, and PC4 in the light receiving unit 12.
There are two types of “polarizing filter elements” used for the polarizing filter 132, one that transmits P-polarized light and one that transmits S-polarized light.
These two types of polarizing filter elements have a strip shape with the longitudinal direction of the pixel array of the image sensor IS in FIG. 2B (the column direction of the two-dimensional matrix array) as the longitudinal direction.
These strip-shaped polarizing filter elements are alternately arranged in the horizontal direction (row direction).
As shown in FIG. 2B, in the vertical direction in which the pixels PC1 and PC2 are arranged, polarization filter elements POL1 and POL2 that transmit the S-polarized component are arranged to correspond to the pixels PC1 and PC2. In the vertical direction in which the pixels PC3 and PC4 are arranged, polarization filter elements POL3 and POL4 that transmit the P-polarized component are arranged so as to correspond to the pixels PC3 and PC4.

結像光学系であるレンズLNによる被写体(スポット状に照明された路面)の像は偏光フィルタ132上に結像し、各偏光フィルタ素子を透過することによりP偏光あるいはS偏光となって撮像素子ISに受光される。
このようにして、撮像素子ISにより「P偏光の像であるP偏光成分画像」および「S偏光の像であるS偏光成分画像」が撮像される。
このように撮像された画像が「偏光情報を有する画像」であり、図2(a)に示すように「出力画像信号」として出力される。
「出力画像信号」は、画像の情報としては「輝度画像と偏光情報」とを有しており、これらを別個に抽出できる。
なお、上に説明した偏光フィルタ132は、例えば「サブ波長構造(SWS)」により構成することができる。
また、撮像素子ISとして、上の例では「モノクロのイメージセンサ」が想定されているが、これに限らず、カラーイメージセンサを用いることもできる。
撮像素子ISの、偏光フィルタ132が形成されている領域では、P、Sの各領域のP、Sの偏光画像が撮像される。
An image of a subject (road surface illuminated in a spot shape) by the lens LN that is an imaging optical system forms an image on the polarization filter 132, and passes through each polarization filter element to become P-polarized light or S-polarized light. Light is received by IS.
In this way, the “P-polarized component image that is a P-polarized image” and the “S-polarized component image that is an S-polarized image” are captured by the imaging element IS.
The image thus captured is an “image having polarization information” and is output as an “output image signal” as shown in FIG.
The “output image signal” has “luminance image and polarization information” as image information, and these can be extracted separately.
In addition, the polarizing filter 132 demonstrated above can be comprised by "subwavelength structure (SWS)", for example.
Further, in the above example, a “monochrome image sensor” is assumed as the imaging element IS, but not limited to this, a color image sensor can also be used.
In the area of the imaging element IS where the polarization filter 132 is formed, P and S polarization images of the P and S areas are captured.

ここで「輝度画像」と「差分偏光度画像」について説明する。
説明中の実施の形態では撮像手段CMにおける光学フィルタFLの偏光フィルタ132は「領域偏光フィルタ」であり「P偏光を透過させる偏光フィルタ素子と、S偏光を透過させる偏光フィルタ素子」が2次元的に配列されている。
そこで、撮像素子ISの撮像領域を2次元x,y座標で表し、位置:(x,y)のピクセルが受光したS偏光、P偏光の強度をそれぞれ「I(x,y)、I(x,y)」とすると、輝度画像:IBR(x,y)は、以下の式(A)で表すことができる。
IBR(x,y)={I(x,y)+I(x,y)}/2 (A) 。
Here, the “luminance image” and the “difference polarization degree image” will be described.
In the embodiment being described, the polarizing filter 132 of the optical filter FL in the imaging means CM is a “region polarizing filter”, and “a polarizing filter element that transmits P-polarized light and a polarizing filter element that transmits S-polarized light” are two-dimensional. Is arranged.
Therefore, the imaging area of the imaging element IS is expressed by two-dimensional x and y coordinates, and the intensity of S-polarized light and P-polarized light received by the pixel at the position: (x, y) is expressed as “I S (x, y), IP Assuming that (x, y) ”, the luminance image: IBR (x, y) can be expressed by the following equation (A).
IBR (x, y) = {I S (x, y) + I P (x, y)} / 2 (A).

「差分偏光度画像:SDOP(x,y)」は、上記I(x,y)とI(x,y)を用いて、次式(B):
SDOP(x,y)={I(x,y)−I(x,y)}/{I(x,y)+I(x,y)} (B)
により表すことができる。
The “difference polarization degree image: SDOP (x, y)” uses the above I S (x, y) and I P (x, y), and the following formula (B):
SDOP (x, y) = {I S (x, y) −I P (x, y)} / {I S (x, y) + I P (x, y)} (B)
Can be represented by

上記「I(x,y)」で表される画像が「P偏光成分画像」、「I(x,y)」で表される画像が「S偏光成分画像」であり、これらが撮像手段CMにより撮像される。
このように得られる「輝度画像」、「差分偏光度画像」は、以下に説明する路面状態の判別のための情報として供される。
The image represented by the above “I P (x, y)” is the “P polarization component image”, and the image represented by “I S (x, y)” is the “S polarization component image”. Images are taken by means CM.
The “brightness image” and “difference polarization degree image” obtained in this way are used as information for determining the road surface state described below.

図3は、この発明の路面情報判別システムの実施の1形態を概念図として示している。   FIG. 3 is a conceptual diagram showing an embodiment of the road surface information discrimination system according to the present invention.

この路面状態判別システムは、路面状態検知ユニットUTと状態判別手段100とを有する。路面状態検出ユニットUTは、例えば、図1に即して説明した実施の形態のものを用いることができる。
状態判別手段100は、路面状態検知ユニットUTからの出力画像信号(上に説明した撮像手段CMで撮像されるP偏光成分画像および前記S偏光成分画像を含んでいる。)に基づき「路面の状態の判別」を行う。
判別すべき路面の状態としては「乾燥状態」、「湿潤状態」、「凍結状態」の3種類を例示する。
「乾燥状態」は、路面が乾燥している状態であり、路面表面は粗面で反射光は拡散光が多くなる。
「湿潤状態」は、路面が濡れた状態であり、路面表面の細かい凹凸が水分で満たされ、乾燥状態に対し拡散光は減少する。
「凍結状態」は、路面が凍結している状態であり、路面の状態は平面に近くなり、拡散光は更に減少する。この場合でも、表面には微小な凹凸や気泡などがあれば、僅かな拡散光は存在する。
This road surface state determination system includes a road surface state detection unit UT and a state determination unit 100. As the road surface state detection unit UT, for example, the one described in connection with FIG. 1 can be used.
The state discriminating means 100 is based on the output image signal from the road surface state detecting unit UT (including the P-polarized component image and the S-polarized component image captured by the imaging means CM described above). Discriminating ".
Examples of the road surface state to be distinguished include three types of “dry state”, “wet state”, and “freezing state”.
The “dry state” is a state in which the road surface is dry, the road surface is rough and the reflected light has a lot of diffused light.
The “wet state” is a state in which the road surface is wet, fine irregularities on the road surface are filled with moisture, and the diffused light decreases with respect to the dry state.
The “frozen state” is a state where the road surface is frozen, the state of the road surface is close to a flat surface, and the diffused light further decreases. Even in this case, a slight amount of diffused light exists if the surface has minute irregularities or bubbles.

状態判別手段100は、コンピュータ等として構成され、種々の演算機能を有する。
「路面状態の判別」は、図4に示す各工程に從って行われる。
第1の工程は「撮像工程」であり、路面状態検知ユニットUTにより路面の撮像が行われる。撮像工程においては、路面状態検知ユニットUTの照明光源が、路面をスポット状に照明し、このスポット状の被照明部を撮像手段が撮像する。
状態判別手段100は、P偏光画像成分画像:I(x,y)および、S偏光成分画像:I(x,y)を含む「出力画像信号」の入力を受け、前述の輝度画像:IBR(x,y)と差分偏光度画像:SDOP(x,y)とを、それぞれ前述の式(A)、(B)に從って算出する。この工程が図4の「演算工程」である。
演算工程に続く「特徴量抽出工程」では、演算工程で算出された輝度画像、差分偏光度画像にもとづき上記3つの状態を特徴づける「特徴量」を抽出する。このように抽出された特徴量に基づき、路面の状態を判別する工程が図4の「判別処理」である。
The state discriminating means 100 is configured as a computer or the like and has various arithmetic functions.
“Determination of the road surface state” is performed over the steps shown in FIG.
The first step is an “imaging step”, and the road surface state detection unit UT images the road surface. In the imaging process, the illumination light source of the road surface state detection unit UT illuminates the road surface in a spot shape, and the imaging means images the spot-like illuminated part.
The state discriminating means 100 receives the “output image signal” including the P-polarized image component image: I P (x, y) and the S-polarized component image: I S (x, y), and receives the aforementioned luminance image: IBR (x, y) and differential polarization degree image: SDOP (x, y) are calculated according to the aforementioned equations (A) and (B), respectively. This step is the “calculation step” in FIG.
In the “feature amount extraction step” following the calculation step, “feature amounts” characterizing the above three states are extracted based on the luminance image and the differential polarization degree image calculated in the calculation step. The step of discriminating the road surface state based on the extracted feature quantity is the “discrimination process” in FIG.

「特徴量」には種々のものが考えられるが、ここでは「輝度画像および差分偏光度画像の少なくとも一方の画像から得られるヒストグラム」を特徴量とする場合と、「輝度画像から得られる輝度平均値および差分偏光度画像から得られる差分偏光度平均値の組み合わせ」を特徴量とする場合を説明する。
図1に即して説明した路面状態検知ユニットUTにおいて、照明光源LSによる照明光の主光線LPの入射角:θ1を55度に設定した。
また、撮像手段CMの設置角:θCは45度に設定した。なお、撮像手段CMは、その結像光学系の光軸AXが、図1(a)における「主光線LPと法線n、正反射光LRPを含む平面内」にあるように設置した。
撮像手段CMの設置角:θCを45度に設定した状態で、路面を「平面と仮定」して入射角:θ1を変化させると撮像手段CMが撮像する反射光におけるS偏光とP偏光における光強度は、図5上図の如くに変化する。入射角:θ1=55度は、湿潤状態の路面における水の「ブリュースタ角」に近く、路面で反射した反射光では、P偏光の光強度が最小となり、入射角の増大と共に単調増加するS偏光の光強度との差が大きくなるので、上に説明したP偏光成分画像とS偏光成分画像との差が大きくなる。
照明光源LSにおける入射角:θ1を55度に設定したことにより、正反射光LRPの正反射角:θLも55度となる。
撮像手段CMの上記設置角:θC:45度は、正反射角:θL=55度の20%(0.2θL)が11度であるから「θL(1−0.2)<θC」の条件を満足する。
図5下図は、図5上図の如き「S偏光とP偏光における光強度」から算出される「差分偏光度(SDOP)」の入射角に対する変化を示している。この図においては、枠の上端が0で、下方が正の方向である。從って、差分偏光度は、入射角:θ1(=θL)=55度で最大となっている。実際には、路面の粗面状態(粗さ)等の詳細な形状によっても多少異なるが、差分偏光度は一般的な傾向として、撮像手段の設置角:θCが正反射角(入射角):θLの近傍の数値であるときに「差分偏光度の絶対値」が高い値をとる。
Various "features" can be considered. Here, "histogram obtained from at least one of luminance image and differential polarization degree image" is used as a feature amount, and "luminance average obtained from luminance image" A case where the combination of the value and the average value of the difference polarization degree obtained from the difference polarization degree image is used as the feature amount will be described.
In the road surface state detection unit UT described with reference to FIG. 1, the incident angle θ1 of the chief ray LP of the illumination light from the illumination light source LS is set to 55 degrees.
Further, the installation angle of the image pickup means CM: θC was set to 45 degrees. The imaging means CM is installed so that the optical axis AX of the imaging optical system is “in the plane including the principal ray LP, the normal n, and the regular reflection light LRP” in FIG.
When the installation angle of the imaging unit CM: θC is set to 45 degrees and the road surface is “assumed to be a plane” and the incident angle: θ1 is changed, the light in the S-polarized light and the P-polarized light in the reflected light captured by the imaging unit CM The intensity changes as shown in the upper diagram of FIG. Incident angle: θ1 = 55 degrees is close to the “Brewster angle” of water on a wet road surface, and the reflected light reflected by the road surface has the minimum light intensity of P-polarized light, and increases monotonously with increasing incident angle. Since the difference with the light intensity of polarized light becomes large, the difference between the P-polarized component image and the S-polarized component image described above becomes large.
By setting the incident angle: θ1 at the illumination light source LS to 55 degrees, the regular reflection angle: θL of the regular reflected light LRP is also 55 degrees.
The installation angle of the imaging means CM: θC: 45 degrees is a condition of “θL (1-0.2) <θC” because 20% (0.2θL) of the regular reflection angle: θL = 55 degrees is 11 degrees. Satisfied.
The lower diagram of FIG. 5 shows a change with respect to the incident angle of “degree of differential polarization (SDOP)” calculated from “light intensity in S-polarized light and P-polarized light” as shown in the upper diagram of FIG. In this figure, the upper end of the frame is 0 and the downward direction is the positive direction. In other words, the differential polarization degree is maximum at the incident angle: θ1 (= θL) = 55 degrees. Actually, although it varies somewhat depending on the detailed shape such as the rough surface state (roughness) of the road surface, the differential polarization degree is a general tendency. As a general tendency, the installation angle of the imaging means: θC is the regular reflection angle (incident angle): When the numerical value is in the vicinity of θL, the “absolute value of differential polarization” takes a high value.

このようにして、入射角:θ1(=55度)、設置角:θC(=45度)を定めた状態で、前記の如くP偏光成分画像、S偏光成分画像を求め、これらから「輝度画像」および「差分偏光度画像(SDOP画像)」を求め、これら「輝度画像および差分偏光度画像の少なくとも一方の画像から得られるヒストグラム」、「輝度画像から得られる輝度平均値および差分偏光度画像平均値の組み合わせ」を特徴量として算出する。
「輝度画像から得られるヒストグラム」の場合を説明すると、式(A)で算出される輝度画像:IBR(x,y)において、「同じ輝度値となるピクセルの個数」を輝度値ごとに加算したものであり、1例を示すと、図6(a)の如きものとなる。
このようなヒストグラムは、算出もとの輝度画像の性質を反映しているが、図6(a)における半値幅:Wとピーク値:Pを「特徴量」として求める。
ヒストグラムの半値幅:Wとピーク値:Pは、路面状態に從って変化する。図6は、具体的な1例である。
即ち、ピーク値:P、半値幅:Wとも、路面状態「乾燥、湿潤、凍結」により異なっている。從って、ヒストグラムのピーク値:P、半値幅:Wの少なくとも一方を「特徴量」として、これらの値が上記3状態の何れかに該当するかを適当な閾値により振り分けて、路面状態を判別することができる。
なお、図6(b)における各数値は「取りうる数値の最大値を1として規格化した値」である。
ヒストグラムを用いる方法では、上記「輝度画像のヒストグラム」に代えて「差分偏光度画像のヒストグラム」を用い、例えば、その半値幅およびピーク値を特徴量として用いることもできるし、輝度画像のヒストグラムと共に差分偏光度画像のヒストグラムを用いて、これらから「1以上の特徴量」を適宜に選択することもできる。
In this way, in a state where the incident angle: θ1 (= 55 degrees) and the installation angle: θC (= 45 degrees) are determined, the P-polarized component image and the S-polarized component image are obtained as described above. ”And“ Differential polarization degree image (SDOP image) ”,“ Histogram obtained from at least one of luminance image and differential polarization degree image ”,“ Luminance average value obtained from luminance image and differential polarization degree image average ” The “value combination” is calculated as the feature amount.
Explaining the case of the “histogram obtained from the luminance image”, in the luminance image calculated by the formula (A): IBR (x, y), “the number of pixels having the same luminance value” is added for each luminance value. One example is as shown in FIG. 6 (a).
Although such a histogram reflects the property of the luminance image as the calculation source, the half value width: W and the peak value: P in FIG.
The half width of the histogram: W and the peak value: P change over the road surface condition. FIG. 6 is a specific example.
That is, the peak value: P and the half width: W are different depending on the road surface condition “dry, wet, frozen”. As a result, at least one of the peak value of the histogram: P and the half-value width: W is defined as a “feature amount”, and whether these values correspond to one of the above three states is assigned according to an appropriate threshold, and the road surface state is determined. Can be determined.
Each numerical value in FIG. 6B is a “value normalized by taking the maximum value of possible numerical values as 1”.
In the method using a histogram, a “difference polarization degree image histogram” is used in place of the above “brightness image histogram”. For example, the half-value width and the peak value can be used as feature amounts, or together with the brightness image histogram. Using the histogram of the differential polarization degree image, “one or more feature amounts” can be appropriately selected from these.

特徴量の抽出の別の例として「輝度画像から得られる輝度平均値および差分偏光度画像平均値の組み合わせ」を特徴量とする場合を説明する。
「輝度平均値」は、前記輝度画像における各ピクセルの輝度値の全ピクセルにおける画素値(輝度値)の平均値であり、同様に、「差分偏光度画像平均値」は、差分偏光度画像の全ピクセルにおける画素値(差分偏光度値)の平均値である。
図7(a)は、路面状態が「乾燥」、「湿潤」、「凍結」の各状態にあるときの、輝度平均値と差分偏光度画像平均値とを示している。各値は「最大値を1として規格化した値」である。
図7(a)を見ると、差分偏光度画像平均値は、湿潤状態では0.4より大きく、乾燥状態および凍結状態では0.4より小さい。また、輝度平均値は、凍結状態では0.5より大きく、乾燥状態、湿潤状態では0.5より小さい。
そこで、縦軸に「差分偏光度画像平均値」、横軸に「輝度平均値」をとり、図7(a)の数値を割り振ると、図7(b)に示すようになる。
As another example of feature amount extraction, a case where “a combination of a luminance average value obtained from a luminance image and a difference polarization degree image average value” is used as a feature amount will be described.
“Luminance average value” is the average value of the pixel values (luminance values) of all the pixels in the luminance image. Similarly, the “difference polarization degree image average value” is the difference polarization degree image. It is an average value of pixel values (differential polarization degree values) in all pixels.
FIG. 7A shows the average luminance value and the difference polarization degree image average value when the road surface state is in each of the “dry”, “wet”, and “freeze” states. Each value is a “value normalized with the maximum value being 1.”
As shown in FIG. 7A, the average value of the differential polarization degree image is larger than 0.4 in the wet state, and smaller than 0.4 in the dry state and the frozen state. The average brightness value is larger than 0.5 in the frozen state and smaller than 0.5 in the dry state and the wet state.
Therefore, when the “difference polarization average image value” is taken on the vertical axis and the “brightness average value” is taken on the horizontal axis, and the numerical values shown in FIG. 7A are assigned, the result is as shown in FIG.

從って、このような場合、輝度平均値に対して閾値:0.5を設定し、輝度平均値の値を閾値:0.5で振り分ければ、凍結状態と「乾燥状態および湿潤状態」を判別でき、また、差分偏光度画像平均値に対して閾値:0.4を設定して、差分偏光度画像平均値の値を閾値:0.4で振り分ければ、乾燥状態と湿潤状態とを判別できる。
從って、例えば、図8の如き判別フロー図により、路面状態の判別が可能である。
図8において、ステップ:S0で開始し、ステップ:S1で、輝度平均値:I、差分偏光度画像平均値:Jを設定する。輝度平均値:I、差分偏光度画像平均値:Jは、撮像手段CMの撮像により得られた輝度画像および差分偏光度画像に基づいて算出された値である。
ステップ:S2で差分偏光度画像平均値:Jが閾値:0.4より大きいか否かが判定され「Y(イエス)」ならば、ステップ:S3に進んで「路面状態が湿潤状態」であると判別し、ステップ:S7に進んで終了する。
ステップ:S2で差分偏光度画像平均値:Jが閾値:0.4より小さい(N(ノー))と判定されると、ステップ:S4に進んで、輝度平均値:Iが閾値:0.5」より大きいか否かが判定され「Y(イエス)」ならば、ステップ:S5に進んで「路面状態が凍結状態」であると判別し、ステップ:S7に進んで終了する。
ステップ:S4で輝度平均値:Iが0.5より小さい(N(ノー))と判定されると、ステップ:S6に進んで「路面状態は乾燥状態」であると判別し、ステップ:S7に進んで終了する。
In this case, if the threshold value: 0.5 is set for the luminance average value, and the luminance average value is distributed by the threshold value: 0.5, the frozen state and the “dried state and wet state” If the threshold value: 0.4 is set for the difference polarization degree image average value, and the value of the difference polarization degree image average value is divided by the threshold value: 0.4, the dry state and the wet state are determined. Can be determined.
Therefore, for example, the road surface state can be determined according to the determination flowchart shown in FIG.
In FIG. 8, the process starts at step S0, and at step S1, a luminance average value: I and a differential polarization degree image average value: J are set. The luminance average value: I and the differential polarization degree image average value: J are values calculated based on the luminance image and the differential polarization degree image obtained by imaging by the imaging unit CM.
Step: In S2, it is determined whether or not the difference polarization degree image average value: J is greater than the threshold value: 0.4. If “Y (yes)”, the process proceeds to step S3, where “the road surface state is a wet state”. The process proceeds to step S7 and ends.
Step: When it is determined that the difference polarization degree image average value: J is smaller than the threshold value: 0.4 (N (No)) in S2, the process proceeds to Step: S4, where the luminance average value: I is the threshold value: 0.5. It is determined whether or not “Y” (yes), the process proceeds to step S5, where it is determined that “the road surface state is frozen”, and the process proceeds to step S7 and ends.
Step: When it is determined in S4 that the average luminance value: I is smaller than 0.5 (N (no)), the process proceeds to Step: S6, where it is determined that “the road surface state is dry”, and then in Step: S7. Proceed and finish.

このようにして、路面状態検知ユニットUTで得られる出力画像信号に基づいて、路面の状態が「乾燥状態であるか湿潤状態であるか凍結状態であるか」を判別できる。   Thus, based on the output image signal obtained by the road surface state detection unit UT, it is possible to determine whether the road surface state is “dry state, wet state, or frozen state”.

付言すると、偏光情報を用いて路面状態の判別を行う方法として従来から知られた方法では、照明光として「太陽光や道路照明用ランプ」等の既存の照明光源を用いている。これら既存の照明光源では、路面の照明状態が「天候状態や時間、地域により変化」するので撮像した路面画像の偏光情報を得ても、この偏光情報自体が天候状態等の要因で変化するため、路面状態の正確な判別は必ずしも容易ではない。   In addition, in a conventionally known method for determining road surface conditions using polarization information, an existing illumination light source such as “sunlight or a road illumination lamp” is used as illumination light. With these existing illumination light sources, the lighting condition of the road surface “changes depending on the weather condition, time, and region”, so even if the polarization information of the captured road image is obtained, the polarization information itself changes due to factors such as the weather condition. The accurate determination of the road surface condition is not always easy.

上に説明した、この発明の方式では「照明光源と路面と撮像手段の位置関係」が一定に保たれているので、常に安定した状態で路面情報を取得でき、路面状態の精度の良い判別を容易に実現できる。   In the method of the present invention described above, since the “positional relationship between the illumination light source, the road surface, and the imaging means” is kept constant, road surface information can be acquired in a stable state at all times, and the road surface state can be accurately discriminated. It can be easily realized.

以下には、路面状態検知ユニットの実施の別形態と、これを用いる路面状態判別システムの実施の1形態を説明する。
図9(a)は、路面状態検知ユニットの実施の別形態を説明する概念図である。繁雑を避けるため、混同の恐れが無いと思われるものについては、図1(a)におけると同一の符号を付した。従って、図1(a)におけると同一の符号を付したものは、図1(a)のものと同じである。
図9(a)に示す路面状態検知ユニットUT1が、図1(a)に示す路面状態検知ユニットUTと異なる部分は、路面状態検知ユニットUT1は、撮像手段として第1の撮像手段CMAと第2の撮像手段CMAを有する点である。図9(a)において、符号AXAは第1の撮像手段CMAの結像光学系の光軸、符号AXBは第2の撮像手段CMBの結像光学系の光軸をそれぞれ示す。第1、第2の撮像手段CMA、CMBは何れも、その結像光学系の光軸AXA、AXBが、図9(a)における「主光線LPと法線n、正反射光LRPを含む平面内」にあるように設置した。
具体的に説明すると、照明光源LSからの照明光束の入射角:θ1は55度、撮像手段CMAは、図1(a)における撮像手段CMと同一の配置態位、即ち、設定角:θC1が45度となるように設定され、照明光束の正反射角:θL(=θ1=55度)に対して0.2θL(11度)の角範囲内にある。即ち、第1の撮像手段CMAの配置状態は、図1の撮像手段CMと同じである。
一方、第2の撮像手段CMBは、光軸AXBが被照明部の中心CSPを通り、且つ、光軸AXBと中心CSPにおいて被照明部に立てた法線nに対し、撮像手段CMAと同じ側(図の右側)において、0度ないしθCAの範囲となる設置角:θCBに設定されている。
Hereinafter, another embodiment of the road surface state detection unit and one embodiment of a road surface state determination system using the same will be described.
Fig.9 (a) is a conceptual diagram explaining another form of implementation of a road surface state detection unit. In order to avoid complications, the same reference numerals as in FIG. Accordingly, the same reference numerals as those in FIG. 1A are the same as those in FIG.
The road surface state detection unit UT1 shown in FIG. 9A is different from the road surface state detection unit UT shown in FIG. 1A in that the road surface state detection unit UT1 includes a first image pickup unit CMA and a second image pickup unit. The image pickup means CMA is provided. In FIG. 9A, the symbol AXA indicates the optical axis of the imaging optical system of the first imaging means CMA, and the symbol AXB indicates the optical axis of the imaging optical system of the second imaging means CMB. In each of the first and second imaging means CMA and CMB, the optical axes AXA and AXB of the imaging optical system are “a plane including the principal ray LP, the normal n, and the regular reflected light LRP in FIG. It was installed as shown in “Inside”.
More specifically, the incident angle of the illumination light beam from the illumination light source LS: θ1 is 55 degrees, and the image pickup means CMA has the same arrangement state as the image pickup means CM in FIG. It is set to be 45 degrees and is within the angle range of 0.2θL (11 degrees) with respect to the regular reflection angle of the illumination light beam: θL (= θ1 = 55 degrees). That is, the arrangement state of the first image pickup means CMA is the same as that of the image pickup means CM in FIG.
On the other hand, the second imaging means CMB has the optical axis AXB passing through the center CSP of the illuminated part and the same side as the imaging means CMA with respect to the normal n standing on the illuminated part at the optical axis AXB and the center CSP. In (the right side of the figure), the installation angle is set in the range of 0 degrees to θCA.

設置角:θCBが0度以下(即ち、法線nに対して、撮像手段CMAと逆側)になると、P偏光とS偏光の両成分の差異が僅少もしくはなくなるためである。   This is because the difference between both components of P-polarized light and S-polarized light is negligible or eliminated when the installation angle: θCB is 0 degrees or less (that is, the opposite side to the imaging means CMA with respect to the normal line n).

一般的には、設置角:θCBは、上記「0度ないしθCAの範囲」において、設置角:撮像手段CMAで取得されるP偏光、S偏光の各強度に対する比を大きく取れる値に選択される。
説明中の具体的な例では、角:θCBは20度である。
このように設置角:θCA(=45度)の撮像手段CMAと、設置角:θCB(=20度)の撮像手段CMBを用いると、図9(b)に示すように、これらの設置角の各々に応じたP偏光及びS偏光の光強度、差分偏光度を得ることができるので、路面状態の判別に用いる情報が増え、より精細な判別が可能になる。
Generally, the installation angle: θCB is selected to be a value that allows a large ratio of the installation angle: P-polarized light and S-polarized light obtained by the imaging means CMA in the above-mentioned “range of 0 ° to θCA”. .
In the specific example in the description, the angle: θCB is 20 degrees.
When the imaging means CMA with the installation angle: θCA (= 45 degrees) and the imaging means CMB with the installation angle: θCB (= 20 degrees) are used as described above, as shown in FIG. Since it is possible to obtain the P-polarized light intensity and the S-polarized light intensity and the differential polarization degree according to each of them, the information used for the determination of the road surface state increases, and a finer determination becomes possible.

撮像素子CMA、CMBを用いると、撮像素子CMA単独で得られる情報に加え、「撮像手段CMBで得られる情報」も利用できるとともに、これら撮像手段CMA、CMBで得られる情報の「相対的な関係」をも利用することができる。   When the image pickup devices CMA and CMB are used, in addition to information obtained by the image pickup device CMA alone, “information obtained by the image pickup means CMB” can be used, and “relative relationship between information obtained by the image pickup means CMA and CMB” can be used. Can also be used.

1例として、撮像手段CMAとCMBで得られるP偏光成分画像相互の差、S偏光成分画像相互の差を挙げることができる。   As an example, a difference between P-polarized component images obtained by the imaging means CMA and CMB and a difference between S-polarized component images can be mentioned.

撮像手段CMAで得られるP偏光成分画像の輝度和を「IPA」、S偏光成分画像の輝度和を「ISA」、撮像手段CMBで得られるP偏光成分画像の輝度和を「IPB」、S偏光成分画像の輝度和を「ISB」とすると、撮像手段間のP偏光の強度差「ΔPAB」は、例えば、以下のように定義できる。 The luminance sum of the P-polarized component image obtained by the imaging unit CMA is “I PA ”, the luminance sum of the S-polarized component image is “I SA ”, and the luminance sum of the P-polarized component image obtained by the imaging unit CMB is “I PB ”. If the luminance sum of the S-polarized component image is “I SB ”, the intensity difference “ΔPAB” of the P-polarized light between the imaging means can be defined as follows, for example.

ΔPAB=(IPA―IPB)/(IPA+IPB
同様に、撮像手段間のS偏光の強度差「ΔSAB」は、例えば、以下のように定義できる。
ΔPAB = (I PA −I PB ) / (I PA + I PB )
Similarly, the S-polarized light intensity difference “ΔSAB” between the imaging means can be defined as follows, for example.

ΔSAB=(ISA―ISB)/(ISA+ISB) 。 ΔSAB = (I SA −I SB ) / (I SA + I SB ).

各撮像手段CMA、CMBで得られる情報(上述の「輝度平均値や差分偏光度画像平均値、輝度画像のヒストグラムの半値幅やピーク値」等)を個別に用いるとともに、これらの信号:ΔPAB、ΔSABを用いることで路面状態のより詳細な判別が可能となる。   Information obtained by each of the imaging means CMA and CMB (the above-described “brightness average value, difference polarization degree image average value, half-value width and peak value of histogram of luminance image”, etc.) is individually used, and these signals: ΔPAB, By using ΔSAB, more detailed determination of the road surface condition is possible.

路面による反射光のP偏光とS偏向の「反射角による変化」は、図9(b)上図のようになる場合もあるが、また、図10上図のようになる場合もある。図9(a)上図の場合と、図10上図の場合とでは、S偏光の変化はわずかであるが、P偏光は大きく変化している。この場合でも、差分偏向強度は、両場合において大きな変化はない。このような場合でも、上記の「ΔPAB」を用いると、P偏光の変化に対して感度の高い情報が得られる。   The “change due to the reflection angle” of the P-polarized light and the S-polarized light reflected by the road surface may be as illustrated in the upper diagram of FIG. 9B or may be as illustrated in the upper diagram of FIG. In the case of the upper diagram of FIG. 9A and the case of the upper diagram of FIG. 10, the change of the S polarization is slight, but the P polarization is greatly changed. Even in this case, the differential deflection intensity does not change greatly in both cases. Even in such a case, when “ΔPAB” is used, information with high sensitivity to changes in P-polarized light can be obtained.

図11には、路面状態に応じた、撮像手段CMA、CMB間の上記ΔPAB(撮像手段間差分輝度P)の値と、ΔSAB(撮像手段間差分輝度S)の値の1例を示す。   FIG. 11 shows an example of the value of ΔPAB (difference brightness P between imaging means) and the value of ΔSAB (difference brightness S between imaging means) between the imaging means CMA and CMB according to the road surface condition.

これから明らかなように、撮像手段間差分輝度Pが「負の値か正の値か」により、路面が「凍結しているか否か」を判別できる。
また、撮像手段間差分輝度Sが例えば0.05より大きいか否かにより、路面が「乾燥しているか否か」を判別できる。從って、先に図7(b)に即して説明した例と同様、撮像手段間差分輝度Pに対して閾値(=0)を設定し、撮像手段間差分輝度Sに対して閾値(=0.05)を設定して、各々、閾値より大きいか小さいかを見ることにより、路面の状態を判別できる。
As is clear from this, it is possible to determine whether the road surface is “frozen” based on whether the difference luminance P between the imaging means is “a negative value or a positive value”.
Further, whether or not the road surface is dry can be determined based on whether or not the difference luminance S between the imaging units is greater than 0.05, for example. Thus, as in the example described above with reference to FIG. 7B, a threshold (= 0) is set for the inter-imaging means difference luminance P, and the threshold ( = 0.05) and the road surface condition can be determined by checking whether each is larger or smaller than the threshold value.

実際には、撮像手段間差分輝度P、撮像手段間差分輝度Sのみならず、撮像手段ごとの輝度画像のヒストグラムや、輝度平均値、差分偏向度画像のヒストグラム等を有効に用いて、路面状態の精細な判別が可能である。   Actually, not only the difference brightness P between the imaging means and the difference brightness S between the imaging means but also the histogram of the brightness image for each imaging means, the average brightness value, the histogram of the difference deflection degree image, etc. are used effectively. Can be discriminated in detail.

「路面情報の判別プロセス」は、図4に示したものと同様であるが「撮像工程」では撮像手段CMA、CMBによる撮像情報が採取される。「演算工程」では、撮像手段ごとの輝度画像のヒストグラムや、輝度平均値、差分偏向度画像のヒストグラム等とともに、上記撮像手段間差分輝度P、撮像手段間差分輝度S等を算出する。そして「判別工程」ではこれらを特徴量として路面状態の判別を行うことができる。   The “road surface information discrimination process” is the same as that shown in FIG. 4, but in the “imaging process”, imaging information by the imaging means CMA and CMB is collected. In the “calculation step”, the inter-imaging means difference luminance P, the inter-imaging means difference brightness S, and the like are calculated together with the histogram of the luminance image for each imaging means, the average luminance value, the histogram of the difference deflection degree image, and the like. In the “discrimination step”, the road surface state can be discriminated using these as feature quantities.

さらには、例えば、撮像手段CMA、CMBで得られる画像情報から得られる例えば「撮像手段間差分輝度B(=ΔSAB)を用い、これらの撮像手段に設定角の間の状態を1次関数で推定近似し、その係数を「特徴量」として判別に用いてもよい。   Furthermore, for example, “a difference luminance B between imaging means (= ΔSAB) obtained from image information obtained by the imaging means CMA and CMB is used to estimate the state between the set angles for these imaging means by a linear function. The coefficients may be approximated and used as a “feature amount” for determination.

撮像手段は2種に限らず、3種類以上に増やすこともでき、その場合は、上記の状態を高次関数で近似して、その係数を特徴量として用いることもできる。   The number of imaging means is not limited to two, but can be increased to three or more. In that case, the above state can be approximated by a high-order function, and the coefficient can be used as a feature amount.

以下には、路面状態判別システムの使用態様を説明する。
図12は、上に実施の形態を説明した「路面状態判別システム」の使用態様を2例示している。
図12(a)は、この発明の路面状態判別システムSYSを固定手段FXにより路面ERに対して固定的に配置して用いる例である。この場合、路面状態判別システムSYSを配置した「特定の場所」における路面状態を判別することができる。
Below, the usage aspect of a road surface state discrimination | determination system is demonstrated.
FIG. 12 illustrates two usage modes of the “road surface state determination system” described in the above embodiment.
FIG. 12 (a) shows an example in which the road surface state determination system SYS of the present invention is used by being fixedly arranged with respect to the road surface ER by the fixing means FX. In this case, it is possible to determine the road surface state at the “specific place” where the road surface state determination system SYS is arranged.

図12(b)は、この発明の路面状態判別システムSYSを「移動体」としての自動車ATの車両に搭載して用いる例である。この場合には、自動車ATを走行させて、広い範囲における路面状態の判別を行うことが可能である。   FIG. 12B shows an example in which the road surface state discriminating system SYS of the present invention is mounted on a vehicle of a car AT as a “moving body”. In this case, it is possible to determine the road surface condition in a wide range by driving the automobile AT.

図12(a)、(b)の例において、路面ERや自動車ATに設けるのは、必ずしも、路面状態判別システムそのものでなくともよく、例えば、路面状態判別システムにおいて状態判別手段を「発信部と判別部」に分け、路面や自動車には「路面状態検知ユニットと発信部」を設け、「判別部」は離れた位置(路面状態データセンタ等)に設置し、路面状態検知ユニットから得られる出力画像信号を、上記発信部により離れた位置に設置された判別部に送信し、判別作業は判別部において行うようにしてもよい。   In the example of FIGS. 12A and 12B, the road surface ER and the car AT do not necessarily have to be the road surface state determination system itself. For example, in the road surface state determination system, the state determination unit is set to “transmitting unit”. It is divided into “determination unit”, and “road surface state detection unit and transmission unit” is provided on the road surface and automobile, and “determination unit” is installed at a distant position (road surface state data center etc.), and output obtained from the road surface state detection unit The image signal may be transmitted to a determination unit installed at a position separated by the transmission unit, and the determination operation may be performed in the determination unit.

図12(b)の自動車ATは「路面状態判別システムSYSを搭載された移動体」の1例である。移動体は自動車に限らず、種々の車両であることもできるし、あるいは「ドローン」のような飛行体であってもよい。   The automobile AT in FIG. 12B is an example of a “moving body equipped with a road surface state determination system SYS”. The moving body is not limited to an automobile, and may be various vehicles, or may be a flying body such as a “drone”.

補足すると、上に説明した形態例では、照明光源による照明光の主光線LPの入射角の例として「55度」を例示した。主光線の入射角は、これに限定されないが、照明光源や撮像手段の配置の容易さを考慮すると「30度以上」であることが好ましい。
また、前述の如く少なくとも1つの撮像手段の設置角は、撮像手段の結像光学系の光軸が「正反射光と合致」する場合を含む。しかし、例えば「主光線とその正反射光とを含む平面内」において、撮像手段の設置角を主光線の入射角に合致させた場合、撮像手段により明るい像を撮像できるが、路面の状態が湿潤しているような場合に、反射光の強度が大きくなり、撮像素子の受光レベルが飽和して輝度差を検出できなくなる場合も想定されるので、上に説明したように、正反射角に対し撮像手段の設置角を若干ずらすのが良い。
Supplementally, in the embodiment described above, “55 degrees” is illustrated as an example of the incident angle of the principal ray LP of the illumination light from the illumination light source. The incident angle of the principal ray is not limited to this, but is preferably “30 ° or more” in consideration of the ease of arrangement of the illumination light source and the imaging means.
Further, as described above, the installation angle of at least one imaging unit includes a case where the optical axis of the imaging optical system of the imaging unit “matches regular reflection light”. However, for example, in the case of “in the plane including the principal ray and its specularly reflected light”, when the installation angle of the imaging means is matched with the incident angle of the principal ray, a bright image can be taken by the imaging means. In the case of being wet, the intensity of the reflected light increases, and it is assumed that the light receiving level of the image sensor is saturated and the luminance difference cannot be detected. On the other hand, it is preferable to slightly shift the installation angle of the imaging means.

また、上には、図2に示したものを例として撮像手段(これは一般に偏光カメラと呼ばれるものである。)を説明したが、撮像手段はこの例に限定されるものではなく、例えば特許文献3に記載された「複数の偏光方向の偏光子を組み合わせた偏光子プレートを結像レンズの前に配し、回転しつつ撮像を行う構成のもの」でもよい。   In the above, the imaging means (which is generally called a polarization camera) has been described by taking the example shown in FIG. 2 as an example. However, the imaging means is not limited to this example. “A configuration in which a polarizer plate in which polarizers of a plurality of polarization directions are combined is arranged in front of an imaging lens and imaging is performed while rotating” described in Document 3 may be used.

さらには、2個の撮像カメラの一方に「S偏光を透過させる偏光フィルタ」、他方に「P偏光を透過させる偏光フィルタ」を組み合わせ、これら2個の撮像カメラをユニットとして1つの撮像手段を構成してもよい。   Furthermore, one of the two imaging cameras is combined with a “polarizing filter that transmits S-polarized light” and the other is combined with a “polarizing filter that transmits P-polarized light”, and the two imaging cameras constitute one imaging means. May be.

以上のように、この発明によれば、以下の如き新規な路面状態検知ユニットおよび路面状態判別システムおよび移動体を実現できる。   As described above, according to the present invention, the following new road surface state detection unit, road surface state determination system, and moving body can be realized.

[1]
路面(ER)をスポット状に照明する照明光源(LS)と、該照明光源によりスポット状に照明された前記路面による反射光のP偏光成分画像とS偏光成分画像を撮像する1以上の撮像手段(CM、CMA、CMB)と、を有し、前記撮像手段の少なくとも1つ(CM、CMA)は、その結像光学系の光軸(AX)が前記スポット状に照明された被照明部の中心(CSP)に向かい、且つ、前記照明光源による照明光束の正反射角:θLに対して、前記照明光束の正反射方向から±0.2θLの角範囲にある設置角:θCに設定されている路面状態検知ユニット(図1、図9)。
[1]
An illumination light source (LS) that illuminates the road surface (ER) in a spot shape, and one or more imaging means for imaging a P-polarized component image and an S-polarized component image of reflected light from the road surface illuminated in a spot shape by the illumination light source (CM, CMA, CMB), and at least one of the imaging means (CM, CMA) is a light source of an illuminated part in which the optical axis (AX) of the imaging optical system is illuminated in the spot shape. An installation angle: θC that is directed to the center (CSP) and is within an angular range of ± 0.2θL from the regular reflection direction of the illumination light beam with respect to the regular reflection angle: θL of the illumination light beam by the illumination light source. Road surface condition detection unit (FIGS. 1 and 9).

[2]
[1]記載の路面状態検知ユニットであって、前記撮像手段の少なくとも1つの前記結像光学系の光軸が、前記照明光束の正反射方向と合致しない路面状態検知ユニット(図1、図9)。
[2]
[1] The road surface state detection unit according to [1], wherein an optical axis of at least one of the imaging optical systems of the imaging unit does not match a regular reflection direction of the illumination light beam (FIGS. 1 and 9). ).

[3]
[1]または[2]記載の路面状態検知ユニットであって、前記照明光源(LS)が路面(ER)をスポット状に照明する前記照明光束の入射角(θ1)が30度以上である路面状態検知ユニット(図1、図9)。
[3]
The road surface state detection unit according to [1] or [2], wherein the illumination light source (LS) illuminates the road surface (ER) in a spot shape with an incident angle (θ1) of the illumination light beam of 30 degrees or more. State detection unit (FIGS. 1 and 9).

[4]
[1]ないし[3]の何れか1に記載の路面状態検知ユニットであって、撮像手段A(CMA)および撮像手段B(CMB)を有し、前記撮像手段Aは、その結像光学系OAの光軸(AXA)が、前記スポット状に照明された被照明部の中心(CSP)に向かい、且つ、前記照明光源による照明光束の正反射角:θLに対して±0.2θLの角範囲にある設置角:θCAに設定され、前記撮像手段B(CMB)は、その結像光学系OBの光軸AXBが、前記スポット状に照明された被照明部の中心(CSP)に向かい、且つ、前記光軸AXBと前記照明部の中心において前記被照明部に立てた法線(n)に対し、前記撮像手段Aと同じ側において、0度ないしθCAの範囲となる設置角:θCBに設定されている路面状態検知ユニット(図9)。
[4]
The road surface condition detection unit according to any one of [1] to [3], comprising an imaging means A (CMA) and an imaging means B (CMB), the imaging means A having an imaging optical system thereof The optical axis (AXA) of OA is directed to the center (CSP) of the illuminated part illuminated in the spot shape, and the regular reflection angle of the illumination light beam by the illumination light source: an angle of ± 0.2θL with respect to θL The installation angle in the range: θCA is set, and the imaging means B (CMB) is such that the optical axis AXB of the imaging optical system OB faces the center (CSP) of the illuminated part illuminated in the spot shape, In addition, on the same side as the imaging means A with respect to the optical axis AXB and the normal line (n) standing on the illuminated part at the center of the illuminating part, an installation angle that is in the range of 0 degree to θCA is θCB. The road surface condition detection unit that has been set (FIG. 9).

[5]
路面状態検知ユニット(UT)と、該路面状態検知ユニットの前記1以上の撮像手段から得られる前記P偏光成分画像および前記S偏光成分画像に基づき、路面の状態の判別を行う状態判別手段(100)と、を有し、前記路面状態検知ユニットが、前記[1]ないし[4]の何れか1項に記載のものである路面状態判別システム(図3、図12)。
[5]
A road surface state detection unit (UT) and a state determination unit (100) for determining the road surface state based on the P-polarized component image and the S-polarized component image obtained from the one or more imaging units of the road surface state detection unit. ), And the road surface state detection unit is the one according to any one of [1] to [4] (FIGS. 3 and 12).

[6]
[5]記載の路面状態判別システムであって、前記状態判別手段(100)が、前記路面状態検知ユニットの前記1以上の撮像手段から得られる前記P偏光成分画像および前記S偏光成分画像に基づいて得られる輝度画像と差分偏光度画像とを用いて前記判別を行う路面状態判別システム(図4〜図11)。
[7]
[6]記載の路面状態判別システムであって、前記状態判別手段(100)が、前記輝度画像および前記差分偏光度画像のうちの少なくとも一方の画像の画素値の、ヒストグラムおよび平均値の少なくとも一方により前記判別を行う路面状態判別システム(図6、図7、図8)。
[8]
[5]記載の路面状態判別システムであって、前記路面状態検知ユニットが、請求項4に記載のもの(UT1)であり、前記状態判別手段が、前記撮像手段Aおよび前記撮像手段Bの差分偏光度画像により前記判別を行う路面状態判別システム(図9〜図11)。
[9]
[8]記載の路面状態判別システムであって、前記状態判別手段が、前記撮像手段Aおよび前記撮像手段Bの差分偏光度画像、及び前記輝度画像、撮像手段間差分輝度P、撮像手段間差分輝度Sのうちの何れか1以上により前記判別を行う路面状態判別システム(図9)。
[6]
[5] The road surface state determination system according to [5], wherein the state determination unit (100) is based on the P-polarized component image and the S-polarized component image obtained from the one or more imaging units of the road surface state detection unit. A road surface state determination system that performs the determination using a luminance image and a differential polarization degree image obtained in this manner (FIGS. 4 to 11).
[7]
[6] The road surface state determination system according to [6], wherein the state determination unit (100) includes at least one of a histogram and an average value of pixel values of at least one of the luminance image and the differential polarization degree image. A road surface state determination system (FIGS. 6, 7, and 8) that performs the above determination.
[8]
[5] The road surface state determination system according to [5], wherein the road surface state detection unit is the one (UT1) according to claim 4, and the state determination unit is a difference between the imaging unit A and the imaging unit B. A road surface state determination system (FIGS. 9 to 11) that performs the determination based on a polarization degree image.
[9]
[8] The road surface state determination system according to [8], wherein the state determination unit includes a difference polarization degree image of the image pickup unit A and the image pickup unit B, a luminance image, a difference luminance P between the image pickup units, and a difference between the image pickup units. A road surface state determination system (FIG. 9) that performs the determination based on any one or more of the luminance S.

[10]
[5]ないし[9]の何れか1に記載の路面状態判別システム(SYS)であって、路面(ER)に対して固定的に配置される路面状態判別システム(図12(a))。
[10]
The road surface state determination system (SYS) according to any one of [5] to [9], wherein the road surface state determination system is fixedly arranged with respect to the road surface (ER) (FIG. 12A).

[11]
[5]ないし[9]の何れか1に記載の路面状態判別システム(SYS)であって、前記路面(ER)に対して移動する移動体(AT)に搭載される路面状態判別システム(図12(b))。
[11]
[5] to [9] is a road surface state determination system (SYS) according to any one of the above, wherein the road surface state determination system is mounted on a moving body (AT) that moves relative to the road surface (ER). 12 (b)).

[12]
前記路面(ER)に対して移動する移動体(AT)であって、[5]ないし[9]の何れか1に記載の路面状態判別システム(SYS)を搭載された移動体(図12)。
[12]
A moving body (AT) that moves relative to the road surface (ER), and is mounted with the road surface state discriminating system (SYS) according to any one of [5] to [9] (FIG. 12) .

以上、発明の好ましい実施の形態について説明したが、この発明は上述した特定の実施形態に限定されるものではなく、上述の説明で特に限定していない限り、特許請求の範囲に記載された発明の趣旨の範囲内において、種々の変形・変更が可能である。
この発明の実施の形態に記載された効果は、発明から生じる好適な効果を列挙したに過ぎず、発明による効果は「実施の形態に記載されたもの」に限定されるものではない。
The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the specific embodiments described above, and the invention described in the claims unless otherwise specified in the above description. Various modifications and changes are possible within the scope of the above.
The effects described in the embodiments of the present invention are merely a list of suitable effects resulting from the invention, and the effects of the present invention are not limited to those described in the embodiments.

UT 路面状態検知ユニット
ER 路面
LS 照明光源
CM 撮像手段
AX 撮像手段CMの結像光学系の光軸
LP 照明光束の主光線
CSP スポット状に照明される被照明部の中心
UT Road surface condition detection unit
ER road surface
LS Illumination light source
CM imaging means
AX Optical axis of imaging optical system of imaging means CM
LP chief ray of illumination luminous flux
CSP Center of illuminated part illuminated in spot shape

特許第2707426号公報Japanese Patent No. 2707426 特開2015−109625号公報JP2015-109625A 特開2011−29903号公報JP 2011-29903 A

Claims (12)

路面をスポット状に照明する照明光源と、
該照明光源によりスポット状に照明された前記路面による反射光のP偏光成分画像とS偏光成分画像を撮像する1以上の撮像手段と、を有し、
前記撮像手段の少なくとも1つは、その結像光学系の光軸が前記スポット状に照明された被照明部の中心に向かい、且つ、前記照明光源による照明光束の正反射角:θLに対して、前記照明光束の正反射方向から±0.2θLの角範囲にある設置角:θCに設定されている路面状態検知ユニット。
An illumination light source that illuminates the road surface in a spot shape;
One or more imaging means for capturing a P-polarized component image and an S-polarized component image of the reflected light from the road surface illuminated in a spot shape by the illumination light source;
At least one of the imaging means has an optical axis of the imaging optical system directed to the center of the illuminated part illuminated in the spot shape, and a regular reflection angle of the illumination light beam by the illumination light source: θL A road surface state detection unit set to an installation angle: θC in an angular range of ± 0.2θL from the regular reflection direction of the illumination light beam.
請求項1記載の路面状態検知ユニットであって、
前記撮像手段の少なくとも1つの前記結像光学系の光軸が、前記照明光束の正反射方向と合致しない路面状態検知ユニット。
The road surface condition detection unit according to claim 1,
A road surface state detection unit in which an optical axis of at least one imaging optical system of the imaging means does not coincide with a regular reflection direction of the illumination light beam.
請求項1または2記載の路面状態検知ユニットであって、
前記照明光源が路面をスポット状に照明する前記照明光束の入射角が30度以上である路面状態検知ユニット。
The road surface condition detection unit according to claim 1 or 2,
A road surface state detection unit in which the illumination light source illuminates a road surface in a spot shape, and an incident angle of the illumination light beam is 30 degrees or more.
請求項1ないし3の何れか1項に記載の路面状態検知ユニットであって、
撮像手段Aおよび撮像手段Bを有し、
前記撮像手段Aは、その結像光学系OAの光軸AXAが、前記スポット状に照明された被照明部の中心に向かい、且つ、前記照明光源による前記照明光束の正反射角:θLに対して±0.2θLの角範囲にある設置角:θCAに設定され、
前記撮像手段Bは、その結像光学系の光軸AXBが、前記スポット状に照明された前記被照明部の中心に向かい、且つ、前記光軸AXBと前記被照明部の中心において前記被照明部に立てた法線に対し、前記撮像手段Aと同じ側において、0度ないしθCAの範囲となる設置角:θCBに設定されている路面状態検知ユニット。
The road surface condition detection unit according to any one of claims 1 to 3,
Having imaging means A and imaging means B;
The imaging means A has an optical axis AXA of the imaging optical system OA directed to the center of the illuminated part illuminated in the spot shape, and with respect to the regular reflection angle of the illumination light beam by the illumination light source: θL Installation angle in the range of ± 0.2θL: θCA,
The imaging means B has the optical axis AXB of the imaging optical system directed to the center of the illuminated part illuminated in the spot shape, and the illuminated axis at the optical axis AXB and the center of the illuminated part. A road surface state detection unit that is set to an installation angle: θCB that is in the range of 0 degree to θCA on the same side as the imaging means A with respect to the normal line set up at the section.
路面状態検知ユニットと、
該路面状態検知ユニットの前記1以上の撮像手段から得られる前記P偏光成分画像および前記S偏光成分画像に基づき、路面の状態の判別を行う状態判別手段と、を有し、
前記路面状態検知ユニットが、請求項1ないし4の何れか1項に記載のものである路面状態判別システム。
A road surface condition detection unit;
State determining means for determining a road surface state based on the P-polarized component image and the S-polarized component image obtained from the one or more imaging means of the road surface state detecting unit;
5. The road surface state determination system according to claim 1, wherein the road surface state detection unit is the one according to claim 1.
請求項5記載の路面状態判別システムであって、
前記状態判別手段が、前記路面状態検知ユニットの前記1以上の撮像手段から得られる前記P偏光成分画像および前記S偏光成分画像に基づいて得られる輝度画像と差分偏光度画像とを用いて前記判別を行う路面状態判別システム。
The road surface state determination system according to claim 5,
The state determination unit uses the luminance image and the differential polarization degree image obtained based on the P-polarized component image and the S-polarized component image obtained from the one or more imaging units of the road surface state detection unit. A road surface condition determination system.
請求項6記載の路面状態判別システムであって、
前記状態判別手段が、前記輝度画像および前記差分偏光度画像のうちの少なくとも一方の画像の画素値の、ヒストグラムおよび平均値の少なくとも一方により前記判別を行う路面状態判別システム。
The road surface state determination system according to claim 6,
A road surface state determination system in which the state determination unit performs the determination based on at least one of a histogram and an average value of pixel values of at least one of the luminance image and the differential polarization degree image.
請求項5記載の路面状態判別システムであって、
前記路面状態検知ユニットが、請求項4に記載のものであり、
前記状態判別手段が、前記撮像手段Aおよび前記撮像手段Bの差分偏光度画像により前記判別を行う路面状態判別システム。
The road surface state determination system according to claim 5,
The road surface condition detection unit is the one according to claim 4,
A road surface state determination system in which the state determination unit performs the determination based on differential polarization degree images of the imaging unit A and the imaging unit B.
請求項8記載の路面状態判別システムであって、
前記状態判別手段が、前記撮像手段Aおよび前記撮像手段Bの前記差分偏光度画像、及び前記輝度画像、撮像手段間差分輝度P、撮像手段間差分輝度Sのうちの何れか1以上により前記判別を行う路面状態判別システム。
A road surface state determination system according to claim 8,
The state determination unit is configured to determine the difference polarization degree image of the image pickup unit A and the image pickup unit B, the luminance image, the difference luminance P between the image pickup units, and the difference luminance S between the image pickup units. A road surface condition determination system.
請求項5ないし9の何れか1項に記載の路面状態判別システムであって、
路面に対して固定的に配置される路面状態判別システム。
A road surface state determination system according to any one of claims 5 to 9,
A road surface state determination system fixedly arranged with respect to the road surface.
請求項5ないし9の何れか1項に記載の路面状態判別システムであって、
前記路面に対して移動する移動体に搭載される路面状態判別システム。
A road surface state determination system according to any one of claims 5 to 9,
A road surface state determination system mounted on a moving body that moves relative to the road surface.
前記路面に対して移動する移動体であって、
請求項5ないし9の何れか1項に記載の路面状態判別システムを搭載された移動体。
A moving body that moves relative to the road surface,
A moving body on which the road surface state determination system according to any one of claims 5 to 9 is mounted.
JP2016099544A 2016-05-18 2016-05-18 Road surface condition determination system and moving body Active JP6776614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099544A JP6776614B2 (en) 2016-05-18 2016-05-18 Road surface condition determination system and moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099544A JP6776614B2 (en) 2016-05-18 2016-05-18 Road surface condition determination system and moving body

Publications (2)

Publication Number Publication Date
JP2017207361A true JP2017207361A (en) 2017-11-24
JP6776614B2 JP6776614B2 (en) 2020-10-28

Family

ID=60417122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099544A Active JP6776614B2 (en) 2016-05-18 2016-05-18 Road surface condition determination system and moving body

Country Status (1)

Country Link
JP (1) JP6776614B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200012574A (en) * 2018-07-27 2020-02-05 한국전력공사 Method of deriving icing strength according to degree of oxidation of ACSR cable
JP2020106443A (en) * 2018-12-28 2020-07-09 スタンレー電気株式会社 Road surface state detection system and road surface state detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240808A (en) * 1986-04-11 1987-10-21 Fujitsu Ten Ltd Discriminating apparatus for state of road surface
JP2003515724A (en) * 1998-10-09 2003-05-07 ユニバーシティ オブ ワシントン Dual wide angle (DUALLARGEANGLE) light scattering detection
KR20050109565A (en) * 2003-03-14 2005-11-21 리와스 에이피에스 A device for detection of surface condition data
JP2008122217A (en) * 2006-11-13 2008-05-29 Denso It Laboratory Inc Road surface state detector
JP2012033149A (en) * 2010-07-01 2012-02-16 Ricoh Co Ltd Object identification device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62240808A (en) * 1986-04-11 1987-10-21 Fujitsu Ten Ltd Discriminating apparatus for state of road surface
JP2003515724A (en) * 1998-10-09 2003-05-07 ユニバーシティ オブ ワシントン Dual wide angle (DUALLARGEANGLE) light scattering detection
KR20050109565A (en) * 2003-03-14 2005-11-21 리와스 에이피에스 A device for detection of surface condition data
JP2006523336A (en) * 2003-03-14 2006-10-12 エルイダヴルトヴェエエーエス エーペーエス Device for detecting surface condition data
JP2008122217A (en) * 2006-11-13 2008-05-29 Denso It Laboratory Inc Road surface state detector
JP2012033149A (en) * 2010-07-01 2012-02-16 Ricoh Co Ltd Object identification device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200012574A (en) * 2018-07-27 2020-02-05 한국전력공사 Method of deriving icing strength according to degree of oxidation of ACSR cable
KR102504816B1 (en) 2018-07-27 2023-03-02 한국전력공사 Method of deriving icing strength according to degree of oxidation of ACSR cable
JP2020106443A (en) * 2018-12-28 2020-07-09 スタンレー電気株式会社 Road surface state detection system and road surface state detection method
JP7273505B2 (en) 2018-12-28 2023-05-15 スタンレー電気株式会社 ROAD CONDITION DETECTION SYSTEM AND ROAD CONDITION DETECTION METHOD

Also Published As

Publication number Publication date
JP6776614B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
US7737975B2 (en) Normal vector information generating device and normal vector information generating method
TWI357490B (en)
US8451252B2 (en) Image sensor for touch screen and image sensing apparatus
US7583363B2 (en) Range finder system and electronic system having same
CN101542233B (en) Image processing device and image processing method
US8629988B2 (en) Laser beam image contrast enhancement
KR20130061443A (en) Apparatus and method for sensing property of road surface
CN101819490A (en) Reflection detection apparatus, display apparatus, electronic apparatus, and reflection detection method
TW201300766A (en) Method and apparatus for inspecting defect
KR20150142055A (en) Image processing system
JP2017207361A (en) Road surface state detection unit, road surface state discrimination system, and moving body
WO2019239536A1 (en) Device for measuring speed of moving body, and elevator
US7894053B2 (en) Inspection apparatus
JP2008068700A (en) Headlight control device
RU2007141107A (en) METHOD FOR SELECTING OBJECTS ON A REMOTE BACKGROUND
US7511825B2 (en) Pointing device
KR101637019B1 (en) All-In-One Automatic Vision-Based Surface Inspection System
CN102566830A (en) Reflecting plate and reflecting frame
JP2015187832A (en) Image processor, mobile body equipment control system, and image processor program
KR20120040257A (en) Method and system for detecting and classifying defects of substrate
CN102693428A (en) Method and equipment for determining distance between vehicle and object
JP3552504B2 (en) Road surface condition determination device
US8269968B2 (en) Device for evaluating the state of wetting of a surface, evaluation method and associated indication device
JPH09311998A (en) Object detection device and parking lot management system using it
KR101467927B1 (en) Apparatus for testing wide angle lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R151 Written notification of patent or utility model registration

Ref document number: 6776614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151