JP2017206411A - Silica-based composite fine particle dispersion, method for producing the same and polishing slurry containing silica-based composite fine particle dispersion - Google Patents

Silica-based composite fine particle dispersion, method for producing the same and polishing slurry containing silica-based composite fine particle dispersion Download PDF

Info

Publication number
JP2017206411A
JP2017206411A JP2016099926A JP2016099926A JP2017206411A JP 2017206411 A JP2017206411 A JP 2017206411A JP 2016099926 A JP2016099926 A JP 2016099926A JP 2016099926 A JP2016099926 A JP 2016099926A JP 2017206411 A JP2017206411 A JP 2017206411A
Authority
JP
Japan
Prior art keywords
silica
particles
composite fine
based composite
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016099926A
Other languages
Japanese (ja)
Other versions
JP6829007B2 (en
Inventor
祐二 俵迫
Yuji Tawarasako
祐二 俵迫
若宮 義憲
Yoshinori Wakamiya
義憲 若宮
小松 通郎
Michio Komatsu
通郎 小松
中山 和洋
Kazuhiro Nakayama
和洋 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2016099926A priority Critical patent/JP6829007B2/en
Publication of JP2017206411A publication Critical patent/JP2017206411A/en
Application granted granted Critical
Publication of JP6829007B2 publication Critical patent/JP6829007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silica-based composite fine particle dispersion capable of polishing a silica film, a Si-wafer or even a hard-to-work material at high speed while achieving high face accuracy.SOLUTION: There are provided silica-based composite fine particles dispersion having an average particle diameter of 50-350 nm which have daughter particles containing crystalline ceria as main components on a surface of mother particles containing amorphous silica as main components and have the following characteristics [1] to [3]. [1] The silica-based composite fine particles have a silica to ceria mass ratio of 100:11 to 316. [2] When subjecting the silica-based composite fine particles to X-ray diffraction, only a crystalline phase of ceria is detected. [3] The weight ratio of binding particles in which two or three primary particles are linked contained in the silica-based composite fine particles is 60% or more.SELECTED DRAWING: None

Description

本発明は、半導体デバイス製造に使用される研磨剤として好適なシリカ系複合微粒子分散液に関し、特に基板上に形成された被研磨膜を、化学機械的研磨(ケミカルメカニカルポリッシング、CMP)で平坦化するためのシリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリーに関する。   The present invention relates to a silica-based composite fine particle dispersion suitable as an abrasive used in semiconductor device production, and in particular, a film to be polished formed on a substrate is planarized by chemical mechanical polishing (CMP). The present invention relates to a silica-based composite fine particle dispersion, a method for producing the same, and a polishing slurry containing the silica-based composite fine particle dispersion.

半導体基板、配線基板などの半導体デバイスなどは、高密度化・微細化することで高性能化を実現している。この半導体の製造工程においては、いわゆるケミカルメカニカルポリッシング(CMP)が適用されており、具体的にはシャロートレンチ素子分離、層間絶縁膜の平坦化、コンタクトプラグやCuダマシン配線の形成などに必須の技術となっている。   Semiconductor devices such as semiconductor substrates and wiring boards achieve high performance through high density and miniaturization. In this semiconductor manufacturing process, so-called chemical mechanical polishing (CMP) is applied. Specifically, this technology is indispensable for shallow trench isolation, planarization of interlayer insulating films, formation of contact plugs and Cu damascene wiring, etc. It has become.

一般にCMP用研磨剤は、砥粒とケミカル成分とからなり、ケミカル成分は対象被膜を酸化や腐食などさせることにより研磨を促進させる役割を担う。一方で砥粒は機械的作用により研磨する役割を持ち、コロイダルシリカやヒュームドシリカ、セリア粒子が砥粒として使われる。特にセリア粒子は酸化ケイ素膜に対して特異的に高い研磨速度を示すことから、シャロートレンチ素子分離工程での研磨に適用されている。
シャロートレンチ素子分離工程では、酸化ケイ素膜の研磨だけではなく、窒化ケイ素膜の研磨も行われる。素子分離を容易にするためには、酸化ケイ素膜の研磨速度が高く、窒化ケイ素膜の研磨速度が低い事が望ましく、この研磨速度比(選択比)も重要である。
In general, an abrasive for CMP comprises abrasive grains and a chemical component, and the chemical component plays a role of promoting polishing by oxidizing or corroding a target film. On the other hand, abrasive grains have a role of polishing by mechanical action, and colloidal silica, fumed silica, and ceria particles are used as abrasive grains. In particular, since ceria particles exhibit a high polishing rate specifically with respect to a silicon oxide film, they are applied to polishing in a shallow trench element separation step.
In the shallow trench isolation process, not only the silicon oxide film but also the silicon nitride film is polished. In order to facilitate element isolation, it is desirable that the polishing rate of the silicon oxide film is high and the polishing rate of the silicon nitride film is low, and this polishing rate ratio (selection ratio) is also important.

従来、このような部材の研磨方法として、比較的粗い1次研磨処理を行った後、精密な2次研磨処理を行うことにより、平滑な表面あるいはスクラッチなどの傷が少ない極めて高精度の表面を得る方法が行われている。
このような仕上げ研磨としての2次研磨に用いる研磨剤に関して、従来、例えば次のような方法等が提案されている。
Conventionally, as a polishing method for such a member, after performing a relatively rough primary polishing process, and then performing a precise secondary polishing process, a smooth surface or a highly accurate surface with few scratches such as scratches can be obtained. The way to get done.
Conventionally, for example, the following methods have been proposed for the abrasive used for the secondary polishing as the finish polishing.

例えば、特許文献1には、硝酸第一セリウムの水溶液と塩基とを、pHが5〜10となる量比で攪拌混合し、続いて70〜100℃に急速加熱し、その温度で熟成することを特徴とする酸化セリウム単結晶からなる酸化セリウム超微粒子(平均粒子径10〜80nm)の製造方法が記載されており、更にこの製造方法によれば、粒子径の均一性が高く、かつ粒子形状の均一性も高い酸化セリウム超微粒子を提供できると記載されている。   For example, in Patent Document 1, an aqueous solution of cerium nitrate and a base are stirred and mixed in an amount ratio of pH 5 to 10, followed by rapid heating to 70 to 100 ° C. and aging at that temperature. A method for producing cerium oxide ultrafine particles (average particle size of 10 to 80 nm) composed of a single crystal of cerium oxide characterized by the following is described. Further, according to this production method, the particle size is highly uniform and the particle shape It is described that ultrafine cerium oxide particles can be provided.

また、非特許文献1は、特許文献1に記載の酸化セリウム超微粒子の製造方法と類似した製造工程を含むセリアコートシリカの製造方法を開示している。このセリアコートシリカの製造方法は、特許文献1に記載の製造方法に含まれるような焼成―分散の工程を有さないものである。   Non-Patent Document 1 discloses a method for producing ceria-coated silica including a production process similar to the method for producing cerium oxide ultrafine particles described in Patent Literature 1. This method for producing ceria-coated silica does not have a firing-dispersing step as included in the production method described in Patent Document 1.

さらに、特許文献2には、非晶質のシリカ粒子Aの表面に、ジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。また、好ましい態様として、非晶質のシリカ粒子Aの表面に、アルミニウム等の元素を含む非晶質の酸化物層であって、非晶質のシリカ層とは異なる非晶質の酸化物層Cを有し、さらに、その上にジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。そして、このようなシリカ系複合粒子は、非晶質のシリカ粒子Aの表面に、結晶質の酸化物層Bを有するために、研磨速度を向上させることができ、かつ、シリカ粒子に前処理をすることにより、焼成時に粒子同士の焼結が抑制され研磨スラリー中での分散性を向上させることができ、さらに、酸化セリウムを含まない、あるいは酸化セリウムの使用量を大幅に低減することができるので、安価であって研磨性能の高い研磨材を提供することができると記載されている。また、シリカ系粒子Aと酸化物層Bの間にさらに非晶質の酸化物層Cを有するものは、粒子の焼結抑制効果と研磨速度を向上させる効果に特に優れると記載されている。   Furthermore, Patent Document 2 discloses that the surface of the amorphous silica particles A has at least one selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium. A silica-based composite particle characterized by having a crystalline oxide layer B containing an element is described. As a preferred embodiment, an amorphous oxide layer containing an element such as aluminum on the surface of the amorphous silica particles A, which is different from the amorphous silica layer A crystalline oxide layer having C and further containing one or more elements selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium Silica-based composite particles characterized by having B are described. And since such a silica type composite particle has the crystalline oxide layer B on the surface of the amorphous silica particle A, it can improve a grinding | polishing speed and pre-process on a silica particle. By suppressing the sintering of particles during firing, the dispersibility in the polishing slurry can be improved, and further, the amount of cerium oxide used can be greatly reduced without containing cerium oxide. Therefore, it is described that it is possible to provide an abrasive that is inexpensive and has high polishing performance. Further, it is described that those having an amorphous oxide layer C between the silica-based particles A and the oxide layer B are particularly excellent in the effect of suppressing the sintering of particles and the effect of improving the polishing rate.

特許第2746861号公報Japanese Patent No. 2746861 特開2013−119131号公報JP 2013-119131 A

Seung−Ho Lee, Zhenyu Lu, S.V.Babu and Egon Matijevic、"Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria"、Journal of Materials Research、Volume 17、Issue 10、2002、pp2744−2749Seung-Ho Lee, Zhenyu Lu, S .; V. Babu and Egon Matijevic, "Chemical mechanical polishing of thermal oxide filming using silicon part 27, the second of the two", Journal of Mathematics, 27

しかしながら、特許文献1に記載の酸化セリウム超微粒子について、本発明者が実際に製造して検討したところ、研磨速度が低く、さらに、研磨基材の表面に欠陥(面精度の悪化、スクラッチ増加、研磨基材表面への研磨材の残留)を生じやすいことが判明した。
これは、焼成工程を含むセリア粒子の製造方法(焼成によりセリア粒子の結晶化度が高まる)に比べて、特許文献1に記載の酸化セリウム超微粒子の製法は、焼成工程を含まず、液相(硝酸第一セリウムを含む水溶液)から酸化セリウム粒子を結晶化させるだけなので、生成する酸化セリウム粒子の結晶化度が相対的に低く、また、焼成処理を経ないため酸化セリウムが母粒子と固着せず、酸化セリウムが研磨基材の表面に残留することが主要因であると、本発明者は推定している。
However, the cerium oxide ultrafine particles described in Patent Document 1 were actually manufactured and examined by the inventor, and the polishing rate was low. Further, the surface of the polishing base material had defects (deterioration of surface accuracy, increased scratches, It has been found that the residue of the abrasive on the surface of the polishing substrate tends to occur.
This is because the method for producing ultrafine cerium oxide particles described in Patent Document 1 does not include a firing step as compared with a method for producing ceria particles including a firing step (the degree of crystallinity of ceria particles is increased by firing). Since the cerium oxide particles are only crystallized from the aqueous solution containing cerium nitrate (the aqueous solution containing cerium nitrate), the cerium oxide particles that are produced have a relatively low degree of crystallinity, and the cerium oxide does not solidify with the mother particles because it does not undergo a firing treatment. The inventor presumes that the main factor is that cerium oxide does not adhere and remains on the surface of the polishing substrate.

また、非特許文献1に記載のセリアコートシリカは焼成していないため、現実の研磨速度は低いと考えられ、また、研磨基材の表面への粒子の残留も懸念される。   In addition, since the ceria-coated silica described in Non-Patent Document 1 is not fired, it is considered that the actual polishing rate is low, and there is a concern that particles remain on the surface of the polishing substrate.

さらに、特許文献2に記載の酸化物層Cを有する態様のシリカ系複合粒子を用いて研磨すると、アルミニウム等の不純物が半導体デバイスの表面に残留し、半導体デバイスへ悪影響を及ぼすこともあることを、本発明者は見出した。   Furthermore, when polishing using the silica-based composite particles having the oxide layer C described in Patent Document 2, impurities such as aluminum remain on the surface of the semiconductor device, which may adversely affect the semiconductor device. The inventor found out.

本発明は上記のような課題を解決することを目的とする。すなわち、本発明は、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ等)を達成でき、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリーを提供することを目的とする。   An object of the present invention is to solve the above problems. That is, the present invention can polish silica films, Si wafers and difficult-to-process materials at high speed, and at the same time, can achieve high surface accuracy (low scratch, etc.), and can be used for semiconductor devices such as semiconductor substrates and wiring boards. An object of the present invention is to provide a silica-based composite fine particle dispersion that can be preferably used for surface polishing, a method for producing the same, and a polishing slurry containing the silica-based composite fine particle dispersion.

本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)〜(11)である。
(1)非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、下記[1]から[4]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子に含まれる、一次粒子が直接的または間接的に2個または3個連結した結合粒子の重量割合が60%以上であること。
(2)前記シリカ系複合微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする上記(1)に記載のシリカ系複合微粒子分散液。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
(3)さらに、前記子粒子の表面にシリカ被膜を有していることを特徴とする、上記(1)又は(2)に記載のシリカ系複合微粒子分散液。
(4)pH値が3〜8の範囲である場合の滴定前の流動電位がマイナスの電位であることを特徴とする、上記(1)〜(3)の何れかに記載のシリカ系複合微粒子分散液。
(5)前記シリカ系複合微粒子について、透過型電子顕微鏡を用いて観察できる前記シリカ被膜の部分に電子ビームを選択的に当てたEDS測定によって求める、Ce原子数%に対するSi原子数%の比(Si原子数%/Ce原子数%)が0.9以上であることを特徴とする上記(1)〜(4)の何れかに記載のシリカ系複合微粒子分散液。
(6)カチオンコロイド滴定を行った場合に、下記式(1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−110.0〜−15.0となる流動電位曲線が得られる、請求項1〜5のいずれかに記載のシリカ系複合微粒子分散液。
ΔPCD/V=(I−C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml)
(7)上記(1)〜(6)の何れかに記載のシリカ系複合微粒子分散液を含む研磨用スラリー。
(8)シリカ膜が形成された半導体基板の平坦化用研磨スラリーであることを特徴とする上記(7)記載の研磨用スラリー。
(9)下記の工程1〜工程4を含むことを特徴とするシリカ系複合微粒子分散液の製造方法。
工程1:シリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(i)又は(ii)の処理をして焼成体解砕分散液を得る工程。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することにより上澄液を得る工程。
工程4:前記上澄液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を回収し、シリカ系複合微粒子分散液を得る工程。
(10)前記シリカ微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする上記(9)記載のシリカ系複合微粒子分散液の製造方法。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
(11)前記工程2の(ii)が、溶媒を加えて、pH9.0〜10.6の範囲にて、湿式で解砕・粉砕処理する処理である、上記(9)又は(10)に記載のシリカ系複合微粒子分散液の製造方法。
The inventor has intensively studied to solve the above-mentioned problems, and has completed the present invention.
The present invention includes the following (1) to (11).
(1) An average particle diameter of 50 to 350 nm, having child particles mainly composed of crystalline ceria on the surface of mother particles mainly composed of amorphous silica and having the following features [1] to [4] A silica-based composite fine particle dispersion containing the silica-based composite fine particles.
[1] The silica-based composite fine particles have a mass ratio of silica and ceria of 100: 11 to 316.
[2] When the silica-based composite fine particles are subjected to X-ray diffraction, only the ceria crystal phase is detected.
[3] The weight ratio of the bonded particles in which two or three primary particles are directly or indirectly connected in the silica-based composite fine particles is 60% or more.
(2) The silica-based composite fine particle dispersion described in (1) above, wherein the content of impurities contained in the silica-based composite fine particles is as shown in the following (a) and (b).
(A) The contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl, NO 3 , SO 4 and F are each 5 ppm or less.
(3) The silica-based composite fine particle dispersion described in (1) or (2) above, further having a silica coating on the surface of the child particles.
(4) The silica-based composite fine particles according to any one of (1) to (3) above, wherein the flow potential before titration when the pH value is in the range of 3 to 8 is a negative potential. Dispersion.
(5) Ratio of Si atom% to Ce atom% obtained by EDS measurement in which an electron beam is selectively applied to a portion of the silica film that can be observed using a transmission electron microscope. (Si atom number% / Ce atom number%) is 0.9 or more, and the silica-based composite fine particle dispersion according to any one of (1) to (4) above.
(6) When cationic colloid titration is performed, the ratio (ΔPCD / V) between the change in flow potential (ΔPCD) represented by the following formula (1) and the addition amount (V) of the cationic colloid titrant in the knick The silica-based composite fine particle dispersion according to any one of claims 1 to 5, wherein a streaming potential curve having a value of -110.0 to -15.0 is obtained.
ΔPCD / V = (I−C) / V (1)
C: Streaming potential (mV) at the nick
I: Streaming potential (mV) at the starting point of the streaming potential curve
V: Amount of the colloid titration solution added in the nick (ml)
(7) A polishing slurry containing the silica-based composite fine particle dispersion described in any one of (1) to (6) above.
(8) The polishing slurry according to (7), which is a polishing slurry for planarizing a semiconductor substrate on which a silica film is formed.
(9) A method for producing a silica-based composite fine particle dispersion, comprising the following steps 1 to 4.
Step 1: A silica fine particle dispersion in which silica fine particles are dispersed in a solvent is stirred, and a cerium metal salt is continuously added thereto while maintaining a temperature at 5 to 98 ° C. and a pH within a range of 7.0 to 9.0. The process of adding the precursor particle | grain dispersion liquid which adds regularly or intermittently and contains a precursor particle.
Step 2: The precursor particle dispersion is dried and fired at 400 to 1,200 ° C., and the fired body obtained is subjected to the following treatment (i) or (ii) to obtain a fired body crushed dispersion liquid. Obtaining.
(I) Crushing and pulverizing by a dry method, and adding a solvent to carry out a solvent dispersion treatment.
(Ii) A solvent is added, and the mixture is crushed and pulverized by a wet process.
Step 3: A step of obtaining a supernatant by subjecting the calcined dispersion liquid to a centrifugal separation treatment at a relative centrifugal acceleration of 300 G or more and subsequently removing a sediment component.
Step 4: A step of subjecting the supernatant to a centrifugal treatment at a relative centrifugal acceleration of 300 G or more, and subsequently recovering a sediment component to obtain a silica-based composite fine particle dispersion.
(10) The method for producing a silica-based composite fine particle dispersion as described in (9) above, wherein the content ratio of impurities contained in the silica fine particles is as shown in the following (a) and (b).
(A) The contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl, NO 3 , SO 4 and F are each 5 ppm or less.
(11) In the above (9) or (10), (ii) in the above step 2 is a treatment of adding a solvent and crushing and crushing in a wet condition in the range of pH 9.0 to 10.6. The manufacturing method of the silica type composite fine particle dispersion of description.

本発明によれば、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ等)を達成でき、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子分散液、その製造方法及びシリカ系複合微粒子分散液を含む研磨用スラリーを提供することができる。
本発明のシリカ系複合微粒子分散液は、半導体デバイス表面の平坦化に有効であり、特にはシリカ絶縁膜が形成された基板の研磨に好適である。
According to the present invention, even a silica film, Si wafer or difficult-to-process material can be polished at high speed, and at the same time, high surface accuracy (low scratch, etc.) can be achieved. A silica-based composite fine particle dispersion that can be preferably used for surface polishing, a method for producing the same, and a polishing slurry containing the silica-based composite fine particle dispersion can be provided.
The silica-based composite fine particle dispersion of the present invention is effective for planarizing the surface of a semiconductor device, and is particularly suitable for polishing a substrate on which a silica insulating film is formed.

実施例1で得られたシリカ系複合微粒子分散液の透過型電子顕微鏡写真(倍率10万倍)Transmission electron micrograph of the silica-based composite fine particle dispersion obtained in Example 1 (magnification 100,000 times) 実施例2で得られたシリカ系複合微粒子分散液の透過型電子顕微鏡写真(倍率10万倍)Transmission electron micrograph of the silica-based composite fine particle dispersion obtained in Example 2 (magnification 100,000 times) 実施例1において得られたシリカ系複合微粒子のEDS測定によって得られた元素分布図である。2 is an element distribution diagram obtained by EDS measurement of silica-based composite fine particles obtained in Example 1. FIG. 実施例1において得られたシリカ系複合微粒子を透過型電子顕微鏡を用いて観察して得た写真(TEM像)である。It is the photograph (TEM image) obtained by observing the silica type composite fine particle obtained in Example 1 using the transmission electron microscope. 実施例1において得られたシリカ系複合微粒子のシリカ被膜の部分へ選択的に電子ビームを当てたEDS測定結果である。It is the EDS measurement result which applied the electron beam selectively to the part of the silica coating of the silica type composite fine particle obtained in Example 1.

本発明について説明する。
本発明は、非晶質シリカを主成分とする母粒子(「母粒子」のことを以下では「シリカ微粒子」ともいう)の表面上に結晶性セリアを主成分とする子粒子を有し、下記[1]から[3]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液である。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子に含まれる、一次粒子が直接的または間接的に2個または3個連結した結合粒子の重量割合が60%以上であること。
このようなシリカ系複合微粒子分散液を、以下では「本発明の分散液」ともいう。
また、本発明の分散液が含むシリカ系複合微粒子を、以下では「本発明の複合微粒子」ともいう。
The present invention will be described.
The present invention has child particles mainly containing crystalline ceria on the surface of mother particles mainly containing amorphous silica (hereinafter referred to as “silica fine particles”). A silica-based composite fine particle dispersion containing silica-based composite fine particles having an average particle size of 50 to 350 nm having the following features [1] to [3].
[1] The silica-based composite fine particles have a mass ratio of silica and ceria of 100: 11 to 316.
[2] When the silica-based composite fine particles are subjected to X-ray diffraction, only the ceria crystal phase is detected.
[3] The weight ratio of the bonded particles in which two or three primary particles are directly or indirectly connected in the silica-based composite fine particles is 60% or more.
Hereinafter, such a silica-based composite fine particle dispersion is also referred to as “the dispersion of the present invention”.
Further, the silica-based composite fine particles contained in the dispersion of the present invention are also referred to as “composite fine particles of the present invention” below.

また、本発明は、下記の工程1〜工程4を含むことを特徴とするシリカ系複合微粒子分散液の製造方法である。
工程1:シリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(i)又は(ii)の処理をして焼成体解砕分散液を得る工程。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりシリカ系複合微粒子分散液を得る工程。
工程4:前記上澄液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を回収し、シリカ系複合微粒子分散液を得る工程。
なお、相対遠心加速度とは、地球の重力加速度を1Gとして、その比で表したものである。
このようなシリカ系複合微粒子分散液の製造方法を、以下では「本発明の製造方法」ともいう。
Moreover, this invention is a manufacturing method of the silica type composite fine particle dispersion characterized by including the following process 1-process 4.
Step 1: A silica fine particle dispersion in which silica fine particles are dispersed in a solvent is stirred, and a cerium metal salt is continuously added thereto while maintaining a temperature at 5 to 98 ° C. and a pH within a range of 7.0 to 9.0. The process of adding the precursor particle | grain dispersion liquid which adds regularly or intermittently and contains a precursor particle.
Step 2: The precursor particle dispersion is dried and fired at 400 to 1,200 ° C., and the fired body obtained is subjected to the following treatment (i) or (ii) to obtain a fired body crushed dispersion liquid. Obtaining.
(I) Crushing and pulverizing by a dry method, and adding a solvent to carry out a solvent dispersion treatment.
(Ii) A solvent is added, and the mixture is crushed and pulverized by a wet process.
Step 3: A step of obtaining a silica-based composite fine particle dispersion by subjecting the calcined dispersion to a centrifugal separation treatment at a relative centrifugal acceleration of 300 G or more and subsequently removing a sediment component.
Step 4: A step of subjecting the supernatant to a centrifugal treatment at a relative centrifugal acceleration of 300 G or more, and subsequently recovering a sediment component to obtain a silica-based composite fine particle dispersion.
The relative centrifugal acceleration is expressed as a ratio of the earth's gravitational acceleration as 1G.
Hereinafter, the method for producing such a silica-based composite fine particle dispersion is also referred to as “the production method of the present invention”.

本発明の分散液は、本発明の製造方法によって製造することが好ましい。   The dispersion of the present invention is preferably produced by the production method of the present invention.

以下において、単に「本発明」と記した場合、本発明の分散液、本発明の複合微粒子及び本発明の製造方法のいずれをも意味するものとする。   In the following, the simple description of “the present invention” means any of the dispersion of the present invention, the composite fine particles of the present invention, and the production method of the present invention.

本発明の複合微粒子について説明する。   The composite fine particles of the present invention will be described.

<母粒子>
本発明の複合微粒子において、母粒子は非晶質シリカを主成分とする。
<Mother particles>
In the composite fine particles of the present invention, the mother particles are mainly composed of amorphous silica.

本発明における母粒子に含まれるシリカが非晶質であることは、例えば、次の方法で確認することができる。母粒子(シリカ微粒子)を含む分散液(シリカ微粒子分散液)を乾燥させた後、乳鉢を用いて粉砕し、例えば、従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によってX線回折パターンを得ると、Cristobaliteのような結晶性シリカのピークは現れない。このことから、母粒子(シリカ微粒子)に含まれるシリカは非晶質であることを確認できる。   It can be confirmed, for example, by the following method that the silica contained in the mother particles in the present invention is amorphous. The dispersion liquid (silica microparticle dispersion liquid) containing the mother particles (silica microparticles) is dried and then pulverized using a mortar. For example, a conventionally known X-ray diffractometer (for example, RINT1400 manufactured by Rigaku Corporation) is used. When an X-ray diffraction pattern is obtained, the peak of crystalline silica such as Cristobalite does not appear. From this, it can be confirmed that the silica contained in the mother particles (silica fine particles) is amorphous.

また「主成分」とは、含有率が90質量%以上であることを意味する。すなわち、母粒子において、非晶質シリカの含有率は90質量%以上である。この含有率は95質量%以上であることが好ましく、98質量%以上であることがより好ましく、99.5質量%以上であることがより好ましい。
以下に示す本発明の説明において「主成分」の文言は、このような意味で用いるものとする。
The “main component” means that the content is 90% by mass or more. That is, in the mother particles, the content of amorphous silica is 90% by mass or more. The content is preferably 95% by mass or more, more preferably 98% by mass or more, and more preferably 99.5% by mass or more.
In the following description of the present invention, the term “main component” is used in this sense.

母粒子は非晶質シリカを主成分とし、その他のもの、例えば、結晶性シリカや不純物元素を含んでもよい。
例えば、前記母粒子(シリカ微粒子)において、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素(以下、「特定不純物群1」と称する場合がある)の含有率が、それぞれ100ppm以下であることが好ましい。さらに90ppm以下であることが好ましい。また、前記母粒子(シリカ微粒子)におけるU、Th、Cl、NO3、SO4及びFの各元素(以下、「特定不純物群2」と称する場合がある)の含有率は、それぞれ5ppm以下であることが好ましい。
一般に水硝子を原料として調製したシリカ微粒子は、原料水硝子に由来する前記特定不純物群1と前記特定不純物群2を合計で数千ppm程度含有する。
このようなシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液の場合、イオン交換処理を行って前記特定不純物群1と前記特定不純物群2の含有率を下げることは可能であるが、その場合でも前記特定不純物群1と前記特定不純物群2が合計で数ppmから数百ppm残留する。そのため水硝子を原料としたシリカ粒子を用いる場合は、酸処理等で不純物低減させることも行われている。
これに対し、アルコキシシランを原料として合成したシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液の場合、通常、前記特定不純物群1及び前記特定不純物群2における各元素と各陰イオンの含有率は、それぞれ20ppm以下である。
なお、本発明において、母粒子(シリカ微粒子)におけるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4及びFの各々の含有率は、それぞれ次の方法を用いて測定して求めた値とする。
・Na及びK:原子吸光分光分析
・Ag、Al、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びTh:ICP(誘導結合プラズマ発光分光分析)
・Cl:電位差滴定法
・NO3、SO4及びF:イオンクロマトグラフ
The mother particles are mainly composed of amorphous silica and may contain other materials such as crystalline silica and impurity elements.
For example, in the mother particle (silica fine particle), each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr (hereinafter referred to as “specific impurity group 1”). In some cases) is preferably 100 ppm or less. Furthermore, it is preferable that it is 90 ppm or less. The content of each element of U, Th, Cl, NO 3 , SO 4 and F (hereinafter sometimes referred to as “specific impurity group 2”) in the base particles (silica fine particles) is 5 ppm or less, respectively. Preferably there is.
Generally, silica fine particles prepared using water glass as a raw material contain about a few thousand ppm in total of the specific impurity group 1 and the specific impurity group 2 derived from the raw water glass.
In the case of such a silica fine particle dispersion in which silica fine particles are dispersed in a solvent, it is possible to reduce the contents of the specific impurity group 1 and the specific impurity group 2 by performing ion exchange treatment. However, the specific impurity group 1 and the specific impurity group 2 remain several ppm to several hundred ppm in total. Therefore, when silica particles made from water glass are used, impurities are also reduced by acid treatment or the like.
On the other hand, in the case of a silica fine particle dispersion in which silica fine particles synthesized using alkoxysilane as a raw material are dispersed in a solvent, the content of each element and each anion in the specific impurity group 1 and the specific impurity group 2 is usually Are each 20 ppm or less.
In the present invention, Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, Th, Cl, NO 3 , SO 4 in the mother particles (silica fine particles) are used. Each of the contents of F and F is a value determined by measurement using the following method.
Na and K: atomic absorption spectroscopic analysis Ag, Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, Zn, Zr, U and Th: ICP (inductively coupled plasma emission spectroscopic analysis)
・ Cl: Potentiometric titration method ・ NO 3 , SO 4 and F: Ion chromatograph

後述のとおり本発明におけるシリカ系複合微粒子の平均粒子径は50〜350nmの範囲にあるので、その母粒子の平均粒子径は必然的に350nmより小さい値となる。なお、本願において母粒子の平均粒子径は、後述する本発明の製造方法が含む工程1で使用するシリカ微粒子分散液に含まれるシリカ微粒子の平均粒子径と同じとする。この母粒子の平均粒子径が30〜200nmの範囲であるシリカ系複合微粒子が好適に使用される。
母粒子の平均粒子径が上記のような範囲にあると、本発明の分散液を研磨剤として用いた場合にスクラッチが少なくなる。母粒子の平均粒子径が小さすぎると研磨レートが不足する。平均粒子径が大きすぎると、かえって研磨レートが低下する。また、基板の面精度が悪化する傾向がある。
As will be described later, since the average particle size of the silica-based composite fine particles in the present invention is in the range of 50 to 350 nm, the average particle size of the mother particles is necessarily smaller than 350 nm. In the present application, the average particle diameter of the mother particles is the same as the average particle diameter of the silica fine particles contained in the silica fine particle dispersion used in Step 1 included in the production method of the present invention described later. Silica-based composite fine particles having an average particle diameter of 30 to 200 nm are preferably used.
When the average particle diameter of the mother particles is in the above range, scratches are reduced when the dispersion of the present invention is used as an abrasive. If the average particle size of the mother particles is too small, the polishing rate will be insufficient. If the average particle size is too large, the polishing rate is lowered. In addition, the surface accuracy of the substrate tends to deteriorate.

本発明における母粒子(シリカ微粒子)の平均粒子径は、動的光散乱法又はレーザー回折散乱法で測定された値を意味する。具体的には、次の方法で測定して得た値を意味するものとする。シリカ微粒子を水等に分散させ、シリカ微粒子分散液を得た後、このシリカ微粒子分散液を、公知の動的光散乱法による粒子径測定装置(例えば、日機装株式会社製マイクロトラックUPA装置や、大塚電子社製PAR−III)あるいはレーザー回折散乱法による測定装置(例えば、HORIBA社製LA―950)を用いて測定する。
なお、測定装置は各工程の目的や想定される粒子径や粒度分布に応じて使い分けられる。具体的には約100nm以下で粒度の揃った原料の単分散シリカ微粒子はPAR−IIIを用い、100nm以上とサイズが大きな単分散の原料シリカ微粒子はLA−950で測定し、解砕によりミクロンメーターからナノメーターまで粒子径が幅広く変化する解砕工程では、マイクロトラックUPAやLA−950を用いることが好ましい。
The average particle diameter of the base particles (silica fine particles) in the present invention means a value measured by a dynamic light scattering method or a laser diffraction scattering method. Specifically, it means a value obtained by measurement by the following method. Silica fine particles are dispersed in water or the like to obtain a silica fine particle dispersion, and then the silica fine particle dispersion is separated from a particle size measuring device by a known dynamic light scattering method (for example, Microtrack UPA device manufactured by Nikkiso Co., Ltd., Measurement is performed using a measurement apparatus (PAR-III manufactured by Otsuka Electronics Co., Ltd.) or a laser diffraction scattering method (for example, LA-950 manufactured by HORIBA).
In addition, a measuring apparatus is selectively used according to the objective of each process, the assumed particle diameter, and a particle size distribution. Specifically, PAR-III is used for the raw material monodisperse silica fine particles having a uniform particle size of about 100 nm or less, and monodisperse raw silica fine particles having a large size of 100 nm or more are measured with LA-950, and the micrometer is obtained by crushing. It is preferable to use Microtrac UPA or LA-950 in the crushing process in which the particle diameter varies widely from 1 to nanometer.

母粒子(シリカ微粒子)の形状は特に限定されず、例えば、球状、俵状、短繊維状、四面体状(三角錐型)、六面体状、八面体状、板状、不定形の他に表面に疣状突起を有するものや、金平糖状のものであってもよく、また、多孔質状のものであってもよいが、球状のものが好ましい。球状とは、単一粒子の母粒子の短径/長径比が0.8以下の粒子個数比が10%以下のものである。母粒子は、短径/長径比が0.8以下の粒子個数比が5%以下のものであることがより好ましく、0%のものであることがさらに好ましい。
短径/長径比は、後述する本発明の複合微粒子の短径/長径比の測定方法(画像解析法)と同様の方法で測定する。
The shape of the mother particle (silica fine particle) is not particularly limited, and for example, the surface other than spherical, bowl-shaped, short fiber-shaped, tetrahedral (triangular pyramid), hexahedral, octahedral, plate, and indefinite It may have a ridge-like protrusion, or it may be confetti-like, or may be porous, but is preferably spherical. The term “spherical” means that the ratio of the number of particles having a minor axis / major axis ratio of 0.8 or less is 10% or less. The mother particles preferably have a minor axis / major axis ratio of 0.8 or less and a number ratio of particles of 5% or less, more preferably 0%.
The minor axis / major axis ratio is measured by the same method as the measuring method (image analysis method) of the minor axis / major axis ratio of the composite fine particles of the present invention described later.

<子粒子>
本発明の複合微粒子は、上記のような母粒子の表面上に子粒子を有する。ここで、母粒子の表面に子粒子が結合していることが好ましい。また、例えば、シリカ被膜が全体を被覆している子粒子が、シリカ被膜を介して母粒子に結合していてもよい。このような態様であっても、母粒子の表面上に子粒子が存在する態様であり、本発明の技術的範囲に含まれる。
<Child particles>
The composite fine particles of the present invention have child particles on the surface of the mother particles as described above. Here, it is preferable that the child particle is bonded to the surface of the mother particle. Further, for example, the child particles that are entirely covered with the silica coating may be bonded to the mother particles through the silica coating. Even such an embodiment is an embodiment in which child particles are present on the surface of the mother particle, and is included in the technical scope of the present invention.

本発明の複合微粒子において、子粒子は結晶性セリアを主成分とする。   In the composite fine particles of the present invention, the child particles are mainly composed of crystalline ceria.

前記子粒子が結晶性セリアであることは、例えば、本発明の分散液を、乾燥させたのち乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によって得たX線回折パターンにおいて、セリアの結晶相のみが検出されることから確認できる。なお、セリアの結晶相としては、Cerianite等が挙げられる。   The fact that the child particles are crystalline ceria is, for example, that the dispersion liquid of the present invention is dried and then pulverized using a mortar, for example, a conventionally known X-ray diffractometer (for example, RINT1400 manufactured by Rigaku Corporation). In the X-ray diffraction pattern obtained by (1), only the ceria crystal phase is detected. Examples of the ceria crystal phase include Ceriaite.

子粒子は結晶性セリア(結晶性Ce酸化物)を主成分とし、その他のもの、例えばセリウム以外の元素を含んでもよい。
ただし、上記のように、本発明の複合微粒子をX線回折に供するとセリアの結晶相のみが検出される。すなわち、セリア以外の結晶相を含んでいたとしても、その含有率は少ないため、X線回折による検出範囲外となる。
なお、「主成分」の定義は前述の通りである。
The child particles are mainly composed of crystalline ceria (crystalline Ce oxide), and may contain other elements, for example, elements other than cerium.
However, as described above, when the composite fine particles of the present invention are subjected to X-ray diffraction, only the ceria crystal phase is detected. That is, even if a crystal phase other than ceria is included, its content is small, and thus it is outside the detection range by X-ray diffraction.
The definition of “principal component” is as described above.

前記子粒子は、結晶性セリアであれば、好適に使用することができる。このような結晶性セリアとして、例えば、本発明の複合微粒子をX線回折に供して測定される、結晶性セリアの(111)面(2θ=28度近傍)の結晶子径は10〜25nmの範囲のものが好ましい。   If the said child particle is crystalline ceria, it can be used conveniently. As such crystalline ceria, for example, the crystallite diameter of the (111) plane (around 2θ = 28 degrees) of the crystalline ceria measured by subjecting the composite fine particles of the present invention to X-ray diffraction is 10 to 25 nm. A range is preferred.

なお、結晶性セリアの(111)面(2θ=28度近傍)の結晶子径は、次に説明する方法によって得られる値を意味するものとする。
初めに、本発明の複合微粒子を、乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得る。そして、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半価幅を測定し、下記のScherrerの式により、結晶子径を求めることができる。
D=Kλ/βcosθ
D:結晶子径(オングストローム)
K:Scherrer定数
λ:X線波長(1.7889オングストローム、Cuランプ)
β:半価幅(rad)
θ:反射角
The crystallite diameter of the (111) plane of crystalline ceria (around 2θ = 28 degrees) means a value obtained by the method described below.
First, the composite fine particles of the present invention are pulverized using a mortar, and an X-ray diffraction pattern is obtained by using, for example, a conventionally known X-ray diffractometer (for example, RINT1400 manufactured by Rigaku Corporation). Then, the half width of the peak of the (111) plane in the vicinity of 2θ = 28 degrees in the obtained X-ray diffraction pattern is measured, and the crystallite diameter can be obtained by the following Scherrer equation.
D = Kλ / βcos θ
D: Crystallite diameter (angstrom)
K: Scherrer constant λ: X-ray wavelength (1.7789 angstrom, Cu lamp)
β: Half width (rad)
θ: Reflection angle

子粒子の大きさは、母粒子より小さく、平均粒子径11〜26nmであることが好ましく、12〜23nmであることがより好ましい。子粒子の大きさは、透過型電子顕微鏡を用いて30万倍に拡大した写真投影図において、任意の50個の子粒子について平均粒子径を測定し、これらを単純平均して得た値を意味する。   The size of the child particles is smaller than that of the mother particles, preferably an average particle diameter of 11 to 26 nm, and more preferably 12 to 23 nm. The size of the child particles is a value obtained by measuring the average particle diameter of any 50 child particles in a photograph projection view enlarged 300,000 times using a transmission electron microscope, and simply averaging them. means.

<シリカ被膜>
本発明の複合微粒子は、前記母粒子の表面上に前記子粒子を有し、さらにその子粒子の表面にシリカ被膜を有していることが好ましい。ここで、前記母粒子の表面に前記子粒子が結合しており、さらにそれらを覆うシリカ被膜を有していることがより好ましい。すなわち、前記母粒子の表面に前記子粒子が結合してなる複合粒子の一部又は全体をシリカ被膜が覆っていることがより好ましい。よって、本発明の複合微粒子の最表面にはシリカ被膜が存在していることがより好ましい。
また、母粒子(一次粒子)と別の1個または2個の母粒子(一次粒子)とが子粒子およびシリカ被膜を介して間接的に連結して結合粒子を構成していてもよい。
さらに、母粒子(一次粒子)と別の1個または2個の母粒子(一次粒子)とが直接に結合しており(すなわち直接的に連結しており)、それらの全部または一部を覆うように子粒子およびシリカ被膜が付いている結合粒子を構成していてもよい。
<Silica coating>
The composite fine particles of the present invention preferably have the child particles on the surface of the mother particles, and further have a silica coating on the surface of the child particles. Here, it is more preferable that the child particles are bonded to the surface of the mother particles and further have a silica coating covering them. That is, it is more preferable that a silica coating covers part or all of the composite particles formed by bonding the child particles to the surface of the mother particles. Therefore, it is more preferable that a silica coating is present on the outermost surface of the composite fine particles of the present invention.
Moreover, a mother particle (primary particle) and another one or two mother particles (primary particles) may be indirectly connected via a child particle and a silica coating to constitute a bonded particle.
Further, the mother particles (primary particles) and one or two other mother particles (primary particles) are directly bonded (that is, directly connected) and cover all or part of them. Thus, the binding particles having the child particles and the silica coating may be formed.

本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、透過型電子顕微鏡を用いて観察して得られる像(TEM像)では、母粒子の表面に子粒子の像が濃く現れるが、その子粒子の外側、すなわち、本発明の複合微粒子の表面側には、相対的に薄い像として、シリカ被膜が現れる。また、子粒子(セリア微粒子)が母粒子(シリカ微粒子)と結合している態様であることが好ましく、シリカ被膜が全体または一部を被覆している子粒子が、シリカ被膜を介して母粒子に結合していてもよい。
また、本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、本発明の複合微粒子をEDS分析に供し、元素分布を得ると、粒子の表面側にCe濃度が高い部分が現れるが、さらにその外側にSi濃度が高い部分が現れる。
また、上記のように透過型電子顕微鏡によって特定した前記シリカ被膜の部分に電子ビームを選択的に当てたEDS測定を行って当該部分のSi原子数%及びCe原子数%を求めると、Si原子数%が非常に高いことを確認することができる。具体的には、Ce原子数%に対するSi原子数%の比(Si原子数%/Ce原子数%)が0.9以上となることが好ましい。
When the composite fine particle of the present invention has a silica coating on the surface of the child particle, an image (TEM image) obtained by observation using a transmission electron microscope has a dark image of the child particle on the surface of the mother particle. Although it appears, a silica coating appears as a relatively thin image outside the child particle, that is, on the surface side of the composite fine particle of the present invention. Further, it is preferable that the child particles (ceria fine particles) are bonded to the mother particles (silica fine particles), and the child particles whose silica coating covers all or part of the mother particles are interposed via the silica coating. May be bonded to.
Further, when the composite fine particles of the present invention have a silica coating on the surface of the child particles, when the composite fine particles of the present invention are subjected to EDS analysis and the element distribution is obtained, a portion with a high Ce concentration is present on the surface side of the particles. Although it appears, a portion with a high Si concentration appears further outside.
Further, when EDS measurement was performed by selectively applying an electron beam to the silica coating portion specified by the transmission electron microscope as described above, the Si atom number% and Ce atom number% of the part were obtained. It can be confirmed that several percent is very high. Specifically, the ratio of Si atom number% to Ce atom number% (Si atom number% / Ce atom number%) is preferably 0.9 or more.

このようなシリカ被膜は、子粒子(セリア結晶粒子)と母粒子(シリカ微粒子)の結合(力)を助長すると考えられる。よって、例えば、本発明の分散液を得る工程で、焼成して得られたシリカ系複合微粒子について湿式による解砕・粉砕を行うことで、シリカ系複合微粒子分散液が得られるが、シリカ被膜により、子粒子(セリア結晶粒子)が母粒子(シリカ微粒子)から外れる事を防ぐ効果があるものと考えられる。この場合、局部的な子粒子の脱落は問題なく、また、子粒子の表面の全てがシリカ被膜で覆われていなくても良い。子粒子が解砕・粉砕工程で母粒子から外れない程度の強固さがあれば良い。
このような構造を備えると、本発明の分散液を研磨剤として用いた場合、研磨速度が高く、面精度やスクラッチの悪化が少ないと考えられる。また、結晶化しているため粒子表面の−OH基が少なく、研磨基板表面の−OH基との相互作用が少ないため研磨基板表面への付着が少ないと考えられる。
例えば、被研磨基材がシリカ系材料の場合、被研磨基材表面にもシラノール基(SiOH)が存在するが、研磨粒子(シリカ)の表面にもSiOHが存在すると、両シラノール基が反応して研磨粒子が被研磨基材表面へ残留する場合があると考えられる。また遊離セリアは正の電荷をもつため基板へ付着しやすい。本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、セリア粒子表面へのシリカ被覆はセリア粒子に負の電荷を付与するため、基板への付着を低減化する効果もある。
また、セリアはシリカや研磨基板、研磨パッドとは電位が異なり、pHはアルカリ性から中性付近でマイナスのゼータ電位が減少して行き、弱酸性領域では逆のプラスの電位を持つ。そのため電位の大きさの違いや極性の違いなどで研磨基材や研磨パッドに付着し、研磨基材や研磨パッドに残り易い。一方、本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、本発明のシリカ系複合微粒子は、子粒子であるセリアがシリカ被膜でその少なくとも一部が覆われているため、pHがアルカリ性から酸性までマイナスの電位を維持するため、研磨基材や研磨パッドへの砥粒残りが起きにくい。
Such a silica coating is considered to promote the bond (force) between the child particles (ceria crystal particles) and the mother particles (silica fine particles). Thus, for example, in the step of obtaining the dispersion of the present invention, the silica-based composite fine particles obtained by firing are crushed and pulverized by a wet process to obtain a silica-based composite fine particle dispersion. It is considered that there is an effect of preventing the child particles (ceria crystal particles) from coming off from the mother particles (silica fine particles). In this case, local dropout of the child particles is not a problem, and the entire surface of the child particles may not be covered with the silica coating. It is sufficient that the child particles are strong enough not to be separated from the mother particles in the crushing / grinding process.
When such a structure is provided, it is considered that when the dispersion liquid of the present invention is used as an abrasive, the polishing rate is high, and the surface accuracy and scratch are less deteriorated. Further, since it is crystallized, there are few —OH groups on the surface of the particles, and there is little interaction with the —OH groups on the surface of the polishing substrate.
For example, when the substrate to be polished is a silica-based material, silanol groups (SiOH) are also present on the surface of the substrate to be polished, but when SiOH is also present on the surfaces of the abrasive particles (silica), both silanol groups react. Thus, it is considered that the abrasive particles may remain on the surface of the substrate to be polished. In addition, free ceria has a positive charge and is likely to adhere to the substrate. When the composite fine particles of the present invention have a silica coating on the surface of the child particles, the silica coating on the surface of the ceria particles imparts a negative charge to the ceria particles, and thus has an effect of reducing adhesion to the substrate. .
In addition, ceria has a potential different from that of silica, a polishing substrate, and a polishing pad, and the pH decreases from a negative zeta potential in the vicinity of neutral to neutral, and has a reverse positive potential in a weakly acidic region. For this reason, it adheres to the polishing substrate or polishing pad due to the difference in the magnitude of the potential or the polarity, and tends to remain on the polishing substrate or the polishing pad. On the other hand, when the composite fine particle of the present invention has a silica coating on the surface of the child particle, the silica-based composite fine particle of the present invention is such that the ceria which is the child particle is at least partially covered with the silica coating. In addition, since the pH is maintained at a negative potential from alkaline to acidic, it is difficult for abrasive grains to remain on the polishing substrate and polishing pad.

本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、シリカ被膜の厚さは、TEM像やSEM像から母粒子上のセリアの子粒子のシリカ被膜による被覆具合で概ね求められる。つまり、上記のように、TEM像では、母粒子の表面に粒子径が約20nm前後の子粒子の像が濃く現れ、その子粒子の外側に相対的に薄い像としてシリカ被膜が現れるので、子粒子の大きさと対比する事で、シリカ被膜の厚さを概ね求めることができる。この厚さは、SEM像から子粒子が凹凸としてハッキリ確認できて、TEM像からシリカ系複合微粒子の輪郭に凹凸が見られるのならば、シリカ被膜の厚さは20nmをはるかに下回る事が考えられる。一方、SEM像から子粒子の凹凸がはっきりせずに、TEM像からもシリカ系複合微粒子の輪郭に凹凸が見られないなら、シリカ被膜の厚さは約20nm前後であると考えられる。   When the composite fine particles of the present invention have a silica coating on the surface of the child particles, the thickness of the silica coating is roughly determined from the TEM image or SEM image by the degree of coverage of the ceria child particles on the mother particles by the silica coating. It is done. That is, as described above, in the TEM image, a child particle having a particle size of about 20 nm appears on the surface of the mother particle, and a silica coating appears as a relatively thin image outside the child particle. The thickness of the silica coating can be roughly determined by comparing with the size of. If the child particles can be clearly confirmed as irregularities from the SEM image and irregularities are seen in the outline of the silica-based composite fine particles from the TEM image, the thickness of the silica coating may be much less than 20 nm. It is done. On the other hand, if the irregularities of the child particles are not clear from the SEM image and the contours of the silica composite fine particles are not seen from the TEM image, the thickness of the silica coating is considered to be about 20 nm.

なお、本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、上記のように最外層(母粒子側とは反対側の層)のシリカ被膜は、子粒子(セリア微粒子)の全体を完全に覆っていなくてもよい。すなわち、本発明の複合微粒子が子粒子の表面にシリカ被膜を有している場合、本発明の複合微粒子の最表面にはシリカ被膜が存在しているが、シリカ被膜が存在していない部分があってもよい。また、シリカ系複合微粒子の母粒子が露出する部分が存在しても構わない。   When the composite fine particles of the present invention have a silica coating on the surface of the child particles, as described above, the silica coating of the outermost layer (the layer opposite to the mother particle side) is a child particle (ceria fine particles). It is not necessary to completely cover the whole. That is, when the composite fine particle of the present invention has a silica coating on the surface of the child particle, the silica coating is present on the outermost surface of the composite fine particle of the present invention, but the portion where the silica coating is not present is present. There may be. Further, there may be a portion where the base particle of the silica-based composite fine particle is exposed.

<本発明の複合微粒子>
本発明の複合微粒子は、上記のように、母粒子の表面に、上記のような子粒子を有している。
<Composite fine particles of the present invention>
As described above, the composite fine particles of the present invention have the above child particles on the surface of the mother particles.

本発明の複合微粒子において、シリカとセリアとの質量比は100:11〜316であり、100:30〜230であることが好ましく、100:30〜150であることがより好ましく、100:60〜120であることがさらに好ましい。シリカとセリアとの質量比は、概ね、母粒子と子粒子との質量比と同程度と考えられる。母粒子に対する子粒子の量が少なすぎると、母粒子同士が結合し、粗大粒子が発生する場合がある。この場合に本発明の分散液を含む研磨剤(研磨スラリー)は、研磨基材の表面に欠陥(スクラッチの増加などの面精度の低下)を発生させる可能性がある。また、シリカに対するセリアの量が多すぎても、コスト的に高価になるばかりでなく、資源リスクが増大する。さらに、粒子同士の融着が進む。その結果、基板表面の粗度が上昇(表面粗さRaの悪化)したり、スクラッチが増加する、更に遊離したセリアが基板に残留する、研磨装置の廃液配管等への付着といったトラブルを起こす原因ともなりやすい。
なお、前記質量比を算定する場合の対象となるシリカとは、次の(I)と(II)の両方を含むものである。
(I)母粒子を構成するシリカ成分
(II)母粒子に子粒子(セリア成分)が結合してなる複合微粒子を、覆ってなるシリカ被膜に含まれるシリカ成分
In the composite fine particles of the present invention, the mass ratio of silica and ceria is 100: 11 to 316, preferably 100: 30 to 230, more preferably 100: 30 to 150, and more preferably 100: 60 to More preferably, it is 120. The mass ratio between silica and ceria is considered to be approximately the same as the mass ratio between the mother particles and the child particles. If the amount of the child particles relative to the mother particles is too small, the mother particles may be bonded to generate coarse particles. In this case, the abrasive (polishing slurry) containing the dispersion of the present invention may cause defects (decrease in surface accuracy such as an increase in scratches) on the surface of the polishing substrate. Further, if the amount of ceria relative to silica is too large, not only is the cost high, but the resource risk increases. Furthermore, the fusion of the particles proceeds. As a result, the roughness of the substrate surface increases (deterioration of the surface roughness Ra), scratches increase, free ceria remains on the substrate, and causes such as adhesion to the waste liquid piping of the polishing apparatus. It's easy to get along.
In addition, the silica used as the object in calculating the mass ratio includes both the following (I) and (II).
(I) Silica component included in the silica coating that covers the composite fine particles formed by binding the child particles (ceria component) to the silica particles (II) constituting the mother particles (II)

本発明の複合微粒子におけるシリカ(SiO2)とセリア(CeO2)の含有率(質量%)は、まず本発明の複合微粒子の分散液(本発明の分散液)の固形分濃度を、1000℃灼熱減量を行って秤量により求める。
次に、所定量の本発明の複合微粒子に含まれるセリウム(Ce)の含有率(質量%)をICPプラズマ発光分析により求め、CeO2質量%に換算する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出することができる。
なお、本発明の製造方法においては、シリカとセリアの質量比は、本発明の分散液を調製する際に投入したシリカ源物質とセリア源物質との使用量から算定することもできる。これは、セリアやシリカが溶解し除去されるプロセスとなっていない場合に適用でき、そのような場合はセリアやシリカの使用量と分析値が良い一致を示す。
The content (mass%) of silica (SiO 2 ) and ceria (CeO 2 ) in the composite fine particles of the present invention is determined by first determining the solid content concentration of the dispersion of the composite fine particles of the present invention (dispersion of the present invention) at 1000 ° C. Calculate the weight loss after losing heat.
Next, the content (mass%) of cerium (Ce) contained in a predetermined amount of the composite fine particles of the present invention is determined by ICP plasma emission analysis, and converted to CeO 2 mass%. Then, assuming that the components other than CeO 2 constituting the composite fine particles of the present invention are SiO 2 , SiO 2 mass% can be calculated.
In the production method of the present invention, the mass ratio of silica and ceria can be calculated from the amount of silica source material and ceria source material used when the dispersion of the present invention is prepared. This can be applied when ceria and silica are not dissolved and removed, and in such a case, the amount of ceria or silica used and the analytical value are in good agreement.

本発明の複合微粒子はシリカ微粒子(母粒子)の表面に粒子状の結晶性セリア(子粒子)が焼結等して結合したもの等であるので、凹凸の表面形状を有している。
すなわち、母粒子と子粒子との少なくとも一方(好ましくは双方)が、それらの接点において、焼結結合し、強固に結合していることが好ましい。ただし、シリカ被膜の覆われた子粒子が、そのシリカ被膜を介して母粒子と結合している場合もある。
The composite fine particles of the present invention have irregular surface shapes because particulate crystalline ceria (child particles) are bonded to the surface of silica fine particles (mother particles) by sintering or the like.
That is, it is preferable that at least one (preferably both) of the mother particle and the child particle is sinter-bonded and firmly bonded at their contact points. However, the child particles covered with the silica coating may be bonded to the mother particles through the silica coating.

本発明の複合微粒子の形状は、格別に制限されるものではないが、実用上は、粒子連結型であってもよい。粒子連結型とは、2個以上の母粒子同士が各々一部において結合しているものを意味する。母粒子同士は少なくとも一方(好ましくは双方)がそれらの接点において溶着し、好ましくは双方が固着することで強固に結合しているものと考えられる。ここで、母粒子同士が結合した後に、その表面に子粒子が結合した場合の他、母粒子の表面に子粒子が結合した後、他のものに結合した場合であっても、粒子連結型とする。
連結型であると基板との接触面積を多くとることができるため、研磨エネルギーを効率良く基板へ伝えることができる。そのため、研磨速度が高い。また、粒子当たりの研磨圧力が単粒子よりも低くなるためスクラッチも少ない。
The shape of the composite fine particles of the present invention is not particularly limited, but may be a particle-linked type in practice. The particle connection type means that two or more mother particles are partially bonded to each other. It is considered that at least one (preferably both) of the mother particles are welded at their contact points, and preferably, both are firmly bonded together. Here, in addition to the case where the child particles are bonded to the surface after the mother particles are bonded to each other, and the case where the child particles are bonded to the surface of the mother particle and then bonded to the other particles, And
Since the contact type can increase the contact area with the substrate, the polishing energy can be efficiently transmitted to the substrate. Therefore, the polishing rate is high. Further, since the polishing pressure per particle is lower than that of a single particle, there is little scratching.

本発明の複合微粒子において、前記シリカ系複合微粒子に含まれる、一次粒子が直接的または間接的に2個または3個連結した結合粒子の重量割合が60%以上である。
ここで、本発明の複合微粒子の構成要素である各粒子の主な態様として、以下の(ア)〜(エ)が挙げられる。
(ア)母粒子に子粒子が付いてなる本発明の複合微粒子(1個)。
(イ)母粒子に子粒子が付いており、さらにシリカ被膜を付いている、本発明の複合微粒子(1個)。
(ウ)母粒子に子粒子が付いてなる1個の一次粒子と、別の1個または2個の同様の一次粒子とが直接的に結合し、それらの全部または一部を覆うようにシリカ被膜が付いて構成されている結合粒子。
(エ)母粒子に子粒子が付いてなる1個の一次粒子と、別の1個または2個の同様の一次粒子とが、シリカ被膜を介して間接的に結合している結合粒子。
In the composite fine particles of the present invention, the weight ratio of the combined particles in which two or three primary particles are directly or indirectly connected contained in the silica-based composite fine particles is 60% or more.
Here, the following (A) to (D) are mentioned as main aspects of each particle which is a constituent element of the composite fine particle of the present invention.
(A) A composite fine particle (one) of the present invention in which a child particle is attached to a mother particle.
(A) The composite fine particles of the present invention (one piece) having child particles attached to the mother particles and a silica coating.
(C) Silica so that one primary particle in which child particles are attached to the mother particle and another one or two similar primary particles are directly bonded and cover all or part of them. A bonded particle composed of a coating.
(D) A bonded particle in which one primary particle having a mother particle attached to a child particle and another one or two similar primary particles are indirectly bonded via a silica coating.

本発明の複合微粒子では、上記の(ウ)または(エ)に該当する、一次粒子が直接的または間接的に2個または3個連結した結合粒子の重量割合が60%以上である。この場合、本発明の複合微粒子は三次元的構造を備える粒子の含有率が低くなるので、研磨剤としても用いた場合にスクラッチ生成をより抑制できる点で好ましい。なお、ここで一次粒子が3個連結している場合は、これらの3個が直鎖状に連結している場合と、これらの3個が環状に結合している場合とがある。   In the composite fine particles of the present invention, the weight ratio of the bound particles corresponding to the above (c) or (d) in which two or three primary particles are connected directly or indirectly is 60% or more. In this case, the composite fine particles of the present invention have a low content of particles having a three-dimensional structure, which is preferable in that the generation of scratches can be further suppressed when used as an abrasive. Here, when three primary particles are connected, there are a case where these three particles are connected in a straight chain and a case where these three particles are connected in a ring shape.

前記シリカ系複合微粒子に含まれる、前記結合粒子の重量割合は、画像解析法によって粒子個数割合を測定して得た後、これを重量割合に換算して得た値を意味するものとする。
具体的には、十分に希釈し分散させた複合微粒子分散液を、乾燥させ、本発明の複合微粒子試料を準備し、透過型電子顕微鏡により、倍率25万倍(ないしは50万倍)で写真撮影して写真投影図を得て、視認される任意の独立した粒子50個について、それぞれの粒子個数を測定し、その結果から粒子個数割合を求めた後、重量割合に換算して、前記結合粒子の割合を求めるものとする。なお、重量割合換算値の求め方は、粒子個数毎に以下に記す式にて重量を求め、すべての粒子個数の総重量に対して百分率で求めた。
式:(複合微粒子の平均粒子径÷2)3×複合微粒子の真比重×粒子個数
なお、電子顕微鏡写真では、試料の乾燥処理時に粒子が寄り集まり凝集して見える可能性もあるため、本測定方法の妥当性を確認した。
まず後に記載する合成例の焼成体解砕分散液について粒度分布測定装置(例えばCPS社製Disc Cetrifuge DC18000)で粒度分布を測定した。粒度分布測定装置では複数のピークが確認されたが、粒子径が一番小さいピークのピークトップを1個体の粒子径(D1)であるとし、以降のピークをD2、D3、D4とした。次にこの1個体粒子の2倍の体積に等しい球の粒子径を2個体とし、D2'を算出した。また3倍、4倍に等しい球の体積を同様にD3'、D4'として求めた。その結果、D2とD2'、D3とD3'、D4とD4'は良い一致を示した。このことから、粒度分布測定装置で1〜4個玉の測定は妥当であると考えた。そしてこの粒度分布測定結果をピーク分離して、1〜4個体の重量割合を算出した。
次に電子顕微鏡写真から、1〜4個体の粒子個数を測定し、これを重量割合に換算し、粒度分布測定装置の重量割合と比較した。その結果、両者は良い一致を示したことから、電子顕微鏡の画像解析法は妥当であると判断した。
なお、本願においては、他の粒子と連結していない単独の一次粒子を「1個玉」、一次粒子が直接的または間接的に2個連結した粒子を「2個玉」、一次粒子が直接的または間接的に3個連結した粒子を「3個玉」、一次粒子が直接的または間接的に4個連結した粒子を「4個玉」とも称する。
The weight ratio of the binding particles contained in the silica-based composite fine particles means a value obtained by measuring the number ratio of particles by an image analysis method and then converting this to a weight ratio.
Specifically, the composite fine particle dispersion sufficiently diluted and dispersed is dried to prepare the composite fine particle sample of the present invention, and photographed with a transmission electron microscope at a magnification of 250,000 times (or 500,000 times) Then, a photograph projection view is obtained, and the number of particles for each of 50 arbitrary independent particles to be visually observed is measured. After determining the particle number ratio from the result, the combined particles are converted into weight ratios. The ratio of In addition, the method of calculating | requiring a weight ratio conversion value calculated | required weight with the formula described below for every particle | grain number, and calculated | required in percentage with respect to the total weight of all the particle | grain numbers.
Formula: (Average particle diameter of composite fine particle ÷ 2) 3 × True specific gravity of composite fine particle × Number of particles Note that in the electron micrograph, the particles may gather and aggregate when the sample is dried. The validity of the method was confirmed.
First, the particle size distribution was measured with a particle size distribution measuring apparatus (for example, Disc Certifge DC18000 manufactured by CPS) for the sintered body pulverized dispersion of Synthesis Example described later. In the particle size distribution measuring apparatus, a plurality of peaks were confirmed. The peak top of the peak with the smallest particle diameter was defined as one individual particle diameter (D1), and the subsequent peaks were defined as D2, D3, and D4. Next, the particle diameter of a sphere having a volume equal to twice the volume of one individual particle was assumed to be two individuals, and D2 ′ was calculated. The volume of the sphere equal to 3 times or 4 times was similarly determined as D3 ′ and D4 ′. As a result, D2 and D2 ′, D3 and D3 ′, and D4 and D4 ′ were in good agreement. From this, it was considered that the measurement of 1 to 4 balls with a particle size distribution measuring device was appropriate. And this particle size distribution measurement result was peak-separated, and the weight ratio of 1-4 individuals was computed.
Next, from the electron micrograph, the number of particles of 1 to 4 individuals was measured, converted into a weight ratio, and compared with the weight ratio of the particle size distribution measuring apparatus. As a result, since both showed good agreement, it was judged that the image analysis method of the electron microscope was appropriate.
In the present application, a single primary particle not connected to other particles is “one ball”, a particle in which two primary particles are connected directly or indirectly is “two balls”, and a primary particle is directly Particles in which three particles are connected either directly or indirectly are also referred to as “three balls”, and particles in which four primary particles are directly or indirectly connected are also referred to as “four balls”.

本発明の複合微粒子は、比表面積が4〜100m2/gであることが好ましく、30〜60m2/gであることがより好ましい。 The composite fine particles of the present invention preferably have a specific surface area of 4 to 100 m 2 / g, and more preferably 30 to 60 m 2 / g.

ここで、比表面積(BET比表面積)の測定方法について説明する。
まず、乾燥させた試料(0.2g)を測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料の比表面積を測定する。
このようなBET比表面積測定法(窒素吸着法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
本発明において比表面積は、特に断りがない限り、このような方法で測定して得た値を意味するものとする。
Here, a method for measuring the specific surface area (BET specific surface area) will be described.
First, a dried sample (0.2 g) is put in a measurement cell, degassed in a nitrogen gas stream at 250 ° C. for 40 minutes, and then the sample is a mixed gas of 30% by volume of nitrogen and 70% by volume of helium. Liquid nitrogen temperature is maintained in a stream of air, and nitrogen is adsorbed to the sample by equilibrium. Next, the temperature of the sample is gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that time is detected, and the specific surface area of the sample is measured using a calibration curve prepared in advance.
Such a BET specific surface area measurement method (nitrogen adsorption method) can be performed using, for example, a conventionally known surface area measurement device.
In the present invention, the specific surface area means a value obtained by such a method unless otherwise specified.

本発明の複合微粒子の平均粒子径は50〜350nmであることが好ましく、170〜260nmであることがより好ましい。本発明の複合微粒子の平均粒子径が50〜350nmの範囲にある場合、研磨材として適用した際に研磨速度が高くなり好ましい。
本発明の複合微粒子の平均粒子径は、動的光散乱法又はレーザー回折散乱法で測定された値を意味する。具体的には、次の方法で測定して得た値を意味するものとする。本発明の複合微粒子を水に分散させ、この複合微粒子分散液を、公知の動的光散乱法による粒子径測定装置(例えば、日機装株式会社製マイクロトラックUPA装置や、大塚電子社製PAR−III)あるいはレーザー回折散乱法による測定装置(例えば、HORIBA社製LA―950)を用いて測定する。
The average particle size of the composite fine particles of the present invention is preferably 50 to 350 nm, and more preferably 170 to 260 nm. When the average particle size of the composite fine particles of the present invention is in the range of 50 to 350 nm, it is preferable because the polishing rate becomes high when applied as an abrasive.
The average particle diameter of the composite fine particles of the present invention means a value measured by a dynamic light scattering method or a laser diffraction scattering method. Specifically, it means a value obtained by measurement by the following method. The composite fine particles of the present invention are dispersed in water, and this composite fine particle dispersion is used as a particle size measuring device by a known dynamic light scattering method (for example, Nikkiso Co., Ltd. Microtrac UPA device or Otsuka Electronics PAR-III). ) Or a measurement apparatus using a laser diffraction scattering method (for example, LA-950 manufactured by HORIBA).

本発明の複合微粒子において、前記特定不純物群1の各元素の含有率は、それぞれ100ppm以下であることが好ましい。さらに50ppm以下であることが好ましく、45ppm以下であることがより好ましい。また、本発明の複合微粒子における前記特定不純物群2の各元素の含有率は、それぞれ5ppm以下であることが好ましい。本発明の複合微粒子における特定不純物群1及び前記特定不純物群2それぞれの元素の含有率を低減させる方法については、母粒子(シリカ微粒子)について述べた方法が適用できる。
なお、本発明の複合微粒子における前記特定不純物群1と前記特定不純物群2の各々の元素の含有率は、ICP(誘導結合プラズマ発光分光分析装置)を用いて測定して求める値とする。
In the composite fine particles of the present invention, the content of each element of the specific impurity group 1 is preferably 100 ppm or less. Furthermore, it is preferable that it is 50 ppm or less, and it is more preferable that it is 45 ppm or less. Moreover, it is preferable that the content rate of each element of the said specific impurity group 2 in the composite fine particle of this invention is 5 ppm or less, respectively. As the method for reducing the content of each element of the specific impurity group 1 and the specific impurity group 2 in the composite fine particles of the present invention, the method described for the mother particles (silica fine particles) can be applied.
Note that the content of each element of the specific impurity group 1 and the specific impurity group 2 in the composite fine particles of the present invention is a value obtained by measurement using an ICP (inductively coupled plasma emission spectrometer).

本発明の複合微粒子は、前記特定不純物群1の各元素含有率がそれぞれ100ppm以下であり、前記特定不純物群2の各元素含有率がそれぞれ5ppm以下であることを特徴とする複合酸化物微粒子分散液である場合と、必ずしもこの条件を満たさない複合酸化物微粒子である場合がある。このうち、前者は、高純度な研磨剤の適用が求められる用途、例えば、半導体基板、配線基板などの半導体デバイスなどの研磨用途において研磨剤として好適に使用することができる。また、後者は、高純度な研磨剤の適用が求められない用途、例えば、ガラス研磨などに適用される。(前者は、高純度な研磨剤の適用が求められない用途にも当然に適用可能である。)   The composite fine particle dispersion according to the present invention is characterized in that each element content of the specific impurity group 1 is 100 ppm or less and each element content of the specific impurity group 2 is 5 ppm or less. There are cases where it is a liquid and composite oxide fine particles that do not necessarily satisfy this condition. Among these, the former can be suitably used as an abrasive in applications where application of high-purity abrasives is required, for example, polishing applications such as semiconductor devices such as semiconductor substrates and wiring substrates. Moreover, the latter is applied to applications where application of a high-purity abrasive is not required, such as glass polishing. (The former can naturally be applied to applications where application of a high-purity abrasive is not required.)

<本発明の分散液>
本発明の分散液について説明する。
本発明の分散液は、上記のような本発明の複合微粒子が分散溶媒に分散しているものである。
<Dispersion of the present invention>
The dispersion liquid of the present invention will be described.
The dispersion liquid of the present invention is such that the composite fine particles of the present invention as described above are dispersed in a dispersion solvent.

本発明の分散液は分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の分散液は、添加剤として、研磨促進剤、界面活性剤、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を含んでいてもよい。   The dispersion of the present invention contains water and / or an organic solvent as a dispersion solvent. For example, water such as pure water, ultrapure water, or ion exchange water is preferably used as the dispersion solvent. Furthermore, the dispersion of the present invention may contain one or more selected from the group consisting of a polishing accelerator, a surfactant, a pH adjuster, and a pH buffer as an additive.

また、本発明の分散液を備える分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。   Examples of the dispersion solvent provided with the dispersion of the present invention include alcohols such as methanol, ethanol, isopropanol, n-butanol, and methyl isocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, and cyclohexanone. Ketones such as N; N-dimethylformamide, amides such as N, N-dimethylacetamide; ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, and 3,4-dihydro-2H-pyran Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxy Glycol ether acetates such as ethyl acetate; esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, and ethylene carbonate; aromatic hydrocarbons such as benzene, toluene, xylene; hexane, heptane, isooctane, Aliphatic hydrocarbons such as cyclohexane; Halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane and chlorobenzene; Sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N-octyl- Organic solvents such as pyrrolidones such as 2-pyrrolidone can be used. These may be used by mixing with water.

本発明の分散液に含まれる固形分濃度は0.3〜50質量%の範囲にあることが好ましい。   The solid content concentration contained in the dispersion of the present invention is preferably in the range of 0.3 to 50% by mass.

本発明の分散液は、カチオンコロイド滴定を行った場合に、下記式(1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が―110.0〜―15.0となる流動電位曲線が得られるものであることが好ましい。
ΔPCD/V=(I−C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml)
When the dispersion of the present invention was subjected to cationic colloid titration, the ratio of the change in flow potential (ΔPCD) represented by the following formula (1) to the addition amount (V) of the cationic colloid titrant in the knick ( It is preferable that a streaming potential curve having ΔPCD / V) of −110.0 to −15.0 is obtained.
ΔPCD / V = (I−C) / V (1)
C: Streaming potential (mV) at the nick
I: Streaming potential (mV) at the starting point of the streaming potential curve
V: Amount of the colloid titration solution added in the nick (ml)

ここで、カチオンコロイド滴定は、固形分濃度を1質量%に調整した本発明の分散液80gにカチオンコロイド滴定液を添加することで行う。カチオンコロイド滴定液として、0.001Nポリ塩化ジアリルジメチルアンモニウム溶液を用いる。   Here, the cation colloid titration is performed by adding the cation colloid titration liquid to 80 g of the dispersion liquid of the present invention in which the solid content concentration is adjusted to 1% by mass. A 0.001N polydiallyldimethylammonium chloride solution is used as the cationic colloid titrant.

このカチオンコロイド滴定によって得られる流動電位曲線とは、カチオン滴定液の添加量(ml)をX軸、本発明の分散液の流動電位(mV)をY軸に取ったグラフである。
また、クニックとは、カチオンコロイド滴定によって得られる流動電位曲線において急激に流動電位が変化する点(変曲点)である。そして点Aにおける流動電位をC(mV)とし、点Aにおけるカチオンコロイド滴定液の添加量をV(ml)とする。
流動電位曲線の開始点とは、滴定前の本発明の分散液における流動電位である。具体的には、カチオンコロイド滴定液の添加量が0である点を開始点とする。この点における流動電位をI(mV)とする。
The flow potential curve obtained by the cation colloid titration is a graph in which the addition amount (ml) of the cation titrant is taken on the X axis and the flow potential (mV) of the dispersion of the present invention is taken on the Y axis.
A knick is a point (inflection point) where the streaming potential changes suddenly in the streaming potential curve obtained by cationic colloid titration. The flow potential at point A is C (mV), and the addition amount of the cation colloid titrant at point A is V (ml).
The starting point of the streaming potential curve is the streaming potential in the dispersion of the present invention before titration. Specifically, the point where the addition amount of the cationic colloid titrant is 0 is set as the starting point. The streaming potential at this point is I (mV).

上記のΔPCD/Vの値が−110.0〜−15.0であると、本発明の分散液を研磨剤として用いた場合、研磨剤の研磨速度がより向上する。このΔPCD/Vは、本発明の複合微粒子表面におけるシリカ被膜の被覆具合及び/又は複合微粒子の表面における子粒子の露出具合あるいは脱離しやすいシリカの存在を反映していると考えられる。ΔPCD/Vの値が上記範囲内であると、湿式による解砕・粉砕時において子粒子は脱離する事が少なく、研磨速度も高いと本発明者は推定している。逆にΔPCD/Vの値が−110.0よりもその絶対値が大きい場合は、複合微粒子表面がシリカ被膜で全面覆われているため解砕・粉砕工程にて子粒子脱落は起き難いが研磨時にシリカが脱離しがたく研磨速度が低下する。一方、−15.0よりもその絶対値が小さい場合は脱落が起きやすいと考えられる。上記範囲内であると、研磨時において子粒子表面が適度に露出して子粒子の脱落が少なく、研磨速度がより向上すると本発明者は推定している。ΔPCD/Vは、−100.0〜−15.0であることがより好ましく、−100.0〜−20.0であることがさらに好ましい。   When the value of ΔPCD / V is −110.0 to −15.0, when the dispersion liquid of the present invention is used as an abrasive, the polishing rate of the abrasive is further improved. This ΔPCD / V is considered to reflect the degree of coating of the silica coating on the surface of the composite fine particles of the present invention and / or the degree of exposure of the child particles on the surface of the composite fine particles or the presence of silica that is easily detached. When the value of ΔPCD / V is within the above range, the present inventor presumes that the child particles are hardly detached at the time of wet pulverization / pulverization and the polishing rate is high. Conversely, if the absolute value of ΔPCD / V is larger than −110.0, the surface of the composite fine particles is entirely covered with a silica coating, so that it is difficult for the child particles to fall off during the crushing and pulverization process. Sometimes the silica is difficult to desorb and the polishing rate decreases. On the other hand, when the absolute value is smaller than -15.0, it is considered that dropout is likely to occur. The inventor presumes that within the above range, the surface of the child particles is appropriately exposed at the time of polishing so that the child particles are not dropped off and the polishing rate is further improved. ΔPCD / V is more preferably −100.0 to −15.0, and further preferably −100.0 to −20.0.

本発明の分散液は、そのpH値を3〜8の範囲とした場合に、カチオンコロイド滴定を始める前、すなわち、滴定量がゼロである場合の流動電位がマイナスの電位となるものであることが好ましい。これは、この流動電位がマイナスの電位を維持する場合、同じくマイナスの表面電位を示す研磨基材への砥粒(シリカ系複合微粒子)の残留が生じ難いからである。   When the pH of the dispersion of the present invention is in the range of 3 to 8, before the start of cationic colloid titration, that is, when the titer is zero, the flow potential is negative. Is preferred. This is because when this flow potential is maintained at a negative potential, it is difficult for abrasive grains (silica-based composite fine particles) to remain on the polishing substrate that also exhibits a negative surface potential.

本発明の分散液の製造方法は特に限定されないが、次に説明する本発明の製造方法によって製造することが好ましい。   Although the manufacturing method of the dispersion liquid of this invention is not specifically limited, It is preferable to manufacture with the manufacturing method of this invention demonstrated below.

<本発明の製造方法>
本発明の製造方法について説明する。
本発明の製造方法は以下に説明する工程1〜工程4を備える。
<Production method of the present invention>
The production method of the present invention will be described.
The manufacturing method of the present invention includes steps 1 to 4 described below.

<本発明の製造方法>
<工程1>
工程1ではシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を用意する。
本発明の製造方法により、半導体デバイスなどの研磨に適用するシリカ系複合微粒子分散液を調製しようとする場合は、シリカ微粒子分散液として、アルコキシシランの加水分解により製造したシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を用いることが好ましい。なお、従来公知のシリカ微粒子分散液(水硝子を原料として調製したシリカ微粒子分散液等)を原料とする場合は、シリカ微粒子分散液を酸処理し、更に脱イオン処理して使用することが好ましい。この場合、シリカ微粒子に含まれるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4及びFの含有率が少なくなり、具体的には、100ppm以下となり得るからである。
なお、具体的には、工程1で使用する原料であるシリカ微粒子分散液中のシリカ微粒子として、次の(a)と(b)の条件を満たすものが好適に使用される。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
<Production method of the present invention>
<Step 1>
In step 1, a silica fine particle dispersion in which silica fine particles are dispersed in a solvent is prepared.
When preparing a silica-based composite fine particle dispersion to be applied to polishing of semiconductor devices and the like by the production method of the present invention, silica fine particles produced by hydrolysis of alkoxysilane are dispersed in a solvent as the silica fine particle dispersion. It is preferable to use a silica fine particle dispersion. When a conventionally known silica fine particle dispersion (such as a silica fine particle dispersion prepared from water glass as a raw material) is used as a raw material, the silica fine particle dispersion is preferably acid-treated and further deionized. . In this case, the content of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, Th, Cl, NO 3 , SO 4 and F contained in the silica fine particles This is because it can be reduced to 100 ppm or less.
Specifically, those satisfying the following conditions (a) and (b) are preferably used as the silica fine particles in the silica fine particle dispersion, which is the raw material used in step 1.
(A) The contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl, NO 3 , SO 4 and F are each 5 ppm or less.

工程1では、上記のようなシリカ微粒子が溶媒に分散したシリカ微粒子分散液を撹拌し、温度を5〜98℃、pH範囲を7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る。   In step 1, the silica fine particle dispersion in which the silica fine particles are dispersed in a solvent as described above is stirred, and the temperature is maintained at 5 to 98 ° C. and the pH range is maintained at 7.0 to 9.0. A salt is added continuously or intermittently to obtain a precursor particle dispersion containing precursor particles.

前記シリカ微粒子分散液における分散媒は水を含むことが好ましく、水系のシリカ微粒子分散液(水ゾル)を使用することが好ましい。   The dispersion medium in the silica fine particle dispersion preferably contains water, and an aqueous silica fine particle dispersion (water sol) is preferably used.

前記シリカ微粒子分散液における固形分濃度は、SiO2換算基準で1〜40質量%であることが好ましい。この固形分濃度が低すぎると、製造工程でのシリカ濃度が低くなり生産性が悪くなり得る。 The solid concentration in the silica fine particle dispersion is preferably 1 to 40% by mass in terms of SiO 2 . When this solid content concentration is too low, the silica concentration in the production process becomes low, and the productivity may deteriorate.

また、陽イオン交換樹脂又は陰イオン交換樹脂、あるいは鉱酸、有機酸等で不純物を抽出し、限外ろ過膜などを用いて、必要に応じて、シリカ微粒子分散液の脱イオン処理を行うことができる。脱イオン処理により不純物イオンなどを除去したシリカ微粒子分散液は表面にケイ素を含む水酸化物を形成させやすいのでより好ましい。なお、脱イオン処理はこれらに限定されるものではない。   Also, extract impurities with cation exchange resin or anion exchange resin, mineral acid, organic acid, etc., and perform deionization treatment of silica fine particle dispersion as necessary using ultrafiltration membrane etc. Can do. A silica fine particle dispersion from which impurity ions and the like are removed by deionization treatment is more preferable because a hydroxide containing silicon is easily formed on the surface. The deionization process is not limited to these.

工程1では、上記のようなシリカ微粒子分散液を撹拌し、温度を5〜98℃、pH範囲を7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加する。
セリウムの金属塩は限定されるものではないが、セリウムの塩化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、金属アルコキシドなどを用いることができる。具体的には、硝酸第一セリウム、炭酸セリウム、硫酸第一セリウム、塩化第一セリウムなどを挙げることができる。なかでも、硝酸第一セリウムや塩化第一セリウムが好ましい。中和と同時に過飽和となった溶液から、結晶性セリウム酸化物が生成し、それらは速やかにシリカ微粒子に凝集沈着機構で付着するので結合性酸化物形成の効率が高く好ましい。しかしこれら金属塩に含まれる硫酸イオン、塩化物イオン、硝酸イオンなどは、腐食性を示す。そのため調合後に後工程で洗浄し5ppm以下に除去する必要がある。一方、炭酸塩は炭酸ガスとして調合中に放出され、またアルコキシドは分解してアルコールとなるため、好ましい。
In Step 1, the silica fine particle dispersion as described above is stirred, and the cerium metal salt is continuously or intermittently added thereto while maintaining the temperature at 5 to 98 ° C. and the pH range at 7.0 to 9.0. Add to.
The metal salt of cerium is not limited, but cerium chloride, nitrate, sulfate, acetate, carbonate, metal alkoxide, and the like can be used. Specific examples include cerium nitrate, cerium carbonate, cerium sulfate, and cerium chloride. Of these, ceric nitrate and ceric chloride are preferred. Crystalline cerium oxides are formed from a solution that becomes supersaturated at the same time as neutralization, and they quickly adhere to the silica fine particles by an agglomeration and deposition mechanism. However, sulfate ions, chloride ions, nitrate ions, etc. contained in these metal salts are corrosive. For this reason, it is necessary to wash it in a post-process after preparation and remove it to 5 ppm or less. On the other hand, carbonate is released during the preparation as carbon dioxide, and alkoxide is decomposed to become alcohol, which is preferable.

シリカ微粒子分散液に対するセリウムの金属塩の添加量は、得られる本発明の複合微粒子におけるシリカとセリアとの質量比が、前述のように、100:11〜316の範囲となる量とする。
なお、本発明のシリカ系複合微粒子分散液の製造方法において、セリウムの金属塩は、通常、セリウムの金属塩に水又は水系溶媒を加えてセリウム金属塩水溶液としたものが使用される。セリウム金属塩水溶液のセリア濃度は、格別に制限されるものではないが、作業性等を考慮すると、セリア濃度は1〜40質量%の範囲が好ましい。
The amount of the cerium metal salt added to the silica fine particle dispersion is such that the mass ratio of silica to ceria in the obtained composite fine particles of the present invention is in the range of 100: 11 to 316 as described above.
In the method for producing a silica-based composite fine particle dispersion of the present invention, the cerium metal salt is usually an aqueous cerium metal salt solution obtained by adding water or an aqueous solvent to the cerium metal salt. The ceria concentration of the cerium metal salt aqueous solution is not particularly limited, but the ceria concentration is preferably in the range of 1 to 40% by mass in consideration of workability and the like.

シリカ微粒子分散液にセリウムの金属塩を添加した後、撹拌する際の温度は5〜98℃であり、10〜95℃であることが好ましい。また、撹拌する際の温度は1〜30℃であることが好ましい。この温度が低すぎるとシリカの溶解度が著しく低下するため、セリアの結晶化が制御されなくなり、粗大なセリアの結晶性酸化物が生成して、シリカ微粒子(母粒子)への付着が起こり難くなる事が考えられる。
逆に、この温度が高すぎるとシリカの溶解度が著しく増し、結晶性のセリア酸化物の生成が抑制される事が考えられる。更に、反応器壁面にスケールなどが生じやすくなり好ましくない。
The temperature at the time of stirring after adding the cerium metal salt to the silica fine particle dispersion is 5 to 98 ° C, and preferably 10 to 95 ° C. Moreover, it is preferable that the temperature at the time of stirring is 1-30 degreeC. If the temperature is too low, the solubility of the silica is remarkably reduced, so that ceria crystallization is not controlled, and coarse ceria crystalline oxides are formed, making it difficult to adhere to silica fine particles (mother particles). Things can be considered.
On the other hand, if this temperature is too high, the solubility of silica is remarkably increased, and the formation of crystalline ceria oxide is considered to be suppressed. Furthermore, scale and the like are likely to occur on the reactor wall surface, which is not preferable.

また、撹拌する際の時間は0.5〜24時間であることが好ましく、0.5〜18時間であることがより好ましい。この時間が短すぎると結晶性の酸化セリウムが十分に形成できないため好ましくない。逆に、この時間が長すぎても結晶性の酸化セリウムの形成はそれ以上反応が進まず不経済となる。なお、前記セリウム金属塩の添加後に、所望により5〜98℃で熟成しても構わない。熟成により、セリウム化合物が母粒子に沈着する反応をより促進させることができる。   Moreover, it is preferable that the time at the time of stirring is 0.5 to 24 hours, and it is more preferable that it is 0.5 to 18 hours. If this time is too short, crystalline cerium oxide cannot be formed sufficiently, which is not preferable. Conversely, even if this time is too long, the formation of crystalline cerium oxide is uneconomical because the reaction does not proceed any further. In addition, after adding the said cerium metal salt, you may age at 5-98 degreeC if desired. By aging, the reaction in which the cerium compound is deposited on the mother particles can be further promoted.

また、シリカ微粒子分散液にセリウムの金属塩を添加し、撹拌する際のシリカ微粒子分散液のpH範囲は7.0〜9.0とするが、7.6〜8.6とすることが好ましい。pHが高すぎても低すぎても、安定性が低下する傾向がある。この際、アルカリ等を添加しpH調整を行うことが好ましい。このようなアルカリの例としては、公知のアルカリを使用することができる。具体的には、アンモニア水溶液、水酸化アルカリ、アルカリ土類金属、アミン類の水溶液などが挙げられるが、これらに限定されるものではない。   Moreover, the pH range of the silica fine particle dispersion when adding a cerium metal salt to the silica fine particle dispersion and stirring is 7.0 to 9.0, but is preferably 7.6 to 8.6. . If the pH is too high or too low, the stability tends to decrease. At this time, it is preferable to adjust the pH by adding an alkali or the like. A publicly known alkali can be used as an example of such an alkali. Specific examples include aqueous ammonia, alkali hydroxide, alkaline earth metal, and aqueous amines, but are not limited thereto.

このような工程1によって、本発明の複合微粒子の前駆体である粒子(前駆体粒子)を含む分散液(前駆体粒子分散液)が得られる。   By such step 1, a dispersion (precursor particle dispersion) containing particles (precursor particles) that are precursors of the composite fine particles of the present invention is obtained.

工程1で得られた前駆体粒子分散液を、工程2に供する前に、純水やイオン交換水などを用いて、さらに希釈あるいは濃縮して、次の工程2に供してもよい。   The precursor particle dispersion obtained in step 1 may be further diluted or concentrated using pure water, ion-exchanged water, or the like before being subjected to step 2, and may be subjected to the next step 2.

なお、前駆体粒子分散液における固形分濃度は1〜27質量%であることが好ましい。   In addition, it is preferable that the solid content concentration in a precursor particle dispersion is 1-27 mass%.

また、所望により、前駆体粒子分散液を、陽イオン交換樹脂、陰イオン交換樹脂、限外ろ過膜、イオン交換膜、遠心分離などを用いて脱イオン処理してもよい。   If desired, the precursor particle dispersion may be deionized using a cation exchange resin, an anion exchange resin, an ultrafiltration membrane, an ion exchange membrane, centrifugation, or the like.

工程1は、より好適には、シリカ微粒子分散液の温度範囲を48〜52℃とし、pH範囲を7.0〜9.0に維持しながら、セリウムの金属塩を連続的又は断続的に添加し、前駆体粒子分散液を調製し、更に該前駆体粒子分散液を温度90〜98℃で熟成することにより行われる。工程1をこのような条件で行った場合、シリカ微粒子の表面に低結晶度の酸化セリウムが均一に付着し、酸化セリウム同士の凝集体を形成する事を防ぐことが出来る。   More preferably, in step 1, the temperature of the silica fine particle dispersion is set to 48 to 52 ° C., and the pH range is maintained at 7.0 to 9.0, and the metal salt of cerium is added continuously or intermittently. Then, a precursor particle dispersion is prepared, and the precursor particle dispersion is aged at a temperature of 90 to 98 ° C. When Step 1 is performed under such conditions, it is possible to prevent cerium oxide having a low crystallinity from uniformly attaching to the surface of the silica fine particles and forming an aggregate of cerium oxides.

<工程2>
工程2では、前駆体粒子分散液を乾燥させた後、400〜1,200℃で焼成する。
<Process 2>
In step 2, the precursor particle dispersion is dried and then fired at 400 to 1,200 ° C.

乾燥する方法は特に限定されない。従来公知の乾燥機を用いて乾燥させることができる。具体的には、箱型乾燥機、バンド乾燥機、スプレードライアー等を使用することができる。
なお、好適には、さらに乾燥前の前駆体粒子分散液のpHを6.0〜7.0とすることが推奨される。乾燥前の前駆体粒子分散液のpHを6.0〜7.0とした場合、表面活性を抑制できるからである。
乾燥後、焼成する温度は400〜1200℃であるが、800〜1100℃であることが好ましく、1000〜1090℃であることがより好ましい。このような温度範囲において焼成すると、セリアの結晶化が十分に進行し、また、セリア微粒子の表面に存在するシリカ被膜が、適度に厚膜化し、母粒子と子粒子とが強固に結合する。この温度が高すぎると、セリアの結晶が異常成長したり、セリア粒子上のシリカ被膜が厚くなり母粒子との結合が進むが、セリアの子粒子を厚く覆う事も予想され、母粒子を構成する非晶質シリカが結晶化したり、粒子同士の融着が進む可能性もある。
The method for drying is not particularly limited. It can be dried using a conventionally known dryer. Specifically, a box-type dryer, a band dryer, a spray dryer or the like can be used.
In addition, it is recommended that the pH of the precursor particle dispersion before drying is preferably 6.0 to 7.0. It is because surface activity can be suppressed when the pH of the precursor particle dispersion before drying is 6.0 to 7.0.
After drying, the firing temperature is 400 to 1200 ° C, preferably 800 to 1100 ° C, and more preferably 1000 to 1090 ° C. When firing in such a temperature range, crystallization of ceria proceeds sufficiently, and the silica film present on the surface of the ceria fine particles is appropriately thickened so that the mother particles and the child particles are firmly bonded. If this temperature is too high, the ceria crystals will grow abnormally or the silica coating on the ceria particles will become thicker and the bonding with the mother particles will proceed, but it is also expected that the ceria child particles will be covered thickly, forming the mother particles There is a possibility that the amorphous silica to be crystallized or the fusion between the particles proceeds.

工程2では、焼成して得られた焼成体に次の(i)又は(ii)の処理をして焼成体解砕分散液を得る。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
乾式の解砕・粉砕装置としては従来公知の装置を使用することができるが、例えば、アトライター、ボールミル、振動ミル、振動ボールミル等を挙げることができる。
湿式の解砕・粉砕装置としても従来公知の装置を使用することができるが、例えば、バスケットミル等のバッチ式ビーズミル、横型・縦型・アニュラー型の連続式のビーズミル、サンドグラインダーミル、ボールミル等、ロータ・ステータ式ホモジナイザー、超音波分散式ホモジナイザー、分散液中の微粒子同士をぶつける衝撃粉砕機等の湿式媒体攪拌式ミル(湿式解砕機)が挙げられる。湿式媒体攪拌ミルに用いるビーズとしては、例えば、ガラス、アルミナ、ジルコニア、スチール、フリント石等を原料としたビーズを挙げることができる。
前記(i)又は前記(ii)の何れの処理においても、溶媒としては、水及び/又は有機溶媒が使用される。例えば、純水、超純水、イオン交換水のような水を用いることが好ましい。また、(i)又は(ii)の処理により得られる焼成体解砕分散液の固形分濃度は、格別に制限されるものではないが、例えば、0.3〜50質量%の範囲にあることが好ましく、10〜30質量%とすることがより好ましい。(i)又は(ii)の処理のうち、実用上は(ii)の湿式による処理がより好適に用いられる。
In step 2, the fired body obtained by firing is subjected to the following treatment (i) or (ii) to obtain a fired body crushed dispersion.
(I) Crushing and pulverizing by a dry method, and adding a solvent to carry out a solvent dispersion treatment.
(Ii) A solvent is added, and the mixture is crushed and pulverized by a wet process.
As the dry crushing / pulverizing apparatus, conventionally known apparatuses can be used, and examples thereof include an attritor, a ball mill, a vibration mill, and a vibration ball mill.
Conventionally known apparatus can be used as a wet crushing / pulverizing apparatus. For example, a batch type bead mill such as a basket mill, a horizontal type, a vertical type or an annular type continuous bead mill, a sand grinder mill, a ball mill, etc. , Rotor-stator type homogenizer, ultrasonic dispersion type homogenizer, and wet medium stirring mill (wet crusher) such as an impact pulverizer that collides fine particles in the dispersion. Examples of the beads used in the wet medium stirring mill include beads made of glass, alumina, zirconia, steel, flint stone, and the like.
In both the processes (i) and (ii), water and / or an organic solvent are used as the solvent. For example, it is preferable to use water such as pure water, ultrapure water, or ion exchange water. Moreover, although the solid content concentration of the baked body disintegration dispersion liquid obtained by the process of (i) or (ii) is not specifically limited, For example, it exists in the range of 0.3-50 mass%. Is preferable, and it is more preferable to set it as 10-30 mass%. Of the treatments (i) or (ii), the wet treatment of (ii) is more preferably used in practice.

なお、前記(ii)の湿式による解砕・粉砕を行う場合は、溶媒のpHを9.0〜10.6に維持しながら湿式による解砕・粉砕を行うことが好ましい。pHをこの範囲に維持すると、カチオンコロイド滴定を行った場合に、前記式(1)で表される、流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−110.0〜−15.0となる流動電位曲線が得られるシリカ系複合微粒子分散液を、最終的により容易に得ることができる。
すなわち、前述の好ましい態様に該当する本発明の分散液が得られる程度に、解砕・粉砕を行うことが好ましい。前述のように、好ましい態様に該当する本発明の分散液を研磨剤に用いた場合、研磨速度がより向上するからである。これについて本発明者は、本発明の複合微粒子表面におけるシリカ被膜が適度に薄くなること、及び/又は複合微粒子表面の一部に子粒子が適度に露出することで、研磨速度がより向上し、且つセリアの子粒子の脱落を制御できると推定している。また、シリカ被膜が薄いか剥げた状態であるため、子粒子が研磨時にある程度脱離しやすくなると推定している。ΔPCD/Vは、−100.0〜−15.0であることがより好ましく、−100.0〜−20.0であることがさらに好ましい。
In addition, when performing the crushing and grinding | pulverization by wet of said (ii), it is preferable to perform crushing and grinding | pulverization by wet, maintaining the pH of a solvent at 9.0-10.6. When the pH is maintained in this range, when the cationic colloid titration is performed, the change in streaming potential (ΔPCD) represented by the above formula (1) and the addition amount (V) of the cationic colloid titrant in the knick A silica-based composite fine particle dispersion in which a flow potential curve having a ratio (ΔPCD / V) of -110.0 to -15.0 is obtained can be finally obtained more easily.
That is, it is preferable to perform pulverization and pulverization to such an extent that the dispersion liquid of the present invention corresponding to the above-mentioned preferable embodiment can be obtained. This is because, as described above, when the dispersion liquid of the present invention corresponding to a preferred embodiment is used as an abrasive, the polishing rate is further improved. About this, the inventor is that the silica coating on the surface of the composite fine particles of the present invention is moderately thin, and / or the child particles are exposed to a part of the surface of the composite fine particles, the polishing rate is further improved, In addition, it is estimated that the falling of ceria particles can be controlled. Further, since the silica coating is thin or peeled off, it is estimated that the child particles are easily detached to some extent during polishing. ΔPCD / V is more preferably −100.0 to −15.0, and further preferably −100.0 to −20.0.

<工程3>
工程3では、工程2において得られた前記焼成体解砕分散液について、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去し、上澄液を得る。
<Step 3>
In step 3, the fired body disintegrated dispersion obtained in step 2 is subjected to a centrifugal separation process at a relative centrifugal acceleration of 300 G or more, and then the sediment component is removed to obtain a supernatant.

具体的には、前記焼成体解砕分散液について、遠心分離処理による分級を行う。遠心分離処理における相対遠心加速度は300G以上とする。遠心分離処理後、沈降成分を除去し、上澄液を得ることができる。相対遠心加速度の上限は格別に制限されるものではないが、実用上は10,000G以下で使用される。   Specifically, the calcination dispersion liquid is classified by a centrifugal separation process. The relative centrifugal acceleration in the centrifugation process is set to 300 G or more. After centrifugation, the sediment component is removed and a supernatant can be obtained. The upper limit of the relative centrifugal acceleration is not particularly limited, but is practically used at 10,000 G or less.

工程3において遠心分離処理を行う時間は1〜30分であることが好ましく、3〜10分であることがより好ましい。
なお、工程3(遠心分離処理)は所望により、1回または複数回行って構わない。工程3を複数回行う場合は、上澄液と沈降品を分離し、その都度、上澄液を回収して、その上澄液を工程3に供することにより行う。
In Step 3, the time for performing the centrifugation treatment is preferably 1 to 30 minutes, and more preferably 3 to 10 minutes.
Note that step 3 (centrifugation treatment) may be performed once or a plurality of times as desired. When the step 3 is performed a plurality of times, the supernatant is separated from the sedimented product, and the supernatant is recovered each time, and the supernatant is subjected to the step 3.

<工程4>
工程4では、工程3において得られた上澄液について、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を回収し、シリカ系複合微粒子分散液を得る。
<Step 4>
In step 4, the supernatant obtained in step 3 is centrifuged at a relative centrifugal acceleration of 300 G or higher, and then the sediment component is recovered to obtain a silica-based composite fine particle dispersion.

具体的には、前記上澄液について、遠心分離処理による分級を行う。遠心分離処理における相対遠心加速度は300G以上とする。遠心分離処理後、沈降成分を回収し、これをシリカ系複合微粒子分散液として得ることができる。相対遠心加速度の上限は格別に制限されるものではないが、実用上は10,000G以下で使用される。   Specifically, the supernatant is classified by centrifugation. The relative centrifugal acceleration in the centrifugation process is set to 300 G or more. After the centrifugal separation treatment, the precipitated component can be recovered and obtained as a silica-based composite fine particle dispersion. The upper limit of the relative centrifugal acceleration is not particularly limited, but is practically used at 10,000 G or less.

工程4において遠心分離処理を行う時間は1〜30分であることが好ましく、3〜10分であることがより好ましい。
なお、工程4(遠心分離処理)は所望により、1回または複数回行って構わない。工程4を複数回行う場合は、上澄液と沈降品を分離し、その都度、沈降品を回収して、その沈降品を工程4に供することにより行う。
In Step 4, the time for performing the centrifugation treatment is preferably 1 to 30 minutes, and more preferably 3 to 10 minutes.
Note that step 4 (centrifugation treatment) may be performed once or a plurality of times as desired. When the step 4 is performed a plurality of times, the supernatant is separated from the sedimented product, and the sedimented product is recovered each time, and the sedimented product is supplied to the step 4.

本発明の製造方法では、上記のように、工程3および工程4において遠心分離処理を行うが、さらに別の遠心分離処理を行ってもよく、この場合でも本発明の製造方法の範囲内である。   In the production method of the present invention, as described above, the centrifugal treatment is performed in Step 3 and Step 4. However, another centrifugal treatment may be performed, and this case is also within the scope of the production method of the present invention. .

工程3および工程4では、上記の条件を満たす遠心分離処理を備えることが必要である。遠心加速度(および好ましくは処理時間)が上記の条件に満たない場合は、工程4によって得られるシリカ系複合微粒子分散液中に三次元構造の粒子(すなわち、一次粒子が4個以上結合したもの)が相対的に多く残存するため、シリカ系複合微粒子分散液を用いた研磨材などの研磨用途に使用した際に、スクラッチが発生する原因となる。本発明の製造方法では、一次粒子が2個または3個連結した結合粒子を多く含む本発明の分散液を得ることができ、このような本発明の分散液では、三次元構造の粒子が少ないため、研磨剤として使用した時にスクラッチが発生し難い。
本発明では、上記の製造方法によって得られるシリカ系複合微粒子分散液を、更に乾燥させて、シリカ系複合微粒子を得ることができる。乾燥方法は特に限定されず、例えば、従来公知の乾燥機を用いて乾燥させることができる。
In step 3 and step 4, it is necessary to provide a centrifugal separation process that satisfies the above conditions. If the centrifugal acceleration (and preferably the processing time) does not satisfy the above conditions, the silica-based composite fine particle dispersion obtained in Step 4 has a three-dimensional structure (that is, a combination of four or more primary particles). As a result, a relatively large amount of remains, causing scratches when used in polishing applications such as abrasives using silica-based composite fine particle dispersions. According to the production method of the present invention, it is possible to obtain a dispersion liquid of the present invention containing a large number of bonded particles in which two or three primary particles are connected. In such a dispersion liquid of the present invention, there are few particles having a three-dimensional structure. Therefore, scratches are unlikely to occur when used as an abrasive.
In the present invention, the silica-based composite fine particles can be obtained by further drying the silica-based composite fine particle dispersion obtained by the above production method. The drying method is not particularly limited, and for example, it can be dried using a conventionally known dryer.

このような本発明の製造方法によって、本発明の分散液を得ることができる。
また、シリカ微粒子分散液にセリウムの金属塩を添加した際に、調合液の還元電位が正の値をとることが望ましい。酸化還元電位が負となった場合、セリウム合物がシリカ粒子表面に沈着せずに板状・棒状などのセリウム単独粒子が生成するからである。酸化還元電位を正に保つ方法として過酸化水素などの酸化剤を添加したり、エアーを吹き込む方法が挙げられるが、これらに限定されるものではない。
The dispersion of the present invention can be obtained by the production method of the present invention.
In addition, when the cerium metal salt is added to the silica fine particle dispersion, it is desirable that the reduction potential of the preparation liquid takes a positive value. This is because, when the oxidation-reduction potential becomes negative, the cerium compound is not deposited on the surface of the silica particles, and cerium single particles such as plates and rods are generated. Examples of a method for keeping the oxidation-reduction potential positive include a method of adding an oxidizing agent such as hydrogen peroxide and a method of blowing air, but is not limited thereto.

<研磨用スラリー>
本発明の分散液を含む液体は、研磨スラリー(以下では「本発明の研磨用スラリー」ともいう)として好ましく用いることができる。特にはSiO2絶縁膜が形成された半導体基板の平坦化用の研磨スラリーとして好適に使用することができる。
<Slurry for polishing>
The liquid containing the dispersion of the present invention can be preferably used as a polishing slurry (hereinafter also referred to as “the polishing slurry of the present invention”). In particular, it can be suitably used as a polishing slurry for planarizing a semiconductor substrate on which a SiO 2 insulating film is formed.

本発明の研磨用スラリーは半導体基板などを研磨する際の研磨速度が高く、また研磨時に研磨面のキズ(スクラッチ)が少ない、基板への砥粒の残留が少ないなどの効果に優れている。   The polishing slurry of the present invention has a high polishing rate when polishing a semiconductor substrate and the like, and is excellent in effects such as few scratches (scratches) on the polishing surface and little residual abrasive grains on the substrate during polishing.

本発明の研磨用スラリーは分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の研磨用スラリーは、添加剤として、研磨促進剤、界面活性剤、複素環化合物、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を含んでいてもよい。   The polishing slurry of the present invention contains water and / or an organic solvent as a dispersion solvent. For example, water such as pure water, ultrapure water, or ion exchange water is preferably used as the dispersion solvent. Furthermore, the polishing slurry of the present invention may contain one or more selected from the group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster and a pH buffer as an additive.

<研磨促進剤>
本発明に係る研磨用スラリーには、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素など及びこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
<Polishing accelerator>
In the polishing slurry according to the present invention, a conventionally known polishing accelerator can be used as necessary, although it varies depending on the type of material to be polished. Examples of such include hydrogen peroxide, peracetic acid, urea peroxide and mixtures thereof. When such an abrasive composition containing a polishing accelerator such as hydrogen peroxide is used, the polishing rate can be effectively improved when the material to be polished is a metal.

研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の無機酸、酢酸等の有機酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩、アミン塩及びこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。   Other examples of polishing accelerators include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, oxalic acid and hydrofluoric acid, organic acids such as acetic acid, or sodium, potassium, ammonium and amine salts of these acids And the like. In the case of a polishing composition containing these polishing accelerators, when polishing a material to be polished consisting of composite components, the polishing rate is accelerated for a specific component of the material to be polished, thereby finally achieving flat polishing. You can get a plane.

本発明に係る研磨用スラリーが研磨促進剤を含有する場合、その含有量としては、0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。   When the polishing slurry according to the present invention contains a polishing accelerator, the content thereof is preferably 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass.

<界面活性剤及び/又は親水性化合物>
研磨用スラリーの分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤又は親水性化合物を添加することができる。界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤及び/又は親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。
<Surfactant and / or hydrophilic compound>
In order to improve the dispersibility and stability of the polishing slurry, a cationic, anionic, nonionic or amphoteric surfactant or a hydrophilic compound can be added. Both the surfactant and the hydrophilic compound have an action of reducing a contact angle to the surface to be polished and an action of promoting uniform polishing. As the surfactant and / or the hydrophilic compound, for example, those selected from the following groups can be used.

陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。   Examples of the anionic surfactant include carboxylate, sulfonate, sulfate ester salt and phosphate ester salt. Examples of the carboxylate salt include soap, N-acyl amino acid salt, polyoxyethylene or polyoxypropylene alkyl ether carboxyl. Acid salt, acylated peptide; as sulfonate, alkyl sulfonate, alkyl benzene and alkyl naphthalene sulfonate, naphthalene sulfonate, sulfosuccinate, α-olefin sulfonate, N-acyl sulfonate; sulfate ester Salts include sulfated oil, alkyl sulfates, alkyl ether sulfates, polyoxyethylene or polyoxypropylene alkyl allyl ether sulfates, alkyl amide sulfates; phosphate ester salts such as alkyl phosphates, polyoxyethylene or polyoxypropyls. Can pyrene alkyl allyl ether phosphates.

陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。   As cationic surfactant, aliphatic amine salt, aliphatic quaternary ammonium salt, benzalkonium chloride salt, benzethonium chloride, pyridinium salt, imidazolinium salt; as amphoteric surfactant, carboxybetaine type, sulfobetaine type, Mention may be made of aminocarboxylates, imidazolinium betaines, lecithins, alkylamine oxides.

非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキル及びアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。その他に、フッ素系界面活性剤などが挙げられる。   Nonionic surfactants include ether type, ether ester type, ester type and nitrogen-containing type. Ether type includes polyoxyethylene alkyl and alkylphenyl ether, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene poly Examples include oxypropylene block polymer, polyoxyethylene polyoxypropylene alkyl ether, ether ester type, glycerin ester polyoxyethylene ether, sorbitan ester polyoxyethylene ether, sorbitol ester polyoxyethylene ether, ester type, Polyethylene glycol fatty acid ester, glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester , Sucrose esters, nitrogen-containing type, fatty acid alkanolamides, polyoxyethylene fatty acid amides, polyoxyethylene alkyl amide, and the like. In addition, a fluorine-type surfactant etc. are mentioned.

界面活性剤としては陰イオン界面活性剤もしくは非イオン系界面活性剤が好ましく、また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩及びカリウム塩が好ましい。   As the surfactant, an anionic surfactant or a nonionic surfactant is preferable, and as the salt, ammonium salt, potassium salt, sodium salt and the like can be mentioned, and ammonium salt and potassium salt are particularly preferable.

さらに、その他の界面活性剤、親水性化合物等としては、グリセリンエステル、ソルビタンエステル及びアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等を挙げることができる。   Further, other surfactants and hydrophilic compounds include esters such as glycerin ester, sorbitan ester and alanine ethyl ester; polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl Polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene Ethers such as recall, alkyl polypropylene glycol alkyl ether, alkyl polypropylene glycol alkenyl ether, alkenyl polypropylene glycol; polysaccharides such as alginic acid, pectic acid, carboxymethyl cellulose, curdlan and pullulan; amino acid salts such as glycine ammonium salt and glycine sodium salt; Polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), poly Acrylic acid, polyacrylamide, aminopolyacrylamide, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, Polycarboxylic acids such as lyamidic acid, polyamic acid ammonium salt, polyamic acid sodium salt and polyglyoxylic acid and their salts; vinyl polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyacrolein; methyl tauric acid ammonium salt, methyl tauric acid sodium salt , Methyl sulfate sodium salt, ethyl ammonium sulfate salt, butyl ammonium sulfate salt, vinyl sulfonic acid sodium salt, 1-allyl sulfonic acid sodium salt, 2-allyl sulfonic acid sodium salt, methoxymethyl sulfonic acid sodium salt, ethoxymethyl sulfonic acid ammonium salt Salts, sulfonic acids such as 3-ethoxypropylsulfonic acid sodium salt and the salts thereof; propionamide, acrylamide, methylurea, nicotinamide, succinic acid amide and sulfite Examples thereof include amides such as an amide.

なお、適用する被研磨基材がガラス基板等である場合は、何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板などの場合であって、アルカリ金属、アルカリ土類金属又はハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。   Note that when the substrate to be polished is a glass substrate or the like, any surfactant can be suitably used. However, in the case of a silicon substrate for a semiconductor integrated circuit or the like, alkali metal, alkaline earth In the case where the influence of contamination by a metal or a halide is disliked, it is desirable to use an acid or an ammonium salt surfactant.

本発明に係る研磨用スラリーが界面活性剤及び/又は親水性化合物を含有する場合、その含有量は、総量として、研磨用スラリーの1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。   When the polishing slurry according to the present invention contains a surfactant and / or a hydrophilic compound, the total content is preferably 0.001 to 10 g in 1 L of the polishing slurry. It is more preferable to set it as 01-5g, and it is especially preferable to set it as 0.1-3g.

界面活性剤及び/又は親水性化合物の含有量は、充分な効果を得る上で、研磨用スラリーの1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。   In order to obtain a sufficient effect, the content of the surfactant and / or the hydrophilic compound is preferably 0.001 g or more in 1 L of the polishing slurry, and preferably 10 g or less from the viewpoint of preventing the polishing rate from being lowered.

界面活性剤又は親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。   Only one type of surfactant or hydrophilic compound may be used, two or more types may be used, and different types may be used in combination.

<複素環化合物>
本発明の研磨用スラリーについては、被研磨基材に金属が含まれる場合に、金属に不動態層又は溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で、複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、又は水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4−テトラゾール、5−アミノ−1,2,3,4−テトラゾール、5−メチル−1,2,3,4−テトラゾール、1,2,3−トリアゾール、4−アミノ−1,2,3−トリアゾール、4,5−ジアミノ−1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾールなどを挙げることができるが、これらに限定されるものではない。
<Heterocyclic compound>
Regarding the polishing slurry of the present invention, when a metal is contained in the substrate to be polished, a heterocyclic compound is formed for the purpose of suppressing the erosion of the substrate to be polished by forming a passive layer or a dissolution suppressing layer on the metal. May be included. Here, the “heterocyclic compound” is a compound having a heterocyclic ring containing one or more heteroatoms. A hetero atom means an atom other than a carbon atom or a hydrogen atom. A heterocycle means a cyclic compound having at least one heteroatom. A heteroatom means only those atoms that form part of a heterocyclic ring system, either external to the ring system, separated from the ring system by at least one non-conjugated single bond, Atoms that are part of a further substituent of are not meant. Preferred examples of the hetero atom include, but are not limited to, a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom. As examples of the heterocyclic compound, imidazole, benzotriazole, benzothiazole, tetrazole, and the like can be used. More specifically, 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2,3,4-tetrazole, 1,2,3- Triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1,2,3-triazole, 1,2,4-triazole, 3-amino1,2,4-triazole, 3,5 -Diamino-1,2,4-triazole can be mentioned, but is not limited thereto.

本発明に係る研磨用スラリーに複素環化合物を配合する場合の含有量については、0.001〜1.0質量%であることが好ましく、0.001〜0.7質量%であることがより好ましく、0.002〜0.4質量%であることがさらに好ましい。   About content in the case of mix | blending a heterocyclic compound with the slurry for polishing which concerns on this invention, it is preferable that it is 0.001-1.0 mass%, and it is more that it is 0.001-0.7 mass%. Preferably, it is 0.002-0.4 mass%.

<pH調整剤>
上記各添加剤の効果を高めるためなどに必要に応じて酸又は塩基を添加して研磨用組成物のpHを調節することができる。
<PH adjuster>
In order to enhance the effects of the above additives, an acid or a base can be added as necessary to adjust the pH of the polishing composition.

研磨用スラリーをpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。   When adjusting the polishing slurry to pH 7 or higher, an alkaline one is used as a pH adjuster. Desirably, amines such as sodium hydroxide, aqueous ammonia, ammonium carbonate, ethylamine, methylamine, triethylamine, tetramethylamine are used.

研磨用スラリーをpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、酢酸、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類の様な、塩酸、硝酸などの鉱酸が使用される。   When the polishing slurry is adjusted to a pH of less than 7, an acidic one is used as a pH adjuster. For example, mineral acids such as hydrochloric acid and nitric acid such as hydroxy acids such as acetic acid, lactic acid, citric acid, malic acid, tartaric acid and glyceric acid are used.

<pH緩衝剤>
研磨用スラリーのpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水などのリン酸塩及びホウ酸塩又は有機酸などを使用することができる。
<PH buffering agent>
In order to keep the pH value of the polishing slurry constant, a pH buffer may be used. Examples of the pH buffering agent that can be used include phosphates and borates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and ammonium tetraborate tetrahydrate, and organic acids.

また、本発明の研磨用スラリーの分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。   Examples of the dispersion solvent for the polishing slurry of the present invention include alcohols such as methanol, ethanol, isopropanol, n-butanol, and methyl isocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, and cyclohexanone. Ketones such as N; N-dimethylformamide, amides such as N, N-dimethylacetamide; ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, and 3,4-dihydro-2H-pyran Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-but Glycol ether acetates such as ciethyl acetate; Esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate and ethylene carbonate; Aromatic hydrocarbons such as benzene, toluene and xylene; Hexane, heptane and isooctane Aliphatic hydrocarbons such as cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorobenzene; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N-octyl Organic solvents such as pyrrolidones such as -2-pyrrolidone can be used. These may be used by mixing with water.

本発明の研磨用スラリーに含まれる固形分濃度は0.3〜50質量%の範囲にあることが好ましい。この固形分濃度が低すぎると研磨速度が低下する可能性がある。逆に固形分濃度が高すぎても研磨速度はそれ以上向上する場合は少ないので、不経済となり得る。   The solid content concentration contained in the polishing slurry of the present invention is preferably in the range of 0.3 to 50 mass%. If this solid content concentration is too low, the polishing rate may decrease. Conversely, even if the solid content concentration is too high, the polishing rate is rarely improved further, which can be uneconomical.

以下、本発明について実施例に基づき説明する。本発明はこれらの実施例に限定されない。   Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.

初めに、実施例及び比較例における各測定方法及び試験方法の詳細について説明する。各実施例及び比較例について、以下の各測定結果及び試験結果を第1表に記す。   First, details of each measurement method and test method in Examples and Comparative Examples will be described. For each example and comparative example, the following measurement results and test results are shown in Table 1.

[成分の分析]
[シリカ微粒子(母粒子)]
後述するシリカ微粒子分散液のSiO2重量について、珪酸ナトリウムを原料としたシリカ微粒子の場合は1000℃灼熱減量を行って秤量により求めた。またアルコキシシランを原料としたシリカ微粒子の場合は、シリカ微粒子分散液を150℃で1時間乾燥させた後に秤量して求めた。
[Analysis of ingredients]
[Silica fine particles (mother particles)]
Regarding the SiO 2 weight of the silica fine particle dispersion described later, in the case of silica fine particles using sodium silicate as a raw material, the amount was reduced by 1000 ° C. and measured by weighing. In the case of silica fine particles using alkoxysilane as a raw material, the silica fine particle dispersion was dried at 150 ° C. for 1 hour and then weighed.

[シリカ系複合微粒子]
各元素の含有率は、以下の方法によって測定するものとする。
初めに、シリカ系複合微粒子分散液からなる試料約1g(固形分20質量%)を白金皿に採取する。リン酸3ml、硝酸5ml、弗化水素酸10mlを加えて、サンドバス上で加熱する。乾固したら、少量の水と硝酸50mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとする。この溶液でNa、Kは原子吸光分光分析装置(例えば日立製作所社製、Z−2310)で測定する。次に、100mlにおさめた溶液から分液10mlを20mlメスフラスコに採取する操作を5回繰り返し、分液10mlを5個得る。そして、これを用いて、Al、Ag、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びThについてICPプラズマ発光分析装置(例えばSII製、SPS5520)にて標準添加法で測定を行う。ここで、同様の方法でブランクも測定して、ブランク分を差し引いて調整し、各元素における測定値とする。
以下、特に断りがない限り、本発明におけるNa、Al、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びThの成分の含有率(含有量)は、このような方法で測定して得た値を意味するものとする。
[Silica composite fine particles]
The content rate of each element shall be measured with the following method.
First, about 1 g (solid content: 20% by mass) of a sample composed of a silica-based composite fine particle dispersion is collected in a platinum dish. Add 3 ml of phosphoric acid, 5 ml of nitric acid and 10 ml of hydrofluoric acid and heat on a sand bath. Once dry, add a small amount of water and 50 ml of nitric acid to dissolve and place in a 100 ml volumetric flask and add water to make 100 ml. In this solution, Na and K are measured with an atomic absorption spectrometer (for example, Z-2310, manufactured by Hitachi, Ltd.). Next, the operation of collecting 10 ml of the liquid separation from the solution in 100 ml into the 20 ml volumetric flask is repeated 5 times to obtain 5 10 ml of the liquid separation. Using this, standard addition method for Al, Ag, Ca, Cr, Cu, Fe, Mg, Ni, Ti, Zn, Zr, U and Th with an ICP plasma emission spectrometer (for example, SPS5520 manufactured by SII) Measure with. Here, a blank is also measured by the same method, and the blank is subtracted and adjusted to obtain measured values for each element.
Hereinafter, unless otherwise specified, the content (content) of the components of Na, Al, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U and Th in the present invention is as follows. The value obtained by measurement by such a method is meant.

各陰イオンの含有率は、以下の方法によって測定するものとする。
<Cl>
シリカ系複合微粒子分散液からなる試料20g(固形分20質量%)にアセトンを加え100mlに調整し、この溶液に、酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で電位差滴定法(京都電子製:電位差滴定装置AT−610)で分析を行う。
別途ブランク測定として、アセトン100mlに酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で滴定を行った場合の滴定量を求めておき、試料を用いた場合の滴定量から差し引き、試料の滴定量とした。
The content rate of each anion shall be measured by the following method.
<Cl>
Acetone is added to a 20 g sample (solid content of 20% by mass) composed of a silica-based composite fine particle dispersion to adjust to 100 ml, and 5 ml of acetic acid and 4 ml of 0.001 molar sodium chloride solution are added to this solution to form a 0.002 molar silver nitrate solution. The analysis is carried out by potentiometric titration (Kyoto Electronics: potentiometric titrator AT-610).
Separately, as a blank measurement, 5 ml of acetic acid and 4 ml of 0.001 molar sodium chloride solution were added to 100 ml of acetone, and titration was performed when titrating with 0.002 molar silver nitrate solution, and titration when using a sample. Was subtracted from the sample to obtain a titration amount of the sample.

<NO3、SO4、F>
シリカ系複合微粒子分散液からなる試料5g(固形分20質量%)を水で希釈して100mlにおさめ、遠心分離機(日立製 HIMAC CT06E)にて4000rpmで20分遠心分離して、沈降成分を除去して得た液をイオンクロマトグラフ(DIONEX製 ICS−1100)にて分析した。
<NO 3 , SO 4 , F>
A 5 g sample (solid content of 20% by mass) composed of a silica-based composite fine particle dispersion is diluted with water to 100 ml, and centrifuged at 4000 rpm for 20 minutes in a centrifuge (HIMAC CT06E manufactured by Hitachi), and the precipitated components are separated. The liquid obtained by the removal was analyzed with an ion chromatograph (ICS-1100, manufactured by DIONEX).

<SiO2、CeO2
シリカ系複合微粒子におけるシリカとセリアの含有率を求める場合、まずシリカ系複合微粒子の分散液の固形分濃度を、1000℃灼熱減量を行って秤量により求める。次にCeについて、Al〜Th等と同様にICPプラズマ発光分析装置(例えば、SII製、SPS5520)を用いて標準添加法で測定を行い、得られたCe含有率からCeO2質量%を算出する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出する。
なお、シリカ微粒子(母粒子)における各元素又は各陰イオンの含有率は、上記シリカ系複合微粒子の分析方法において、試料をシリカ系複合微粒子分散液に代えて、シリカ微粒子分散液を用いることにより行った。
<SiO 2 , CeO 2 >
When obtaining the content of silica and ceria in the silica-based composite fine particles, first, the solid content concentration of the dispersion of the silica-based composite fine particles is determined by weighing at 1000 ° C. and by weight reduction. Next, Ce is measured by a standard addition method using an ICP plasma emission spectrometer (for example, SPS5520 manufactured by SII) in the same manner as Al to Th and the like, and CeO 2 mass% is calculated from the obtained Ce content. . Then, assuming that the components other than CeO 2 constituting the composite fine particles of the present invention are SiO 2 , SiO 2 mass% is calculated.
The content of each element or each anion in the silica fine particles (mother particles) is determined by using the silica fine particle dispersion instead of the silica composite fine particle dispersion in the method for analyzing silica-based composite fine particles. went.

[X線回折法、結晶子径の測定]
前述の方法に則り、実施例及び比較例で得られたシリカ系複合微粒子分散液を従来公知の乾燥機を用いて乾燥し、得られた粉体を乳鉢にて10分粉砕し、X線回折装置(理学電気(株)製、RINT1400)によってX線回折パターンを得て、結晶型を特定した。
また、前述のように、得られたX線回折パターンにおける2θ=28度近傍の(111)面(2θ=28度近傍)のピークの半価幅を測定し、Scherrerの式により、結晶子径を求めた。
[X-ray diffraction method, measurement of crystallite diameter]
In accordance with the method described above, the silica-based composite fine particle dispersions obtained in Examples and Comparative Examples were dried using a conventionally known dryer, and the obtained powder was pulverized in a mortar for 10 minutes, and X-ray diffraction was performed. An X-ray diffraction pattern was obtained by an apparatus (RINT1400, manufactured by Rigaku Corporation), and a crystal form was specified.
Further, as described above, the half width of the peak of the (111) plane (2θ = 28 degrees) near 2θ = 28 degrees in the obtained X-ray diffraction pattern was measured, and the crystallite diameter was calculated according to Scherrer's equation. Asked.

<平均粒子径>
実施例及び比較例で得られたシリカ微粒子分散液及びシリカ系複合微粒子分散液について、これに含まれる粒子の平均粒子径を前述の方法で測定した。具体的にはシリカ母粒子は大塚電子社製PAR−III及びHORIBA社製LA950を用い、シリカ系複合微粒子については日機装株式会社製マイクロトラックUPA装置を用いた。
<Average particle size>
For the silica fine particle dispersions and silica-based composite fine particle dispersions obtained in the examples and comparative examples, the average particle size of the particles contained therein was measured by the method described above. Specifically, PAR-III manufactured by Otsuka Electronics Co., Ltd. and LA950 manufactured by HORIBA Co., Ltd. were used as the silica mother particles, and a Microtrac UPA apparatus manufactured by Nikkiso Co., Ltd. was used for the silica composite fine particles.

[研磨試験方法]
<SiO2膜の研磨>
実施例及び比較例の各々において得られたシリカ系複合微粒子分散液を含むスラリー(研磨用スラリー)を調整した。ここで固形分濃度は0.6質量%で硝酸を添加してpHは5.0とした。
次に、被研磨基板として、熱酸化法により作製したSiO2絶縁膜(厚み1μm)基板を準備した。
次に、この被研磨基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「IC-1000/SUBA400同心円タイプ」)を使用し、基板荷重0.5MPa、テーブル回転速度90rpmで研磨用スラリーを50ml/分の速度で1分間供給して研磨を行った。
そして、研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。
また、研磨基材の表面の平滑性(表面粗さRa)を原子間力顕微鏡(AFM、株式会社日立ハイテクサイエンス社製)を用いて測定した。
なお研磨傷の観察は、光学顕微鏡を用いて絶縁膜表面を観察することで行った。
[Polishing test method]
<Polishing of SiO 2 film>
A slurry (polishing slurry) containing the silica-based composite fine particle dispersion obtained in each of Examples and Comparative Examples was prepared. Here, the solid content concentration was 0.6% by mass, and nitric acid was added to adjust the pH to 5.0.
Next, as a substrate to be polished, a SiO 2 insulating film (thickness 1 μm) substrate prepared by a thermal oxidation method was prepared.
Next, the substrate to be polished is set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), and a polishing pad (“IC-1000 / SUBA400 concentric type” manufactured by Nitta Haas) is used. Polishing was performed by supplying a polishing slurry at a rotation speed of 90 rpm at a rate of 50 ml / min for 1 minute.
And the grinding | polishing speed | rate was calculated by calculating | requiring the weight change of the to-be-polished base material before and behind grinding | polishing.
Moreover, the smoothness (surface roughness Ra) of the surface of the polishing substrate was measured using an atomic force microscope (AFM, manufactured by Hitachi High-Tech Science Co., Ltd.).
The polishing scratches were observed by observing the insulating film surface using an optical microscope.

<アルミハードディスクの研磨>
実施例及び比較例の各々において得られたシリカ系複合微粒子分散液を含むスラリー(研磨用スラリー)を調整した。ここで固形分濃度は9質量%で硝酸を添加してpHを2.0に調整した。
アルミハードディスク用基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「ポリテックスφ12」)を使用し、基板負荷0.05MPa、テーブル回転速度30rpmで研磨スラリーを20ml/分の速度で5分間供給して研磨を行い、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Maicro―Max)を使用し、Zoom15にて全面観察し、65.97cm2に相当する研磨処理された基板表面に存在するスクラッチ(線状痕)の個数を数えて合計し、次の基準に従って評価した。
線状痕の個数 評価
50個未満 「非常に少ない」
80個未満、50個以上 「少ない」
80個以上 「多い」
*少なくとも80個以上で総数をカウントできないほど多い 「※」
<Aluminum hard disk polishing>
A slurry (polishing slurry) containing the silica-based composite fine particle dispersion obtained in each of Examples and Comparative Examples was prepared. Here, the solid content concentration was 9% by mass and the pH was adjusted to 2.0 by adding nitric acid.
A substrate for aluminum hard disk is set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), and a polishing pad (“Polytex φ12” manufactured by Nitta Haas Co., Ltd.) is used. Polishing is performed by supplying at a rate of 20 ml / min for 5 minutes, and using an ultra-fine defect / visualization macro apparatus (manufactured by VISION PSYTEC, product name: Micro-Max), the entire surface is observed with a Zoom 15, 65.97 cm 2 The number of scratches (linear traces) present on the polished substrate surface corresponding to No. 1 was counted and totaled and evaluated according to the following criteria.
Number of linear marks Evaluation Less than 50 “Very few”
Less than 80, 50 or more
80 or more "Many"
* At least 80 and so many that the total number cannot be counted "*"

<流動電位>
実施例及び比較例で得られた各シリカ系複合微粒子分散液について、流動電位の測定及びカチオンコロイド滴定を行った。滴定装置として、流動電位滴定ユニット(PCD−500)を搭載した自動滴定装置AT−510(京都電子工業製)を用いた。
まず、固形分濃度を1質量%に調整したシリカ系複合微粒子分散液を0.05%の塩酸水溶液を添加してpH6に調整した。その液の固形分として0.8gに相当する量を流動電位測定装置のセルにとり、流動電位の測定を行った。次にカチオンコロイド滴定液(0.0025Nポリ塩化ジアリルジメチルアンモニウム溶液)を添加して滴定を行った。そして、カチオンコロイド滴定液の添加量(ml)をX軸、シリカ系複合微粒子分散液の流動電位(mV)をY軸にプロットして、流動電位曲線の開始点における流動電位I(mV)、ならびにクニックにおける流動電位C(mV)及びカチオンコロイド滴定液の添加量V(ml)を求め、ΔPCD/V=(I−C)/Vを算出した。結果を第1表に示す。
また、実施例及び比較例で得られた各シリカ系複合微粒子分散液について、流動電位の測定及びカチオンコロイド滴定を行った。滴定装置として、流動電位滴定ユニット(PCD−500)を搭載した自動滴定装置AT−510(京都電子工業製)を用いた。
まず、固形分濃度を1質量%に調整したシリカ系複合微粒子分散液を0.05%の塩酸水溶液を添加してpH6に調整した。その液の固形分として0.8gに相当する量を流動電位測定装置のセルにとり、流動電位の測定を行った。次にカチオンコロイド滴定液(0.0025Nポリ塩化ジアリルジメチルアンモニウム溶液)を添加して滴定を行った。そして、カチオンコロイド滴定液の添加量(ml)をX軸、シリカ系複合微粒子分散液の流動電位(mV)をY軸にプロットして、流動電位曲線の開始点における流動電位I(mV)、ならびにクニックにおける流動電位C(mV)及びカチオンコロイド滴定液の添加量V(ml)を求め、ΔPCD/V=(I−C)/Vを算出した。結果を第1表に示す。
<Flow potential>
About each silica type composite fine particle dispersion liquid obtained by the Example and the comparative example, the measurement of the streaming potential and the cation colloid titration were performed. As a titration apparatus, automatic titration apparatus AT-510 (manufactured by Kyoto Electronics Co., Ltd.) equipped with a streaming potential titration unit (PCD-500) was used.
First, a silica-based composite fine particle dispersion whose solid content concentration was adjusted to 1% by mass was adjusted to pH 6 by adding a 0.05% hydrochloric acid aqueous solution. An amount corresponding to 0.8 g as the solid content of the liquid was taken in a cell of a streaming potential measuring device, and the streaming potential was measured. Next, titration was performed by adding a cationic colloid titration solution (0.0025N polydiallyldimethylammonium chloride solution). Then, the addition amount (ml) of the cation colloid titrant is plotted on the X axis, and the streaming potential (mV) of the silica-based composite fine particle dispersion is plotted on the Y axis, and the streaming potential I (mV) at the starting point of the streaming potential curve, In addition, the flow potential C (mV) at the nick and the addition amount V (ml) of the cation colloid titrant were determined, and ΔPCD / V = (I−C) / V was calculated. The results are shown in Table 1.
Moreover, about each silica type composite fine particle dispersion liquid obtained by the Example and the comparative example, the measurement of the streaming potential and the cation colloid titration were performed. As a titration apparatus, automatic titration apparatus AT-510 (manufactured by Kyoto Electronics Co., Ltd.) equipped with a streaming potential titration unit (PCD-500) was used.
First, a silica-based composite fine particle dispersion whose solid content concentration was adjusted to 1% by mass was adjusted to pH 6 by adding a 0.05% hydrochloric acid aqueous solution. An amount corresponding to 0.8 g as the solid content of the liquid was taken in a cell of a streaming potential measuring device, and the streaming potential was measured. Next, titration was performed by adding a cationic colloid titration solution (0.0025N polydiallyldimethylammonium chloride solution). Then, the addition amount (ml) of the cation colloid titrant is plotted on the X axis, and the streaming potential (mV) of the silica-based composite fine particle dispersion is plotted on the Y axis, and the streaming potential I (mV) at the starting point of the streaming potential curve, In addition, the flow potential C (mV) at the nick and the addition amount V (ml) of the cation colloid titrant were determined, and ΔPCD / V = (I−C) / V was calculated. The results are shown in Table 1.

<合成例>
《高純度珪酸液》の調製
SiO2濃度が24.06質量%、Na2O濃度が7.97質量%の珪酸ナトリウム水溶液を用意した。そして、この珪酸ナトリウム水溶液にSiO2濃度が5.0質量%となるように純水を添加した。
<Synthesis example>
<Preparation of High-Purity Silicic Acid Solution> An aqueous sodium silicate solution having an SiO 2 concentration of 24.06% by mass and an Na 2 O concentration of 7.97% by mass was prepared. Then, pure water was added so that SiO 2 concentration of 5.0 wt% to the aqueous solution of sodium silicate.

[酸性珪酸液]
得られた5.0質量%の珪酸ナトリウム水溶液18kgを、6Lの強酸性陽イオン交換樹脂(SK1BH、三菱化学社製)に空間速度3.0h-1で通液させ、pHが2.7の酸性珪酸液18kgを得た。
得られた酸性珪酸液のSiO2濃度は4.7質量%であった。
[Acid silicic acid solution]
18 kg of the obtained 5.0 mass% sodium silicate aqueous solution was passed through 6 L of strongly acidic cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) at a space velocity of 3.0 h −1 , and the pH was 2.7. 18 kg of acidic silicic acid solution was obtained.
The obtained acidic silicic acid solution had a SiO 2 concentration of 4.7% by mass.

[高純度珪酸液]
次に、酸性珪酸液を、強酸性陽イオン交換樹脂(SK1BH、三菱化学社製)に空間速度3.0h-1で通液させ、pHが2.7の高純度珪酸液を得た。得られた高純度珪酸液のSiO2濃度は4.4質量%であった。
[High purity silicic acid solution]
Next, the acidic silicic acid solution was passed through a strongly acidic cation exchange resin (SK1BH, manufactured by Mitsubishi Chemical Corporation) at a space velocity of 3.0 h −1 to obtain a high purity silicic acid solution having a pH of 2.7. The high-purity silicic acid solution obtained had a SiO 2 concentration of 4.4% by mass.

《シリカ微粒子分散液(シリカ微粒子の平均粒子径:25nm)》の調製
純水42gに高純度珪酸液を攪拌しながら514.5g添加し、次いで15%のアンモニア水を1,584.6g添加し、その後83℃に昇温して30分保持した。
次に高純度珪酸液13,700gを18時間かけて添加し、添加終了後に83℃を保持したまま熟成を行い、25nmのシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。
<< Preparation of silica fine particle dispersion (average particle diameter of silica fine particles: 25 nm) >> 514.5 g of high-purity silicic acid solution is added to 42 g of pure water while stirring, and then 1,584.6 g of 15% ammonia water is added. Thereafter, the temperature was raised to 83 ° C. and held for 30 minutes.
Next, 13,700 g of high-purity silicic acid solution was added over 18 hours. After completion of the addition, aging was performed while maintaining 83 ° C. to obtain a 25 nm silica fine particle dispersion.
The obtained silica fine particle dispersion was cooled to 40 ° C., and the SiO 2 concentration was concentrated to 12% by mass with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei).

《シリカ微粒子分散液(シリカ微粒子の平均粒子径:45nm)》の調製
純水991gに攪拌しながら12質量%の25nmシリカ微粒子分散液を963g加えた。次いで15%アンモニア水1,414gを添加し、その後87℃に昇温して30分保持した。
次に高純度珪酸液12,812gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、45nmのシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。
Preparation of << silica fine particle dispersion (average particle diameter of silica fine particles: 45 nm) >> To 991 g of pure water, 963 g of 12% by mass of 25 nm silica fine particle dispersion was added. Next, 1,414 g of 15% aqueous ammonia was added, and then the temperature was raised to 87 ° C. and held for 30 minutes.
Next, 12,812 g of high-purity silicic acid solution was added over 18 hours, and after completion of the addition, aging was performed while maintaining 87 ° C. to obtain a 45 nm silica fine particle dispersion.
The obtained silica fine particle dispersion was cooled to 40 ° C., and the SiO 2 concentration was concentrated to 12% by mass with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei).

《シリカ微粒子分散液(シリカ微粒子の平均粒子径:70nm)》の調製
純水705gに攪拌しながら平均粒子径45nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液(SiO2濃度12質量%)を705g加えた。次いで15%アンモニア水50gを添加し、その後87℃に昇温して30分保持した。
次に高純度珪酸液7,168gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、平均粒子径70nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。
<Preparation of Silica Fine Particle Dispersion (Silica Fine Particle Average Particle Diameter: 70 nm)> Silica Fine Particle Dispersion (SiO 2 Concentration: 12% by Mass) Dispersed in 705 g of pure water with silica fine particles having an average particle diameter of 45 nm dispersed in a solvent 705 g) was added. Next, 50 g of 15% aqueous ammonia was added, and then the temperature was raised to 87 ° C. and held for 30 minutes.
Next, 7,168 g of high-purity silicic acid solution is added over 18 hours, and after completion of the addition, aging is performed while maintaining 87 ° C. to obtain a silica fine particle dispersion in which silica fine particles having an average particle diameter of 70 nm are dispersed in a solvent. It was.
The obtained silica fine particle dispersion was cooled to 40 ° C., and the SiO 2 concentration was concentrated to 12% by mass with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei).

《シリカ微粒子分散液(シリカ微粒子の平均粒子径:96nm)》の調製
純水1,081gに攪拌しながら平均粒子径70nmのシリカ微粒子が溶媒に分散してなる分散液(SiO2濃度:12質量%)を1,081g加えた。次いで15%アンモニア水50gを添加し、その後87℃に昇温して30分保持した。
次に高純度珪酸液6,143gを18時間かけて添加し、添加終了後に87℃を保持したまま熟成を行い、動的光散乱法(動的光散乱粒子径測定装置:PAR−III)で測定された平均粒子径96nmのシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を得た。
得られたシリカ微粒子分散液を40℃まで冷却し、限外ろ過膜(旭化成製SIP1013)にてSiO2濃度を12質量%まで濃縮した。濃縮後のシリカ微粒子分散液に陰イオン交換樹脂 三菱化学社製 SANUP Bを添加して陰イオンを除去した。
得られたシリカ微粒子分散液に超純水を加えて、SiO2固形分濃度3質量%のA液6,000gを得た。(以下、シリカ系複合微粒子分散液の製造工程において、後記B液を投入するシリカ微粒子分散液を「A液」とする。)
Preparation of << silica fine particle dispersion (silica fine particle average particle diameter: 96 nm) >> Dispersion formed by dispersing silica fine particles having an average particle diameter of 70 nm in a solvent while stirring in 1,081 g of pure water (SiO 2 concentration: 12 mass) %) Was added. Next, 50 g of 15% aqueous ammonia was added, and then the temperature was raised to 87 ° C. and held for 30 minutes.
Next, 6,143 g of high-purity silicic acid solution was added over 18 hours. After completion of the addition, aging was carried out while maintaining 87 ° C., and the dynamic light scattering method (dynamic light scattering particle size measuring device: PAR-III) was used. A silica fine particle dispersion obtained by dispersing silica fine particles having a measured average particle diameter of 96 nm in a solvent was obtained.
The obtained silica fine particle dispersion was cooled to 40 ° C., and the SiO 2 concentration was concentrated to 12% by mass with an ultrafiltration membrane (SIP1013 manufactured by Asahi Kasei). Anion exchange resin SANUP B manufactured by Mitsubishi Chemical Corporation was added to the silica fine particle dispersion after concentration to remove anions.
Ultrapure water was added to the resulting silica fine particle dispersion to obtain 6,000 g of Liquid A having a SiO 2 solid content concentration of 3% by mass. (Hereinafter, in the production process of the silica-based composite fine particle dispersion, the silica fine particle dispersion into which the B liquid described later is introduced is referred to as “liquid A”.)

次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で2.5質量%のB液を得た。(以下、セリウム金属塩分散液を「B液」とする。) Next, ion-exchanged water was added to cerium (III) nitrate hexahydrate (manufactured by Kanto Chemical Co., Inc., 4N high-purity reagent) to obtain 2.5 mass% B liquid in terms of CeO 2 . (Hereinafter, the cerium metal salt dispersion is referred to as “Liquid B”.)

次に、A液(6,000g)を50℃まで昇温して、撹拌しながら、ここへB液(8,453g、SiO2の100質量部に対して、CeO2が117.4質量部に相当)を18時間かけて添加した。この間、液温を50℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.85を維持するようにした。
そして、B液の添加が終了したら、液温を93℃へ上げて4時間熟成を行った。熟成終了後に室内に放置することで放冷し、室温まで冷却した後に、限外膜にてイオン交換水を補給しながら洗浄を行った。洗浄を終了して得られた前駆体粒子分散液は、固形分濃度が7質量%、pHが9.1(25℃にて)、電導度が67μs/cm(25℃にて)であった。
Next, the liquid A (6,000 g) was heated to 50 ° C. and stirred, while the liquid B (8,453 g, 100 parts by mass of SiO 2) was equivalent to 117.4 parts by mass of CeO 2. Was added over 18 hours. During this time, the liquid temperature was maintained at 50 ° C., and 3% ammonia water was added as necessary to maintain pH 7.85.
And when addition of B liquid was complete | finished, the liquid temperature was raised to 93 degreeC and ageing | curing | ripening was performed for 4 hours. After aging, the product was allowed to cool by allowing it to stand indoors, and after cooling to room temperature, washing was performed while supplying ion-exchanged water with an outer membrane. The precursor particle dispersion obtained after the washing was finished had a solid content concentration of 7% by mass, a pH of 9.1 (at 25 ° C.), and an electric conductivity of 67 μs / cm (at 25 ° C.). .

次に得られた前駆体粒子分散液に5質量%酢酸を加えてpHを6.5に調整して、120℃の乾燥機中で16時間乾燥させた後、1090℃のマッフル炉を用いて2時間焼成を行い、粉体(焼成体)を得た。   Next, 5% by mass acetic acid was added to the obtained precursor particle dispersion to adjust the pH to 6.5, followed by drying in a 120 ° C. dryer for 16 hours, and then using a 1090 ° C. muffle furnace. Firing was performed for 2 hours to obtain a powder (fired body).

得られた粉体125gにイオン交換水375gを加え、さらに3%アンモニア水溶液を用いてpHを9に調整した後、φ0.22mmの高純度シリカビーズ(大研化学工業株式会社製)にて湿式解砕、粉砕を行い、固形分濃度20質量%の焼成体解砕分散液540gを得た。   After adding 375 g of ion-exchanged water to 125 g of the obtained powder and further adjusting the pH to 9 using a 3% aqueous ammonia solution, it was wetted with high-purity silica beads of φ0.22 mm (manufactured by Daiken Chemical Co., Ltd.). Crushing and pulverization were carried out to obtain 540 g of a fired product pulverized dispersion having a solid content concentration of 20% by mass.

<実施例1>
前記合成例で得られた固形分濃度20質量%の焼成体解砕分散液を、HITACHI社製遠心分離装置CR21G(ローター型式R21A)にて、2000rpm(620G)で3分間遠心分離を行い、上澄液と沈降品を分離し、上澄液を回収した。
次に、回収した上澄液を2500rpm(980G)で3分間遠心分離を行い、上澄液と沈降品を分離し、上澄液を回収した。
続いて、回収した上澄液を2800rpm(1250G)で5分間遠心分離を行い、上澄液と沈降品を分離し、沈降品を回収した。
得られた沈降品としてのシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子の平均粒子径を測定したところ、280nm、ΔPCD/Vは−51、初期流動電位は−550mVであった。
また、電子顕微鏡観察写真の画像解析法にて1〜4個玉の割合を測定した。さらに前記の2種類の研磨試験を行い、研磨速度およびスクラッチの個数を計測した。
結果を第1表に示す。
また、実施例1で得られたシリカ系複合微粒子分散液の透過型電子顕微鏡写真(倍率10万倍)を図1に示す。
<Example 1>
The pulverized dispersion with a solid content of 20% by mass obtained in the above synthesis example was centrifuged at 2000 rpm (620 G) for 3 minutes in a centrifugal separator CR21G (rotor type R21A) manufactured by HITACHI, The supernatant and sediment were separated and the supernatant was recovered.
Next, the collected supernatant was centrifuged at 2500 rpm (980 G) for 3 minutes to separate the supernatant and the sediment, and the supernatant was collected.
Subsequently, the collected supernatant was centrifuged at 2800 rpm (1250 G) for 5 minutes to separate the supernatant and the sediment, and the sediment was collected.
When the average particle diameter of the silica-based composite fine particles contained in the resulting silica-based composite fine particle dispersion was measured, it was 280 nm, ΔPCD / V was −51, and the initial flow potential was −550 mV.
Moreover, the ratio of 1-4 balls was measured by the image analysis method of an electron microscope observation photograph. Further, the above-described two kinds of polishing tests were performed, and the polishing rate and the number of scratches were measured.
The results are shown in Table 1.
A transmission electron micrograph (magnification 100,000 times) of the silica-based composite fine particle dispersion obtained in Example 1 is shown in FIG.

<実施例2>
前記合成例で得られた固形分濃度20質量%の焼成体解砕分散液を、HITACHI社製遠心分離装置CR21G(ローター型式R21A)にて、2000rpm(620G)で3分間遠心分離を行い、上澄液と沈降品を分離し、上澄液を回収した。
次に、回収した上澄液を2500rpm(980G)で3分間遠心分離を行い、上澄液と沈降品を分離し、上澄液を回収した。
続いて、回収した上澄液を2800rpm(1250G)で5分間遠心分離処理し、上澄液と沈降品を分離し、上澄液を回収した。
続いて、回収した上澄液を3200rpm(1650G)で5分間遠心分離を行い、上澄液と沈降品を分離し、沈降品を回収した。
得られた沈降品としてのシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子の平均粒子径を後述する方法で測定したところ、245nmであり、ΔPCD/Vは−55、初期流動電位は−563mVであった。
また、電子顕微鏡観察写真の画像解析法にて1〜4個玉の割合を測定した。さらに前記の2種類の研磨試験を行い、研磨速度およびスクラッチの個数を計測した。
結果を第1表に示す。
また、実施例2で得られたシリカ系複合微粒子分散液の透過型電子顕微鏡写真(倍率10万倍)を図2に示す。
<Example 2>
The pulverized dispersion with a solid content of 20% by mass obtained in the above synthesis example was centrifuged at 2000 rpm (620 G) for 3 minutes in a centrifugal separator CR21G (rotor type R21A) manufactured by HITACHI, The supernatant and sediment were separated and the supernatant was recovered.
Next, the collected supernatant was centrifuged at 2500 rpm (980 G) for 3 minutes to separate the supernatant and the sediment, and the supernatant was collected.
Subsequently, the collected supernatant was centrifuged at 2800 rpm (1250 G) for 5 minutes to separate the supernatant and the sediment, and the supernatant was collected.
Subsequently, the collected supernatant was centrifuged at 3200 rpm (1650 G) for 5 minutes to separate the supernatant and the sediment, and the sediment was collected.
The average particle diameter of the silica-based composite fine particles contained in the obtained silica-based composite fine particle dispersion as a sediment was measured by the method described later, and was 245 nm, ΔPCD / V was −55, and the initial flow potential was −563 mV. Met.
Moreover, the ratio of 1-4 balls was measured by the image analysis method of an electron microscope observation photograph. Further, the above-described two kinds of polishing tests were performed, and the polishing rate and the number of scratches were measured.
The results are shown in Table 1.
Moreover, the transmission electron micrograph (magnification 100,000 times) of the silica type composite fine particle dispersion obtained in Example 2 is shown in FIG.

実施例1で得られたシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子について、エネルギー分散型X線分光測定(EDS)を行い、元素分布図(図3)を得た。
エネルギー分散型X線分光測定(EDS)の測定条件を以下に示す。
試料作製は、シリカ系複合微粒子を純水中で分散させた後、カーボン支持膜付きCuメッシュに載せて、以下の測定装置にて測定を行った。
測定装置:日本電子社製、UTW型Si(Li)半導体検出器、ビーム径0.2nm
The silica composite fine particles contained in the silica composite fine particle dispersion obtained in Example 1 were subjected to energy dispersive X-ray spectrometry (EDS) to obtain an element distribution diagram (FIG. 3).
The measurement conditions for energy dispersive X-ray spectrometry (EDS) are shown below.
For sample preparation, silica-based composite fine particles were dispersed in pure water, and then placed on a Cu mesh with a carbon support film, and measurement was performed with the following measuring device.
Measuring device: manufactured by JEOL Ltd., UTW type Si (Li) semiconductor detector, beam diameter 0.2 nm

図3に示す元素分布図から、Ce元素の外側(粒子の表面側)に、Si及びO(酸素)が存在していることが確認できた。   From the element distribution chart shown in FIG. 3, it was confirmed that Si and O (oxygen) existed outside the Ce element (on the surface side of the particles).

次に、実施例1で得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子について、透過型電子顕微鏡(日本電子社製、JEM−2100F、電界放射型透過電子顕微鏡(Cs補正付属)、加速電子:120kV、倍率:50,000倍)を用いて観察し、子粒子(セリア結晶粒子)の外側に被膜が存在することを確認し、その後、この被膜の部分へ選択的に電子ビームを当てたEDS測定を行った。
エネルギー分散型X線分光測定(EDS)の測定条件を以下に示す。
シリカ系複合微粒子を純水中で分散させた後、カーボン支持膜付きCuメッシュに載せて、以下の測定装置にて測定を行った。
測定装置:日本電子社製、UTW型Si(Li)半導体検出器
ビーム系:0.2nm
Next, with respect to the silica-based composite fine particles contained in the silica-based composite fine particle dispersion obtained in Example 1, transmission electron microscope (manufactured by JEOL Ltd., JEM-2100F, field emission transmission electron microscope (attached to Cs correction), (Acceleration electron: 120 kV, magnification: 50,000 times) is observed, and it is confirmed that a coating is present outside the child particles (ceria crystal particles), and then an electron beam is selectively applied to the coating. The applied EDS measurement was performed.
The measurement conditions for energy dispersive X-ray spectrometry (EDS) are shown below.
After the silica-based composite fine particles were dispersed in pure water, they were placed on a Cu mesh with a carbon support film and measured with the following measuring device.
Measuring device: manufactured by JEOL Ltd., UTW type Si (Li) semiconductor detector Beam system: 0.2 nm

透過型電子顕微鏡を用いて観察して得た写真(TEM像)を図4に示す。そして、図4によって確認された子粒子(セリア結晶粒子)の外側にシリカ被膜の部分へ選択的に電子ビームを当てたEDS測定結果を図3に示す。図3に示すように1.739keVにSiの強度ピークが現れ、4.839keVにCeの強度ピークが現れた。そして、求められたSiの原子数%は23.22atom%、Ceの原子数%は25.64atom%であり、Siの原子数%/Ceの原子数%は0.9056と算出された。   A photograph (TEM image) obtained by observation using a transmission electron microscope is shown in FIG. FIG. 3 shows an EDS measurement result in which an electron beam is selectively applied to the silica coating portion outside the child particles (ceria crystal particles) confirmed in FIG. As shown in FIG. 3, a Si intensity peak appeared at 1.739 keV, and a Ce intensity peak appeared at 4.839 keV. The calculated atomic percentage of Si was 23.22 atom%, Ce atomic percentage was 25.64 atomic%, and Si atomic percentage / Ce atomic percentage was calculated as 0.9056.

<比較例1>
前記合成例で得られた固形分濃度20質量%の焼成体解砕分散液(遠心分離処理無し)について、平均粒子径を測定したところ211nmであり、ΔPCD/Vは−53、初期流動電位は−575mVであった。
また、電子顕微鏡観察写真の画像解析法にて1〜4個玉の割合を測定した。さらに後述する2種類の研磨試験を行い、研磨速度およびスクラッチの個数を計測した。
結果を第1表に示す。
<Comparative Example 1>
The average particle size of the calcined dispersion with a solid content of 20% by mass (without centrifugation) obtained in the above synthesis example was measured to be 211 nm, ΔPCD / V was −53, and the initial flow potential was -575 mV.
Moreover, the ratio of 1-4 balls was measured by the image analysis method of an electron microscope observation photograph. Further, two types of polishing tests described later were performed, and the polishing rate and the number of scratches were measured.
The results are shown in Table 1.

<比較例2>
前記合成例で得られた固形分濃度20質量%の焼成体解砕分散液を1100rpm(200G)で40分間遠心分離処理し、上澄液と沈降品を分離した。
回収した上澄液(シリカ系複合微粒子分散液)に含まれるシリカ系複合微粒子の平均粒子径を測定したところ、194nmであり、ΔPCD/Vは−58、初期流動電位は−570mVであった。また、電子顕微鏡観察写真の画像解析法にて1〜4個玉の割合を測定した。さらに前記の2種類の研磨試験を行い、研磨速度およびスクラッチの個数を計測した。
結果を第1表に示す。
<Comparative example 2>
The calcined dispersion with a solid content of 20% by mass obtained in the synthesis example was centrifuged at 1100 rpm (200 G) for 40 minutes to separate the supernatant and the sediment.
When the average particle size of the silica-based composite fine particles contained in the collected supernatant (silica-based composite fine particle dispersion) was measured, it was 194 nm, ΔPCD / V was −58, and the initial flow potential was −570 mV. Moreover, the ratio of 1-4 balls was measured by the image analysis method of an electron microscope observation photograph. Further, the above-described two kinds of polishing tests were performed, and the polishing rate and the number of scratches were measured.
The results are shown in Table 1.

<比較例3>
前記合成例で得られた固形分濃度20質量%の焼成体解砕分散液を、2000rpm(620G)で3分間行って、上澄液と沈降品を分離した。得られた沈降品の平均粒子径を後述する方法で測定したところ、208nmであり、ΔPCD/Vは−50、初期流動電位は−567mVであった。
また、電子顕微鏡観察写真の画像解析法にて1〜4個玉の割合を測定した。さらに前記の2種類の研磨試験を行い、研磨速度およびスクラッチの個数を計測した。
結果を第1表に示す。
<Comparative Example 3>
The calcined dispersion with a solid content of 20% by mass obtained in the above synthesis example was run at 2000 rpm (620 G) for 3 minutes to separate the supernatant and the sediment. When the average particle diameter of the obtained sediment was measured by the method described later, it was 208 nm, ΔPCD / V was −50, and the initial flow potential was −567 mV.
Moreover, the ratio of 1-4 balls was measured by the image analysis method of an electron microscope observation photograph. Further, the above-described two kinds of polishing tests were performed, and the polishing rate and the number of scratches were measured.
The results are shown in Table 1.

本発明の複合微粒子は、不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができる。   Since the composite fine particle of the present invention does not contain impurities, it can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate or a wiring substrate.

Claims (11)

非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、下記[1]から[3]の特徴を備える平均粒子径50〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子に含まれる、一次粒子が直接的または間接的に2個または3個連結した結合粒子の重量割合が60%以上であること。
Silica-based particles having an average particle size of 50 to 350 nm having the following particles [1] to [3] on the surface of the mother particle mainly composed of amorphous silica and having the child particles mainly composed of crystalline ceria A silica-based composite fine particle dispersion containing composite fine particles.
[1] The silica-based composite fine particles have a mass ratio of silica and ceria of 100: 11 to 316.
[2] When the silica-based composite fine particles are subjected to X-ray diffraction, only the ceria crystal phase is detected.
[3] The weight ratio of the bonded particles in which two or three primary particles are directly or indirectly connected in the silica-based composite fine particles is 60% or more.
前記シリカ系複合微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする請求項1に記載のシリカ系複合微粒子分散液。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
2. The silica-based composite fine particle dispersion according to claim 1, wherein the content ratio of impurities contained in the silica-based composite fine particles is as shown in the following (a) and (b).
(A) The contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl, NO 3 , SO 4 and F are each 5 ppm or less.
さらに、前記子粒子の表面にシリカ被膜を有していることを特徴とする、請求項1又は2に記載のシリカ系複合微粒子分散液。   Furthermore, the silica type composite particle dispersion liquid of Claim 1 or 2 which has a silica film on the surface of the said child particle | grain. pH値が3〜8の範囲である場合の滴定前の流動電位がマイナスの電位であることを特徴とする、請求項1〜3の何れかに記載のシリカ系複合微粒子分散液。   The silica-based composite fine particle dispersion according to any one of claims 1 to 3, wherein the flow potential before titration when the pH value is in the range of 3 to 8 is a negative potential. 前記シリカ系複合微粒子について、透過型電子顕微鏡を用いて観察できる前記シリカ被膜の部分に電子ビームを選択的に当てたEDS測定によって求める、Ce原子数%に対するSi原子数%の比(Si原子数%/Ce原子数%)が0.9以上であることを特徴とする請求項1〜4の何れかに記載のシリカ系複合微粒子分散液。   About the silica-based composite fine particles, the ratio of the number of Si atoms to the number of Ce atoms% (the number of Si atoms) determined by EDS measurement in which an electron beam is selectively applied to a portion of the silica film that can be observed using a transmission electron microscope % / Ce atom number%) is 0.9 or more, and the silica-based composite fine particle dispersion according to claim 1. カチオンコロイド滴定を行った場合に、下記式(1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−110.0〜−15.0となる流動電位曲線が得られる、請求項1〜5のいずれかに記載のシリカ系複合微粒子分散液。
ΔPCD/V=(I−C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml)
When cationic colloid titration is performed, the ratio (ΔPCD / V) between the amount of change in streaming potential (ΔPCD) represented by the following formula (1) and the addition amount (V) of the cationic colloid titrant in the knick is −110. The silica-based composite fine particle dispersion according to any one of claims 1 to 5, wherein a streaming potential curve of 0.0 to -15.0 is obtained.
ΔPCD / V = (I−C) / V (1)
C: Streaming potential (mV) at the nick
I: Streaming potential (mV) at the starting point of the streaming potential curve
V: Amount of the colloid titration solution added in the nick (ml)
請求項1〜6の何れかに記載のシリカ系複合微粒子分散液を含む研磨用スラリー。   A polishing slurry comprising the silica-based composite fine particle dispersion according to claim 1. シリカ膜が形成された半導体基板の平坦化用研磨スラリーであることを特徴とする請求項7記載の研磨用スラリー。   The polishing slurry according to claim 7, which is a polishing slurry for planarizing a semiconductor substrate on which a silica film is formed. 下記の工程1〜工程4を含むことを特徴とするシリカ系複合微粒子分散液の製造方法。
工程1:シリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(i)又は(ii)の処理をして焼成体解砕分散液を得る工程。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することにより上澄液を得る工程。
工程4:前記上澄液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を回収し、シリカ系複合微粒子分散液を得る工程。
The manufacturing method of the silica type composite fine particle dispersion characterized by including the following process 1-process 4.
Step 1: A silica fine particle dispersion in which silica fine particles are dispersed in a solvent is stirred, and a cerium metal salt is continuously added thereto while maintaining a temperature at 5 to 98 ° C. and a pH within a range of 7.0 to 9.0. The process of adding the precursor particle | grain dispersion liquid which adds regularly or intermittently and contains a precursor particle.
Step 2: The precursor particle dispersion is dried and fired at 400 to 1,200 ° C., and the fired body obtained is subjected to the following treatment (i) or (ii) to obtain a fired body crushed dispersion liquid. Obtaining.
(I) Crushing and pulverizing by a dry method, and adding a solvent to carry out a solvent dispersion treatment.
(Ii) A solvent is added and pulverization and pulverization are performed in a wet manner.
Step 3: A step of obtaining a supernatant by subjecting the calcined dispersion liquid to a centrifugal separation treatment at a relative centrifugal acceleration of 300 G or more and subsequently removing a sediment component.
Step 4: A step of subjecting the supernatant to a centrifugal treatment at a relative centrifugal acceleration of 300 G or more, and subsequently recovering a sediment component to obtain a silica-based composite fine particle dispersion.
前記シリカ微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする請求項9記載のシリカ系複合微粒子分散液の製造方法。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ5ppm以下。
The method for producing a silica-based composite fine particle dispersion according to claim 9, wherein the content ratio of impurities contained in the silica fine particles is as shown in the following (a) and (b).
(A) The contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl, NO 3 , SO 4 and F are each 5 ppm or less.
前記工程2の(ii)が、溶媒を加えて、pH9.0〜10.6の範囲にて、湿式で解砕・粉砕処理する処理である、請求項9又は10に記載のシリカ系複合微粒子分散液の製造方法。   11. The silica-based composite fine particles according to claim 9 or 10, wherein (ii) in step 2 is a treatment of crushing and pulverizing in a wet manner in a pH range of 9.0 to 10.6 by adding a solvent. A method for producing a dispersion.
JP2016099926A 2016-05-18 2016-05-18 A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion. Active JP6829007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099926A JP6829007B2 (en) 2016-05-18 2016-05-18 A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099926A JP6829007B2 (en) 2016-05-18 2016-05-18 A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.

Publications (2)

Publication Number Publication Date
JP2017206411A true JP2017206411A (en) 2017-11-24
JP6829007B2 JP6829007B2 (en) 2021-02-10

Family

ID=60415177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099926A Active JP6829007B2 (en) 2016-05-18 2016-05-18 A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.

Country Status (1)

Country Link
JP (1) JP6829007B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476910A1 (en) 2017-10-27 2019-05-01 Versum Materials US, LLC Composite particles, method of refining and use thereof
EP3608378A1 (en) 2018-08-09 2020-02-12 Versum Materials US, LLC Chemical mechanical planarization composition for polishing oxide materials and method of use thereof
JP2020023408A (en) * 2018-08-06 2020-02-13 日揮触媒化成株式会社 Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion
JP2020050571A (en) * 2018-09-28 2020-04-02 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, method for producing the same, and abrasive grain dispersion for polishing containing the same
JP2020079163A (en) * 2018-11-12 2020-05-28 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive grain dispersion containing ceria-based composite fine particle dispersion
CN113526515A (en) * 2021-08-29 2021-10-22 浙江华飞电子基材有限公司 Nano spherical silicon micro powder separation and extraction method
JP7490628B2 (en) 2020-11-16 2024-05-27 日揮触媒化成株式会社 Particle-linked ceria-based composite microparticle dispersion, its manufacturing method, and abrasive dispersion for polishing containing particle-linked ceria-based composite microparticle dispersion
WO2024111174A1 (en) * 2022-11-21 2024-05-30 株式会社レゾナック Cmp polishing liquid, cmp polishing liquid set, and polishing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040154230A1 (en) * 2002-07-19 2004-08-12 Saint-Gobain Corporation Polishing formulations for SiO2-based substrates
WO2005035688A1 (en) * 2003-10-10 2005-04-21 Korea Institute Of Ceramic Engineering & Technology Abrasive for chemical mechanical polishing and method for producing the same
WO2007046420A1 (en) * 2005-10-19 2007-04-26 Hitachi Chemical Co., Ltd. Cerium oxide slurry, cerium oxide polishing liquid, and method for polishing substrate by using those
JP2008284679A (en) * 2007-04-17 2008-11-27 Hitachi Chem Co Ltd Abrasive and manufacturing method thereof
US20120077419A1 (en) * 2009-06-05 2012-03-29 Basf Se Raspberry-type metal oxide nanostructures coated with ceo2 nanoparticles for chemical mechanical planarization (cmp)
JP2013119131A (en) * 2011-12-06 2013-06-17 Jgc Catalysts & Chemicals Ltd Silica-based composite particle and production method thereof
JP2015199652A (en) * 2014-03-31 2015-11-12 日揮触媒化成株式会社 Tabular particle, and composition for polishing containing the tabular particle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040154230A1 (en) * 2002-07-19 2004-08-12 Saint-Gobain Corporation Polishing formulations for SiO2-based substrates
WO2005035688A1 (en) * 2003-10-10 2005-04-21 Korea Institute Of Ceramic Engineering & Technology Abrasive for chemical mechanical polishing and method for producing the same
WO2007046420A1 (en) * 2005-10-19 2007-04-26 Hitachi Chemical Co., Ltd. Cerium oxide slurry, cerium oxide polishing liquid, and method for polishing substrate by using those
JP2008284679A (en) * 2007-04-17 2008-11-27 Hitachi Chem Co Ltd Abrasive and manufacturing method thereof
US20120077419A1 (en) * 2009-06-05 2012-03-29 Basf Se Raspberry-type metal oxide nanostructures coated with ceo2 nanoparticles for chemical mechanical planarization (cmp)
JP2013119131A (en) * 2011-12-06 2013-06-17 Jgc Catalysts & Chemicals Ltd Silica-based composite particle and production method thereof
JP2015199652A (en) * 2014-03-31 2015-11-12 日揮触媒化成株式会社 Tabular particle, and composition for polishing containing the tabular particle

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, Z. ET AL.: "PREPARATION AND ITS OXIDE CHEMICAL MECHANICAL POLISHING PERFORMANCE OF CERIA-COATED SILICA AND CERIA", J. CHN. CERAM. SOC., vol. 37, no. 11, JPN6019051170, November 2009 (2009-11-01), CN, pages 1880 - 1885, XP008177885, ISSN: 0004313519 *
PEEDIKAKKANDY, L. ET AL.: "Preparation of spherical ceria coated silica nanoparticle abrasives for CMP application", APPL. SURF. SCI., vol. 357, JPN6019051168, 21 September 2015 (2015-09-21), NL, pages 1306 - 1312, ISSN: 0004313517 *
SONG, X. ET AL.: "Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension", MATER. CHEM. PHYS., vol. 110, no. 1, JPN6019051169, 18 March 2008 (2008-03-18), NL, pages 128 - 135, XP002598972, ISSN: 0004313518, DOI: 10.1016/j.matchemphys.2008.01.042 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476910A1 (en) 2017-10-27 2019-05-01 Versum Materials US, LLC Composite particles, method of refining and use thereof
EP3831901A1 (en) 2017-10-27 2021-06-09 Versum Materials US, LLC Composite particles, method of refining and use thereof
JP2020023408A (en) * 2018-08-06 2020-02-13 日揮触媒化成株式会社 Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion
JP7038022B2 (en) 2018-08-06 2022-03-17 日揮触媒化成株式会社 Abrasive grain dispersion for polishing containing ceria-based fine particle dispersion, its manufacturing method, and ceria-based fine particle dispersion.
EP3608378A1 (en) 2018-08-09 2020-02-12 Versum Materials US, LLC Chemical mechanical planarization composition for polishing oxide materials and method of use thereof
JP2020050571A (en) * 2018-09-28 2020-04-02 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, method for producing the same, and abrasive grain dispersion for polishing containing the same
JP7038031B2 (en) 2018-09-28 2022-03-17 日揮触媒化成株式会社 Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
JP2020079163A (en) * 2018-11-12 2020-05-28 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive grain dispersion containing ceria-based composite fine particle dispersion
JP7117225B2 (en) 2018-11-12 2022-08-12 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
JP7490628B2 (en) 2020-11-16 2024-05-27 日揮触媒化成株式会社 Particle-linked ceria-based composite microparticle dispersion, its manufacturing method, and abrasive dispersion for polishing containing particle-linked ceria-based composite microparticle dispersion
CN113526515A (en) * 2021-08-29 2021-10-22 浙江华飞电子基材有限公司 Nano spherical silicon micro powder separation and extraction method
WO2024111174A1 (en) * 2022-11-21 2024-05-30 株式会社レゾナック Cmp polishing liquid, cmp polishing liquid set, and polishing method

Also Published As

Publication number Publication date
JP6829007B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP6948423B2 (en) A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.
JP6803823B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion
WO2017183452A1 (en) Silica-based composite fine particle dispersion and method for manufacturing same
JP6829007B2 (en) A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.
JP6603142B2 (en) Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion
JP2019081672A (en) Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion
JP7037918B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
WO2018221357A1 (en) Ceria-based composite fine particle dispersion, production method therefor, and polishing abrasive grain dispersion including ceria-based composite fine particle dispersion
JP6710100B2 (en) Method for producing silica-based composite fine particle dispersion
JP6703437B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing the silica-based composite fine particle dispersion
JP7348098B2 (en) Ceria-based composite fine particle dispersion, its manufacturing method, and polishing abrasive grain dispersion containing the ceria-based composite fine particle dispersion
JP2019127405A (en) Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion
JP6616794B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and abrasive abrasive dispersion containing silica-based composite fine particle dispersion
JP7117225B2 (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
JP6648064B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing silica-based composite fine particle dispersion
JP2017178703A (en) Method for producing silica-based composite particle dispersion liquid
JP2020023408A (en) Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion
JP6588050B2 (en) Polishing abrasive dispersion containing silica composite fine particles
JP6616795B2 (en) Polishing abrasive dispersion containing silica composite fine particles
JP2020050571A (en) Ceria-based composite fine particle dispersion, method for producing the same, and abrasive grain dispersion for polishing containing the same
JP7549528B2 (en) Ceria-based composite microparticle dispersion, its manufacturing method and polishing abrasive dispersion containing the ceria-based composite microparticle dispersion
JP7490628B2 (en) Particle-linked ceria-based composite microparticle dispersion, its manufacturing method, and abrasive dispersion for polishing containing particle-linked ceria-based composite microparticle dispersion
JP2019172533A (en) Ceria-based composite fine-particle dispersion, method of manufacturing the same, and abrasive grain dispersion comprising ceria-based composite fine-particle dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250