JP2017206568A - Carbon black and fuel cell catalyst prepared therewith - Google Patents

Carbon black and fuel cell catalyst prepared therewith Download PDF

Info

Publication number
JP2017206568A
JP2017206568A JP2014196407A JP2014196407A JP2017206568A JP 2017206568 A JP2017206568 A JP 2017206568A JP 2014196407 A JP2014196407 A JP 2014196407A JP 2014196407 A JP2014196407 A JP 2014196407A JP 2017206568 A JP2017206568 A JP 2017206568A
Authority
JP
Japan
Prior art keywords
carbon black
platinum
particles
fuel cell
dbp absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014196407A
Other languages
Japanese (ja)
Inventor
祐作 原田
Yusaku Harada
祐作 原田
拓志 坂下
Takushi Sakashita
拓志 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2014196407A priority Critical patent/JP2017206568A/en
Priority to PCT/JP2015/077176 priority patent/WO2016047775A1/en
Publication of JP2017206568A publication Critical patent/JP2017206568A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J33/00Protection of catalysts, e.g. by coating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide carbon black having high dispersibility and suitable for a fuel cell catalyst carrier.SOLUTION: Carbon black has a DBP absorption of 200 ml/100g or more; a ratio of the DBP absorption to a specific surface of 0.60 or less (DBP absorption (ml/100 g)/specific surface (m/g)); a sulfur content of 50 ppm or less; and a bulk density of 0.050 g/cmor less. A fuel cell catalyst is obtained by carrying platinum particles and/or platinum alloy particles on the carbon black.SELECTED DRAWING: None

Description

本発明は、カーボンブラックに関する。 The present invention relates to carbon black.

固体高分子型燃料電池のセル構造は、ガス流路を施したセパレーターの間にガス拡散層、触媒層、電解質膜を挟んだ構造となっている。この触媒層は白金粒子及び/又は白金合金粒子(以下、「白金等粒子」という。)が担持されたカーボンブラックから構成されており、白金等粒子はカーボンブラック表面に高分散状態で担持されている。ここで、担持とは、カーボンブラック表面に白金等粒子が化学結合又は物理結合により付着した状態のことである。水素、酸素等の原料ガスは白金等粒子と接触して活性化され水を生成するため、触媒層の白金等粒子は高分散状態で担持されている方が、反応効率が高い。逆に、白金等粒子がカーボンブラックに低分散状態で担持されていると、すなわち凝集して担持されていると、原料ガスと白金等粒子の接触面積が小さくなり、反応効率が低下してしまう。 The cell structure of the polymer electrolyte fuel cell has a structure in which a gas diffusion layer, a catalyst layer, and an electrolyte membrane are sandwiched between separators provided with gas flow paths. This catalyst layer is composed of carbon black carrying platinum particles and / or platinum alloy particles (hereinafter referred to as “platinum particles”), and the platinum particles are carried on the surface of the carbon black in a highly dispersed state. Yes. Here, the carrying is a state in which particles such as platinum are attached to the surface of carbon black by chemical bonds or physical bonds. Since source gases such as hydrogen and oxygen are activated by contact with particles such as platinum to generate water, the reaction efficiency is higher when the particles such as platinum in the catalyst layer are supported in a highly dispersed state. On the other hand, when particles such as platinum are supported on carbon black in a low dispersion state, that is, when they are supported in an agglomerated state, the contact area between the source gas and the particles such as platinum is reduced, and the reaction efficiency is lowered. .

そこで白金等粒子の反応効率を高くするために、高比表面積のカーボンブラックを用いることが提案されている。しかし、カーボンブラックはストラクチャーと呼ばれる一次粒子の結合体が枝状に発達しており、これが触媒担持に有効な表面積を減少させる場合がある。また、ストラクチャーの絡み合いにより生じるカーボンブラックの凝集粒子は、薄膜化が進む触媒層において突起発生の原因となってしまい、触媒層、電解質膜を挟んで得られる電解質膜−電極接合体(MEA)を損傷させる可能性がある。 In order to increase the reaction efficiency of particles such as platinum, it has been proposed to use carbon black having a high specific surface area. However, in carbon black, a combination of primary particles called a structure develops in a branch shape, which may reduce the surface area effective for supporting the catalyst. In addition, the aggregated particles of carbon black generated by the entanglement of the structure cause the generation of protrusions in the catalyst layer which is becoming thinner, and the electrolyte membrane-electrode assembly (MEA) obtained by sandwiching the catalyst layer and the electrolyte membrane is formed. Possible damage.

カーボンブラックの凝集粒子を低減する手法として、触媒担持カーボンブラックとイオン交換樹脂と溶媒とを混合させたスラリーについて、外部剪断機(ビーズミル、ボールミル、3本ロール等)及び内部剪断機(超音波ホモジナイザー、ジェットミル等)を使用した解砕が提案されている(特許文献1)。また、カーボンブラック自体を粉体のまま各種の粉砕装置(ジェットミル、遊星ミル等)で解砕する手法が提案されている(特許文献2、3)。しかしながら解砕処理では解砕能力に限界があり、また、異物の混入や生産性の低下といった問題があった。 As a method of reducing aggregated particles of carbon black, an external shearing machine (bead mill, ball mill, three rolls, etc.) and an internal shearing machine (ultrasonic homogenizer) are used for a slurry in which catalyst-supported carbon black, ion exchange resin and solvent are mixed , Jet mill, etc.) have been proposed (Patent Document 1). In addition, a method has been proposed in which carbon black itself is pulverized with various pulverization apparatuses (jet mill, planetary mill, etc.) in the form of powder (Patent Documents 2 and 3). However, the crushing treatment has a limit in crushing ability, and there are problems such as contamination of foreign substances and reduction in productivity.

さらにカーボンブラックには不純物、例えば硫黄、塩素、カリウム、鉛、ナトリウム、カルシウムなどが数10ppm〜数%オーダーで含まれている場合が多く、長期安定性を阻害させていた。 Furthermore, carbon black often contains impurities such as sulfur, chlorine, potassium, lead, sodium, calcium and the like in the order of several tens of ppm to several percent, which has hindered long-term stability.

特開2005−216661号公報JP 2005-216661 A 特開2005−41967号公報JP-A-2005-41967 特開2006−274189号公報JP 2006-274189 A

本発明の目的は、高分散性かつ燃料電池触媒担体に適したカーボンブラックを提供することにある。 An object of the present invention is to provide a carbon black that is highly dispersible and suitable for a fuel cell catalyst carrier.

本発明は、上記の課題を解決するために、以下の手段を採用する。
(1)DBP吸収量が200ml/100g以上であり、DBP吸収量と比表面積の比がDBP吸収量(ml/100g)/比表面積(m/g)で0.60以下であり、硫黄分が50ppm以下であり、嵩密度が0.050g/cm以下であることを特徴とするカーボンブラック。
(2)前記(1)記載のカーボンブラックに、白金粒子及び/または白金合金粒子が担持されてなることを特徴とする燃料電池用触媒。
The present invention employs the following means in order to solve the above problems.
(1) DBP absorption is 200 ml / 100 g or more, and the ratio of DBP absorption to specific surface area is 0.60 or less in terms of DBP absorption (ml / 100 g) / specific surface area (m 2 / g). Is a carbon black characterized by having a bulk density of not more than 50 ppm and a bulk density of not more than 0.050 g / cm 3 .
(2) A catalyst for a fuel cell, wherein platinum particles and / or platinum alloy particles are supported on the carbon black described in (1).

本発明のカーボンブラックは、ストラクチャーが過度に発達しておらず、凝集粒子が少ない。そのため、燃料電池触媒担体に用いると、白金等の粒子をより均一に高分散状態で担持させることができ、燃料電池の性能を向上させることができる。また、溶剤と混合した際に高分散させることができるため、スラリーを塗工して燃料電池の触媒層を形成する際に、表面平滑性に優れた触媒層を得ることができる。 The carbon black of the present invention does not have an excessively developed structure and has few aggregated particles. Therefore, when used for a fuel cell catalyst carrier, particles such as platinum can be more uniformly supported in a highly dispersed state, and the performance of the fuel cell can be improved. Moreover, since it can disperse | distribute highly when mixed with a solvent, when coating a slurry and forming the catalyst layer of a fuel cell, the catalyst layer excellent in surface smoothness can be obtained.

本発明のカーボンブラックは高比表面積であることが好ましい。ここで比表面積は、JIS K6217−2に従って測定することができる。比表面積が低いと白金等粒子を高分散状態で担持させることができず、白金等粒子の反応効率を高くすることができない。反応効率とは、白金等粒子の単位質量当たりの触媒活性のことであり、担持量が一定の場合、燃料電池評価における電流電位曲線を比較し、同じ電流値における電圧の高低で判断可能である。電圧が高いほど反応効率が高いことを意味している。比表面積は350m/g以上であることが好ましく、500m/g以上であることがさらに好ましい。また、比表面積は1000m/g未満であることが好ましい。比表面積が1000m/g以上であると、燃料電池の特性が低下する恐れがある。 The carbon black of the present invention preferably has a high specific surface area. Here, the specific surface area can be measured according to JIS K6217-2. When the specific surface area is low, particles such as platinum cannot be supported in a highly dispersed state, and the reaction efficiency of particles such as platinum cannot be increased. The reaction efficiency is the catalytic activity per unit mass of particles such as platinum, and when the supported amount is constant, the current potential curve in the fuel cell evaluation is compared, and it can be judged by the voltage level at the same current value. . The higher the voltage, the higher the reaction efficiency. The specific surface area is preferably 350 m 2 / g or more, and more preferably 500 m 2 / g or more. The specific surface area is preferably less than 1000 m 2 / g. There exists a possibility that the characteristic of a fuel cell may fall that a specific surface area is 1000 m < 2 > / g or more.

本発明のカーボンブラックのDBP吸収量は200ml/100g以上である。ここでDBP吸収量とは、カーボンブラック粒子の表面及び凝集粒子が作る空隙にジブチルフタレートが吸収される量、つまり吸液性を評価する指標であり、JIS K6217−4に従って測定することができる。DBP吸収量が200ml/100g未満であると、白金等粒子を担持させる工程において作製するカーボンブラックスラリーの粘度が低くなり、混合による剪断力がかかりにくくなることから、良好な分散性が得られなくなる。DBP吸収量は400ml/100g未満であることが好ましい。DBP吸収量が400ml/100g以上であると、カーボンブラックスラリーの粘度が高くなり、触媒層の作製が難しくなる。 The DBP absorption amount of the carbon black of the present invention is 200 ml / 100 g or more. Here, the DBP absorption is an amount by which dibutyl phthalate is absorbed in the voids formed by the surfaces of the carbon black particles and the aggregated particles, that is, an index for evaluating liquid absorbency, and can be measured according to JIS K6217-4. When the DBP absorption amount is less than 200 ml / 100 g, the viscosity of the carbon black slurry produced in the step of supporting particles such as platinum is lowered, and it becomes difficult to apply a shearing force due to mixing, so that good dispersibility cannot be obtained. . The DBP absorption is preferably less than 400 ml / 100 g. When the DBP absorption amount is 400 ml / 100 g or more, the viscosity of the carbon black slurry becomes high, and the production of the catalyst layer becomes difficult.

本発明のカーボンブラックのDBP吸収量と比表面積の比は、DBP吸収量(ml/100g)/比表面積(m/g)で0.60以下である。ストラクチャーの発達したカーボンブラックでは、凝集粒子が作る空隙が多くなり、DBP吸収量が多くなる。しかしDBP吸収量はカーボンブラックの表面積によっても変わるため、DBP吸収量だけでストラクチャーの発達度合を評価することは難しい。そこでDBP吸収量と比表面積の比をとることで、ストラクチャーの発達度合の指標とした。本発明者は燃料電池における白金等粒子の反応効率を高めるために鋭意検討を行った結果、触媒担体であるカーボンブラックのDBP吸収量と比表面積の比を0.60(ml/100g)/(m/g)以下とすることが有効であることを見出した。DBP吸収量と比表面積の比が0.60(ml/100g)/(m/g)を超えると、過度に発達したストラクチャーが触媒担持に有効な表面積が減少させてしまう。また、ストラクチャー同士が絡み合いやすくなり、凝集粒子を発生させてしまう。 The ratio of the DBP absorption amount to the specific surface area of the carbon black of the present invention is 0.60 or less as DBP absorption amount (ml / 100 g) / specific surface area (m 2 / g). In the carbon black having a developed structure, the voids formed by the aggregated particles increase, and the DBP absorption amount increases. However, since the DBP absorption varies depending on the surface area of the carbon black, it is difficult to evaluate the degree of development of the structure only by the DBP absorption. Therefore, by taking the ratio between the DBP absorption amount and the specific surface area, it was used as an index of the degree of structure development. As a result of intensive studies to increase the reaction efficiency of particles such as platinum in the fuel cell, the present inventor has determined that the ratio of the DBP absorption amount to the specific surface area of the carbon black as the catalyst support is 0.60 (ml / 100 g) / ( It was found that m 2 / g) or less is effective. When the ratio between the DBP absorption amount and the specific surface area exceeds 0.60 (ml / 100 g) / (m 2 / g), the surface area effective for supporting the catalyst due to the excessively developed structure decreases. Further, the structures are easily entangled with each other, and aggregated particles are generated.

本発明のカーボンブラックが含有する硫黄分は50ppm以下である。カーボンブラックが含有している硫黄分は、カーボンブラック表面に硫酸基などの酸性官能基として存在しており、硫黄分が50ppmを超えると、電池内部の電気化学的な反応によりSOx等のガスを発生して電池性能を劣化させる可能性がある。カーボンブラックが含有する硫黄分は、カーボンブラックを酸素気流中で燃焼させ発生する燃焼ガスを過酸化水素水に吸収させ、それをイオンクロマトグラフィーで測定することで算出できる。 The sulfur content contained in the carbon black of the present invention is 50 ppm or less. The sulfur content contained in the carbon black exists as acidic functional groups such as sulfate groups on the surface of the carbon black. When the sulfur content exceeds 50 ppm, gas such as SOx is generated by an electrochemical reaction inside the battery. May occur and degrade battery performance. The sulfur content contained in the carbon black can be calculated by absorbing the combustion gas generated by burning the carbon black in an oxygen stream into hydrogen peroxide water and measuring it by ion chromatography.

本発明のカーボンブラックの嵩密度は0.050g/cm以下である。嵩密度が0.050g/cmを超えると、ストラクチャー同士が絡み合いやすくなり、凝集粒子を発生させてしまう。 The bulk density of the carbon black of the present invention is 0.050 g / cm 3 or less. When the bulk density exceeds 0.050 g / cm 3 , the structures are easily entangled with each other and aggregated particles are generated.

本発明のカーボンブラックは、20μm以上の凝集粒子が10ppm以下であることが好ましい。ここで20μm以上の凝集粒子は、635メッシュ(目開き20μm)の篩を用いてJIS K6218−3に従って測定することができる。また、分散度が40μm以下であることが好ましい。ここで分散度とは凝集粒子のサイズを評価する指標であり、JIS K 5600−2−5に従いグラインドゲージ(100μm及び50μm溝)で凝集粒子の粒径を測定することで評価できる。20μm以上の凝集粒子が10ppmを超えて存在する、または分散度が40μmを超えると、触媒層として塗工した際に表面平滑性が保てず、MEAを組んだ時に対極側に突き抜けて内部短絡を起こす可能性がある。 The carbon black of the present invention preferably has 10 ppm or less of aggregated particles of 20 μm or more. Aggregated particles of 20 μm or more can be measured according to JIS K6218-3 using a 635 mesh (20 μm mesh) sieve. Moreover, it is preferable that dispersion degree is 40 micrometers or less. Here, the degree of dispersion is an index for evaluating the size of the aggregated particles, and can be evaluated by measuring the particle size of the aggregated particles with a grind gauge (100 μm and 50 μm grooves) according to JIS K 5600-2-5. If aggregated particles of 20 μm or more are present in excess of 10 ppm or the degree of dispersion exceeds 40 μm, the surface smoothness cannot be maintained when applied as a catalyst layer, and when the MEA is assembled, it penetrates to the counter electrode side and is internally short-circuited. May cause.

カーボンブラックを製造する工程では、炭化水素や天然ガスなどの原料ガスを縦型反応炉の炉頂に設置されたノズルから供給し、熱分解反応及び又は燃焼反応によりカーボンブラックを製造し、反応炉下部に直結されたバグフィルターから捕集する。使用する原料ガスは特に限定されないが、硫黄分などの不純物が少ないアセチレンガスを使用することが好ましい。また、得られたカーボンブラックから硫黄分を除去する場合には、例えば、マッフル炉等の焼成炉を使用し、不活性雰囲気中、又は不活性気流中、1000〜1500℃で1時間以上加熱することで、硫黄分を除去することが出来る。 In the process of producing carbon black, a raw material gas such as hydrocarbon or natural gas is supplied from a nozzle installed at the top of a vertical reactor, and carbon black is produced by a pyrolysis reaction and / or a combustion reaction. Collect from the bug filter directly connected to the bottom. The raw material gas to be used is not particularly limited, but it is preferable to use an acetylene gas having few impurities such as a sulfur content. Moreover, when removing sulfur content from the obtained carbon black, for example, a baking furnace such as a muffle furnace is used and heated at 1000 to 1500 ° C. for 1 hour or more in an inert atmosphere or in an inert air current. Thus, the sulfur content can be removed.

カーボンブラックの比表面積及びDBP吸収量は、反応炉の形状や炉内温度分布などの制御によって調整できるが、本発明のように高比表面積で低ストラクチャーであるカーボンブラックを得るためには、反応炉内に酸素ガスと水蒸気を供給することで調整することが好ましい。特にアセチレンガスを原料ガスに用いた場合、酸素ガスと水蒸気を供給するとアセチレンガスの不完全燃焼が起こり、比表面積が高まる。また、アセチレンガスの分解によって生成するカーボンブラックの核が希釈されるため、粒成長したカーボンブラック同士の融着、つまりストラクチャーの形成を抑制することができる。その理由は明確ではないが、酸素ガスの供給量に対する水蒸気の供給量を体積比で0.8〜1.2倍とすることが特に好ましい。 The specific surface area and DBP absorption amount of carbon black can be adjusted by controlling the shape of the reaction furnace and the temperature distribution in the furnace, but in order to obtain carbon black having a high specific surface area and a low structure as in the present invention, It is preferable to adjust by supplying oxygen gas and water vapor into the furnace. In particular, when acetylene gas is used as a raw material gas, when oxygen gas and water vapor are supplied, incomplete combustion of the acetylene gas occurs and the specific surface area increases. Further, since carbon black nuclei generated by the decomposition of the acetylene gas are diluted, it is possible to suppress fusion between the grain-grown carbon blacks, that is, formation of a structure. Although the reason is not clear, it is particularly preferable that the amount of water vapor supplied relative to the amount of oxygen gas supplied is 0.8 to 1.2 times in volume ratio.

本発明においては、酸素ガス、水蒸気以外にも、例えば炭化水素ガス、水素ガス、二酸化炭素ガス等を添加することもできる。炭化水素ガスを例示すると、メタン、エタン、プロパン、エチレン、プロピレン、ブタジエン等のガスや、ベンゼン、トルエン、キシレン、ガソリン、灯油、軽油、重油等のオイル状炭化水素などをガス化したものである。これらのガスを添加すると、反応温度が変化するため、得られるカーボンブラックの比表面積を増減させることが容易となる。 In the present invention, in addition to oxygen gas and water vapor, for example, hydrocarbon gas, hydrogen gas, carbon dioxide gas and the like can be added. Examples of hydrocarbon gas are gasified gases such as methane, ethane, propane, ethylene, propylene, butadiene, etc., and oily hydrocarbons such as benzene, toluene, xylene, gasoline, kerosene, light oil, heavy oil, etc. . When these gases are added, the reaction temperature changes, so that the specific surface area of the resulting carbon black can be easily increased or decreased.

本発明のカーボンブラックは、酸化処理によって高比表面積化してもよい。酸化処理は、例えば空気、オゾン等の酸化性ガスを用いる乾式法、酸化剤を含む水溶液を利用した湿式法によって行うことができる。より均一で大規模な処理が行える点から乾式法が好ましい。乾式法は、温度500〜800℃に保たれた横型炉を用い、カーボンブラックと酸化性ガスとを、好ましくはカーボンブラックを攪拌しながら均一に接触させる方法、上記温度の酸化性ガス雰囲気に保たれた竪型炉の頂部からカーボンブラックを噴霧する方法などによって行うことができる。湿式法は、酸化剤を含む水溶液にカーボンブラックを加え、50〜120℃で5〜30時間処理した後、洗浄・乾燥することによって行うことができる。酸化剤としては、例えば過酸化水素水、塩酸、硫酸、硝酸等の無機酸、例えば次亜塩素酸ナトリウム、重クロム酸カリウム等の塩などを使用することができる。 The carbon black of the present invention may have a high specific surface area by oxidation treatment. The oxidation treatment can be performed by, for example, a dry method using an oxidizing gas such as air or ozone, or a wet method using an aqueous solution containing an oxidizing agent. The dry method is preferred from the viewpoint of more uniform and large-scale treatment. In the dry method, a horizontal furnace maintained at a temperature of 500 to 800 ° C. is used, and the carbon black and the oxidizing gas are preferably brought into contact with each other preferably while stirring the carbon black. It can be performed by a method of spraying carbon black from the top of the dredged vertical furnace. The wet method can be performed by adding carbon black to an aqueous solution containing an oxidizing agent, treating at 50 to 120 ° C. for 5 to 30 hours, and then washing and drying. As the oxidizing agent, for example, inorganic acids such as aqueous hydrogen peroxide, hydrochloric acid, sulfuric acid and nitric acid, for example, salts such as sodium hypochlorite and potassium dichromate can be used.

本発明のカーボンブラックは、凝集粒子が低減されているが、残存する凝集粒子自体もほぐれやすくなっているため、ボールミル、振動ミル、ジェットミル等を使用して更に凝集粒子を低減させることも可能である。特に、ジェットミルを用いるとより効果的に凝集粒子を低減できる。 In the carbon black of the present invention, the aggregated particles are reduced, but the remaining aggregated particles themselves are also easily loosened, so it is possible to further reduce the aggregated particles using a ball mill, a vibration mill, a jet mill, etc. It is. In particular, the use of a jet mill can reduce aggregated particles more effectively.

本発明の燃料電池用触媒は、本発明のカーボンブラックの表面に白金等粒子を高分散で析出(担持)させたものである。燃料電池性能の長期安定性の面から、白金等粒子はカーボンブラック表面に強く担持されていることが好ましく、その担持方法については後述する。白金等粒子の大きさとしては10〜50Åが好ましい。 The catalyst for a fuel cell of the present invention is obtained by precipitating (supporting) particles such as platinum with high dispersion on the surface of the carbon black of the present invention. From the viewpoint of long-term stability of fuel cell performance, it is preferable that particles such as platinum are strongly supported on the surface of carbon black, and a method for supporting the particles will be described later. The size of particles such as platinum is preferably 10 to 50 mm.

白金等の材質としては、白金の他に白金合金が用いられる。白金合金形成金属としては、パラジウム、ロジウム、イリジウム、ルテニウム、鉄、チタン、ニッケル、コバルト、金、銀、銅、クロム、マンガン、モリブデン、タングステン、アルミニウム、ケイ素、レニウム、亜鉛、スズ等がある。これらのうち、直接メタノール型燃料電池の場合は、白金−ルテニウム合金が一酸化炭素被毒防止に有効であるので好ましい。白金合金組成の一例を示せば、白金が30〜90質量%、合金化する金属が10〜70質量%である。 As a material such as platinum, platinum alloy is used in addition to platinum. Examples of the platinum alloy-forming metal include palladium, rhodium, iridium, ruthenium, iron, titanium, nickel, cobalt, gold, silver, copper, chromium, manganese, molybdenum, tungsten, aluminum, silicon, rhenium, zinc, and tin. Among these, in the case of a direct methanol fuel cell, a platinum-ruthenium alloy is preferable because it is effective in preventing carbon monoxide poisoning. If an example of a platinum alloy composition is shown, platinum will be 30-90 mass%, and the metal to alloy will be 10-70 mass%.

カーボンブラックへの白金等粒子の担持方法には特に制約はないが、例えば以下の方法が好ましい。カーボンブラックを水に懸濁させてスラリーとし、これに白金等粒子を含むヘキサクロロ白金酸(IV)水溶液を加えて混合液Aとし、これに白金等粒子に対し10倍当量の水素化ホウ素ナトリウムを添加(還元処理)し、カーボンブラックの表面に白金粒子等を析出させた後、濾過、洗浄、乾燥することによって燃料電池用触媒が製造される。 There are no particular restrictions on the method for supporting particles such as platinum on carbon black, but the following method is preferred, for example. Carbon black is suspended in water to form a slurry, and an aqueous solution of hexachloroplatinic acid (IV) containing particles such as platinum is added thereto to obtain a mixed solution A. To this, 10 times equivalent sodium borohydride is added to the particles such as platinum. After adding (reducing treatment) and precipitating platinum particles or the like on the surface of carbon black, a fuel cell catalyst is produced by filtration, washing and drying.

白金等を白金合金とするには、白金と合金形成金属を含むヘキサクロロ白金酸(IV)が用いられる。例えばルテニウムを合金形成金属として使用する場合、所定量のルテニウムを含む三塩化ルテニウム(III)水溶液を上記混合液Aに加えて混合液Bを調製する。ルテニウムの配合量は白金に対して、10〜70質量%が好ましい。ついで、白金等粒子に対し10倍当量の水素化ホウ素ナトリウムを混合液Bに添加(還元処理)し、混合液B中でカーボンブラックの表面に白金粒子等を析出させた後、濾過、洗浄、乾燥することによって燃料電池用触媒が製造される。 In order to use platinum or the like as a platinum alloy, hexachloroplatinic acid (IV) containing platinum and an alloy-forming metal is used. For example, when ruthenium is used as the alloy-forming metal, a mixed solution B is prepared by adding a ruthenium (III) trichloride aqueous solution containing a predetermined amount of ruthenium to the mixed solution A. The blending amount of ruthenium is preferably 10 to 70% by mass with respect to platinum. Next, sodium borohydride equivalent to 10 times the platinum particles is added to the mixed solution B (reduction treatment), and the platinum particles are precipitated on the surface of the carbon black in the mixed solution B, followed by filtration, washing, A fuel cell catalyst is produced by drying.

白金等粒子が白金粒子、白金合金粒子のいずれであっても、それをカーボンブラックの表面に析出させるに際し、適宜、水酸化ナトリウムの水溶液等のpH調整剤を添加することができる。白金等粒子の担持量の一例を示せば、カーボンブラック100質量部に対して10〜80質量部である。 Regardless of whether the particles such as platinum are platinum particles or platinum alloy particles, a pH adjuster such as an aqueous solution of sodium hydroxide can be added as appropriate when the particles are deposited on the surface of carbon black. An example of the supported amount of particles such as platinum is 10 to 80 parts by mass with respect to 100 parts by mass of carbon black.

本発明の燃料電池用触媒の評価は、例えば固体高分子型燃料電池の場合、以下のようにして行うことができる。燃料電池用触媒を四フッ化樹脂粉末と混合し、アルコールを加えてペースト状にしたものをカーボンペーパーの片面に塗布し触媒層を形成する。そして、触媒層の表面にナフィオン溶液を均一に塗布し電極とする。ナフィオン膜(パーフルオロスルホン酸電解質膜)の両面に、電極を接するように重ね合わせ、ホットプレスで熱圧着させ、電解質膜−電極接合体(MEA)を得る。MEAをセパレーター、続いて集電板で挟み込めば単セルが完成し、電子負荷装置、ガス供給装置を接続すれば燃料電池の評価を行うことができる。また、市販されている燃料電池単セル評価装置を用いれば上記評価をより簡便に行うことができる。 The evaluation of the fuel cell catalyst of the present invention can be performed as follows, for example, in the case of a polymer electrolyte fuel cell. A fuel cell catalyst is mixed with tetrafluoride resin powder, and a paste obtained by adding alcohol is applied to one side of carbon paper to form a catalyst layer. And a Nafion solution is uniformly apply | coated to the surface of a catalyst layer, and it is set as an electrode. An electrode is placed on both sides of a Nafion membrane (perfluorosulfonic acid electrolyte membrane) so that the electrodes are in contact with each other and thermocompression bonded by a hot press to obtain an electrolyte membrane-electrode assembly (MEA). A single cell is completed if the MEA is sandwiched between a separator and a current collector, and a fuel cell can be evaluated by connecting an electronic load device and a gas supply device. Moreover, if the commercially available fuel cell single cell evaluation apparatus is used, the said evaluation can be performed more simply.

以下、実施例及び比較例により、本発明に係るカーボンブラック及び燃料電池用触媒の製造方法を詳細に説明する。しかし、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。 Hereinafter, the production method of the carbon black and the fuel cell catalyst according to the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1
アセチレンガスと酸素ガス、水蒸気を表1の条件で混合し、カーボンブラック製造炉(炉全長5m、炉直径0.5m)の炉頂に設置されたノズルから噴霧し、アセチレンガスの熱分解及び又は燃焼反応を利用してカーボンブラックを製造し、炉下部に直結されたバグフィルターからカーボンブラックを捕集した。得られたカーボンブラックを500g採取し、720℃に加熱された電気炉内に投入した後、炉内の圧力を0.1kPaに保ったまま、空気を30L/時で導入して1.5時間酸化処理を行った。
Example 1
Acetylene gas, oxygen gas and water vapor are mixed under the conditions shown in Table 1 and sprayed from a nozzle installed at the top of a carbon black production furnace (furnace length: 5 m, furnace diameter: 0.5 m) to thermally decompose acetylene gas and / or Carbon black was produced using a combustion reaction, and carbon black was collected from a bag filter directly connected to the lower part of the furnace. 500 g of the obtained carbon black was sampled and put into an electric furnace heated to 720 ° C., and then air was introduced at 30 L / hour for 1.5 hours while maintaining the pressure in the furnace at 0.1 kPa. Oxidation treatment was performed.

得られたカーボンブラックについて、以下の物性を測定した。評価結果を表1に示す。
(1)比表面積:JIS K 6217−2に従い測定した。
(2)DBP吸収量:JIS K 6217−4に従い測定した。
(3)硫黄分:試料1gを磁性ボートに精密にはかり取り、1300℃に昇温した燃焼吸収装置の反応管に挿入した。吸収液(過酸化水素水3.5mlを純水で希釈し1Lとする)を入れた吸収瓶を接続し、酸素ガスを流し、燃焼ガスを吸収瓶に通した。得られた吸収液をイオンクロマトグラフィー分析装置に導入し、硫酸イオンのピーク面積を測定し、予め硫酸イオン標準溶液から作製した検量線を元に、試料中の硫黄の含有率を算出した。
(4)嵩密度:JIS K 5101−12−2に従い測定した。
(5)篩残分:篩を635メッシュ(目開き20μm)とした以外は、JIS K 6218−3に従い測定した。
(6)分散度:前処理として、カーボンブラック0.1g、ジブチルフタレート30gを遠心沈降管に入れ、ホモジナイザー(日本精機製バイオミキサーBM−2)を用いて、回転速度2000rpmで1分間混合し、JIS K 5600−2−5に従いグラインドゲージ(100μm及び50μm溝)で凝集粒子の粒径を測定した。
The obtained carbon black was measured for the following physical properties. The evaluation results are shown in Table 1.
(1) Specific surface area: Measured according to JIS K 6217-2.
(2) DBP absorption: measured according to JIS K 6217-4.
(3) Sulfur content: 1 g of a sample was accurately weighed on a magnetic boat and inserted into a reaction tube of a combustion absorber heated to 1300 ° C. An absorption bottle containing an absorption liquid (3.5 ml of hydrogen peroxide solution diluted with pure water to 1 L) was connected, oxygen gas was allowed to flow, and combustion gas was passed through the absorption bottle. The obtained absorbing solution was introduced into an ion chromatography analyzer, the peak area of sulfate ion was measured, and the sulfur content in the sample was calculated based on a calibration curve prepared in advance from a sulfate ion standard solution.
(4) Bulk density: Measured according to JIS K 5101-12-2.
(5) Sieve residue: Measured according to JIS K 6218-3 except that the sieve was 635 mesh (aperture 20 μm).
(6) Dispersity: As a pretreatment, 0.1 g of carbon black and 30 g of dibutyl phthalate are put into a centrifugal sedimentation tube, and mixed using a homogenizer (Biomixer BM-2 manufactured by Nippon Seiki Co., Ltd.) at a rotational speed of 2000 rpm for 1 minute. The particle size of the aggregated particles was measured with a grind gauge (100 μm and 50 μm grooves) according to JIS K 5600-2-5.

カーボンブラックを燃料電池用触媒として評価するため、白金−ルテニウム合金を以下の方法で担持させた。すなわち、カーボンブラックを塩化白金酸及び塩化ルテニウム水溶液に混合した。混合割合は、質量比で、カーボンブラック/白金/ルテニウム=40/40/20とした。混合液を80℃で30分間撹拌した後、室温まで冷却した。0.5Mの水素化ホウ素ナトリウムを5回に分けて添加し白金及びルテニウムを合金として析出させ、濾過、洗浄後、乾燥して燃料電池用触媒を得た。得られた燃料電池用触媒について、白金−ルテニウム合金の粒径をTEM観察(倍率10万倍)により1000個の粒子について測定し、その平均値を求めた。評価結果を表2に示す。 In order to evaluate carbon black as a fuel cell catalyst, a platinum-ruthenium alloy was supported by the following method. That is, carbon black was mixed with chloroplatinic acid and a ruthenium chloride aqueous solution. The mixing ratio was carbon black / platinum / ruthenium = 40/40/20 by mass ratio. The mixture was stirred at 80 ° C. for 30 minutes and then cooled to room temperature. 0.5M sodium borohydride was added in 5 portions to precipitate platinum and ruthenium as an alloy, filtered, washed and dried to obtain a fuel cell catalyst. About the obtained catalyst for fuel cells, the particle size of the platinum-ruthenium alloy was measured about 1000 particles by TEM observation (magnification of 100,000 times), and the average value was obtained. The evaluation results are shown in Table 2.

得られた燃料電池用触媒1gにナフィオンを2500mg混合してペーストとし、カーボンペーパーに塗布した後、80℃で乾燥して燃料極とした。その燃料極の表面平滑性は、SEM(倍率1000倍)を用いて各10視野を観察した。縦100μm×横100μmの領域に存在する10μm以上の凝集粒子の個数により評価した。評価結果を表2に示す。 2500 g of Nafion was mixed with 1 g of the obtained fuel cell catalyst to form a paste, applied to carbon paper, and then dried at 80 ° C. to obtain a fuel electrode. For the surface smoothness of the fuel electrode, 10 fields of view were observed using SEM (magnification 1000 times). Evaluation was based on the number of aggregated particles of 10 μm or more present in a region of 100 μm in length × 100 μm in width. The evaluation results are shown in Table 2.

次にPt−ブラックを酸素極に用い、ナフィオン膜を挟んで燃料極と重ね合わせて135℃、9.8MPaで10分間プレスし、MEAを得た。セパレーター、集電板で挟み込み、一体化して燃料電池を構成した。この燃料電池を90℃条件下で、メタノールを4ml/min、空気を60ml/minで導入し500mA/cmの定電流駆動で連続的に作動させ、初期の出力電圧と1000時間後の出力電圧を測定した。評価結果を表2に示す。 Next, Pt-black was used for the oxygen electrode, and the fuel electrode was overlapped with the Nafion membrane interposed between them and pressed at 135 ° C. and 9.8 MPa for 10 minutes to obtain an MEA. The fuel cell was configured by being sandwiched between a separator and a current collector and integrated. This fuel cell was operated continuously at a constant current of 500 mA / cm 2 by introducing methanol at 4 ml / min and air at 60 ml / min at 90 ° C., and the initial output voltage and the output voltage after 1000 hours. Was measured. The evaluation results are shown in Table 2.

実施例2〜4、比較例1〜3
カーボンブラック製造時の原料ガスの種類、原料ガスの供給量、酸化処理の処理時間を表1に示すように変えたこと以外は実施例1と同様にしてカーボンブラックを作製し、燃料電池用触媒として評価した。評価結果を表1と表2に示す。
Examples 2-4, Comparative Examples 1-3
Carbon black was produced in the same manner as in Example 1 except that the type of raw material gas, the amount of raw material gas supplied, and the treatment time of the oxidation treatment were changed as shown in Table 1, and the catalyst for the fuel cell was produced. As evaluated. The evaluation results are shown in Tables 1 and 2.

Figure 2017206568
Figure 2017206568

Figure 2017206568
Figure 2017206568

表1および表2の評価結果より、本発明のカーボンブラックは、ストラクチャーが過度に発達しておらず、凝集粒子が少なく、分散性に優れている、燃料電池触媒担体に用いた場合、白金−ルテニウム合金の粒子をより均一に高分散状態で担持させることができ、燃料電池の性能を向上させることができた。また、溶剤と混合した際に高分散させることができるため、スラリーを塗工して燃料電池の触媒層を形成する際に、表面平滑性に優れた触媒層を得ることができた。 From the evaluation results of Tables 1 and 2, the carbon black of the present invention is platinum-free when used in a fuel cell catalyst carrier having an excessively developed structure, few aggregated particles, and excellent dispersibility. The ruthenium alloy particles can be more uniformly supported in a highly dispersed state, and the performance of the fuel cell can be improved. Further, since it can be highly dispersed when mixed with a solvent, a catalyst layer having excellent surface smoothness can be obtained when a slurry is applied to form a catalyst layer of a fuel cell.

本発明のカーボンブラックは、固体高分子型燃料電池やリン酸型燃料電池等の各種燃料電池の触媒として利用することができる。
The carbon black of the present invention can be used as a catalyst for various fuel cells such as solid polymer fuel cells and phosphoric acid fuel cells.

Claims (2)

DBP吸収量が200ml/100g以上であり、DBP吸収量と比表面積の比がDBP吸収量(ml/100g)/比表面積(m/g)で0.60以下であり、硫黄分が50ppm以下であり、嵩密度が0.050g/cm以下であることを特徴とするカーボンブラック。 The DBP absorption is 200 ml / 100 g or more, the ratio of the DBP absorption to the specific surface area is 0.60 or less in terms of DBP absorption (ml / 100 g) / specific surface area (m 2 / g), and the sulfur content is 50 ppm or less. A carbon black having a bulk density of 0.050 g / cm 3 or less. 請求項1に記載のカーボンブラックに、白金粒子及び/または白金合金粒子が担持されてなることを特徴とする燃料電池用触媒。
A catalyst for a fuel cell, comprising platinum particles and / or platinum alloy particles supported on the carbon black according to claim 1.
JP2014196407A 2014-09-26 2014-09-26 Carbon black and fuel cell catalyst prepared therewith Pending JP2017206568A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014196407A JP2017206568A (en) 2014-09-26 2014-09-26 Carbon black and fuel cell catalyst prepared therewith
PCT/JP2015/077176 WO2016047775A1 (en) 2014-09-26 2015-09-25 Carbon black and fuel cell catalyst using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014196407A JP2017206568A (en) 2014-09-26 2014-09-26 Carbon black and fuel cell catalyst prepared therewith

Publications (1)

Publication Number Publication Date
JP2017206568A true JP2017206568A (en) 2017-11-24

Family

ID=55581291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014196407A Pending JP2017206568A (en) 2014-09-26 2014-09-26 Carbon black and fuel cell catalyst prepared therewith

Country Status (2)

Country Link
JP (1) JP2017206568A (en)
WO (1) WO2016047775A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068669A1 (en) * 2021-10-20 2023-04-27 오씨아이 주식회사 Highly crystalline carbon black and preparation method therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6474273A (en) * 1987-09-16 1989-03-20 Denki Kagaku Kogyo Kk Production of acetylene black
JPH02227138A (en) * 1989-02-28 1990-09-10 Ibiden Co Ltd Catalyst carrier
JP2000123832A (en) * 1998-10-16 2000-04-28 Furukawa Battery Co Ltd:The Manufacture of paste type electrode for storage battery
JP4112473B2 (en) * 2003-10-22 2008-07-02 電気化学工業株式会社 Method for producing boron solid solution acetylene black
JP2006318707A (en) * 2005-05-11 2006-11-24 Honda Motor Co Ltd Electrode structure of solid polymer fuel cell
JP4362116B2 (en) * 2005-10-20 2009-11-11 電気化学工業株式会社 Acetylene black, method for producing the same, and catalyst for fuel cell
JP2009283232A (en) * 2008-05-21 2009-12-03 Toyo Ink Mfg Co Ltd Method for manufacturing composition for battery
JP6097015B2 (en) * 2012-03-30 2017-03-15 デンカ株式会社 Acetylene black and fuel cell catalyst using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023068669A1 (en) * 2021-10-20 2023-04-27 오씨아이 주식회사 Highly crystalline carbon black and preparation method therefor

Also Published As

Publication number Publication date
WO2016047775A1 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
Zhang et al. Tailoring the electrochemical production of H2O2: strategies for the rational design of high‐performance electrocatalysts
US20200274172A1 (en) Method of producing a conductive film
JP4938165B2 (en) Fuel cell electrode catalyst
Wang et al. Nickel nanoparticles supported on nitrogen-doped honeycomb-like carbon frameworks for effective methanol oxidation
Shao et al. Multi-walled carbon nanotubes based Pt electrodes prepared with in situ ion exchange method for oxygen reduction
Hang et al. Hierarchical micro/nanostructured C doped Co/Co 3 O 4 hollow spheres derived from PS@ Co (OH) 2 for the oxygen evolution reaction
Godoi et al. A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium
Molina-García et al. Effect of catalyst carbon supports on the oxygen reduction reaction in alkaline media: a comparative study
Martínez-Casillas et al. Electrocatalytic reduction of dioxygen on PdCu for polymer electrolyte membrane fuel cells
Litkohi et al. Improved oxygen reduction reaction in PEMFCs by functionalized CNTs supported Pt–M (M= Fe, Ni, Fe–Ni) bi-and tri-metallic nanoparticles as efficient electrocatalyst
Cai et al. Enhanced activity of Pt nanoparticle catalysts supported on manganese oxide-carbon nanotubes for ethanol oxidation
Zhang et al. PtRu nanoparticles dispersed on nitrogen-doped carbon nanohorns as an efficient electrocatalyst for methanol oxidation reaction
Yang et al. Preparation and characterization of multi-walled carbon nanotube (MWCNTs)-supported Pt-Ru catalyst for methanol electrooxidation
Li et al. Heteroatom doped carbon nanofibers synthesized by chemical vapor deposition as platinum electrocatalyst supports for polymer electrolyte membrane fuel cells
Hernandez-Pichardo et al. The role of the WO3 nanostructures in the oxygen reduction reaction and PEM fuel cell performance on WO3–Pt/C electrocatalysts
Wang et al. Pd catalyst supported on a chitosan-functionalized large-area 3D reduced graphene oxide for formic acid electrooxidation reaction
JP6097015B2 (en) Acetylene black and fuel cell catalyst using the same
Karuppasamy et al. Synthesis of shape-controlled Pd nanocrystals on carbon nanospheres and electrocatalytic oxidation performance for ethanol and ethylene glycol
WO2017094648A1 (en) Carbon black, electrode catalyst and fuel cell using same, and method for producing carbon black
He et al. Electro-catalysis of carbon black or titanium sub-oxide supported Pd–Gd towards formic acid electro-oxidation
Wang et al. Electrocatalysis of carbon black-or chitosan-functionalized activated carbon nanotubes-supported Pd with a small amount of La2O3 towards methanol oxidation in alkaline media
CN110277564B (en) Direct liquid fuel cell anode catalyst and preparation method thereof
JP6563945B2 (en) Carbon black for fuel cells
JP2017206568A (en) Carbon black and fuel cell catalyst prepared therewith
CN112867564A (en) Carbon material for catalyst carrier of polymer electrolyte fuel cell and method for producing same