JP2017206410A - Manufacturing method of silica-based composite fine particle dispersion - Google Patents

Manufacturing method of silica-based composite fine particle dispersion Download PDF

Info

Publication number
JP2017206410A
JP2017206410A JP2016099813A JP2016099813A JP2017206410A JP 2017206410 A JP2017206410 A JP 2017206410A JP 2016099813 A JP2016099813 A JP 2016099813A JP 2016099813 A JP2016099813 A JP 2016099813A JP 2017206410 A JP2017206410 A JP 2017206410A
Authority
JP
Japan
Prior art keywords
silica
particle dispersion
particles
dispersion
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016099813A
Other languages
Japanese (ja)
Other versions
JP6710100B2 (en
Inventor
祐二 俵迫
Yuji Tawarasako
祐二 俵迫
小松 通郎
Michio Komatsu
通郎 小松
真也 碓田
Masaya Usuda
真也 碓田
中山 和洋
Kazuhiro Nakayama
和洋 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2016099813A priority Critical patent/JP6710100B2/en
Publication of JP2017206410A publication Critical patent/JP2017206410A/en
Application granted granted Critical
Publication of JP6710100B2 publication Critical patent/JP6710100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Silicon Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a silica-based composite particle dispersion capable of polishing even a silica film, a Si wafer or a hardly processing material at high speed and achieving high face accuracy.SOLUTION: There are provided a silica-based composite particle dispersion and a manufacturing method therefor including following processes. A process for stirring a silica fine particle dispersion by dispersing silica fine particles having a ratio between secondary particle diameter (D2) and specific surface area conversion particle diameter (DS), [D2/DS] of more than 1.0, continuously or intermittently adding metal salt of cerium to the same while maintaining temperature and pH in a specific range to obtain a precursor particle dispersion containing a precursor particle. A process for drying the precursor particle dispersion, burning the same at 400 to 1200°C, and treating the resulting burned body to obtain a burned body crushed dispersion. A process for conducting a centrifugal separation treatment at relative centrifugal acceleration of 300 G or more on the burned body crushed dispersion, and then removing a precipitation component to obtain the silica-based composite particle dispersion.SELECTED DRAWING: None

Description

本発明は、半導体デバイス製造に使用される研磨剤として好適なシリカ系複合微粒子分散液の製造方法に関し、特に基板上に形成された被研磨膜を、化学機械的研磨(ケミカルメカニカルポリッシング、CMP)で平坦化するためのシリカ系複合微粒子分散液の製造方法に関する。また、該製造方法から得られるシリカ系複合微粒子分散液、該シリカ系複合微粒子分散液を含む研磨用スラリーに関する。   TECHNICAL FIELD The present invention relates to a method for producing a silica-based composite fine particle dispersion suitable as an abrasive used in the production of semiconductor devices, and in particular, a film to be polished formed on a substrate is subjected to chemical mechanical polishing (Chemical Mechanical Polishing, CMP). The present invention relates to a method for producing a silica-based composite fine particle dispersion for planarization. The present invention also relates to a silica-based composite fine particle dispersion obtained from the production method and a polishing slurry containing the silica-based composite fine particle dispersion.

半導体基板、配線基板などの半導体デバイスなどは、高密度化・微細化することで高性能化を実現している。この半導体の製造工程においては、いわゆるケミカルメカニカルポリッシング(CMP)が適用されており、具体的にはシャロートレンチ素子分離、層間絶縁膜の平坦化、コンタクトプラグやCuダマシン配線の形成などに必須の技術となっている。   Semiconductor devices such as semiconductor substrates and wiring boards achieve high performance through high density and miniaturization. In this semiconductor manufacturing process, so-called chemical mechanical polishing (CMP) is applied. Specifically, this technology is indispensable for shallow trench isolation, planarization of interlayer insulating films, formation of contact plugs and Cu damascene wiring, etc. It has become.

一般にCMP用研磨剤は、砥粒とケミカル成分とからなり、ケミカル成分は対象被膜を酸化や腐食などさせることにより研磨を促進させる役割を担う。一方で砥粒は機械的作用により研磨する役割を持ち、コロイダルシリカやヒュームドシリカ、セリア粒子が砥粒として使われる。特にセリア粒子は酸化ケイ素膜に対して特異的に高い研磨速度を示すことから、シャロートレンチ素子分離工程での研磨に適用されている。
シャロートレンチ素子分離工程では、酸化ケイ素膜の研磨だけではなく、窒化ケイ素膜の研磨も行われる。素子分離を容易にするためには、酸化ケイ素膜の研磨速度が高く、窒化ケイ素膜の研磨速度が低い事が望ましく、この研磨速度比(選択比)も重要である。
In general, an abrasive for CMP comprises abrasive grains and a chemical component, and the chemical component plays a role of promoting polishing by oxidizing or corroding a target film. On the other hand, abrasive grains have a role of polishing by mechanical action, and colloidal silica, fumed silica, and ceria particles are used as abrasive grains. In particular, since ceria particles exhibit a high polishing rate specifically with respect to a silicon oxide film, they are applied to polishing in a shallow trench element separation step.
In the shallow trench isolation process, not only the silicon oxide film but also the silicon nitride film is polished. In order to facilitate element isolation, it is desirable that the polishing rate of the silicon oxide film is high and the polishing rate of the silicon nitride film is low, and this polishing rate ratio (selection ratio) is also important.

従来、このような部材の研磨方法として、比較的粗い1次研磨処理を行った後、精密な2次研磨処理を行うことにより、平滑な表面あるいはスクラッチなどの傷が少ない極めて高精度の表面を得る方法が行われている。
このような仕上げ研磨としての2次研磨に用いる研磨剤に関して、従来、例えば次のような方法等が提案されている。
Conventionally, as a polishing method for such a member, after performing a relatively rough primary polishing process, and then performing a precise secondary polishing process, a smooth surface or a highly accurate surface with few scratches such as scratches can be obtained. The way to get done.
Conventionally, for example, the following methods have been proposed for the abrasive used for the secondary polishing as the finish polishing.

例えば、特許文献1には、硝酸第一セリウムの水溶液と塩基とを、pHが5〜10となる量比で攪拌混合し、続いて70〜100℃に急速加熱し、その温度で熟成することを特徴とする酸化セリウム単結晶からなる酸化セリウム超微粒子(平均粒子径10〜80nm)の製造方法が記載されており、更にこの製造方法によれば、粒子径の均一性が高く、かつ粒子形状の均一性も高い酸化セリウム超微粒子を提供できると記載されている。   For example, in Patent Document 1, an aqueous solution of cerium nitrate and a base are stirred and mixed in an amount ratio of pH 5 to 10, followed by rapid heating to 70 to 100 ° C. and aging at that temperature. A method for producing cerium oxide ultrafine particles (average particle size of 10 to 80 nm) composed of a single crystal of cerium oxide characterized by the following is described. Further, according to this production method, the particle size is highly uniform and the particle shape It is described that ultrafine cerium oxide particles can be provided.

また、非特許文献1は、特許文献1に記載の酸化セリウム超微粒子の製造方法と類似した製造工程を含むセリアコートシリカの製造方法を開示している。このセリアコートシリカの製造方法は、特許文献1に記載の製造方法に含まれるような焼成―分散の工程を有さないものである。   Non-Patent Document 1 discloses a method for producing ceria-coated silica including a production process similar to the method for producing cerium oxide ultrafine particles described in Patent Literature 1. This method for producing ceria-coated silica does not have a firing-dispersing step as included in the production method described in Patent Document 1.

さらに、特許文献2には、非晶質のシリカ粒子Aの表面に、ジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。また、好ましい態様として、非晶質のシリカ粒子Aの表面に、アルミニウム等の元素を含む非晶質の酸化物層であって、非晶質のシリカ層とは異なる非晶質の酸化物層Cを有し、さらに、その上にジルコニウム、チタニウム、鉄、マンガン、亜鉛、セリウム、イットリウム、カルシウム、マグネシウム、フッ素、ランタニウム、ストロンチウムより選ばれた1種以上の元素を含む結晶質の酸化物層Bを有することを特徴とするシリカ系複合粒子が記載されている。そして、このようなシリカ系複合粒子は、非晶質のシリカ粒子Aの表面に、結晶質の酸化物層Bを有するために、研磨速度を向上させることができ、かつ、シリカ粒子に前処理をすることにより、焼成時に粒子同士の焼結が抑制され研磨スラリー中での分散性を向上させることができ、さらに、酸化セリウムを含まない、あるいは酸化セリウムの使用量を大幅に低減することができるので、安価であって研磨性能の高い研磨材を提供することができると記載されている。また、シリカ系粒子Aと酸化物層Bの間にさらに非晶質の酸化物層Cを有するものは、粒子の焼結抑制効果と研磨速度を向上させる効果に特に優れると記載されている。   Furthermore, Patent Document 2 discloses that the surface of the amorphous silica particles A has at least one selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium. A silica-based composite particle characterized by having a crystalline oxide layer B containing an element is described. As a preferred embodiment, an amorphous oxide layer containing an element such as aluminum on the surface of the amorphous silica particles A, which is different from the amorphous silica layer A crystalline oxide layer having C and further containing one or more elements selected from zirconium, titanium, iron, manganese, zinc, cerium, yttrium, calcium, magnesium, fluorine, lanthanum, and strontium Silica-based composite particles characterized by having B are described. And since such a silica type composite particle has the crystalline oxide layer B on the surface of the amorphous silica particle A, it can improve a grinding | polishing speed and pre-process on a silica particle. By suppressing the sintering of particles during firing, the dispersibility in the polishing slurry can be improved, and further, the amount of cerium oxide used can be greatly reduced without containing cerium oxide. Therefore, it is described that it is possible to provide an abrasive that is inexpensive and has high polishing performance. Further, it is described that those having an amorphous oxide layer C between the silica-based particles A and the oxide layer B are particularly excellent in the effect of suppressing the sintering of particles and the effect of improving the polishing rate.

特許第2746861号公報Japanese Patent No. 2746861 特開2013−119131号公報JP 2013-119131 A

Seung−Ho Lee, Zhenyu Lu, S.V.Babu and Egon Matijevic、"Chemical mechanical polishing of thermal oxide films using silica particles coated with ceria"、Journal of Materials Research、Volume 17、Issue 10、2002、pp2744−2749Seung-Ho Lee, Zhenyu Lu, S .; V. Babu and Egon Matijevic, "Chemical mechanical polishing of thermal oxide filming using silicon part 27, the second of the two", Journal of Mathematics, 27

しかしながら、特許文献1に記載の酸化セリウム超微粒子について、本発明者が実際に製造して検討したところ、研磨速度が低く、さらに、研磨基材の表面に欠陥(面精度の悪化、スクラッチ増加、研磨基材表面への研磨材の残留)を生じやすいことが判明した。
これは、焼成工程を含むセリア粒子の製造方法(焼成によりセリア粒子の結晶化度が高まる)に比べて、特許文献1に記載の酸化セリウム超微粒子の製法は、焼成工程を含まず、液相(硝酸第一セリウムを含む水溶液)から酸化セリウム粒子を結晶化させるだけなので、生成する酸化セリウム粒子の結晶化度が相対的に低く、また、焼成処理を経ないため酸化セリウムが母粒子と固着せず、酸化セリウムが研磨基材の表面に残留することが主要因であると、本発明者は推定している。
However, the cerium oxide ultrafine particles described in Patent Document 1 were actually manufactured and examined by the inventor, and the polishing rate was low. Further, the surface of the polishing base material had defects (deterioration of surface accuracy, increased scratches, It has been found that the residue of the abrasive on the surface of the polishing substrate tends to occur.
This is because the method for producing ultrafine cerium oxide particles described in Patent Document 1 does not include a firing step as compared with a method for producing ceria particles including a firing step (the degree of crystallinity of ceria particles is increased by firing). Since the cerium oxide particles are only crystallized from the aqueous solution containing cerium nitrate (the aqueous solution containing cerium nitrate), the cerium oxide particles that are produced have a relatively low degree of crystallinity, and the cerium oxide does not solidify with the mother particles because it does not undergo a firing treatment. The inventor presumes that the main factor is that cerium oxide does not adhere and remains on the surface of the polishing substrate.

また、非特許文献1に記載のセリアコートシリカは焼成していないため、現実の研磨速度は低いと考えられ、また、研磨基材の表面への粒子の残留も懸念される。   In addition, since the ceria-coated silica described in Non-Patent Document 1 is not fired, it is considered that the actual polishing rate is low, and there is a concern that particles remain on the surface of the polishing substrate.

さらに、特許文献2に記載の酸化物層Cを有する態様のシリカ系複合粒子を用いて研磨すると、アルミニウム等の不純物が半導体デバイスの表面に残留し、半導体デバイスへ悪影響を及ぼすこともあることを、本発明者は見出した。   Furthermore, when polishing using the silica-based composite particles having the oxide layer C described in Patent Document 2, impurities such as aluminum remain on the surface of the semiconductor device, which may adversely affect the semiconductor device. The inventor found out.

本発明は上記のような課題を解決することを目的とする。すなわち、本発明は、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、基板上の砥粒残が少ない、基板Ra値の良化等)を達成でき、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子分散液の製造方法を提供することを目的とする。   An object of the present invention is to solve the above problems. That is, the present invention can polish a silica film, a Si wafer or a difficult-to-process material at high speed, and at the same time has high surface accuracy (low scratch, little abrasive grains remaining on the substrate, and improved substrate Ra value. It is an object of the present invention to provide a method for producing a silica-based composite fine particle dispersion that can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate or a wiring substrate.

本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
本発明は以下の(1)〜(4)である。
(1)下記の工程1〜工程3を含むことを特徴とするシリカ系複合微粒子分散液の製造方法。
工程1:二次粒子径(D2)と比表面積換算粒子径(DS)との比[(D2)/(DS)]が1.0より大きい、非球状のシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(i)又は(ii)の処理をして焼成体解砕分散液を得る工程。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりシリカ系複合微粒子分散液を得る工程。
(2)前記シリカ微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする請求項1記載のシリカ系複合微粒子分散液の製造方法。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ10ppm以下。
(3)二次粒子径(D2)と比表面積換算粒子径(DS)との比[(D2)/(DS)]が1.0より大きい、非球状のシリカ微粒子の表面の一部がシリカに被覆された結晶性セリアに被覆されたシリカ微粒子分散液。
(4)上記(3)に記載のシリカ微粒子分散液を含む研磨スラリー。
The inventor has intensively studied to solve the above-mentioned problems, and has completed the present invention.
The present invention includes the following (1) to (4).
(1) A method for producing a silica-based composite fine particle dispersion, comprising the following steps 1 to 3.
Step 1: Non-spherical silica fine particles having a ratio [(D2) / (DS)] of the secondary particle size (D2) to specific surface area converted particle size (DS) of greater than 1.0 are dispersed in a solvent. While stirring the silica fine particle dispersion and maintaining the temperature at 5 to 98 ° C. and the pH in the range 7.0 to 9.0, the metal salt of cerium was added continuously or intermittently to the precursor particles. The process of obtaining the precursor particle dispersion liquid containing.
Step 2: The precursor particle dispersion is dried and fired at 400 to 1,200 ° C., and the fired body obtained is subjected to the following treatment (i) or (ii) to obtain a fired body crushed dispersion liquid. Obtaining.
(I) Crushing and pulverizing by a dry method, and adding a solvent to carry out a solvent dispersion treatment.
(Ii) A solvent is added, and the mixture is crushed and pulverized by a wet process.
Step 3: A step of obtaining a silica-based composite fine particle dispersion by subjecting the calcined dispersion to a centrifugal separation treatment at a relative centrifugal acceleration of 300 G or more and subsequently removing a sediment component.
(2) The method for producing a silica-based composite fine particle dispersion according to claim 1, wherein the content ratio of impurities contained in the silica fine particles is as shown in the following (a) and (b).
(A) The contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl, NO 3 , SO 4 and F are each 10 ppm or less.
(3) A part of the surface of the non-spherical silica fine particles in which the ratio [(D2) / (DS)] of the secondary particle size (D2) to the specific surface area converted particle size (DS) is larger than 1.0 is silica. A fine silica particle dispersion coated with crystalline ceria coated on the surface.
(4) A polishing slurry containing the silica fine particle dispersion described in (3) above.

本発明によれば、シリカ膜、Siウェハや難加工材であっても高速で研磨することができ、同時に高面精度(低スクラッチ、被研磨基板の表面粗さ(Ra)が低いこと等)を達成でき、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができるシリカ系複合微粒子分散液の製造方法を提供することができる。
本発明の製造方法によって得られるシリカ系複合微粒子分散液は、半導体デバイス表面の平坦化に有効であり、特にはシリカ絶縁膜が形成された基板の研磨に好適である。
According to the present invention, even a silica film, Si wafer or difficult-to-process material can be polished at high speed, and at the same time, high surface accuracy (low scratch, low surface roughness (Ra) of substrate to be polished, etc.) It is possible to provide a method for producing a silica-based composite fine particle dispersion that can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate or a wiring substrate.
The silica-based composite fine particle dispersion obtained by the production method of the present invention is effective for planarizing the surface of a semiconductor device, and is particularly suitable for polishing a substrate on which a silica insulating film is formed.

図1(a)は実施例1において得られたシリカ系複合微粒子分散液のSEM像(倍率:100,000倍)であり、図1(b)は実施例1において得られたシリカ系複合微粒子分散液のTEM像(倍率:100,000倍)であり、図1(c)は実施例1において得られたシリカ系複合微粒子分散液のSEM像(倍率:300,000倍)である。1A is an SEM image (magnification: 100,000 times) of the silica-based composite fine particle dispersion obtained in Example 1, and FIG. 1B is a silica-based composite fine particle obtained in Example 1. 1 is a TEM image (magnification: 100,000 times) of the dispersion, and FIG. 1 (c) is an SEM image (magnification: 300,000 times) of the silica-based composite fine particle dispersion obtained in Example 1. 実施例1において得られたX線回折パターンである。2 is an X-ray diffraction pattern obtained in Example 1. FIG. 図3(a)は実施例1において原料として使用したヒュームドシリカSEM像(倍率:100,000倍)であり、図3(b)は実施例1において原料として使用したヒュームドシリカのTEM像(倍率:100,000倍)であり、図3(c)は実施例1において原料として使用したヒュームドシリカのSEM像(倍率:300,000倍)である。3A is a SEM image (magnification: 100,000 times) of fumed silica used as a raw material in Example 1, and FIG. 3B is a TEM of fumed silica used as a raw material in Example 1. 3 (c) is an SEM image (magnification: 300,000 times) of fumed silica used as a raw material in Example 1. FIG.

本発明について説明する。
本発明は、下記の工程1〜工程3を含むことを特徴とするシリカ系複合微粒子分散液の製造方法である。
工程1:二次粒子径(D2)と比表面積換算粒子径(DS)との比[(D2)/(DS)]が1.0より大きい、非球状のシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(i)又は(ii)の処理をして焼成体解砕分散液を得る工程。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりシリカ系複合微粒子分散液を得る工程。
このようなシリカ系複合微粒子分散液の製造方法を、以下では「本発明の製造方法」ともいう。
The present invention will be described.
The present invention is a method for producing a silica-based composite fine particle dispersion, comprising the following steps 1 to 3.
Step 1: Non-spherical silica fine particles having a ratio [(D2) / (DS)] of the secondary particle size (D2) to specific surface area converted particle size (DS) of greater than 1.0 are dispersed in a solvent. While stirring the silica fine particle dispersion and maintaining the temperature at 5 to 98 ° C. and the pH in the range 7.0 to 9.0, the metal salt of cerium was added continuously or intermittently to the precursor particles. The process of obtaining the precursor particle dispersion liquid containing.
Step 2: The precursor particle dispersion is dried and fired at 400 to 1,200 ° C., and the fired body obtained is subjected to the following treatment (i) or (ii) to obtain a fired body crushed dispersion liquid. Obtaining.
(I) Crushing and pulverizing by a dry method, and adding a solvent to carry out a solvent dispersion treatment.
(Ii) A solvent is added, and the mixture is crushed and pulverized by a wet process.
Step 3: A step of obtaining a silica-based composite fine particle dispersion by subjecting the calcined dispersion to a centrifugal separation treatment at a relative centrifugal acceleration of 300 G or more and subsequently removing a sediment component.
Hereinafter, the method for producing such a silica-based composite fine particle dispersion is also referred to as “the production method of the present invention”.

<本発明のシリカ系複合微粒子分散液の製造方法>
本発明のシリカ系複合微粒子分散液の製造方法について説明する。(以下、本発明の
シリカ系複合微粒子分散液の製造方法を「本発明の製造方法」ともいう。
本発明の製造方法は、以下に説明する工程1〜工程3を備える。
<Method for Producing Silica-Based Composite Fine Particle Dispersion of the Present Invention>
A method for producing the silica-based composite fine particle dispersion of the present invention will be described. (Hereinafter, the method for producing a silica-based composite fine particle dispersion of the present invention is also referred to as “the method of the present invention”.
The production method of the present invention includes steps 1 to 3 described below.

<本発明の製造方法>
<工程1>
工程1では二次粒子径(D2)と比表面積換算粒子径(DS)との比[(D2)/(DS)]が1.0より大きい、非球状のシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を用意する。
ここで原料として使用するシリカ微粒子分散液に含まれるシリカ微粒子の形状は非球状である。この場合、二次粒子径(D2)と比表面積換算粒子径(DS)との比[(D2)/(DS)]が1.0より大きくなる。この比[(D2)/(DS)]の値が1より大きくなるに従い、シリカ微粒子の形状が球状から乖離していく。すなわち、この比[(D2)/(DS)]の値は、シリカ微粒子の形状が球状から乖離した度合いを示す。
なお、二次粒子径(D2)および比表面積換算粒子径(DS)の測定方法は、後記した。
前記比[(D2)/(DS)]の上限値は、格別に制限されるものではないが、通常は11000以下である。なお、前記シリカ微粒子は、比表面積換算粒子径(DS)が5nm〜100nmであるものが好ましい。また、前記シリカ微粒子の二次粒子径(D2)は、0.1μm〜60μmであるものが好ましい。
前記シリカ微粒子は、D2/DS比を満たし、さらに好ましくは前記二次粒子径が上記範囲内であれば特別に限定されるものではなく、ヒドロゲル、キセロゲルなどが用いられるが、キセロゲル破砕品あるいはヒュームドシリカであることが好ましい。一例として用いた、ヒュームドシリカとは、アモルファスかつ球状で、一次粒子からなるシリカ微粒子が連結した構造を意味する。ヒュームドシリカは、例えば、四塩化ケイ素を気化し、高温の水素炎中で気相反応を行う方法により得られる。キセロゲル破砕品あるいはヒュームドシリカからなるシリカ微粒子は、通常、一次粒子の凝集粒子として存在する。本願における前記二次粒子径(D2)は、この凝集粒子の粒子径を意味する。
本願における二次粒子径(D2)の測定方法は、後述したとおり、動的光散乱法またはレーザー回折散乱法で測定された値を意味する。
ここでいうキセロゲル粉砕シリカとは、水硝子由来のシリガゲル、ホワイトカーボン、アルコキシド由来のシリカゲル等空気を包含した多次粒子から構成されたゲルおよびそれらが粉砕された粒子群を指す。なお、水に分散したキセロゲル破砕品およびヒュームドシリカはもちろんであるが、乾燥工程を経ていないヒドロゲルの破砕品も使用可能である。
<Production method of the present invention>
<Step 1>
In step 1, non-spherical silica fine particles having a ratio [(D2) / (DS)] of the secondary particle size (D2) to the specific surface area converted particle size (DS) of greater than 1.0 are dispersed in the solvent. A silica fine particle dispersion is prepared.
Here, the shape of the silica fine particles contained in the silica fine particle dispersion used as a raw material is non-spherical. In this case, the ratio [(D2) / (DS)] between the secondary particle diameter (D2) and the specific surface area converted particle diameter (DS) is larger than 1.0. As the value of this ratio [(D2) / (DS)] becomes larger than 1, the shape of the silica fine particles deviates from the spherical shape. That is, the value of this ratio [(D2) / (DS)] indicates the degree to which the shape of the silica fine particles deviates from the spherical shape.
In addition, the measuring method of a secondary particle diameter (D2) and a specific surface area conversion particle diameter (DS) was mentioned later.
The upper limit value of the ratio [(D2) / (DS)] is not particularly limited, but is usually 11000 or less. The silica fine particles preferably have a specific surface area equivalent particle diameter (DS) of 5 nm to 100 nm. The silica fine particles preferably have a secondary particle diameter (D2) of 0.1 μm to 60 μm.
The silica fine particles satisfy the D2 / DS ratio, and more preferably, the secondary particle diameter is not particularly limited as long as the secondary particle diameter is within the above range, and hydrogel, xerogel, etc. are used. It is preferably dosilica. The fumed silica used as an example means an amorphous and spherical structure in which silica fine particles composed of primary particles are connected. Fumed silica can be obtained, for example, by vaporizing silicon tetrachloride and performing a gas phase reaction in a high-temperature hydrogen flame. Silica fine particles made of crushed xerogel or fumed silica usually exist as aggregated particles of primary particles. The secondary particle diameter (D2) in the present application means the particle diameter of the aggregated particles.
The measurement method of the secondary particle diameter (D2) in this application means the value measured by the dynamic light scattering method or the laser diffraction scattering method as mentioned later.
The xerogel pulverized silica here refers to a gel composed of multi-particles including air such as silica gel derived from water glass, white carbon, alkoxide and the like, and a group of particles obtained by pulverizing them. It should be noted that a crushed xerogel and fumed silica dispersed in water can be used, as well as a hydrogel crushed product that has not undergone a drying step.

本発明の製造方法にて使用する原料のシリカ微粒子として、具体的には、[(D2)/(DS)]の値が1より大きく、11000以下の範囲にあり、比表面積換算粒子径(DS)が5nm〜100nmの範囲、二次粒子径(D2)が0.1μm〜60μmの範囲にあるキセロゲルシリカからなる非球状のシリカ微粒子が好適に使用される。
本発明の製造方法にて使用する原料のシリカ微粒子は、前述の二次粒子径及びD2/DSの範囲を満たしていれば特別に限定されるものではないが、ディフェクトの低減のために、事前に粗粒の含有量を低減化させることが望ましい。粗粒を低減する方法として、ろ過処理や遠心分離や解砕などが挙げられるが、粗粒を低減できればこれらに限定されない。
なお、本発明において「ディフェクト」とは、本発明の製造方法で得られたシリカ系複合微粒子分散液を研磨用途に適用した場合に、被研磨物に生じる研磨傷(スクラッチ)を意味する。
Specifically, as the raw material silica fine particles used in the production method of the present invention, the value of [(D2) / (DS)] is larger than 1 and in the range of 11,000 or less, and the specific surface area equivalent particle diameter (DS ) Is preferably in the range of 5 nm to 100 nm, and non-spherical silica particles made of xerogel silica having a secondary particle diameter (D2) in the range of 0.1 μm to 60 μm.
The raw material silica fine particles used in the production method of the present invention are not particularly limited as long as they satisfy the above-mentioned secondary particle diameter and D2 / DS ranges. It is desirable to reduce the content of coarse particles. Examples of the method for reducing the coarse particles include filtration, centrifugation, and crushing, but the method is not limited thereto as long as the coarse particles can be reduced.
In the present invention, “defect” means a polishing flaw (scratch) generated in an object to be polished when the silica-based composite fine particle dispersion obtained by the production method of the present invention is applied for polishing.

本発明の製造方法により、半導体デバイスなどの研磨に適用するシリカ系複合微粒子分散液を調製しようとする場合は、シリカ微粒子分散液として、アルコキシシランの加水分解により製造したシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を用いることが好ましい。なお、従来公知のシリカ微粒子分散液(水硝子を原料として調製したシリカ微粒子分散液等)を原料とする場合は、シリカ微粒子分散液を酸処理し、更に脱イオン処理して使用することが好ましい。この場合、シリカ微粒子に含まれるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4及びFの含有率が少なくなり、具体的には、100ppm以下となり得るからである。
なお、具体的には、工程1で使用する原料であるシリカ微粒子分散液中のシリカ微粒子として、次の(a)と(b)の条件を満たすものが好適に使用される。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ10ppm以下。
When preparing a silica-based composite fine particle dispersion to be applied to polishing of semiconductor devices and the like by the production method of the present invention, silica fine particles produced by hydrolysis of alkoxysilane are dispersed in a solvent as the silica fine particle dispersion. It is preferable to use a silica fine particle dispersion. When a conventionally known silica fine particle dispersion (such as a silica fine particle dispersion prepared from water glass as a raw material) is used as a raw material, the silica fine particle dispersion is preferably acid-treated and further deionized. . In this case, the content of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, Th, Cl, NO 3 , SO 4 and F contained in the silica fine particles This is because it can be reduced to 100 ppm or less.
Specifically, those satisfying the following conditions (a) and (b) are preferably used as the silica fine particles in the silica fine particle dispersion, which is the raw material used in step 1.
(A) The contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl, NO 3 , SO 4 and F are each 10 ppm or less.

前記シリカ微粒子は、比表面積が30〜500m2/gであることが好ましく、35〜410m2/gであることがより好ましい。 The silica fine particles preferably have a specific surface area of 30 to 500 m 2 / g, and more preferably 35 to 410 m 2 / g.

ここで、比表面積(BET比表面積)の測定方法について説明する。
まず、乾燥させた試料(0.2g)を測定セルに入れ、窒素ガス気流中、250℃で40分間脱ガス処理を行い、その上で試料を窒素30体積%とヘリウム70体積%の混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させる。次に、上記混合ガスを流しながら試料の温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、試料の比表面積を測定する。
このようなBET比表面積測定法(窒素吸着法)は、例えば従来公知の表面積測定装置を用いて行うことができる。
本発明において比表面積は、特に断りがない限り、このような方法で測定して得た値を意味するものとする。
Here, a method for measuring the specific surface area (BET specific surface area) will be described.
First, a dried sample (0.2 g) is put in a measurement cell, degassed in a nitrogen gas stream at 250 ° C. for 40 minutes, and then the sample is a mixed gas of 30% by volume of nitrogen and 70% by volume of helium. Liquid nitrogen temperature is maintained in a stream of air, and nitrogen is adsorbed to the sample by equilibrium. Next, the temperature of the sample is gradually raised to room temperature while flowing the mixed gas, the amount of nitrogen desorbed during that time is detected, and the specific surface area of the sample is measured using a calibration curve prepared in advance.
Such a BET specific surface area measurement method (nitrogen adsorption method) can be performed using, for example, a conventionally known surface area measurement device.
In the present invention, the specific surface area means a value obtained by such a method unless otherwise specified.

工程1では、上記のような非球状のシリカ微粒子が溶媒に分散したシリカ微粒子分散液を撹拌し、温度を5〜98℃、pH範囲を7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る。   In step 1, the silica fine particle dispersion in which the nonspherical silica fine particles are dispersed in a solvent as described above is stirred, and the temperature is maintained at 5-98 ° C. and the pH range is 7.0-9.0. A metal salt of cerium is added continuously or intermittently to obtain a precursor particle dispersion containing precursor particles.

前記シリカ微粒子分散液における分散媒は水を含むことが好ましく、水系のシリカ微粒子分散液(水ゾル)を使用することが好ましい。   The dispersion medium in the silica fine particle dispersion preferably contains water, and an aqueous silica fine particle dispersion (water sol) is preferably used.

前記シリカ微粒子分散液における固形分濃度は、SiO2換算基準で1〜40質量%であることが好ましい。この固形分濃度が低すぎると、製造工程でのシリカ濃度が低くなり生産性が悪くなり得る。 The solid concentration in the silica fine particle dispersion is preferably 1 to 40% by mass in terms of SiO 2 . When this solid content concentration is too low, the silica concentration in the production process becomes low, and the productivity may deteriorate.

また、陽イオン交換樹脂又は陰イオン交換樹脂、あるいは鉱酸、有機酸等で不純物を抽出し、限外ろ過膜などを用いて、必要に応じて、シリカ微粒子分散液の脱イオン処理を行うことができる。脱イオン処理により不純物イオンなどを除去したシリカ微粒子分散液は表面にケイ素を含む水酸化物を形成させやすいのでより好ましい。なお、脱イオン処理はこれらに限定されるものではない。   Also, extract impurities with cation exchange resin or anion exchange resin, mineral acid, organic acid, etc., and perform deionization treatment of silica fine particle dispersion as necessary using ultrafiltration membrane etc. Can do. A silica fine particle dispersion from which impurity ions and the like are removed by deionization treatment is more preferable because a hydroxide containing silicon is easily formed on the surface. The deionization process is not limited to these.

工程1では、上記のようなシリカ微粒子分散液を撹拌し、温度を5〜98℃、pH範囲を7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加する。
セリウムの金属塩の種類は、限定されるものではないが、セリウムの塩化物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、金属アルコキシドなどを用いることができる。具体的には、硝酸第一セリウム、炭酸セリウム、硫酸第一セリウム、塩化第一セリウムなどを挙げることができる。なかでも、硝酸第一セリウムや塩化第一セリウムが好ましい。
硝酸第一セリウム又は塩化第一セリウムの金属塩の水溶液は、シリカ微粒子分散液に添加され、中和と同時に過飽和となった溶液から、結晶性セリウム酸化物が生成し、それらは、速やかにシリカ微粒子表面に凝集沈着し、シリカ微粒子表面に強固に付着するので、工程における反応の効率としては好ましいといえる。
しかし、先に挙げた各種金属塩の一部に含まれる硫酸イオン、塩化物イオン、硝酸イオンなどは、腐食性を示すので、これらのイオンを比較的多く含有するセリウム金属塩(セリウムの硫酸塩、セリウムの塩化物、セリウムの硝酸塩等)は、本発明の製造方法で得られるシリカ系複合微粒子分散液の主用途(半導体基板等の研磨用途)には適さない。原料に由来するこれら硫酸イオン、塩化物イオン、硝酸イオンなど腐食性を示すイオンの影響を抑制するために、本発明の製造方法の工程1で得られる前駆体粒子分散液又は本発明の製造方法で得られたシリカ系複合微粒子分散液を洗浄し、前記各イオン濃度を5ppm以下に低減させることが好ましい。
なお、炭酸セリウム等の炭酸塩の場合、炭酸は炭酸ガスとして工程中で放出されるので、改めて除去の必要性が少ないので好ましい。また、セリウムのアルコキシドの場合、アルコキシドは分解してアルコールとなり、例えば、前記工程2の乾燥又は焼成中に揮発するため、同じく改めて除去の必要性が少ないので好ましい。
In Step 1, the silica fine particle dispersion as described above is stirred, and the cerium metal salt is continuously or intermittently added thereto while maintaining the temperature at 5 to 98 ° C. and the pH range at 7.0 to 9.0. Add to.
The type of cerium metal salt is not limited, but cerium chloride, nitrate, sulfate, acetate, carbonate, metal alkoxide, and the like can be used. Specific examples include cerium nitrate, cerium carbonate, cerium sulfate, and cerium chloride. Of these, ceric nitrate and ceric chloride are preferred.
An aqueous solution of a metal salt of cerium nitrate or cerium chloride is added to the silica fine particle dispersion, and crystalline cerium oxide is formed from the solution that becomes supersaturated at the same time as neutralization. Since it aggregates and deposits on the surface of the fine particles and adheres firmly to the surface of the silica fine particles, it can be said that the reaction efficiency in the process is preferable.
However, sulfate ions, chloride ions, nitrate ions, etc. contained in some of the various metal salts listed above are corrosive, so cerium metal salts containing a relatively large amount of these ions (cerium sulfate) Cerium chloride, cerium nitrate, etc.) are not suitable for the main use of the silica-based composite fine particle dispersion obtained by the production method of the present invention (for polishing a semiconductor substrate or the like). In order to suppress the influence of corrosive ions such as sulfate ions, chloride ions, and nitrate ions derived from raw materials, the precursor particle dispersion obtained in step 1 of the production method of the present invention or the production method of the present invention It is preferable to wash the silica-based composite fine particle dispersion obtained in step 1 and reduce the concentration of each ion to 5 ppm or less.
In the case of carbonates such as cerium carbonate, carbonic acid is released as carbon dioxide gas in the process, and therefore it is preferable because there is little need for removal. Further, in the case of cerium alkoxide, the alkoxide is decomposed to become alcohol, and for example, volatilizes during the drying or baking in the above-mentioned step 2. Therefore, it is preferable because there is little need for removal again.

本発明の製造方法においては、原料として使用するシリカ微粒子分散液のシリカ微粒子に対し、セリウム金属塩を酸化物換算で、例えば、100:11〜316の範囲で添加することにより、シリカとセリアの質量比が100:11〜316のシリカ系複合微粒子が溶媒に分散してなるシリカ系複合微粒子分散液を調製することができる。なお、後述したとおり、本発明の製造方法において、使用したセリアやシリカが溶解し除去されない限り、使用したセリアやシリカの使用量と、最終生成物であるシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子との分析値が良い一致を示している。   In the production method of the present invention, cerium metal salt is added to the silica fine particles of the silica fine particle dispersion used as a raw material in terms of oxides, for example, in the range of 100: 11 to 316, whereby silica and ceria. A silica-based composite fine particle dispersion in which silica-based composite fine particles having a mass ratio of 100: 11 to 316 are dispersed in a solvent can be prepared. As described later, in the production method of the present invention, unless the ceria and silica used are dissolved and removed, the amount of ceria and silica used and the silica contained in the silica composite fine particle dispersion as the final product are used. The analysis values with the system composite fine particles are in good agreement.

シリカ微粒子分散液にセリウムの金属塩を添加した後、撹拌する際の温度は5〜98℃であることが好ましく、10〜95℃であることがより好ましい。この温度が低すぎるとシリカの溶解度が著しく低下するため、セリアの結晶化が制御されなくなり、粗大なセリアの結晶性酸化物が生成して、シリカ微粒子への付着が起こり難くなる事が考えられる。さらには、溶解度が低すぎるためにシリカ微粒子分散液の解膠が進みにくくなることにより、本発明であるシリカ系複合微粒子分散液の粒度分布が大きくなるためにスクラッチ等の研磨特性が十分でなくなることが考えられる。
逆に、この温度が高すぎるとシリカの溶解度が著しく増し、結晶性のセリア酸化物の生成が抑制される事が考えられる。更に、反応器壁面にスケールなどが生じやすくなり好ましくない。
The temperature at the time of stirring after adding the metal salt of cerium to the silica fine particle dispersion is preferably 5 to 98 ° C, more preferably 10 to 95 ° C. If the temperature is too low, the solubility of the silica is remarkably lowered, so that ceria crystallization is not controlled, and coarse ceria crystalline oxides are generated, which may be difficult to adhere to silica fine particles. . Furthermore, since the solubility of the silica fine particle dispersion is difficult to proceed because the solubility is too low, the particle size distribution of the silica-based composite fine particle dispersion of the present invention is increased, so that polishing characteristics such as scratches are not sufficient. It is possible.
On the other hand, if this temperature is too high, the solubility of silica is remarkably increased, and the formation of crystalline ceria oxide is considered to be suppressed. Furthermore, scale and the like are likely to occur on the reactor wall surface, which is not preferable.

また、撹拌する際の時間は0.5〜24時間であることが好ましく、0.5〜18時間であることがより好ましい。この時間が短すぎると結晶性の酸化セリウムが十分に形成できないため好ましくない。逆に、この時間が長すぎても結晶性の酸化セリウムの形成はそれ以上反応が進まず不経済となる。なお、前記セリウム金属塩の添加後に、所望により5〜98℃で熟成しても構わない。熟成により、セリウム化合物が母粒子に沈着する反応をより促進させることができる。
またセリウム化合物はシリカ母粒子表面に沈着する際に、シリカ母粒子の一部を溶解し珪酸セリウム化合物を形成していると推定している。これは調合工程途中または調合工程が終了した粒子を電子顕微鏡写真で観察すると、粒子表面に数ナノメーターの微粒子が存在し、その内側の一部に空隙が観察され、更にシリカ母粒子の大きさが元の大きさよりも小さくなってることから明らかである。またこの段階でX線回折で結晶子径を測定すると数ナノメーターの結晶子径が確認されることから、数ナノメーターのセリア結晶粒子及び珪酸セリウム化合物が共存した形態で表面に沈着していると推定している。
Moreover, it is preferable that the time at the time of stirring is 0.5 to 24 hours, and it is more preferable that it is 0.5 to 18 hours. If this time is too short, crystalline cerium oxide cannot be formed sufficiently, which is not preferable. Conversely, even if this time is too long, the formation of crystalline cerium oxide is uneconomical because the reaction does not proceed any further. In addition, after adding the said cerium metal salt, you may age at 5-98 degreeC if desired. By aging, the reaction in which the cerium compound is deposited on the mother particles can be further promoted.
Further, when the cerium compound is deposited on the surface of the silica mother particles, it is presumed that a part of the silica mother particles is dissolved to form a cerium silicate compound. This is because when particles in the preparation process or after the preparation process are observed with an electron micrograph, fine particles of several nanometers are present on the particle surface, voids are observed in part of the inside, and the size of the silica mother particles It is clear that is smaller than the original size. Further, when the crystallite diameter is measured by X-ray diffraction at this stage, a crystallite diameter of several nanometers is confirmed, and therefore, the nanocrystals are deposited on the surface in the form of coexistence of ceria crystal particles and cerium silicate compound. It is estimated.

また、シリカ微粒子分散液にセリウムの金属塩を添加し、撹拌する際のシリカ微粒子分散液のpH範囲は7.0〜9.0とするが、7.6〜8.6とすることが好ましい。この際、アルカリ等を添加しpH調整を行うことが好ましい。このようなアルカリの例としては、公知のアルカリを使用することができる。具体的には、アンモニア水溶液、水酸化アルカリ、アルカリ土類金属、アミン類の水溶液などが挙げられるが、これらに限定されるものではない。   Moreover, the pH range of the silica fine particle dispersion when adding a cerium metal salt to the silica fine particle dispersion and stirring is 7.0 to 9.0, but is preferably 7.6 to 8.6. . At this time, it is preferable to adjust the pH by adding an alkali or the like. A publicly known alkali can be used as an example of such an alkali. Specific examples include aqueous ammonia, alkali hydroxide, alkaline earth metal, and aqueous amines, but are not limited thereto.

シリカ微粒子分散液にセリウムの金属塩を添加する際に、シリカ微粒子分散液とセリウムの金属塩を含む調合液について、充分な撹拌処理、酸化剤(過酸化水素等)の添加またはエアーの吹き込み等の手段をとることにより、セリウム化合物がシリカ微粒子表面に沈着せずにセリウム単独粒子が生成することを抑制することができる。なお、前記手段で処理した前記調合液は、通常、酸化還元電位が正の値に保たれる。   When adding the cerium metal salt to the silica fine particle dispersion, the mixture containing the silica fine particle dispersion and the cerium metal salt should be sufficiently stirred, added with an oxidizing agent (hydrogen peroxide, etc.) or air blown, etc. By taking this means, it is possible to suppress the formation of cerium single particles without the cerium compound being deposited on the surface of the silica fine particles. In addition, the said preparation liquid processed by the said means normally maintains a redox potential in a positive value.

このような工程1によって、本発明の製造方法で得られるシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子の前駆体である粒子(以下、「前駆体粒子」ともいう。)を含む分散液(以下、「前駆体粒子分散液」ともいう。)が得られる。   A dispersion containing particles (hereinafter, also referred to as “precursor particles”) that is a precursor of silica-based composite fine particles contained in the silica-based composite fine particle dispersion obtained by the production method of the present invention by such a step 1. (Hereinafter also referred to as “precursor particle dispersion”).

工程1で得られた前駆体粒子分散液を、工程2に供する前に、純水やイオン交換水などを用いて、さらに希釈あるいは濃縮して、次の工程2に供してもよい。   The precursor particle dispersion obtained in step 1 may be further diluted or concentrated using pure water, ion-exchanged water, or the like before being subjected to step 2, and may be subjected to the next step 2.

なお、前駆体粒子分散液における固形分濃度は1〜27質量%であることが好ましい。   In addition, it is preferable that the solid content concentration in a precursor particle dispersion is 1-27 mass%.

また、所望により、前駆体粒子分散液を、陽イオン交換樹脂、陰イオン交換樹脂、限外ろ過膜、イオン交換膜、遠心分離などを用いて脱イオン処理してもよい。   If desired, the precursor particle dispersion may be deionized using a cation exchange resin, an anion exchange resin, an ultrafiltration membrane, an ion exchange membrane, centrifugation, or the like.

<工程2>
工程2では、前駆体粒子分散液を乾燥させた後、400〜1,200℃で焼成する。
<Process 2>
In step 2, the precursor particle dispersion is dried and then fired at 400 to 1,200 ° C.

乾燥する方法は特に限定されない。従来公知の乾燥機を用いて乾燥させることができる。具体的には、箱型乾燥機、バンド乾燥機、スプレードライアー等を使用することができる。
なお、好適には、さらに乾燥前の前駆体粒子分散液のpHを6.0〜7.0とすることが推奨される。乾燥前の前駆体粒子分散液のpHを6.0〜7.0とした場合、表面活性を抑制できるからである。
乾燥後、焼成する温度は400〜1200℃であるが、1050〜1200℃であることが好ましく、1100〜1200℃であることがより好ましい。このような温度範囲において焼成すると、セリアの結晶化が十分に進行し、また、セリア微粒子の表面に存在するシリカ被膜が、適度に厚膜化し、最終的には後述するシリカ系複合微粒子における母粒子(シリカ微粒子)と子粒子(セリア微粒子)との強固な結合を形成することができる。
またこのような温度範囲で焼成することにより、調合工程で生成した数ナノメーターのセリア結晶が核となり珪酸セリウム化合物が拡散して結晶成長し、セリアの結晶成長と同時にセリア結晶へのSiの侵入型固溶が生じる。Siがセリア結晶中に固溶することで結晶が歪み、酸素欠陥が生じ、SiO2膜に対する化学反応性が増すため研磨速度が高くなると発明者は推定している。なお焼成法ではセリア結晶へのSiの侵入型固溶が容易に起きるが、Siが侵入型置換されれば焼成法に限定されず、例えば液相法でも良い。
さらにセリアの結晶成長と共に珪酸セリウム化合物からシリカが分層するが、このシリカはセリアの表面の一部を被覆するとともに母粒子とセリアの界面に析出してセリアを母粒子に強固に結合させる。
The method for drying is not particularly limited. It can be dried using a conventionally known dryer. Specifically, a box-type dryer, a band dryer, a spray dryer or the like can be used.
In addition, it is recommended that the pH of the precursor particle dispersion before drying is preferably 6.0 to 7.0. It is because surface activity can be suppressed when the pH of the precursor particle dispersion before drying is 6.0 to 7.0.
After drying, the firing temperature is 400 to 1200 ° C, preferably 1050 to 1200 ° C, and more preferably 1100 to 1200 ° C. When fired in such a temperature range, crystallization of ceria proceeds sufficiently, and the silica film present on the surface of the ceria fine particles is appropriately thickened. A strong bond between the particles (silica fine particles) and the child particles (ceria fine particles) can be formed.
In addition, by firing in such a temperature range, ceria crystals of several nanometers produced in the preparation process become nuclei and cerium silicate compound diffuses to grow crystals, and Si enters the ceria crystals simultaneously with ceria crystal growth. Mold solid solution occurs. The inventors presume that when Si dissolves in the ceria crystal, the crystal is distorted, oxygen defects are generated, and the chemical reactivity with respect to the SiO 2 film is increased to increase the polishing rate. In the baking method, interstitial solid solution of Si easily occurs in the ceria crystal. However, if Si is interstitial-type substituted, it is not limited to the baking method, and for example, a liquid phase method may be used.
Furthermore, silica separates from the cerium silicate compound as the ceria crystal grows, and this silica coats a portion of the surface of the ceria and precipitates at the interface between the mother particles and the ceria to firmly bond the ceria to the mother particles.

前記焼成温度が1200℃を超えるに従い、セリアの結晶が異常成長し後述する本発明の製造方法で得られるシリカ系複合微粒子の粒子径が大きくなりすぎることにより、研磨特性の低下を招く傾向がある。また、セリア微粒子上のシリカ被膜がより厚くなることで、セリア微粒子(子粒子)とシリカ微粒子(母粒子)の結合がより強固になるものの、シリカ被膜が過度に厚くなることにより、シリカ系複合微粒子同士の融着を招く可能性もある。   As the calcination temperature exceeds 1200 ° C., ceria crystals grow abnormally, and the silica composite fine particles obtained by the production method of the present invention, which will be described later, have a tendency to cause a decrease in polishing characteristics due to excessively large particle size. . In addition, although the silica coating on the ceria particles becomes thicker, the bond between the ceria particles (child particles) and the silica particles (mother particles) becomes stronger, but the silica coating becomes excessively thick, so that the silica-based composite There is also a possibility of causing fusion of fine particles.

工程2では、焼成して得られた焼成体に次の(i)又は(ii)の処理をして焼成体解砕分散液を得る。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
乾式の解砕・粉砕装置としては従来公知の装置を使用することができるが、例えば、アトライター、ボールミル、振動ミル、振動ボールミル等を挙げることができる。
湿式の解砕・粉砕装置としても従来公知の装置を使用することができるが、例えば、バスケットミル等のバッチ式ビーズミル、横型・縦型・アニュラー型の連続式のビーズミル、サンドグラインダーミル、ボールミル等、ロータ・ステータ式ホモジナイザー、超音波分散式ホモジナイザー、分散液中の微粒子同士をぶつける衝撃粉砕機等の湿式媒体攪拌式ミル(湿式解砕機)が挙げられる。湿式媒体攪拌ミルに用いるビーズとしては、例えば、ガラス、アルミナ、ジルコニア、スチール、フリント石等を原料としたビーズを挙げることができる。
前記(i)又は前記(ii)の何れの処理においても、溶媒としては、水及び/又は有機溶媒が使用される。例えば、純水、超純水、イオン交換水のような水を用いることが好ましい。また、(i)又は(ii)の処理により得られる焼成体解砕分散液の固形分濃度は、格別に制限されるものではないが、例えば、0.3〜50質量%の範囲にあることが好ましい。(i)又は(ii)の処理のうち、実用上は(ii)の湿式による処理がより好適に用いられる。このように解砕処理を行うことで、所望の粒子径に調整すると同時にディフェクトの原因となる粗大粒子の低減化ができる。
In step 2, the fired body obtained by firing is subjected to the following treatment (i) or (ii) to obtain a fired body crushed dispersion.
(I) Crushing and pulverizing by a dry method, and adding a solvent to carry out a solvent dispersion treatment.
(Ii) A solvent is added, and the mixture is crushed and pulverized by a wet process.
As the dry crushing / pulverizing apparatus, conventionally known apparatuses can be used, and examples thereof include an attritor, a ball mill, a vibration mill, and a vibration ball mill.
Conventionally known apparatus can be used as a wet crushing / pulverizing apparatus. For example, a batch type bead mill such as a basket mill, a horizontal type, a vertical type or an annular type continuous bead mill, a sand grinder mill, a ball mill, etc. , Rotor-stator type homogenizer, ultrasonic dispersion type homogenizer, and wet medium stirring mill (wet crusher) such as an impact pulverizer that collides fine particles in the dispersion. Examples of the beads used in the wet medium stirring mill include beads made of glass, alumina, zirconia, steel, flint stone, and the like.
In both the processes (i) and (ii), water and / or an organic solvent are used as the solvent. For example, it is preferable to use water such as pure water, ultrapure water, or ion exchange water. Moreover, although the solid content concentration of the baked body disintegration dispersion liquid obtained by the process of (i) or (ii) is not specifically limited, For example, it exists in the range of 0.3-50 mass%. Is preferred. Of the treatments (i) or (ii), the wet treatment of (ii) is more preferably used in practice. By performing the crushing treatment in this way, coarse particles that cause defects can be reduced while adjusting to a desired particle diameter.

本発明の製造方法では、以下に説明する工程3をさらに備える。   The manufacturing method of the present invention further includes a step 3 described below.

<工程3>
工程3では、工程2において得られた焼成体解砕分散液について、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去し、シリカ系複合微粒子分散液を得る
具体的には、前記焼成体解砕分散液について、遠心分離処理による分級を行う。遠心分離処理における相対遠心加速度は300G以上とする。遠心分離処理後、沈降成分を除去し、シリカ系複合微粒子分散液を得ることができる。相対遠心加速度の上限は格別に制限されるものではないが、実用上は10,000G以下で使用される。
なお、ここで相対遠心加速度とは、地球の重力加速度を1Gとして、その比で表したものである。
工程3では、上記の条件を満たす遠心分離処理を備えることが必要である。遠心加速度が上記の条件に満たない場合は、シリカ系複合微粒子分散液中に粗大粒子が残存するため、シリカ系複合微粒子分散液を用いた研磨材などの研磨用途に使用した際に、スクラッチが発生する原因となる。
<Step 3>
In Step 3, the fired body disintegrated dispersion obtained in Step 2 is centrifuged at a relative centrifugal acceleration of 300 G or more, and subsequently the sediment component is removed to obtain a silica-based composite fine particle dispersion. Classifies the fired body pulverized dispersion by centrifugation. The relative centrifugal acceleration in the centrifugation process is set to 300 G or more. After the centrifugal separation treatment, the precipitated components can be removed to obtain a silica-based composite fine particle dispersion. The upper limit of the relative centrifugal acceleration is not particularly limited, but is practically used at 10,000 G or less.
Here, the relative centrifugal acceleration is expressed as a ratio of the gravitational acceleration of the earth as 1G.
In step 3, it is necessary to provide a centrifugal separation process that satisfies the above conditions. When the centrifugal acceleration does not satisfy the above conditions, coarse particles remain in the silica-based composite fine particle dispersion. Cause it to occur.

工程3にて行う処理を2回以上繰り返し行ってもよい。繰り返し処理を行うことで乾燥及び焼成工程で発生した粗大粒子を効果的に低減でき、ディフェクトを低減化できるからである。さらに粗粒は研磨時に研磨パッドの目詰まりを生じ、研磨スラリーが連続的に送りにくくなるため、研磨速度の安定性を悪くさせる。そのため粗粒を除去することで、研磨パッド−基板間でのスラリーの流動性が良くなり、研磨速度の安定性が増す。   You may repeat the process performed at the process 3 twice or more. It is because the coarse particle which generate | occur | produced in the drying and baking process can be reduced effectively by performing it repeatedly, and a defect can be reduced. Further, the coarse particles cause clogging of the polishing pad at the time of polishing, and it becomes difficult to feed the polishing slurry continuously, thereby deteriorating the stability of the polishing rate. Therefore, by removing the coarse particles, the fluidity of the slurry between the polishing pad and the substrate is improved, and the stability of the polishing rate is increased.

本発明では、上記の製造方法によって得られるシリカ系複合微粒子分散液を、更に乾燥させて、シリカ系複合微粒子を得ることができる。乾燥方法は特に限定されず、例えば、従来公知の乾燥機を用いて乾燥させることができる。   In the present invention, the silica-based composite fine particles can be obtained by further drying the silica-based composite fine particle dispersion obtained by the above production method. The drying method is not particularly limited, and for example, it can be dried using a conventionally known dryer.

このような本発明の製造方法によって、シリカ系複合微粒子分散液を得ることができる。   By such a production method of the present invention, a silica-based composite fine particle dispersion can be obtained.

本発明の製造方法によって、以下に説明するシリカ系複合微粒子分散液を製造することができる。
前記シリカ系複合微粒子分散液は、非晶質シリカを主成分とする母粒子の表面上に結晶性セリアを主成分とする子粒子を有し、さらにその子粒子の表面にシリカ被膜を有している、下記[1]から[3]の特徴を備える平均粒子径50nm〜350nmのシリカ系複合微粒子を含む、シリカ系複合微粒子分散液である。
[1]前記シリカ系複合微粒子は、シリカとセリアとの質量比が100:11〜316であること。
[2]前記シリカ系複合微粒子は、X線回折に供すると、セリアの結晶相のみが検出されること。
[3]前記シリカ系複合微粒子において、画像解析法で測定された短径/長径比が0.80以下である。
By the production method of the present invention, a silica-based composite fine particle dispersion described below can be produced.
The silica-based composite fine particle dispersion has child particles mainly containing crystalline ceria on the surface of mother particles mainly containing amorphous silica, and further has a silica coating on the surface of the child particles. A silica-based composite fine particle dispersion containing silica-based composite fine particles having an average particle diameter of 50 nm to 350 nm having the following features [1] to [3].
[1] The silica-based composite fine particles have a mass ratio of silica and ceria of 100: 11 to 316.
[2] When the silica-based composite fine particles are subjected to X-ray diffraction, only the ceria crystal phase is detected.
[3] In the silica-based composite fine particles, the minor axis / major axis ratio measured by an image analysis method is 0.80 or less.

本発明の分散液において、前記シリカ系複合微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることが好ましい。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ10ppm以下。
In the dispersion of the present invention, it is preferable that the content ratio of impurities contained in the silica-based composite fine particles is as follows (a) and (b).
(A) The contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl, NO 3 , SO 4 and F are each 10 ppm or less.

所望により本発明の製造方法で得られるシリカ系複合微粒子分散液は、そのpH値を3〜8の範囲とした場合に、カチオンコロイド滴定を始める前、すなわち、滴定量がゼロである場合の流動電位がマイナスの電位となるものであることが好ましい。これは、調合工程で生成した珪酸セリウム化合物が、焼成工程で分層しシリカ系複合微粒子表面の一部または全部をシリカで被覆されるためである。この流動電位がマイナスの電位を維持する場合、同じくマイナスの表面電位を示す研磨基材への砥粒(シリカ系複合微粒子)の残留が生じ難いからである。   If desired, the silica-based composite fine particle dispersion obtained by the production method of the present invention has a flow rate before cation colloid titration when the pH value is in the range of 3 to 8, that is, when the titer is zero. The potential is preferably a negative potential. This is because the cerium silicate compound produced in the preparation step is separated in the firing step and a part or all of the surface of the silica-based composite fine particles is covered with silica. This is because when the flow potential is maintained at a negative potential, it is difficult for the abrasive grains (silica-based composite fine particles) to remain on the polishing substrate that also exhibits a negative surface potential.

以下では、本発明の製造方法で得られるシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子を「本発明の製造方法で得られる複合微粒子」ともいう。   Hereinafter, the silica-based composite fine particles contained in the silica-based composite fine particle dispersion obtained by the production method of the present invention are also referred to as “composite fine particles obtained by the production method of the present invention”.

本発明の製造方法で得られる複合微粒子について説明する。   The composite fine particles obtained by the production method of the present invention will be described.

<母粒子>
本発明の製造方法で得られる複合微粒子において、母粒子は非晶質シリカを主成分とする。
<Mother particles>
In the composite fine particles obtained by the production method of the present invention, the mother particles are mainly composed of amorphous silica.

本発明の製造方法の工程1で原料として使用するシリカ微粒子分散液に含まれるシリカ微粒子が、前記複合微粒子の母粒子となる。前記シリカ微粒子が非晶質であることは、例えば、次の方法で確認することができる。母粒子(シリカ微粒子)を含む分散液(シリカ微粒子分散液)を乾燥させた後、乳鉢を用いて粉砕し、例えば、従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によってX線回折パターンを得ると、Cristobaliteのような結晶性シリカのピークは現れない。このことから、母粒子(シリカ微粒子)に含まれるシリカは非晶質であることを確認できる。   The silica fine particles contained in the silica fine particle dispersion used as a raw material in step 1 of the production method of the present invention serve as the mother particles of the composite fine particles. Whether the silica fine particles are amorphous can be confirmed, for example, by the following method. The dispersion liquid (silica microparticle dispersion liquid) containing the mother particles (silica microparticles) is dried and then pulverized using a mortar. For example, a conventionally known X-ray diffractometer (for example, RINT1400 manufactured by Rigaku Corporation) is used. When an X-ray diffraction pattern is obtained, the peak of crystalline silica such as Cristobalite does not appear. From this, it can be confirmed that the silica contained in the mother particles (silica fine particles) is amorphous.

また「主成分」とは、含有率が90質量%以上であることを意味する。すなわち、母粒子において、非晶質シリカの含有率は90質量%以上である。この含有率は95質量%以上であることが好ましく、98質量%以上であることがより好ましく、99.5質量%以上であることがより好ましい。
以下に示す本発明の説明において「主成分」の文言は、このような意味で用いるものとする。
The “main component” means that the content is 90% by mass or more. That is, in the mother particles, the content of amorphous silica is 90% by mass or more. The content is preferably 95% by mass or more, more preferably 98% by mass or more, and more preferably 99.5% by mass or more.
In the following description of the present invention, the term “main component” is used in this sense.

母粒子は非晶質シリカを主成分とし、その他のもの、例えば、結晶性シリカや不純物元素を含んでもよい。
例えば、前記母粒子(シリカ微粒子)において、Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの各元素(以下、「特定不純物群1」と称する場合がある)の含有率が、それぞれ100ppm以下であることが好ましい。さらに50ppm以下であることが好ましく、25ppm以下であることがより好ましく、5ppm以下であることがさらに好ましく、1ppm以下であることがよりいっそう好ましい。また、前記母粒子(シリカ微粒子)におけるU、Th、Cl、NO3、SO4及びFの各元素(以下、「特定不純物群2」と称する場合がある)の含有率は、それぞれ10ppm以下であることが好ましい。
一般に水硝子を原料として調製したシリカ微粒子は、原料水硝子に由来する前記特定不純物群1と前記特定不純物群2を合計で数千ppm程度含有する。
このようなシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液の場合、イオン交換処理を行って前記特定不純物群1と前記特定不純物群2の含有率を下げることは可能であるが、その場合でも前記特定不純物群1と前記特定不純物群2が合計で数ppmから数百ppm残留する。そのため水硝子を原料としたシリカ粒子を用いる場合は、酸処理等で不純物低減させることも行われている。
これに対し、アルコキシシランを原料として合成したシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液の場合、通常、前記特定不純物群1及び前記特定不純物群2における各元素と各陰イオンの含有率は、それぞれ20ppm以下である。
また、一般的に四塩化ケイ素を原料として合成したヒュームドシリカは、紛体の状態においても原料四塩化ケイ素に由来する前記特定不純物群1及び前記特定不純物群2の含有率は合計で20ppm程度である。
なお、本発明において、母粒子(シリカ微粒子)におけるNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4及びFの各々の含有率は、それぞれ次の方法を用いて測定して求めた値とする。
・Na及びK:原子吸光分光分析
・Ag、Al、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びTh:ICP(誘導結合プラズマ発光分光分析)
・Cl:電位差滴定法
・NO3、SO4及びF:イオンクロマトグラフ
The mother particles are mainly composed of amorphous silica and may contain other materials such as crystalline silica and impurity elements.
For example, in the mother particle (silica fine particle), each element of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr (hereinafter referred to as “specific impurity group 1”). In some cases) is preferably 100 ppm or less. Furthermore, it is preferably 50 ppm or less, more preferably 25 ppm or less, still more preferably 5 ppm or less, and even more preferably 1 ppm or less. The content of each element of U, Th, Cl, NO 3 , SO 4 and F (hereinafter sometimes referred to as “specific impurity group 2”) in the base particles (silica fine particles) is 10 ppm or less. Preferably there is.
Generally, silica fine particles prepared using water glass as a raw material contain about a few thousand ppm in total of the specific impurity group 1 and the specific impurity group 2 derived from the raw water glass.
In the case of such a silica fine particle dispersion in which silica fine particles are dispersed in a solvent, it is possible to reduce the contents of the specific impurity group 1 and the specific impurity group 2 by performing ion exchange treatment. However, the specific impurity group 1 and the specific impurity group 2 remain several ppm to several hundred ppm in total. Therefore, when silica particles made from water glass are used, impurities are also reduced by acid treatment or the like.
On the other hand, in the case of a silica fine particle dispersion in which silica fine particles synthesized using alkoxysilane as a raw material are dispersed in a solvent, the content of each element and each anion in the specific impurity group 1 and the specific impurity group 2 is usually Are each 20 ppm or less.
In general, fumed silica synthesized from silicon tetrachloride as a raw material has a total content of about 20 ppm of the specific impurity group 1 and the specific impurity group 2 derived from the raw material silicon tetrachloride even in a powder state. is there.
In the present invention, Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, Th, Cl, NO 3 , SO 4 in the mother particles (silica fine particles) are used. Each of the contents of F and F is a value determined by measurement using the following method.
Na and K: atomic absorption spectroscopic analysis Ag, Al, Ca, Cr, Cu, Fe, Mg, Ni, Ti, Zn, Zr, U and Th: ICP (inductively coupled plasma emission spectroscopic analysis)
・ Cl: Potentiometric titration method ・ NO 3 , SO 4 and F: Ion chromatograph

後述のとおり本発明の製造方法で得られるシリカ系複合微粒子分散液におけるシリカ系複合微粒子の平均粒子径は、50nm〜350nm(動的光散乱法又はレーザー回折散乱法で測定された値による)の範囲にあり、その母粒子(シリカ微粒子)の平均粒子径は、通常、350nmより小さいものとなる。   As described later, the average particle size of the silica-based composite fine particles in the silica-based composite fine particle dispersion obtained by the production method of the present invention is 50 nm to 350 nm (depending on the value measured by the dynamic light scattering method or the laser diffraction scattering method). The average particle diameter of the mother particles (silica fine particles) is usually smaller than 350 nm.

本発明の製造方法において原料として使用するシリカ微粒子分散液に含まれるシリカ微粒子の平均粒子径は、動的光散乱法又はレーザー回折散乱法で測定された値を意味する。具体的には、次の方法で測定して得た値を意味するものとする。シリカ微粒子を水等に分散させ、シリカ微粒子分散液を得た後、このシリカ微粒子分散液を、公知の動的光散乱法による粒子径測定装置(例えば、日機装株式会社製マイクロトラックUPA装置や、大塚電子社製PAR−III)あるいはレーザー回折散乱法による測定装置(例えば、HORIBA社製LA―950)を用いて測定する。
なお、測定装置は各工程の目的や想定される粒子径や粒度分布に応じて使い分けられる。具体的には約100nm以下で粒度の揃った原料の単分散シリカ微粒子はPAR−IIIを用い、100nm以上とサイズが大きな単分散の原料シリカ微粒子はLA−950で測定し、解砕によりミクロンメーターからナノメーターまで粒子径が幅広く変化する解砕工程では、マイクロトラックUPAやLA−950を用いることが好ましい。
The average particle diameter of the silica fine particles contained in the silica fine particle dispersion used as a raw material in the production method of the present invention means a value measured by a dynamic light scattering method or a laser diffraction scattering method. Specifically, it means a value obtained by measurement by the following method. Silica fine particles are dispersed in water or the like to obtain a silica fine particle dispersion, and then the silica fine particle dispersion is separated from a particle size measuring device by a known dynamic light scattering method (for example, Microtrack UPA device manufactured by Nikkiso Co., Ltd., Measurement is performed using a measurement apparatus (PAR-III manufactured by Otsuka Electronics Co., Ltd.) or a laser diffraction scattering method (for example, LA-950 manufactured by HORIBA).
In addition, a measuring apparatus is selectively used according to the objective of each process, the assumed particle diameter, and a particle size distribution. Specifically, PAR-III is used for the raw material monodisperse silica fine particles having a uniform particle size of about 100 nm or less, and monodisperse raw silica fine particles having a large size of 100 nm or more are measured with LA-950, and the micrometer is obtained by crushing. It is preferable to use Microtrac UPA or LA-950 in the crushing process in which the particle diameter varies widely from 1 to nanometer.

本発明の製造方法の工程1で原料として使用するシリカ微粒子分散液に含まれるシリカ微粒子としては、非球状のシリカ微粒子が好適に使用される。ここで非球状の例としては、俵状、短繊維状、四面体状(三角錐型)、六面体状、八面体状、板状または不定形状などを挙げることができる。この様な非球状のシリカ微粒子であれば、その表面に疣状突起を有するものや、金平糖状のものであっても構わないが、これらに限定されるものではない。   As the silica fine particles contained in the silica fine particle dispersion used as a raw material in Step 1 of the production method of the present invention, non-spherical silica fine particles are preferably used. Examples of the non-spherical shape include a bowl shape, a short fiber shape, a tetrahedron shape (triangular pyramid shape), a hexahedron shape, an octahedron shape, a plate shape, and an indefinite shape. Such non-spherical silica fine particles may have a ridge-like protrusion on the surface or a confetti-like shape, but are not limited thereto.

前記工程1で原料として使用するシリカ微粒子分散液に含まれるシリカ微粒子の形状は非球状であることが好ましい。この場合、二次粒子径(D2)と比表面積換算粒子径(DS)との比[(D2)/(DS)]が1.0より大きくなる。この比[(D2)/(DS)]の値が大きくなると、シリカ微粒子の形状が球状から乖離していく。すなわち、この比[(D2)/(DS)]の値は、シリカ微粒子の形状が球状から乖離した度合いを示す。
なお、二次粒子径(D2)および比表面積換算粒子径(DS)の測定方法は、後述する実施例の説明において記す。
この比[(D2)/(DS)]の上限値は11000であってよい。なおこのような非球形のシリカ母粒子を原料として使用するとシリカ系複合微粒子も非球形となり、非球形粒子は基板との接触面積が大きくなるため研磨速度が高くなる。またシリカ母粒子の形状を選択することで、シリカ系複合微粒子の形状の制御も容易となる。
The shape of the silica fine particles contained in the silica fine particle dispersion used as a raw material in the step 1 is preferably non-spherical. In this case, the ratio [(D2) / (DS)] between the secondary particle diameter (D2) and the specific surface area converted particle diameter (DS) is larger than 1.0. As the value of this ratio [(D2) / (DS)] increases, the shape of the silica fine particles deviates from the spherical shape. That is, the value of this ratio [(D2) / (DS)] indicates the degree to which the shape of the silica fine particles deviates from the spherical shape.
In addition, the measuring method of a secondary particle diameter (D2) and a specific surface area conversion particle diameter (DS) is described in description of the Example mentioned later.
The upper limit of this ratio [(D2) / (DS)] may be 11000. When such non-spherical silica mother particles are used as raw materials, the silica-based composite fine particles also become non-spherical, and the non-spherical particles have a large contact area with the substrate, so that the polishing rate increases. Further, by selecting the shape of the silica mother particles, the shape of the silica-based composite fine particles can be easily controlled.

本発明の製造方法で得られるシリカ系複合微粒子分散液に含まれる複合微粒子は、上記のような母粒子の表面上に子粒子を有する。ここで、母粒子の表面に子粒子が結合していることが好ましい。また、例えば、シリカ被膜が全体を被覆している子粒子が、シリカ被膜を介して母粒子に結合していてもよい。このような態様であっても、母粒子の表面上に子粒子が存在する態様であり、本発明の技術的範囲に含まれる。   The composite fine particles contained in the silica-based composite fine particle dispersion obtained by the production method of the present invention have child particles on the surface of the mother particles as described above. Here, it is preferable that the child particle is bonded to the surface of the mother particle. Further, for example, the child particles that are entirely covered with the silica coating may be bonded to the mother particles through the silica coating. Even such an embodiment is an embodiment in which child particles are present on the surface of the mother particle, and is included in the technical scope of the present invention.

前記複合微粒子において、子粒子は結晶性セリアを主成分とする。   In the composite fine particles, the child particles are mainly composed of crystalline ceria.

前記子粒子が結晶性セリアであることは、例えば、本発明の分散液を、乾燥させたのち乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気株式会社製、RINT1400)によって得たX線回折パターンにおいて、セリアの結晶相のみが検出されることから確認できる。なお、セリアの結晶相としては、Cerianite等が挙げられる。   The fact that the child particles are crystalline ceria is, for example, that the dispersion liquid of the present invention is dried and then pulverized using a mortar, for example, a conventionally known X-ray diffractometer (for example, RINT1400 manufactured by Rigaku Corporation). In the X-ray diffraction pattern obtained by (1), only the ceria crystal phase is detected. Examples of the ceria crystal phase include Ceriaite.

子粒子は結晶性セリア(結晶性Ce酸化物)を主成分とし、その他のもの、例えばセリウム以外の元素を含んでもよい。
ただし、上記のように、本発明の複合微粒子をX線回折に供するとセリアの結晶相のみが検出される。すなわち、セリア以外の結晶相を含んでいたとしても、その含有率は少ないため、X線回折による検出範囲外となる。
なお、「主成分」の定義は前述の通りである。
The child particles are mainly composed of crystalline ceria (crystalline Ce oxide), and may contain other elements, for example, elements other than cerium.
However, as described above, when the composite fine particles of the present invention are subjected to X-ray diffraction, only the ceria crystal phase is detected. That is, even if a crystal phase other than ceria is included, its content is small, and thus it is outside the detection range by X-ray diffraction.
The definition of “principal component” is as described above.

前記子粒子は、結晶性セリアであれば、好適に使用することができる。このような結晶性セリアとして、例えば、本発明の複合微粒子をX線回折に供して測定される、結晶性セリアの(111)面(2θ=28度近傍)の結晶子径が10〜25nmの範囲が望ましい。セリアの結晶子径が大きいほど、基板との接触面積が増大し研磨速度が速くなると考えられるが、あまり大きくなり過ぎると解砕時または研磨時にセリアの結晶が母粒子から脱落するため、かえって研磨速度が低下する。上記範囲であれば、セリア粒子が十分に接触し、且つセリア粒子の脱落が防止できる。   If the said child particle is crystalline ceria, it can be used conveniently. As such crystalline ceria, for example, when the composite fine particles of the present invention are measured by X-ray diffraction, the crystalline ceria has a crystallite diameter of 10 to 25 nm on the (111) plane (near 2θ = 28 degrees). A range is desirable. The larger the ceria crystallite size, the larger the contact area with the substrate and the faster the polishing speed.However, if the ceria crystal is too large, the ceria crystals fall off from the mother particles during crushing or polishing. The speed is reduced. If it is the said range, a ceria particle will fully contact and it can prevent a ceria particle falling off.

なお、結晶性セリアの(111)面(2θ=28度近傍)の結晶子径は、次に説明する方法によって得られる値を意味するものとする。
初めに、本発明の複合微粒子を、乳鉢を用いて粉砕し、例えば従来公知のX線回折装置(例えば、理学電気(株)製、RINT1400)によってX線回折パターンを得る。そして、得られたX線回折パターンにおける2θ=28度近傍の(111)面のピークの半価幅を測定し、下記のScherrerの式により、結晶子径を求めることができる。
D=Kλ/βcosθ
D:結晶子径(オングストローム)
K:Scherrer定数
λ:X線波長(1.7889オングストローム、Cuランプ)
β:半価幅(rad)
θ:反射角
The crystallite diameter of the (111) plane of crystalline ceria (around 2θ = 28 degrees) means a value obtained by the method described below.
First, the composite fine particles of the present invention are pulverized using a mortar, and an X-ray diffraction pattern is obtained by using, for example, a conventionally known X-ray diffractometer (for example, RINT1400 manufactured by Rigaku Corporation). Then, the half width of the peak of the (111) plane in the vicinity of 2θ = 28 degrees in the obtained X-ray diffraction pattern is measured, and the crystallite diameter can be obtained by the following Scherrer equation.
D = Kλ / βcos θ
D: Crystallite diameter (angstrom)
K: Scherrer constant λ: X-ray wavelength (1.7789 angstrom, Cu lamp)
β: Half width (rad)
θ: Reflection angle

子粒子の大きさは、母粒子より小さく、平均粒子径11〜26nmであることが好ましく、12〜23nmであることがより好ましい。子粒子の大きさは、透過型電子顕微鏡を用いて30万倍に拡大した写真投影図において、任意の50個の子粒子について平均粒子径を測定し、これらを単純平均して得た値を意味する。   The size of the child particles is smaller than that of the mother particles, preferably an average particle diameter of 11 to 26 nm, and more preferably 12 to 23 nm. The size of the child particles is a value obtained by measuring the average particle diameter of any 50 child particles in a photograph projection view enlarged 300,000 times using a transmission electron microscope, and simply averaging them. means.

<シリカ被膜>
本発明の複合微粒子は、前記母粒子の表面上に前記子粒子を有し、さらにその子粒子の表面にシリカ被膜を有している。ここで、前記母粒子の表面に前記子粒子が結合しており、さらにそれらを覆うシリカ被膜を有していることが好ましい。すなわち、前記母粒子の表面に前記子粒子が結合してなる複合粒子の一部又は全体をシリカ被膜が覆っていることが好ましい。よって、本発明の複合微粒子の最表面にはシリカ被膜が存在している。
<Silica coating>
The composite fine particles of the present invention have the child particles on the surface of the mother particles, and further have a silica coating on the surface of the child particles. Here, it is preferable that the child particles are bonded to the surface of the mother particles and further has a silica coating covering them. That is, it is preferable that the silica coating covers a part or the whole of the composite particles formed by bonding the child particles to the surface of the mother particles. Therefore, a silica coating is present on the outermost surface of the composite fine particles of the present invention.

本発明の製造方法で得られるシリカ系複合微粒子分散液に含まれる複合微粒子について透過型電子顕微鏡を用いて観察して得られる像(TEM像)では、母粒子の表面に子粒子の像が濃く現れるが、その子粒子の外側、すなわち、本発明の複合微粒子の表面側には、相対的に薄い像として、シリカ被膜が現れる。また、子粒子(セリア微粒子)が母粒子(シリカ微粒子)と結合している態様であることが好ましく、シリカ被膜が全体または一部を被覆している子粒子が、シリカ被膜を介して母粒子に結合していてもよい。
また、前記複合微粒子をEDS分析に供し、元素分布を得ると、粒子の表面側にCe濃度が高い部分が現れるが、さらにその外側にSi濃度が高い部分が現れる。
また、上記のように透過型電子顕微鏡によって特定した前記シリカ被膜の部分に電子ビームを選択的に当てたEDS測定を行って当該部分のSi原子数%及びCe原子数%を求めると、Si原子数%が非常に高いことを確認することができる。具体的には、Ce原子数%に対するSi原子数%の比(Si原子数%/Ce原子数%)が0.9以上となる。
In the image (TEM image) obtained by observing the composite fine particles contained in the silica-based composite fine particle dispersion obtained by the production method of the present invention using a transmission electron microscope, the image of the child particles is deep on the surface of the mother particles. Although it appears, a silica coating appears as a relatively thin image outside the child particle, that is, on the surface side of the composite fine particle of the present invention. Further, it is preferable that the child particles (ceria fine particles) are bonded to the mother particles (silica fine particles), and the child particles whose silica coating covers all or part of the mother particles are interposed via the silica coating. May be bonded to.
Further, when the composite fine particles are subjected to EDS analysis to obtain an element distribution, a portion with a high Ce concentration appears on the surface side of the particles, but a portion with a high Si concentration appears on the outer side.
Further, when EDS measurement was performed by selectively applying an electron beam to the silica coating portion specified by the transmission electron microscope as described above, the Si atom number% and Ce atom number% of the part were obtained. It can be confirmed that several percent is very high. Specifically, the ratio of Si atom number% to Ce atom number% (Si atom number% / Ce atom number%) is 0.9 or more.

このようなシリカ被膜は、子粒子(セリア結晶粒子)と母粒子(シリカ微粒子)の結合(力)を助長すると考えられる。よって、例えば、本発明の分散液を得る工程で、焼成して得られたシリカ系複合微粒子について湿式による解砕・粉砕を行うことで、シリカ系複合微粒子分散液が得られるが、シリカ被膜により、子粒子(セリア結晶粒子)が母粒子(シリカ微粒子)から外れる事を防ぐ効果があるものと考えられる。この場合、局部的な子粒子の脱落は問題なく、また、子粒子の表面の全てがシリカ被膜で覆われていなくても良い。子粒子が解砕・粉砕工程で母粒子から外れない程度の強固さがあれば良い。
このような構造により、本発明の分散液を研磨剤として用いた場合、研磨速度が高く、面精度やスクラッチの悪化が少ないと考えられる。また、結晶化しているため粒子表面の−OH基が少なく、研磨基板表面の−OH基との相互作用が少ないため研磨基板表面への付着が少ないと考えられる。
また、セリアはシリカや研磨基板、研磨パッドとは電位が異なり、pHはアルカリ性から中性付近でマイナスのゼータ電位が減少して行き、弱酸性領域では逆のプラスの電位を持つ。そのため電位の大きさの違いや極性の違いなどで研磨基材や研磨パッドに付着し、研磨基材や研磨パッドに残り易い。一方、本発明のシリカ系複合微粒子は、子粒子であるセリアがシリカ被膜でその少なくとも一部が覆われているため、pHがアルカリ性から酸性までマイナスの電位を維持するため、研磨基材や研磨パッドへの砥粒残りが起きにくい。
Such a silica coating is considered to promote the bond (force) between the child particles (ceria crystal particles) and the mother particles (silica fine particles). Thus, for example, in the step of obtaining the dispersion of the present invention, the silica-based composite fine particles obtained by firing are crushed and pulverized by a wet process to obtain a silica-based composite fine particle dispersion. It is considered that there is an effect of preventing the child particles (ceria crystal particles) from coming off from the mother particles (silica fine particles). In this case, local dropout of the child particles is not a problem, and the entire surface of the child particles may not be covered with the silica coating. It is sufficient that the child particles are strong enough not to be separated from the mother particles in the crushing / grinding process.
With such a structure, it is considered that when the dispersion liquid of the present invention is used as an abrasive, the polishing rate is high, and the surface accuracy and scratch are less deteriorated. Further, since it is crystallized, there are few —OH groups on the surface of the particles, and there is little interaction with the —OH groups on the surface of the polishing substrate.
In addition, ceria has a potential different from that of silica, a polishing substrate, and a polishing pad, and the pH decreases from a negative zeta potential in the vicinity of neutral to neutral, and has a reverse positive potential in a weakly acidic region. For this reason, it adheres to the polishing substrate or polishing pad due to the difference in the magnitude of the potential or the polarity, and tends to remain on the polishing substrate or the polishing pad. On the other hand, in the silica-based composite fine particles of the present invention, since ceria as a child particle is at least partially covered with a silica coating, the pH is maintained at a negative potential from alkaline to acidic. It is difficult for abrasive grains to remain on the pad.

シリカ被膜の厚さは、TEM像やSEM像から母粒子上のセリアの子粒子のシリカ被膜による被覆具合で概ね求められる。つまり、上記のように、TEM像では、母粒子の表面に粒子径が約20nm前後の子粒子の像が濃く現れ、その子粒子の外側に相対的に薄い像としてシリカ被膜が現れるので、子粒子の大きさと対比する事で、シリカ被膜の厚さを概ね求めることができる。この厚さは、SEM像から子粒子が凹凸としてハッキリ確認できて、TEM像からシリカ系複合微粒子の輪郭に凹凸が見られるのならば、シリカ被膜の厚さは20nmをはるかに下回る事が考えられる。   The thickness of the silica coating is generally determined from the TEM image or SEM image in terms of how the ceria child particles on the mother particles are covered with the silica coating. That is, as described above, in the TEM image, a child particle having a particle size of about 20 nm appears on the surface of the mother particle, and a silica coating appears as a relatively thin image outside the child particle. The thickness of the silica coating can be roughly determined by comparing with the size of. If the child particles can be clearly confirmed as irregularities from the SEM image and irregularities are seen in the outline of the silica-based composite fine particles from the TEM image, the thickness of the silica coating may be much less than 20 nm. It is done.

なお、上記のように、最外層(母粒子側の反対)のシリカ被膜は、子粒子(セリア微粒子)の全体を完全に覆っていなくてもよい。すなわち、本発明の複合微粒子の最表面にはシリカ被膜が存在しているが、シリカ被膜が存在していない部分があってもよい。また、シリカ系複合微粒子の母粒子が露出する部分が存在しても構わない。   As described above, the silica coating of the outermost layer (opposite to the mother particle side) may not completely cover the entire child particles (ceria fine particles). That is, the silica film is present on the outermost surface of the composite fine particles of the present invention, but there may be a portion where the silica film is not present. Further, there may be a portion where the base particle of the silica-based composite fine particle is exposed.

<本発明の製造方法で得られるシリカ系複合微粒子分散液に含まれる複合微粒子>
本発明の複合微粒子は、上記のように、母粒子の表面に、上記のような子粒子を有している。
<Composite fine particles contained in silica-based composite fine particle dispersion obtained by the production method of the present invention>
As described above, the composite fine particles of the present invention have the above child particles on the surface of the mother particles.

本発明の製造方法で得られるシリカ系複合微粒子分散液に含まれる複合微粒子において、シリカとセリアとの質量比は100:11〜316であり、100:30〜316であることが好ましく、100:30〜316であることがより好ましく、100:110〜316であることがさらに好ましい。シリカとセリアとの質量比は、概ね、母粒子と子粒子との質量比と同程度と考えられる。母粒子に対する子粒子の量が少なすぎると、母粒子同士が結合し、粗大粒子が発生する場合がある。この場合に本発明の分散液を含む研磨剤(研磨スラリー)は、研磨基材の表面に欠陥(スクラッチの増加などの面精度の低下)を発生させる可能性がある。また、シリカに対するセリアの量が多すぎても、コスト的に高価になるばかりでなく、資源リスクが増大する。さらに、粒子同士の融着が進む。その結果、基板表面の粗度が上昇(表面粗さRaの悪化)したり、スクラッチが増加する、更に遊離したセリアが基板に残留する、研磨装置の廃液配管等への付着といったトラブルを起こす原因ともなりやすい。
なお、前記質量比を算定する場合の対象となるシリカとは、次の(I)と(II)の両方を含むものである。
(I)母粒子を構成するシリカ成分。
(II)母粒子に子粒子(セリア成分)が結合してなる複合微粒子を、覆ってなるシリカ被膜に含まれるシリカ成分。
In the composite fine particles contained in the silica-based composite fine particle dispersion obtained by the production method of the present invention, the mass ratio of silica to ceria is 100: 11 to 316, preferably 100: 30 to 316, 100: More preferably, it is 30-316, and it is further more preferable that it is 100: 110-316. The mass ratio between silica and ceria is considered to be approximately the same as the mass ratio between the mother particles and the child particles. If the amount of the child particles relative to the mother particles is too small, the mother particles may be bonded to generate coarse particles. In this case, the abrasive (polishing slurry) containing the dispersion of the present invention may cause defects (decrease in surface accuracy such as an increase in scratches) on the surface of the polishing substrate. Further, if the amount of ceria relative to silica is too large, not only is the cost high, but the resource risk increases. Furthermore, the fusion of the particles proceeds. As a result, the roughness of the substrate surface increases (deterioration of the surface roughness Ra), scratches increase, free ceria remains on the substrate, and causes such as adhesion to the waste liquid piping of the polishing apparatus. It's easy to get along.
In addition, the silica used as the object in calculating the mass ratio includes both the following (I) and (II).
(I) A silica component constituting the mother particle.
(II) A silica component contained in a silica coating covering composite fine particles formed by binding child particles (ceria component) to mother particles.

本発明の製造方法で得られるシリカ系複合微粒子分散液に含まれる複合微粒子におけるシリカ(SiO2)とセリア(CeO2)の含有率(質量%)は、まず本発明の製造方法で得られるシリカ系複合微粒子の分散液(本発明の分散液)の固形分濃度を、1000℃灼熱減量を行って秤量により求める。
次に、所定量の本発明の複合微粒子に含まれるセリウム(Ce)の含有率(質量%)をICPプラズマ発光分析により求め、CeO2質量%に換算する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出することができる。
なお、本発明の製造方法においては、シリカとセリアの質量比は、本発明の分散液を調製する際に投入したシリカ源物質とセリア源物質との使用量から算定することもできる。これは、セリアやシリカが溶解し除去されるプロセスとなっていない場合に適用でき、そのような場合はセリアやシリカの使用量と分析値が良い一致を示す。
The content (mass%) of silica (SiO 2 ) and ceria (CeO 2 ) in the composite fine particles contained in the silica-based composite fine particle dispersion obtained by the production method of the present invention is the silica obtained by the production method of the present invention. The solid content concentration of the dispersion liquid of the system composite fine particles (the dispersion liquid of the present invention) is determined by weighing at 1000 ° C.
Next, the content (mass%) of cerium (Ce) contained in a predetermined amount of the composite fine particles of the present invention is determined by ICP plasma emission analysis, and converted to CeO 2 mass%. Then, assuming that the components other than CeO 2 constituting the composite fine particles of the present invention are SiO 2 , SiO 2 mass% can be calculated.
In the production method of the present invention, the mass ratio of silica and ceria can be calculated from the amount of silica source material and ceria source material used when the dispersion of the present invention is prepared. This can be applied when ceria and silica are not dissolved and removed, and in such a case, the amount of ceria or silica used and the analytical value are in good agreement.

本発明の製造方法で得られるシリカ系複合微粒子分散液に含まれる複合微粒子はシリカ微粒子(母粒子)の表面に粒子状の結晶性セリア(子粒子)が焼結等して結合したもの等であるので、凹凸の表面形状を有している。
すなわち、母粒子と子粒子との少なくとも一方(好ましくは双方)が、それらの接点において、焼結結合し、強固に結合していることが好ましい。ただし、シリカ被膜の覆われた子粒子が、そのシリカ被膜を介して母粒子と結合している場合もある。
The composite fine particles contained in the silica-based composite fine particle dispersion obtained by the production method of the present invention are those in which particulate crystalline ceria (child particles) are bonded to the surface of the silica fine particles (parent particles) by sintering or the like. Since it is, it has an uneven surface shape.
That is, it is preferable that at least one (preferably both) of the mother particle and the child particle is sinter-bonded and firmly bonded at their contact points. However, the child particles covered with the silica coating may be bonded to the mother particles through the silica coating.

前記複合微粒子の形状は、格別に制限されるものではないが、実用上は、異方形状をもつことが好ましい。異方形状とは、後述の方法により測定される短径/長径比が1よりも小さいことを意味する。
異方形状であると基板との接触面積を多くとることができるため、研磨エネルギーを効率良く基板へ伝えることができる。そのため、研磨速度が高い。また、粒子当たりの研磨圧力が単粒子よりも低くなるためスクラッチも少ない。
The shape of the composite fine particles is not particularly limited, but it is preferable in practice to have an anisotropic shape. The anisotropic shape means that the minor axis / major axis ratio measured by the method described later is smaller than 1.
If the shape is anisotropic, a large contact area with the substrate can be obtained, so that polishing energy can be efficiently transmitted to the substrate. Therefore, the polishing rate is high. Further, since the polishing pressure per particle is lower than that of a single particle, there is little scratching.

前記複合微粒子において、画像解析法で測定された短径/長径比が0.80以下(好ましくは0.67以下)である粒子の個数割合は50%以上であることが好ましい。ここで、画像解析法で測定された短径/長径比が0.80以下である粒子は、原則的に粒子結合型のものと考えられる。   In the composite fine particles, the number ratio of particles having a minor axis / major axis ratio measured by an image analysis method of 0.80 or less (preferably 0.67 or less) is preferably 50% or more. Here, particles having a minor axis / major axis ratio measured by an image analysis method of 0.80 or less are considered to be of a particle-binding type in principle.

画像解析法による短径/長径比の測定方法を説明する。透過型電子顕微鏡により、本発明の複合微粒子を倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とする。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DB)とする。これより、短径/長径比(DB/DL)を求める。そして、写真投影図で観察される任意の50個の粒子において、短径/長径比が0.80以下である粒子の個数割合(%)を求める。   A method for measuring the minor axis / major axis ratio by the image analysis method will be described. In a photograph projection view obtained by photographing a composite fine particle of the present invention at a magnification of 250,000 times (or 500,000 times) with a transmission electron microscope, the maximum diameter of the particles is taken as the major axis, and the length is measured. The value is taken as the major axis (DL). Further, a point that bisects the major axis on the major axis is determined, two points where a straight line perpendicular to the major axis intersects the outer edge of the particle are obtained, and a distance between the two points is measured to obtain a minor axis (DB). From this, the minor axis / major axis ratio (DB / DL) is obtained. Then, the number ratio (%) of particles having a minor axis / major axis ratio of 0.80 or less in any 50 particles observed in the photographic projection diagram is obtained.

前記複合微粒子では、短径/長径比が0.80以下(好ましくは0.67以下)である粒子の個数割合が55%以上であることが好ましく、65%以上であることがより好ましい。この範囲の本発明の複合微粒子は、研磨材として使用した際に、研磨速度が高くなり好ましい。   In the composite fine particles, the number ratio of particles having a minor axis / major axis ratio of 0.80 or less (preferably 0.67 or less) is preferably 55% or more, and more preferably 65% or more. The composite fine particles of the present invention in this range are preferable because the polishing rate becomes high when used as an abrasive.

前記複合微粒子は前述の異方形状であることがより好ましいが、その他の形状のもの、例えば球状粒子を含んでいてもよい。   The composite fine particles preferably have the anisotropic shape described above, but may have other shapes, for example, spherical particles.

前記複合微粒子は、比表面積が4〜100m2/gであることが好ましく、30〜60m2/gであることがより好ましい。 The composite fine particles preferably have a specific surface area of 4 to 100 m 2 / g, and more preferably 30 to 60 m 2 / g.

前記複合微粒子の平均粒子径は50nm〜350nmであることが好ましく、170nm〜260nmであることがより好ましい。本発明の複合微粒子の平均粒子径が50nm〜350nmの範囲にある場合、研磨材として適用した際に研磨速度が高くなり好ましい。
前記複合微粒子の平均粒子径は、動的光散乱法又はレーザー回折散乱法で測定された値を意味する。具体的には、次の方法で測定して得た値を意味するものとする。本発明の複合微粒子を水に分散させ、この複合微粒子分散液を、公知の動的光散乱法による粒子径測定装置(例えば、日機装株式会社製マイクロトラックUPA装置や、大塚電子社製PAR−III)あるいはレーザー回折散乱法による測定装置(例えば、HORIBA社製LA―950)を用いて測定する。
The composite fine particles preferably have an average particle size of 50 nm to 350 nm, and more preferably 170 nm to 260 nm. When the average particle size of the composite fine particles of the present invention is in the range of 50 nm to 350 nm, it is preferable because the polishing rate becomes high when applied as an abrasive.
The average particle diameter of the composite fine particles means a value measured by a dynamic light scattering method or a laser diffraction scattering method. Specifically, it means a value obtained by measurement by the following method. The composite fine particles of the present invention are dispersed in water, and this composite fine particle dispersion is used as a particle size measuring device by a known dynamic light scattering method (for example, Nikkiso Co., Ltd. Microtrac UPA device or Otsuka Electronics PAR-III). ) Or a measurement apparatus using a laser diffraction scattering method (for example, LA-950 manufactured by HORIBA).

前記複合微粒子において、前記特定不純物群1の各元素の含有率は、それぞれ100ppm以下であることが好ましい。さらに50ppm以下であることが好ましく、25ppm以下であることがより好ましく、5ppm以下であることがさらに好ましく、1ppm以下であることがよりいっそう好ましい。また、本発明の複合微粒子における前記特定不純物群2の各元素の含有率は、それぞれ10ppm以下であることが好ましい。本発明の複合微粒子における特定不純物群1及び前記特定不純物群2それぞれの元素の含有率を低減させる方法については、母粒子(シリカ微粒子)について述べた方法が適用できる。
なお、前記複合微粒子における前記特定不純物群1と前記特定不純物群2の各々の元素の含有率は、ICP(誘導結合プラズマ発光分光分析装置)を用いて測定して求める値とする。
In the composite fine particles, the content of each element of the specific impurity group 1 is preferably 100 ppm or less. Furthermore, it is preferably 50 ppm or less, more preferably 25 ppm or less, still more preferably 5 ppm or less, and even more preferably 1 ppm or less. Moreover, it is preferable that the content rate of each element of the said specific impurity group 2 in the composite fine particle of this invention is 10 ppm or less, respectively. As the method for reducing the content of each element of the specific impurity group 1 and the specific impurity group 2 in the composite fine particles of the present invention, the method described for the mother particles (silica fine particles) can be applied.
Note that the content of each element of the specific impurity group 1 and the specific impurity group 2 in the composite fine particle is a value obtained by measurement using an ICP (inductively coupled plasma emission spectrometer).

<本発明の分散液>
本発明の分散液について説明する。
本発明の分散液は、本発明の製造方法によって得られたシリカ系複合微粒子分散液を含む。もちろん、本発明の分散液はそのシリカ系複合微粒子分散液そのものであってもよい。
本発明の分散液は、上記のような本発明の複合微粒子が分散溶媒に分散しているものである。
<Dispersion of the present invention>
The dispersion liquid of the present invention will be described.
The dispersion of the present invention includes a silica-based composite fine particle dispersion obtained by the production method of the present invention. Of course, the dispersion of the present invention may be the silica-based composite fine particle dispersion itself.
The dispersion liquid of the present invention is such that the composite fine particles of the present invention as described above are dispersed in a dispersion solvent.

本発明の分散液は分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の分散液は、添加剤として、研磨促進剤、界面活性剤、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を含んでいてもよい。   The dispersion of the present invention contains water and / or an organic solvent as a dispersion solvent. For example, water such as pure water, ultrapure water, or ion exchange water is preferably used as the dispersion solvent. Furthermore, the dispersion of the present invention may contain one or more selected from the group consisting of a polishing accelerator, a surfactant, a pH adjuster, and a pH buffer as an additive.

また、本発明の分散液を備える分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。   Examples of the dispersion solvent provided with the dispersion of the present invention include alcohols such as methanol, ethanol, isopropanol, n-butanol, and methyl isocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, and cyclohexanone. Ketones such as N; N-dimethylformamide, amides such as N, N-dimethylacetamide; ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, and 3,4-dihydro-2H-pyran Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-butoxy Glycol ether acetates such as ethyl acetate; esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate, and ethylene carbonate; aromatic hydrocarbons such as benzene, toluene, xylene; hexane, heptane, isooctane, Aliphatic hydrocarbons such as cyclohexane; Halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane and chlorobenzene; Sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N-octyl- Organic solvents such as pyrrolidones such as 2-pyrrolidone can be used. These may be used by mixing with water.

本発明の分散液に含まれる固形分濃度は0.3〜50質量%の範囲にあることが好ましい。   The solid content concentration contained in the dispersion of the present invention is preferably in the range of 0.3 to 50% by mass.

本発明の分散液は、そのpH値を3〜8の範囲とした場合に、カチオンコロイド滴定を始める前、すなわち、滴定量がゼロである場合の流動電位がマイナスの電位となるものであることが好ましい。これは、この流動電位がマイナスの電位を維持する場合、同じくマイナスの表面電位を示す研磨基材への砥粒(シリカ系複合微粒子)の残留が生じ難いからである。   When the pH of the dispersion of the present invention is in the range of 3 to 8, before the start of cationic colloid titration, that is, when the titer is zero, the flow potential is negative. Is preferred. This is because when this flow potential is maintained at a negative potential, it is difficult for abrasive grains (silica-based composite fine particles) to remain on the polishing substrate that also exhibits a negative surface potential.

<研磨用スラリー>
本発明の分散液を含む液体は、研磨スラリー(以下では「本発明の研磨用スラリー」ともいう)として好ましく用いることができる。特にはSiO2絶縁膜が形成された半導体基板の平坦化用の研磨スラリーとして好適に使用することができる。
<Slurry for polishing>
The liquid containing the dispersion of the present invention can be preferably used as a polishing slurry (hereinafter also referred to as “the polishing slurry of the present invention”). In particular, it can be suitably used as a polishing slurry for planarizing a semiconductor substrate on which a SiO 2 insulating film is formed.

本発明の研磨用スラリーは半導体基板などを研磨する際の研磨速度が高く、また研磨時に研磨面のキズ(スクラッチ)が少ない、基板への砥粒の残留が少ないなどの効果に優れている。   The polishing slurry of the present invention has a high polishing rate when polishing a semiconductor substrate and the like, and is excellent in effects such as few scratches (scratches) on the polishing surface and little residual abrasive grains on the substrate during polishing.

本発明の研磨用スラリーは分散溶媒として、水及び/又は有機溶媒を含む。この分散溶媒として、例えば純水、超純水、イオン交換水のような水を用いることが好ましい。さらに、本発明の研磨用スラリーは、添加剤として、研磨促進剤、界面活性剤、複素環化合物、pH調整剤及びpH緩衝剤からなる群より選ばれる1種以上を含んでいてもよい。   The polishing slurry of the present invention contains water and / or an organic solvent as a dispersion solvent. For example, water such as pure water, ultrapure water, or ion exchange water is preferably used as the dispersion solvent. Furthermore, the polishing slurry of the present invention may contain one or more selected from the group consisting of a polishing accelerator, a surfactant, a heterocyclic compound, a pH adjuster and a pH buffer as an additive.

<研磨促進剤>
本発明に係る研磨用スラリーには、被研磨材の種類によっても異なるが、必要に応じて従来公知の研磨促進剤を使用することができる。この様な例としては、過酸化水素、過酢酸、過酸化尿素など及びこれらの混合物を挙げることができる。このような過酸化水素等の研磨促進剤を含む研磨剤組成物を用いると、被研磨材が金属の場合には効果的に研磨速度を向上させることができる。
<Polishing accelerator>
In the polishing slurry according to the present invention, a conventionally known polishing accelerator can be used as necessary, although it varies depending on the type of material to be polished. Examples of such include hydrogen peroxide, peracetic acid, urea peroxide and mixtures thereof. When such an abrasive composition containing a polishing accelerator such as hydrogen peroxide is used, the polishing rate can be effectively improved when the material to be polished is a metal.

研磨促進剤の別の例としては、硫酸、硝酸、リン酸、シュウ酸、フッ酸等の無機酸、酢酸等の有機酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩、アミン塩及びこれらの混合物などを挙げることができる。これらの研磨促進剤を含む研磨用組成物の場合、複合成分からなる被研磨材を研磨する際に、被研磨材の特定の成分についての研磨速度を促進することにより、最終的に平坦な研磨面を得ることができる。   Other examples of polishing accelerators include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, oxalic acid and hydrofluoric acid, organic acids such as acetic acid, or sodium, potassium, ammonium and amine salts of these acids And the like. In the case of a polishing composition containing these polishing accelerators, when polishing a material to be polished consisting of composite components, the polishing rate is accelerated for a specific component of the material to be polished, thereby finally achieving flat polishing. You can get a plane.

本発明に係る研磨用スラリーが研磨促進剤を含有する場合、その含有量としては、0.1〜10質量%であることが好ましく、0.5〜5質量%であることがより好ましい。   When the polishing slurry according to the present invention contains a polishing accelerator, the content thereof is preferably 0.1 to 10% by mass, and more preferably 0.5 to 5% by mass.

<界面活性剤及び/又は親水性化合物>
研磨用スラリーの分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤又は親水性化合物を添加することができる。界面活性剤と親水性化合物は、いずれも被研磨面への接触角を低下させる作用を有し、均一な研磨を促す作用を有する。界面活性剤及び/又は親水性化合物としては、例えば、以下の群から選ばれるものを使用することができる。
<Surfactant and / or hydrophilic compound>
In order to improve the dispersibility and stability of the polishing slurry, a cationic, anionic, nonionic or amphoteric surfactant or a hydrophilic compound can be added. Both the surfactant and the hydrophilic compound have an action of reducing a contact angle to the surface to be polished and an action of promoting uniform polishing. As the surfactant and / or the hydrophilic compound, for example, those selected from the following groups can be used.

陰イオン界面活性剤として、カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩が挙げられ、カルボン酸塩として、石鹸、N−アシルアミノ酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルエーテルカルボン酸塩、アシル化ペプチド;スルホン酸塩として、アルキルスルホン酸塩、アルキルベンゼン及びアルキルナフタレンスルホン酸塩、ナフタレンスルホン酸塩、スルホコハク酸塩、α−オレフィンスルホン酸塩、N−アシルスルホン酸塩;硫酸エステル塩として、硫酸化油、アルキル硫酸塩、アルキルエーテル硫酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテル硫酸塩、アルキルアミド硫酸塩;リン酸エステル塩として、アルキルリン酸塩、ポリオキシエチレン又はポリオキシプロピレンアルキルアリルエーテルリン酸塩を挙げることができる。   Examples of the anionic surfactant include carboxylate, sulfonate, sulfate ester salt and phosphate ester salt. Examples of the carboxylate salt include soap, N-acyl amino acid salt, polyoxyethylene or polyoxypropylene alkyl ether carboxyl. Acid salt, acylated peptide; as sulfonate, alkyl sulfonate, alkyl benzene and alkyl naphthalene sulfonate, naphthalene sulfonate, sulfosuccinate, α-olefin sulfonate, N-acyl sulfonate; sulfate ester Salts include sulfated oil, alkyl sulfates, alkyl ether sulfates, polyoxyethylene or polyoxypropylene alkyl allyl ether sulfates, alkyl amide sulfates; phosphate ester salts such as alkyl phosphates, polyoxyethylene or polyoxypropyls. Can pyrene alkyl allyl ether phosphates.

陽イオン界面活性剤として、脂肪族アミン塩、脂肪族4級アンモニウム塩、塩化ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩;両性界面活性剤として、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン、レシチン、アルキルアミンオキサイドを挙げることができる。   As cationic surfactant, aliphatic amine salt, aliphatic quaternary ammonium salt, benzalkonium chloride salt, benzethonium chloride, pyridinium salt, imidazolinium salt; as amphoteric surfactant, carboxybetaine type, sulfobetaine type, Mention may be made of aminocarboxylates, imidazolinium betaines, lecithins, alkylamine oxides.

非イオン界面活性剤として、エーテル型、エーテルエステル型、エステル型、含窒素型が挙げられ、エーテル型として、ポリオキシエチレンアルキル及びアルキルフェニルエーテル、アルキルアリルホルムアルデヒド縮合ポリオキシエチレンエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンポリオキシプロピレンアルキルエーテルが挙げられ、エーテルエステル型として、グリセリンエステルのポリオキシエチレンエーテル、ソルビタンエステルのポリオキシエチレンエーテル、ソルビトールエステルのポリオキシエチレンエーテル、エステル型として、ポリエチレングリコール脂肪酸エステル、グリセリンエステル、ポリグリセリンエステル、ソルビタンエステル、プロピレングリコールエステル、ショ糖エステル、含窒素型として、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミド等が例示される。その他に、フッ素系界面活性剤などが挙げられる。   Nonionic surfactants include ether type, ether ester type, ester type and nitrogen-containing type. Ether type includes polyoxyethylene alkyl and alkylphenyl ether, alkylallyl formaldehyde condensed polyoxyethylene ether, polyoxyethylene poly Examples include oxypropylene block polymer, polyoxyethylene polyoxypropylene alkyl ether, ether ester type, glycerin ester polyoxyethylene ether, sorbitan ester polyoxyethylene ether, sorbitol ester polyoxyethylene ether, ester type, Polyethylene glycol fatty acid ester, glycerin ester, polyglycerin ester, sorbitan ester, propylene glycol ester , Sucrose esters, nitrogen-containing type, fatty acid alkanolamides, polyoxyethylene fatty acid amides, polyoxyethylene alkyl amide, and the like. In addition, a fluorine-type surfactant etc. are mentioned.

界面活性剤としては陰イオン界面活性剤もしくは非イオン系界面活性剤が好ましく、また、塩としては、アンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、特にアンモニウム塩及びカリウム塩が好ましい。   As the surfactant, an anionic surfactant or a nonionic surfactant is preferable, and as the salt, ammonium salt, potassium salt, sodium salt and the like can be mentioned, and ammonium salt and potassium salt are particularly preferable.

さらに、その他の界面活性剤、親水性化合物等としては、グリセリンエステル、ソルビタンエステル及びアラニンエチルエステル等のエステル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエチレングリコールアルキルエーテル、ポリエチレングリコールアルケニルエーテル、アルキルポリエチレングリコール、アルキルポリエチレングリコールアルキルエーテル、アルキルポリエチレングリコールアルケニルエーテル、アルケニルポリエチレングリコール、アルケニルポリエチレングリコールアルキルエーテル、アルケニルポリエチレングリコールアルケニルエーテル、ポリプロピレングリコールアルキルエーテル、ポリプロピレングリコールアルケニルエーテル、アルキルポリプロピレングリコール、アルキルポリプロピレングリコールアルキルエーテル、アルキルポリプロピレングリコールアルケニルエーテル、アルケニルポリプロピレングリコール等のエーテル;アルギン酸、ペクチン酸、カルボキシメチルセルロース、カードラン及びプルラン等の多糖類;グリシンアンモニウム塩及びグリシンナトリウム塩等のアミノ酸塩;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリビニルアルコール、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ;メチルタウリン酸アンモニウム塩、メチルタウリン酸ナトリウム塩、硫酸メチルナトリウム塩、硫酸エチルアンモニウム塩、硫酸ブチルアンモニウム塩、ビニルスルホン酸ナトリウム塩、1−アリルスルホン酸ナトリウム塩、2−アリルスルホン酸ナトリウム塩、メトキシメチルスルホン酸ナトリウム塩、エトキシメチルスルホン酸アンモニウム塩、3−エトキシプロピルスルホン酸ナトリウム塩等のスルホン酸及びその塩;プロピオンアミド、アクリルアミド、メチル尿素、ニコチンアミド、コハク酸アミド及びスルファニルアミド等のアミド等を挙げることができる。   Further, other surfactants and hydrophilic compounds include esters such as glycerin ester, sorbitan ester and alanine ethyl ester; polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyethylene glycol alkyl ether, polyethylene glycol alkenyl ether, alkyl Polyethylene glycol, alkyl polyethylene glycol alkyl ether, alkyl polyethylene glycol alkenyl ether, alkenyl polyethylene glycol, alkenyl polyethylene glycol alkyl ether, alkenyl polyethylene glycol alkenyl ether, polypropylene glycol alkyl ether, polypropylene glycol alkenyl ether, alkyl polypropylene Ethers such as recall, alkyl polypropylene glycol alkyl ether, alkyl polypropylene glycol alkenyl ether, alkenyl polypropylene glycol; polysaccharides such as alginic acid, pectic acid, carboxymethyl cellulose, curdlan and pullulan; amino acid salts such as glycine ammonium salt and glycine sodium salt; Polyaspartic acid, polyglutamic acid, polylysine, polymalic acid, polymethacrylic acid, polymethacrylic acid ammonium salt, polymethacrylic acid sodium salt, polyamic acid, polymaleic acid, polyitaconic acid, polyfumaric acid, poly (p-styrenecarboxylic acid), poly Acrylic acid, polyacrylamide, aminopolyacrylamide, polyacrylic acid ammonium salt, polyacrylic acid sodium salt, Polycarboxylic acids such as lyamidic acid, polyamic acid ammonium salt, polyamic acid sodium salt and polyglyoxylic acid and their salts; vinyl polymers such as polyvinyl alcohol, polyvinylpyrrolidone and polyacrolein; methyl tauric acid ammonium salt, methyl tauric acid sodium salt , Methyl sulfate sodium salt, ethyl ammonium sulfate salt, butyl ammonium sulfate salt, vinyl sulfonic acid sodium salt, 1-allyl sulfonic acid sodium salt, 2-allyl sulfonic acid sodium salt, methoxymethyl sulfonic acid sodium salt, ethoxymethyl sulfonic acid ammonium salt Salts, sulfonic acids such as 3-ethoxypropylsulfonic acid sodium salt and the salts thereof; propionamide, acrylamide, methylurea, nicotinamide, succinic acid amide and sulfite Examples thereof include amides such as an amide.

なお、適用する被研磨基材がガラス基板等である場合は、何れの界面活性剤であっても好適に使用できるが、半導体集積回路用シリコン基板などの場合であって、アルカリ金属、アルカリ土類金属又はハロゲン化物等による汚染の影響を嫌う場合にあっては、酸もしくはそのアンモニウム塩系の界面活性剤を使用することが望ましい。   Note that when the substrate to be polished is a glass substrate or the like, any surfactant can be suitably used. However, in the case of a silicon substrate for a semiconductor integrated circuit or the like, alkali metal, alkaline earth In the case where the influence of contamination by a metal or a halide is disliked, it is desirable to use an acid or an ammonium salt surfactant.

本発明に係る研磨用スラリーが界面活性剤及び/又は親水性化合物を含有する場合、その含有量は、総量として、研磨用スラリーの1L中、0.001〜10gとすることが好ましく、0.01〜5gとすることがより好ましく0.1〜3gとすることが特に好ましい。   When the polishing slurry according to the present invention contains a surfactant and / or a hydrophilic compound, the total content is preferably 0.001 to 10 g in 1 L of the polishing slurry. It is more preferable to set it as 01-5g, and it is especially preferable to set it as 0.1-3g.

界面活性剤及び/又は親水性化合物の含有量は、充分な効果を得る上で、研磨用スラリーの1L中、0.001g以上が好ましく、研磨速度低下防止の点から10g以下が好ましい。   In order to obtain a sufficient effect, the content of the surfactant and / or the hydrophilic compound is preferably 0.001 g or more in 1 L of the polishing slurry, and preferably 10 g or less from the viewpoint of preventing the polishing rate from being lowered.

界面活性剤又は親水性化合物は1種のみでもよいし、2種以上を使用してもよく、異なる種類のものを併用することもできる。   Only one type of surfactant or hydrophilic compound may be used, two or more types may be used, and different types may be used in combination.

<複素環化合物>
本発明の研磨用スラリーについては、被研磨基材に金属が含まれる場合に、金属に不動態層又は溶解抑制層を形成させて、被研磨基材の侵食を抑制する目的で、複素環化合物を含有させても構わない。ここで、「複素環化合物」とはヘテロ原子を1個以上含んだ複素環を有する化合物である。ヘテロ原子とは、炭素原子、又は水素原子以外の原子を意味する。複素環とはヘテロ原子を少なくとも一つ持つ環状化合物を意味する。ヘテロ原子は複素環の環系の構成部分を形成する原子のみを意味し、環系に対して外部に位置していたり、少なくとも一つの非共役単結合により環系から分離していたり、環系のさらなる置換基の一部分であるような原子は意味しない。ヘテロ原子として好ましくは、窒素原子、硫黄原子、酸素原子、セレン原子、テルル原子、リン原子、ケイ素原子、及びホウ素原子などを挙げることができるがこれらに限定されるものではない。複素環化合物の例として、イミダゾール、ベンゾトリアゾール、ベンゾチアゾール、テトラゾールなどを用いることができる。より具体的には、1,2,3,4−テトラゾール、5−アミノ−1,2,3,4−テトラゾール、5−メチル−1,2,3,4−テトラゾール、1,2,3−トリアゾール、4−アミノ−1,2,3−トリアゾール、4,5−ジアミノ−1,2,3−トリアゾール、1,2,4−トリアゾール、3−アミノ1,2,4−トリアゾール、3,5−ジアミノ−1,2,4−トリアゾールなどを挙げることができるが、これらに限定されるものではない。
<Heterocyclic compound>
Regarding the polishing slurry of the present invention, when a metal is contained in the substrate to be polished, a heterocyclic compound is formed for the purpose of suppressing the erosion of the substrate to be polished by forming a passive layer or a dissolution suppressing layer on the metal. May be included. Here, the “heterocyclic compound” is a compound having a heterocyclic ring containing one or more heteroatoms. A hetero atom means an atom other than a carbon atom or a hydrogen atom. A heterocycle means a cyclic compound having at least one heteroatom. A heteroatom means only those atoms that form part of a heterocyclic ring system, either external to the ring system, separated from the ring system by at least one non-conjugated single bond, Atoms that are part of a further substituent of are not meant. Preferred examples of the hetero atom include, but are not limited to, a nitrogen atom, a sulfur atom, an oxygen atom, a selenium atom, a tellurium atom, a phosphorus atom, a silicon atom, and a boron atom. As examples of the heterocyclic compound, imidazole, benzotriazole, benzothiazole, tetrazole, and the like can be used. More specifically, 1,2,3,4-tetrazole, 5-amino-1,2,3,4-tetrazole, 5-methyl-1,2,3,4-tetrazole, 1,2,3- Triazole, 4-amino-1,2,3-triazole, 4,5-diamino-1,2,3-triazole, 1,2,4-triazole, 3-amino1,2,4-triazole, 3,5 -Diamino-1,2,4-triazole can be mentioned, but is not limited thereto.

本発明に係る研磨用スラリーに複素環化合物を配合する場合の含有量については、0.001〜1.0質量%であることが好ましく、0.001〜0.7質量%であることがより好ましく、0.002〜0.4質量%であることがさらに好ましい。   About content in the case of mix | blending a heterocyclic compound with the slurry for polishing which concerns on this invention, it is preferable that it is 0.001-1.0 mass%, and it is more that it is 0.001-0.7 mass%. Preferably, it is 0.002-0.4 mass%.

<pH調整剤>
上記各添加剤の効果を高めるためなどに必要に応じて酸又は塩基を添加して研磨用組成物のpHを調節することができる。
<PH adjuster>
In order to enhance the effects of the above additives, an acid or a base can be added as necessary to adjust the pH of the polishing composition.

研磨用スラリーをpH7以上に調整するときは、pH調整剤として、アルカリ性のものを使用する。望ましくは、水酸化ナトリウム、アンモニア水、炭酸アンモニウム、エチルアミン、メチルアミン、トリエチルアミン、テトラメチルアミンなどのアミンが使用される。   When adjusting the polishing slurry to pH 7 or higher, an alkaline one is used as a pH adjuster. Desirably, amines such as sodium hydroxide, aqueous ammonia, ammonium carbonate, ethylamine, methylamine, triethylamine, tetramethylamine are used.

研磨用スラリーをpH7未満に調整するときは、pH調整剤として、酸性のものが使用される。例えば、酢酸、乳酸、クエン酸、リンゴ酸、酒石酸、グリセリン酸などのヒドロキシ酸類の様な、塩酸、硝酸などの鉱酸が使用される。   When the polishing slurry is adjusted to a pH of less than 7, an acidic one is used as a pH adjuster. For example, mineral acids such as hydrochloric acid and nitric acid such as hydroxy acids such as acetic acid, lactic acid, citric acid, malic acid, tartaric acid and glyceric acid are used.

<pH緩衝剤>
研磨用スラリーのpH値を一定に保持するために、pH緩衝剤を使用しても構わない。pH緩衝剤としては、例えば、リン酸2水素アンモニウム、リン酸水素2アンモニウム、4ホウ酸アンモ四水和水などのリン酸塩及びホウ酸塩又は有機酸などを使用することができる。
<PH buffering agent>
In order to keep the pH value of the polishing slurry constant, a pH buffer may be used. Examples of the pH buffering agent that can be used include phosphates and borates such as ammonium dihydrogen phosphate, diammonium hydrogen phosphate, and ammonium tetraborate tetrahydrate, and organic acids.

また、本発明の研磨用スラリーの分散溶媒として、例えばメタノール、エタノール、イソプロパノール、n−ブタノール、メチルイソカルビノールなどのアルコール類;アセトン、2−ブタノン、エチルアミルケトン、ジアセトンアルコール、イソホロン、シクロヘキサノンなどのケトン類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド類;ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、3,4−ジヒドロ−2H−ピランなどのエーテル類;2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、エチレングリコールジメチルエーテルなどのグリコールエーテル類;2−メトキシエチルアセテート、2−エトキシエチルアセテート、2−ブトキシエチルアセテートなどのグリコールエーテルアセテート類;酢酸メチル、酢酸エチル、酢酸イソブチル、酢酸アミル、乳酸エチル、エチレンカーボネートなどのエステル類;ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ヘキサン、ヘプタン、イソオクタン、シクロヘキサンなどの脂肪族炭化水素類;塩化メチレン、1,2−ジクロルエタン、ジクロロプロパン、クロルベンゼンなどのハロゲン化炭化水素類;ジメチルスルホキシドなどのスルホキシド類;N−メチル−2−ピロリドン、N−オクチル−2−ピロリドンなどのピロリドン類などの有機溶媒を用いることができる。これらを水と混合して用いてもよい。   Examples of the dispersion solvent for the polishing slurry of the present invention include alcohols such as methanol, ethanol, isopropanol, n-butanol, and methyl isocarbinol; acetone, 2-butanone, ethyl amyl ketone, diacetone alcohol, isophorone, and cyclohexanone. Ketones such as N; N-dimethylformamide, amides such as N, N-dimethylacetamide; ethers such as diethyl ether, isopropyl ether, tetrahydrofuran, 1,4-dioxane, and 3,4-dihydro-2H-pyran Glycol ethers such as 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, ethylene glycol dimethyl ether; 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-but Glycol ether acetates such as ciethyl acetate; Esters such as methyl acetate, ethyl acetate, isobutyl acetate, amyl acetate, ethyl lactate and ethylene carbonate; Aromatic hydrocarbons such as benzene, toluene and xylene; Hexane, heptane and isooctane Aliphatic hydrocarbons such as cyclohexane; halogenated hydrocarbons such as methylene chloride, 1,2-dichloroethane, dichloropropane, chlorobenzene; sulfoxides such as dimethyl sulfoxide; N-methyl-2-pyrrolidone, N-octyl Organic solvents such as pyrrolidones such as -2-pyrrolidone can be used. These may be used by mixing with water.

本発明の研磨用スラリーに含まれる固形分濃度は、必要とする研磨速度が得られる限り格別限定されるものではない。通常は、0.3〜50質量%の範囲にあることが好ましい。この固形分濃度が低すぎると研磨速度が低下する可能性がある。   The solid content concentration contained in the polishing slurry of the present invention is not particularly limited as long as the required polishing rate is obtained. Usually, it is preferable that it exists in the range of 0.3-50 mass%. If this solid content concentration is too low, the polishing rate may decrease.

本発明の製造方法で得られるシリカ系複合微粒子分散液は、カチオンコロイド滴定を行った場合に、下記式(1)で表される流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が―110.0〜―15.0となる流動電位曲線が得られるものであることが好ましい。
ΔPCD/V=(I−C)/V・・・式(1)
C:前記クニックにおける流動電位(mV)
I:前記流動電位曲線の開始点における流動電位(mV)
V:前記クニックにおける前記カチオンコロイド滴定液の添加量(ml)
When the cation colloid titration is performed, the silica-based composite fine particle dispersion obtained by the production method of the present invention has a flow potential change amount (ΔPCD) represented by the following formula (1) and a cation colloid titration liquid in a knick. It is preferable that a flow potential curve having a ratio (ΔPCD / V) to the addition amount (V) of −110.0 to −15.0 is obtained.
ΔPCD / V = (I−C) / V (1)
C: Streaming potential (mV) at the nick
I: Streaming potential (mV) at the starting point of the streaming potential curve
V: Amount of the colloid titration solution added in the nick (ml)

ここで、カチオンコロイド滴定は、固形分濃度を1質量%に調整した本発明の分散液80gにカチオンコロイド滴定液を添加することで行う。カチオンコロイド滴定液として、0.001Nポリ塩化ジアリルジメチルアンモニウム溶液を用いる。   Here, the cation colloid titration is performed by adding the cation colloid titration liquid to 80 g of the dispersion liquid of the present invention in which the solid content concentration is adjusted to 1% by mass. A 0.001N polydiallyldimethylammonium chloride solution is used as the cationic colloid titrant.

このカチオンコロイド滴定によって得られる流動電位曲線とは、カチオン滴定液の添加量(ml)をX軸、本発明の分散液の流動電位(mV)をY軸に取ったグラフである。
また、クニックとは、カチオンコロイド滴定によって得られる流動電位曲線において急激に流動電位が変化する点(変曲点)である。この変曲点における流動電位をC(mV)とし、点Aにおけるカチオンコロイド滴定液の添加量をV(ml)とする。
滴定前の前記シリカ系複合微粒子分散液における流動電位を流動電位曲線の開始点とし、通常は、カチオンコロイド滴定液の添加量が0である点を開始点とする。また、開始点における流動電位をI(mV)とする。
The flow potential curve obtained by the cation colloid titration is a graph in which the addition amount (ml) of the cation titrant is taken on the X axis and the flow potential (mV) of the dispersion of the present invention is taken on the Y axis.
A knick is a point (inflection point) where the streaming potential changes suddenly in the streaming potential curve obtained by cationic colloid titration. The flow potential at this inflection point is C (mV), and the addition amount of the cation colloid titrant at point A is V (ml).
The streaming potential in the silica-based composite fine particle dispersion before titration is the starting point of the streaming potential curve, and the starting point is usually the point where the addition amount of the cationic colloid titrating solution is zero. Further, the flow potential at the starting point is I (mV).

前記のΔPCD/Vの値が−110.0〜−15.0であると、本発明の製造方法でえられたシリカ系複合微粒子分散液を研磨剤として用いた場合、研磨剤の研磨速度がより向上する。このΔPCD/Vは、本発明の製造方法で得られた複合微粒子表面におけるシリカ被膜の被覆具合及び/又は複合微粒子の表面における子粒子の露出具合あるいは脱離しやすいシリカの存在を反映していると考えられる。ΔPCD/Vの値が上記範囲内であると、湿式による解砕・粉砕時において子粒子は脱離する事が少なく、研磨速度も高いと本発明者は推定している。逆にΔPCD/Vの値が−110.0よりもその絶対値が大きい場合は、複合微粒子表面がシリカ被膜で全面覆われているため解砕・粉砕工程にて子粒子脱落は起き難いが研磨時にシリカが脱離しがたく研磨速度が低下する。一方、−15.0よりもその絶対値が小さい場合は脱落が起きやすいと考えられる。上記範囲内であると、研磨時において子粒子表面が適度に露出して子粒子の脱落が少なく、研磨速度がより向上すると本発明者は推定している。ΔPCD/Vは、−100.0〜−15.0であることがより好ましく、−100.0〜−20.0であることがさらに好ましい。   When the value of ΔPCD / V is −110.0 to −15.0, when the silica-based composite fine particle dispersion obtained by the production method of the present invention is used as an abrasive, the polishing rate of the abrasive is More improved. This ΔPCD / V reflects the coating condition of the silica coating on the surface of the composite fine particles obtained by the production method of the present invention and / or the exposure condition of the child particles on the surface of the composite fine particles or the presence of silica that is easily detached. Conceivable. When the value of ΔPCD / V is within the above range, the present inventor presumes that the child particles are hardly detached at the time of wet pulverization / pulverization and the polishing rate is high. Conversely, if the absolute value of ΔPCD / V is larger than −110.0, the surface of the composite fine particles is entirely covered with a silica coating, so that it is difficult for the child particles to fall off during the crushing and pulverization process. Sometimes the silica is difficult to desorb and the polishing rate decreases. On the other hand, when the absolute value is smaller than -15.0, it is considered that dropout is likely to occur. The inventor presumes that within the above range, the surface of the child particles is appropriately exposed at the time of polishing so that the child particles are not dropped off and the polishing rate is further improved. ΔPCD / V is more preferably −100.0 to −15.0, and further preferably −100.0 to −20.0.

本発明の製造方法で得られたシリカ系複合微粒子分散液は、そのpH値を3〜8の範囲とした場合に、カチオンコロイド滴定を始める前、すなわち、滴定量がゼロである場合の流動電位がマイナスの電位となるものであることが好ましい。これは、この流動電位がマイナスの電位を維持する場合、同じくマイナスの表面電位を示す研磨基材への砥粒(シリカ系複合微粒子)の残留が生じ難いからである。   When the pH value of the silica-based composite fine particle dispersion obtained by the production method of the present invention is in the range of 3 to 8, before the start of cationic colloid titration, that is, when the titer is zero, the streaming potential is zero. Is preferably a negative potential. This is because when this flow potential is maintained at a negative potential, it is difficult for abrasive grains (silica-based composite fine particles) to remain on the polishing substrate that also exhibits a negative surface potential.

なお、本発明の製造方法の工程2・(ii)の湿式による解砕・粉砕を行う場合は、溶媒のpHを8.6〜10.8に維持しながら湿式による解砕・粉砕を行うことが好ましい。pHをこの範囲に維持すると、カチオンコロイド滴定を行った場合に、前記式(1)で表される、流動電位変化量(ΔPCD)と、クニックにおけるカチオンコロイド滴定液の添加量(V)との比(ΔPCD/V)が−110.0〜−15.0となる流動電位曲線が得られるシリカ系複合微粒子分散液を、最終的により容易に得ることができる。
すなわち、前述の好ましい態様に該当する本発明の分散液が得られる程度に、解砕・粉砕を行うことが好ましい。前述のように、好ましい態様に該当する本発明の分散液を研磨剤に用いた場合、研磨速度がより向上するからである。これについて本発明者は、本発明の複合微粒子表面におけるシリカ被膜が適度に薄くなること、及び/又は複合微粒子表面の一部に子粒子が適度に露出することで、研磨速度がより向上し、且つセリアの子粒子の脱落を制御できると推定している。また、シリカ被膜が薄いか剥げた状態であるため、子粒子が研磨時にある程度脱離しやすくなると推定している。ΔPCD/Vは、−100.0〜−15.0であることがより好ましく、−100.0〜−20.0であることがさらに好ましい。
In addition, when performing the crushing and grinding | pulverization by wet of the process 2 * (ii) of the manufacturing method of this invention, crushing and grinding | pulverization by wet are performed, maintaining the pH of a solvent at 8.6-10.8. Is preferred. When the pH is maintained in this range, when the cationic colloid titration is performed, the change in streaming potential (ΔPCD) represented by the above formula (1) and the addition amount (V) of the cationic colloid titrant in the knick A silica-based composite fine particle dispersion in which a flow potential curve having a ratio (ΔPCD / V) of -110.0 to -15.0 is obtained can be finally obtained more easily.
That is, it is preferable to perform pulverization and pulverization to such an extent that the dispersion liquid of the present invention corresponding to the above-mentioned preferable embodiment can be obtained. This is because, as described above, when the dispersion liquid of the present invention corresponding to a preferred embodiment is used as an abrasive, the polishing rate is further improved. About this, the inventor is that the silica coating on the surface of the composite fine particles of the present invention is moderately thin, and / or the child particles are exposed to a part of the surface of the composite fine particles, the polishing rate is further improved, In addition, it is estimated that the falling of ceria particles can be controlled. Further, since the silica coating is thin or peeled off, it is estimated that the child particles are easily detached to some extent during polishing. ΔPCD / V is more preferably −100.0 to −15.0, and further preferably −100.0 to −20.0.

以下、本発明について実施例に基づき説明する。本発明はこれらの実施例に限定されない。   Hereinafter, the present invention will be described based on examples. The present invention is not limited to these examples.

<実験1>
初めに、実施例及び比較例における各測定方法及び試験方法の詳細について説明する。各実施例及び比較例について、以下の各測定結果及び試験結果を第1表に記す。
<Experiment 1>
First, details of each measurement method and test method in Examples and Comparative Examples will be described. For each example and comparative example, the following measurement results and test results are shown in Table 1.

[成分の分析]
[シリカ微粒子(母粒子)]
後述するヒュームドシリカのSiO2重量について、1000℃灼熱減量を行って秤量により求めた。また、シリカ微粒子分散液のSiO2重量について、珪酸ナトリウムを原料としたシリカ微粒子の場合は1000℃灼熱減量を行って秤量により求めた。またアルコキシシランを原料としたシリカ微粒子の場合は、シリカ微粒子分散液を150℃で1時間乾燥させた後に秤量して求めた。
[Analysis of ingredients]
[Silica fine particles (mother particles)]
The SiO 2 weight of fumed silica described later was determined by weighing after performing a 1000 ° C. loss reduction. Further, the SiO 2 by weight of the silica fine particle dispersion, in the case of the silica fine particles of sodium silicate as a raw material was determined by weighing performed 1000 ° C. ignition loss. In the case of silica fine particles using alkoxysilane as a raw material, the silica fine particle dispersion was dried at 150 ° C. for 1 hour and then weighed.

[シリカ系複合微粒子]
各元素の含有率は、以下の方法によって測定するものとする。
初めに、シリカ系複合微粒子分散液からなる試料約1g(固形分20質量%)を白金皿に採取する。リン酸3ml、硝酸5ml、弗化水素酸10mlを加えて、サンドバス上で加熱する。乾固したら、少量の水と硝酸50mlを加えて溶解させて100mlのメスフラスコにおさめ、水を加えて100mlとする。この溶液でNa、Kは原子吸光分光分析装置(例えば日立製作所社製、Z−2310)で測定する。次に、100mlにおさめた溶液から分液10mlを20mlメスフラスコに採取する操作を5回繰り返し、分液10mlを5個得る。そして、これを用いて、Al、Ag、Ca、Cr、Cu、Fe、Mg、Ni、Ti、Zn、Zr、U及びThについてICPプラズマ発光分析装置(例えばSII製、SPS5520)にて標準添加法で測定を行う。ここで、同様の方法でブランクも測定して、ブランク分を差し引いて調整し、各元素における測定値とする。
以下、特に断りがない限り、本発明におけるNa、Al、Ag、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U及びThの成分の含有率(含有量)は、このような方法で測定して得た値を意味するものとする。
[Silica composite fine particles]
The content rate of each element shall be measured with the following method.
First, about 1 g (solid content: 20% by mass) of a sample composed of a silica-based composite fine particle dispersion is collected in a platinum dish. Add 3 ml of phosphoric acid, 5 ml of nitric acid and 10 ml of hydrofluoric acid and heat on a sand bath. Once dry, add a small amount of water and 50 ml of nitric acid to dissolve and place in a 100 ml volumetric flask and add water to make 100 ml. In this solution, Na and K are measured with an atomic absorption spectrometer (for example, Z-2310, manufactured by Hitachi, Ltd.). Next, the operation of collecting 10 ml of the liquid separation from the solution in 100 ml into the 20 ml volumetric flask is repeated 5 times to obtain 5 10 ml of the liquid separation. Using this, standard addition method for Al, Ag, Ca, Cr, Cu, Fe, Mg, Ni, Ti, Zn, Zr, U and Th with an ICP plasma emission spectrometer (for example, SPS5520 manufactured by SII) Measure with. Here, a blank is also measured by the same method, and the blank is subtracted and adjusted to obtain measured values for each element.
Hereinafter, unless otherwise specified, the content (content) of the components of Na, Al, Ag, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U and Th in the present invention is as follows. The value obtained by measurement by such a method is meant.

各陰イオンの含有率は、以下の方法によって測定するものとする。
<Cl>
シリカ系複合微粒子分散液からなる試料20g(固形分20質量%)にアセトンを加え100mlに調整し、この溶液に、酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で電位差滴定法(京都電子製:電位差滴定装置AT−610)で分析を行う。
別途ブランク測定として、アセトン100mlに酢酸5ml、0.001モル塩化ナトリウム溶液4mlを加えて0.002モル硝酸銀溶液で滴定を行った場合の滴定量を求めておき、試料を用いた場合の滴定量から差し引き、試料の滴定量とした。
The content rate of each anion shall be measured by the following method.
<Cl>
Acetone is added to a 20 g sample (solid content of 20% by mass) composed of a silica-based composite fine particle dispersion to adjust to 100 ml, and 5 ml of acetic acid and 4 ml of 0.001 molar sodium chloride solution are added to this solution to form a 0.002 molar silver nitrate solution. The analysis is carried out by potentiometric titration (Kyoto Electronics: potentiometric titrator AT-610).
Separately, as a blank measurement, 5 ml of acetic acid and 4 ml of 0.001 molar sodium chloride solution were added to 100 ml of acetone, and titration was performed when titrating with 0.002 molar silver nitrate solution, and titration when using a sample. Was subtracted from the sample to obtain a titration amount of the sample.

<NO3、SO4、F>
シリカ系複合微粒子分散液からなる試料5g(固形分20質量%)を水で希釈して100mlにおさめ、遠心分離機(日立製 HIMAC CT06E)にて4000rpmで20分遠心分離して、沈降成分を除去して得た液をイオンクロマトグラフ(DIONEX製 ICS−1100)にて分析した。
<NO 3 , SO 4 , F>
A 5 g sample (solid content of 20% by mass) composed of a silica-based composite fine particle dispersion is diluted with water to 100 ml, and centrifuged at 4000 rpm for 20 minutes in a centrifuge (HIMAC CT06E manufactured by Hitachi), and the precipitated components are separated. The liquid obtained by the removal was analyzed with an ion chromatograph (ICS-1100, manufactured by DIONEX).

<SiO2、CeO2
シリカ系複合微粒子におけるシリカとセリアの含有率を求める場合、まずシリカ系複合微粒子の分散液の固形分濃度を、1000℃灼熱減量を行って秤量により求める。次にCeについて、Al〜Th等と同様にICPプラズマ発光分析装置(例えば、SII製、SPS5520)を用いて標準添加法で測定を行い、得られたCe含有率からCeO2質量%を算出する。そして、本発明の複合微粒子を構成するCeO2以外の成分はSiO2であるとして、SiO2質量%を算出する。
なお、シリカ微粒子(母粒子)における各元素又は各陰イオンの含有率は、上記シリカ系複合微粒子の分析方法において、試料をシリカ系複合微粒子分散液に代えて、シリカ微粒子分散液を用いることにより行った。
<SiO 2 , CeO 2 >
When obtaining the content of silica and ceria in the silica-based composite fine particles, first, the solid content concentration of the dispersion of the silica-based composite fine particles is determined by weighing at 1000 ° C. and by weight reduction. Next, Ce is measured by a standard addition method using an ICP plasma emission spectrometer (for example, SPS5520 manufactured by SII) in the same manner as Al to Th and the like, and CeO 2 mass% is calculated from the obtained Ce content. . Then, assuming that the components other than CeO 2 constituting the composite fine particles of the present invention are SiO 2 , SiO 2 mass% is calculated.
The content of each element or each anion in the silica fine particles (mother particles) is determined by using the silica fine particle dispersion instead of the silica composite fine particle dispersion in the method for analyzing silica-based composite fine particles. went.

[X線回折法、結晶子径の測定]
前述の方法に則り、実施例及び比較例で得られたシリカ系複合微粒子分散液を従来公知の乾燥機を用いて乾燥し、得られた粉体を乳鉢にて10分粉砕し、X線回折装置(理学電気(株)製、RINT1400)によってX線回折パターンを得て、結晶型を特定した。
また、前述のように、得られたX線回折パターンにおける2θ=28度近傍の(111)面(2θ=28度近傍)のピークの半価幅を測定し、Scherrerの式により、結晶子径を求めた。
[X-ray diffraction method, measurement of crystallite diameter]
In accordance with the method described above, the silica-based composite fine particle dispersions obtained in Examples and Comparative Examples were dried using a conventionally known dryer, and the obtained powder was pulverized in a mortar for 10 minutes, and X-ray diffraction was performed. An X-ray diffraction pattern was obtained by an apparatus (RINT1400, manufactured by Rigaku Corporation), and a crystal form was specified.
Further, as described above, the half width of the peak of the (111) plane (2θ = 28 degrees) near 2θ = 28 degrees in the obtained X-ray diffraction pattern was measured, and the crystallite diameter was calculated according to Scherrer's equation. Asked.

<平均粒子径(D2)>
実施例及び比較例で得られたシリカ微粒子分散液及びシリカ系複合微粒子分散液について、これに含まれる粒子の平均粒子径(D2)を前述の方法で測定した。
具体的にはシリカ母粒子はHORIBA社製LA950を用い、シリカ系複合微粒子については日機装株式会社製マイクロトラックUPA装置を用いた。
<Average particle diameter (D2)>
For the silica fine particle dispersions and silica-based composite fine particle dispersions obtained in the examples and comparative examples, the average particle diameter (D2) of the particles contained therein was measured by the method described above.
Specifically, LA950 made by HORIBA was used as the silica mother particle, and a Microtrac UPA device made by Nikkiso Co., Ltd. was used for the silica composite fine particles.

<比表面積換算粒子径(DS)>
前述のBET比表面積測定法(窒素吸着法)によって、シリカ微粒子の比表面積(Sa)を測定し、このSaを次の式に代入してDSを求めた。
DS=6000/(ρ×Sa)
ここでρは試料の密度であり、シリカ試料の場合は2.2とした。
なお、二次粒子径(D2)と比表面積換算粒子径(DS)との比[(D2)/(DS)]の値は、二次粒子径(D2)、比表面積換算粒子径(DS)の両者の単位を同じくして
算定した。
<Specific surface area equivalent particle diameter (DS)>
The specific surface area (Sa) of the silica fine particles was measured by the aforementioned BET specific surface area measurement method (nitrogen adsorption method), and DS was determined by substituting this Sa into the following equation.
DS = 6000 / (ρ × Sa)
Here, ρ is the density of the sample, and 2.2 in the case of the silica sample.
In addition, the value of the ratio [(D2) / (DS)] of the secondary particle diameter (D2) and the specific surface area converted particle diameter (DS) is the secondary particle diameter (D2) and the specific surface area converted particle diameter (DS). Both units were calculated in the same way.

<短径/長径比率>
実施例及び比較例で得られたシリカ微粒子分散液及びシリカ系複合微粒子分散液が含む各粒子について、透過型電子顕微鏡(Transmission Electron Microscope;日立製作所社製、型番:S−5500)を用いて倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とした。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DB)とした。そして、比(DB/DL)を求めた。この測定を任意の50個の粒子について行い、単一粒子としての短径/長径比が0.8以下の粒子の個数比率(%)を求めた。
<Short diameter / Long diameter ratio>
About each particle | grains which the silica particle dispersion liquid and silica type composite particle dispersion liquid which were obtained in the Example and the comparative example contain, it is a magnification using a transmission electron microscope (Transmission Electron Microscope; Hitachi Ltd. make, model number: S-5500). In a photographic projection obtained by taking a photograph at 250,000 times (or 500,000 times), the maximum diameter of the particles was taken as the major axis, the length was measured, and the value was taken as the major diameter (DL). Further, a point that bisects the major axis on the major axis was determined, two points where a straight line perpendicular to the major axis intersected the outer edge of the particle were determined, and the distance between the two points was measured to obtain a minor axis (DB). And ratio (DB / DL) was calculated | required. This measurement was performed on arbitrary 50 particles, and the number ratio (%) of particles having a minor axis / major axis ratio of 0.8 or less as a single particle was determined.

[研磨試験方法]
<SiO2膜の研磨>
実施例及び比較例の各々において得られたシリカ系複合微粒子分散液を含むスラリー(研磨用スラリー)を調整した。ここで固形分濃度は0.6質量%で硝酸を添加してpHは5.0とした。
次に、被研磨基板として、熱酸化法により作製したSiO2絶縁膜(厚み1μm)基板を準備した。
次に、この被研磨基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「IC-1000/SUBA400同心円タイプ」)を使用し、基板荷重0.5MPa、テーブル回転速度90rpmで研磨用スラリーを50ml/分の速度で1分間供給して研磨を行った。
そして、研磨前後の被研磨基材の重量変化を求めて研磨速度を計算した。
また、研磨基材の表面の平滑性(表面粗さRa)を原子間力顕微鏡(AFM、株式会社日立ハイテクサイエンス社製)を用いて測定した。
なお研磨傷の観察は、光学顕微鏡を用いて絶縁膜表面を観察することで行った。
[Polishing test method]
<Polishing of SiO 2 film>
A slurry (polishing slurry) containing the silica-based composite fine particle dispersion obtained in each of Examples and Comparative Examples was prepared. Here, the solid content concentration was 0.6% by mass, and nitric acid was added to adjust the pH to 5.0.
Next, as a substrate to be polished, a SiO 2 insulating film (thickness 1 μm) substrate prepared by a thermal oxidation method was prepared.
Next, the substrate to be polished is set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), and a polishing pad (“IC-1000 / SUBA400 concentric type” manufactured by Nitta Haas) is used. Polishing was performed by supplying a polishing slurry at a rotation speed of 90 rpm at a rate of 50 ml / min for 1 minute.
And the grinding | polishing speed | rate was calculated by calculating | requiring the weight change of the to-be-polished base material before and behind grinding | polishing.
Moreover, the smoothness (surface roughness Ra) of the surface of the polishing substrate was measured using an atomic force microscope (AFM, manufactured by Hitachi High-Tech Science Co., Ltd.).
The polishing scratches were observed by observing the insulating film surface using an optical microscope.

<アルミハードディスクの研磨>
実施例及び比較例の各々において得られたシリカ系複合微粒子分散液を含むスラリー(研磨用スラリー)を調整した。ここで固形分濃度は9質量%で硝酸を添加してpHを2.0に調整した。
アルミハードディスク用基板を研磨装置(ナノファクター株式会社製、NF300)にセットし、研磨パッド(ニッタハース社製「ポリテックスφ12」)を使用し、基板負荷0.05MPa、テーブル回転速度30rpmで研磨スラリーを20ml/分の速度で5分間供給して研磨を行い、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Maicro―Max)を使用し、Zoom15にて全面観察し、65.97cm2に相当する研磨処理された基板表面に存在するスクラッチ(線状痕)の個数を数えて合計し、次の基準に従って評価した。
線状痕の個数 評 価
50個未満 「非常に少ない」
50個以上80個未満 「少ない」
80個以上 「多い」
少なくとも80個以上で総数をカウントできないほど多い 「※」
<Aluminum hard disk polishing>
A slurry (polishing slurry) containing the silica-based composite fine particle dispersion obtained in each of Examples and Comparative Examples was prepared. Here, the solid content concentration was 9% by mass and the pH was adjusted to 2.0 by adding nitric acid.
A substrate for aluminum hard disk is set in a polishing apparatus (NF300, manufactured by Nano Factor Co., Ltd.), and a polishing pad (“Polytex φ12” manufactured by Nitta Haas Co., Ltd.) is used. Polishing is performed by supplying at a rate of 20 ml / min for 5 minutes, and using an ultra-fine defect / visualization macro apparatus (manufactured by VISION PSYTEC, product name: Micro-Max), the entire surface is observed with a Zoom 15, 65.97 cm 2 The number of scratches (linear traces) present on the polished substrate surface corresponding to No. 1 was counted and totaled and evaluated according to the following criteria.
Number of linear marks Evaluation Less than 50 “Very few”
50 or more and less than 80
80 or more "Many"
There are at least 80 or more *

<実施例1>
[シリカ微粒子分散液の調製]
超純水5778.7gとヒュームドシリカ(日本アエロジル社製 AEROSIL50)180g、3%アンモニア41.3gを混合し、SiO2固形分濃度3質量%のA液6000gを得た。(以下、シリカ系複合微粒子分散液の製造工程において、後記B液に対してシリカ微粒子分散液を「A液」とする。)
このA液(シリカ微粒子分散液)に含まれるシリカ微粒子は、堀場製作所社製のLA−950v2により測定した平均粒子径(D2)が46.8μm(46,800nm)であった。また、比表面積換算粒子径(DS)は53nmであった。したがって、D2/DSは883と算出された。
また、このシリカ微粒子について、前記測定方法で測定したNa、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn、Zr、U、Th、Cl、NO3、SO4及びFの含有率は何れも1ppm以下であった。この結果を表1に記す。(以下の実施例及び比較例も同様)
<Example 1>
[Preparation of silica fine particle dispersion]
5788.7 g of ultrapure water and 180 g of fumed silica (AEROSIL 50 manufactured by Nippon Aerosil Co., Ltd.) and 41.3 g of 3% ammonia were mixed to obtain 6000 g of Liquid A having a SiO 2 solid content concentration of 3 mass%. (Hereinafter, in the production process of the silica composite fine particle dispersion, the silica fine particle dispersion is referred to as “liquid A” with respect to the liquid B described later.)
The silica fine particles contained in this liquid A (silica fine particle dispersion) had an average particle diameter (D2) of 46.8 μm (46,800 nm) as measured by LA-950v2 manufactured by Horiba, Ltd. The specific surface area equivalent particle size (DS) was 53 nm. Therefore, D2 / DS was calculated as 883.
Further, for the silica fine particles, Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, Zr, U, Th, Cl, NO 3 , SO 4 measured by the above measuring method. And the content rate of F was 1 ppm or less. The results are shown in Table 1. (The following examples and comparative examples are also the same)

次に、硝酸セリウム(III)6水和物(関東化学社製、4N高純度試薬)にイオン交換水を加え、CeO2換算で2.5質量%のB液を得た。(以下、セリウム金属塩分散液を「B液」とする。) Next, ion-exchanged water was added to cerium (III) nitrate hexahydrate (manufactured by Kanto Chemical Co., Inc., 4N high-purity reagent) to obtain 2.5 mass% B liquid in terms of CeO 2 . (Hereinafter, the cerium metal salt dispersion is referred to as “Liquid B”.)

次に、A液(6000g)を50℃まで昇温して、撹拌しながら、ここへB液(8453g、SiO2の100質量部に対して、CeO2が117.4質量部に相当)を18時間かけて添加した。この間、液温を50℃に維持しておき、また、必要に応じて3%アンモニア水を添加して、pH7.85を維持するようにした。
そして、B液の添加が終了したら、液温を93℃へ上げて4時間熟成を行った。熟成終了後に室内に放置することで放冷し、室温まで冷却した後に、限外膜にてイオン交換水を補給しながら洗浄を行った。洗浄を終了して得られた前駆体粒子分散液は、固形分濃度が7質量%、pHが8.7(25℃にて)、電導度が26μs/cm(25℃にて)であった。
Next, liquid A (6000 g) was heated to 50 ° C. and stirred while liquid B (8453 g, equivalent to 117.4 parts by mass of CeO 2 with respect to 100 parts by mass of SiO 2 ). Added over 18 hours. During this time, the liquid temperature was maintained at 50 ° C., and 3% ammonia water was added as necessary to maintain pH 7.85.
And when addition of B liquid was complete | finished, the liquid temperature was raised to 93 degreeC and ageing | curing | ripening was performed for 4 hours. After aging, the product was allowed to cool by allowing it to stand indoors, and after cooling to room temperature, washing was performed while supplying ion-exchanged water with an outer membrane. The precursor particle dispersion obtained after the washing was finished had a solid content concentration of 7% by mass, a pH of 8.7 (at 25 ° C.), and an electric conductivity of 26 μs / cm (at 25 ° C.). .

次に得られた前駆体粒子分散液に5質量%酢酸を加えてpHを6.5に調整して、120℃の乾燥機中で16時間乾燥させた後、1070℃のマッフル炉を用いて2時間焼成を行い、粉体(焼成体)を得た。   Next, 5% by mass acetic acid was added to the obtained precursor particle dispersion to adjust the pH to 6.5, and after drying in a 120 ° C. dryer for 16 hours, using a muffle furnace at 1070 ° C. Firing was performed for 2 hours to obtain a powder (fired body).

得られた粉体125gにイオン交換水375gを加え、さらに3%アンモニア水溶液を用いてpHを10に調整した後、φ0.25mmの高純度シリカビーズ(大研化学工業株式会社製)、バッチ式卓上型サンドミルを用いて湿式解砕、粉砕を行い、イオン交換水を用いて希釈後、高純度シリカビーズと分離して固形分濃度5質量%のシリカ系複合微粒子分散液2500gを得た。
次いで得られた微粒子分散液を遠心分離装置(日立工機株式会社製、型番「CR21G」)にて、相対遠心加速度675Gで3分間遠心分離処理し、沈降成分を除去し、シリカ系複合微粒子分散液を得た。得られたシリカ系複合微粒子分散液は、レーザー回折散乱法(HORIBA社製LA−950)で測定した粒子径は0.130μmであった。
After adding 375 g of ion-exchanged water to 125 g of the obtained powder and further adjusting the pH to 10 using a 3% aqueous ammonia solution, φ0.25 mm high-purity silica beads (Daiken Chemical Co., Ltd.), batch type Wet crushing and pulverization were performed using a desktop sand mill, diluted with ion-exchanged water, separated from high-purity silica beads, and 2500 g of a silica-based composite fine particle dispersion having a solid content concentration of 5% by mass was obtained.
Next, the obtained fine particle dispersion is centrifuged for 3 minutes at a relative centrifugal acceleration of 675G in a centrifugal separator (manufactured by Hitachi Koki Co., Ltd., model number “CR21G”) to remove sediment components, and silica-based composite fine particles are dispersed. A liquid was obtained. The obtained silica-based composite fine particle dispersion had a particle size of 0.130 μm as measured by a laser diffraction scattering method (LA-950, manufactured by HORIBA).

得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子について、各種元素又はイオン種の分析結果(含有率)を第1表に記す。(以下の実施例及び比較例も同様)   Table 1 shows the analysis results (content ratios) of various elements or ionic species for the silica-based composite particles contained in the obtained silica-based composite particle dispersion. (The following examples and comparative examples are also the same)

得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子についてX線回折法によって測定したところ、Cerianiteの回折パターンが見られた。   When the silica-based composite fine particles contained in the obtained silica-based composite fine particle dispersion were measured by an X-ray diffraction method, a Ceriaite diffraction pattern was observed.

次に、研磨試験を行った。また、研磨スラリーに含まれるシリカ系複合微粒子の短径/長径比を測定した。結果を第1表に示す。
また、シリカ系複合微粒子の平均粒子径は、堀場製作所社製のLA−950v2を用いて測定したところ133nmであった。
Next, a polishing test was performed. Moreover, the minor axis / major axis ratio of the silica-based composite fine particles contained in the polishing slurry was measured. The results are shown in Table 1.
The average particle size of the silica-based composite fine particles was 133 nm as measured using LA-950v2 manufactured by Horiba Ltd.

また、実施例1で得られたシリカ系複合微粒子分散液が含むシリカ系複合微粒子についてSEM,TEMを用いて観察した。SEM像とTEM像(100,000倍)を図1(a)、(b)に示す。
また、子粒子の粒子径を測定したSEM画像(300,000倍)を図1(c)に示す。
Further, the silica-based composite fine particles contained in the silica-based composite fine particle dispersion obtained in Example 1 were observed using SEM and TEM. An SEM image and a TEM image (100,000 times) are shown in FIGS.
Moreover, the SEM image (300,000 times) which measured the particle diameter of the child particle is shown in FIG.1 (c).

さらに、実施例1で得られたシリカ系複合微粒子分散液に含まれるシリカ系複合微粒子のX線回折パターンを図2に示す。   Furthermore, the X-ray diffraction pattern of the silica-based composite fine particles contained in the silica-based composite fine particle dispersion obtained in Example 1 is shown in FIG.

図2のX線回折パターンでは、かなりシャープなCerianiteの結晶であり、TEMやSEM像からセリア結晶粒子がシリカ表面と強く焼結しているように見える。
また、図1からは、シリカ系複合微粒子の最表面に、薄いシリカ被膜が覆うように存在している様子が観察された。
In the X-ray diffraction pattern of FIG. 2, it is a fairly sharp Ceriaite crystal, and it appears that ceria crystal particles are strongly sintered with the silica surface from TEM and SEM images.
Further, from FIG. 1, it was observed that a thin silica coating was present on the outermost surface of the silica composite fine particles.

<実施例2>
[シリカ微粒子分散液の調製]
実施例1で用いたヒュームドシリカ300gにイオン交換水3986gを加え、φ0.25mmの高純度シリカビーズ(大研化学工業株式会社製)、アシザワファインテック社製ビーズミルLMZ06を用い、湿式解砕、粉砕を行い、固形分濃度7質量%のシリカ微粒子分散液4286gを得た。このシリカ微粒子分散液に含まれる粒子は、堀場製作所社 8y76製のLA−950v2により測定した平均粒子径(D2)が0.12μm(120nm)であった。また、比表面積換算粒子径(DS)は45nmであった。したがって、D2/DSは2.7と算出された。
上記得られたシリカ微粒子分散液2571gに超純水3387.7gと3%アンモニア29.7gを混合し、SiO2固形分濃度3質量%のA液6000gを得た。そして、実施例1と同じ条件にしてシリカ・セリア複合酸化物を含むシリカ系複合粒子分散液を調製した。実施例1と同様の操作を行い、同様の測定を行った。結果を第1表に示す。なお、実施例2で得られたシリカ系複合微粒子の平均粒子径は125nmであった。
<Example 2>
[Preparation of silica fine particle dispersion]
Ion-exchanged water 3986 g was added to 300 g of fumed silica used in Example 1, φ0.25 mm high-purity silica beads (manufactured by Daiken Chemical Industry Co., Ltd.), Ashizawa Finetech Co., Ltd. bead mill LMZ06, Grinding was performed to obtain 4286 g of a silica fine particle dispersion having a solid content concentration of 7% by mass. The particles contained in this silica fine particle dispersion had an average particle diameter (D2) of 0.12 μm (120 nm) measured by LA-950v2 manufactured by HORIBA, Ltd. 8y76. The specific surface area equivalent particle size (DS) was 45 nm. Therefore, D2 / DS was calculated as 2.7.
2577.7 g of the silica fine particle dispersion obtained above was mixed with 3387.7 g of ultrapure water and 29.7 g of 3% ammonia to obtain 6000 g of A liquid having a SiO 2 solid content concentration of 3 mass%. Then, a silica-based composite particle dispersion containing silica / ceria composite oxide was prepared under the same conditions as in Example 1. The same operation as in Example 1 was performed, and the same measurement was performed. The results are shown in Table 1. The average particle size of the silica-based composite fine particles obtained in Example 2 was 125 nm.

<実施例3>[1]合成シリカコア(アルコキシドからのゲルを原料とした場合)
[シリカ微粒子分散液の調製]
三菱化学社製合成石英粉 MKCシリカ300gにイオン交換水3986gを加え、φ0.25mmの高純度シリカビーズ(大研化学工業株式会社製)、アシザワファインテック社製ビーズミルLMZ06を用い、湿式解砕、粉砕を行い、固形分濃度7質量%のシリカ微粒子分散液4286gを得た。このシリカ微粒子分散液に含まれる粒子は、堀場製作所社製のLA−950v2により測定した平均粒子径(D2)が0.20μm(200nm)であった。また、比表面積換算粒子径(DS)は5nmであった。したがって、D2/DSは40と算出された。
上記得られたシリカ微粒子分散液2571gに超純水3387.7gと3%アンモニア29.7gを混合し、SiO2固形分濃度3質量%のA液6000gを得た。そして、実施例1と同じ条件にしてシリカ・セリア複合酸化物を含むシリカ系複合粒子分散液を調製した。実施例1と同様の操作を行い、同様の測定を行った。結果を第1表に示す。なお、実施例3で得られたシリカ系複合微粒子の平均粒子径は220nmであった。
Example 3 [1] Synthetic silica core (when gel from alkoxide is used as raw material)
[Preparation of silica fine particle dispersion]
Synthetic quartz powder manufactured by Mitsubishi Chemical Co., Ltd. 3986 g of ion-exchanged water is added to 300 g of MKC silica. Grinding was performed to obtain 4286 g of a silica fine particle dispersion having a solid content concentration of 7% by mass. The particles contained in this silica fine particle dispersion had an average particle diameter (D2) of 0.20 μm (200 nm) as measured by LA-950v2 manufactured by Horiba Ltd. The specific surface area equivalent particle size (DS) was 5 nm. Therefore, D2 / DS was calculated to be 40.
2577.7 g of the silica fine particle dispersion obtained above was mixed with 3387.7 g of ultrapure water and 29.7 g of 3% ammonia to obtain 6000 g of A liquid having a SiO 2 solid content concentration of 3 mass%. Then, a silica-based composite particle dispersion containing silica / ceria composite oxide was prepared under the same conditions as in Example 1. The same operation as in Example 1 was performed, and the same measurement was performed. The results are shown in Table 1. The average particle size of the silica-based composite fine particles obtained in Example 3 was 220 nm.

<実施例4>[2]ヒドロゲルコア
[シリカ微粒子分散液の調製]
SiO2濃度が24%重量の珪酸ナトリウム水溶液(SiO2/Na2Oモル比が3.1)をイオン交換水で希釈して、SiO2濃度が5重量%の珪酸ナトリウム水溶液(pH11.3)を8kg調製した。
この珪酸ナトリウム水溶液のpHが6.5になるように、硫酸を加えて中和し、常温で1時間保持して、シリカヒドリゲルを調製した。このシリカヒドロゲルをオリバーフィルターにて28%アンモニア水溶液(SiO2固形分の約120倍相当量)で十分に洗浄し、塩類を除去した。洗浄後の硫酸ナトリウム濃度は、SiO2固形分に対して、0.01%未満だった。
さらに、得られた洗浄シリカヒドロゲルをイオン交換水で希釈して、SiO2濃度が5重量%のシリカヒドロゲル分散液8kg調製し、その中に陽イオン交換樹脂(ローム&ハース社製:デュオライトC255LFH)を2460g投入した。投入後10分間撹拌した後、ステンレス金網(メッシュサイズ:325)を用いて樹脂を分離した。分離した状態で、続いて樹脂に押水として純水200gをかけ入れ、同様に回収した。引き続き、陽イオン交換処理を行ったシリカヒドロゲル分散液中に陰イオン交換樹脂(ローム&ハース社製:デュオライトUP5000)580gを投入し10分間撹拌した後、ステンレス金網(メッシュサイズ:325)を用いて樹脂を分離した。分離した状態で、続いて樹脂に押水として純水400gをかけ入れ、同様に回収し、シリカ系微粒子分散液を得た。
上記得られたシリカ微粒子分散液2571gに超純水3387.7gと3%アンモニア29.7gを混合し、SiO2固形分濃度3質量%のA液6000gを得た。そして、実施例1と同じ条件にしてシリカ・セリア複合酸化物を含むシリカ系複合粒子分散液を調製した。実施例1と同様の操作を行い、同様の測定を行った。結果を第1表に示す。なお、実施例4で得られたシリカ系複合微粒子の平均粒子径は220nmであった。
<Example 4> [2] Hydrogel core [Preparation of silica fine particle dispersion]
A sodium silicate aqueous solution having a SiO 2 concentration of 24% by weight (SiO 2 / Na 2 O molar ratio: 3.1) was diluted with ion-exchanged water, and a sodium silicate aqueous solution having a SiO 2 concentration of 5% by weight (pH 11.3). 8 kg was prepared.
Sulfuric acid was added to neutralize this sodium silicate aqueous solution so that the pH was 6.5, and the mixture was kept at room temperature for 1 hour to prepare a silica hydride gel. This silica hydrogel was thoroughly washed with an Oliver filter with a 28% aqueous ammonia solution (equivalent to about 120 times the SiO 2 solid content) to remove salts. The sodium sulfate concentration after washing was less than 0.01% based on the SiO 2 solid content.
Further, the obtained washed silica hydrogel was diluted with ion-exchanged water to prepare 8 kg of a silica hydrogel dispersion having a SiO 2 concentration of 5% by weight, and a cation exchange resin (manufactured by Rohm & Haas: Duolite C255LFH) was prepared therein. ) 2460 g was charged. After stirring for 10 minutes, the resin was separated using a stainless wire mesh (mesh size: 325). In a separated state, 200 g of pure water was subsequently poured into the resin as water to be recovered in the same manner. Subsequently, 580 g of an anion exchange resin (manufactured by Rohm & Haas: Duolite UP5000) was added to the silica hydrogel dispersion subjected to the cation exchange treatment and stirred for 10 minutes, and then a stainless wire mesh (mesh size: 325) was used. The resin was separated. In a separated state, 400 g of pure water was subsequently poured into the resin as water to be recovered in the same manner to obtain a silica-based fine particle dispersion.
2577.7 g of the silica fine particle dispersion obtained above was mixed with 3387.7 g of ultrapure water and 29.7 g of 3% ammonia to obtain 6000 g of A liquid having a SiO 2 solid content concentration of 3 mass%. Then, a silica-based composite particle dispersion containing silica / ceria composite oxide was prepared under the same conditions as in Example 1. The same operation as in Example 1 was performed, and the same measurement was performed. The results are shown in Table 1. The average particle size of the silica-based composite fine particles obtained in Example 4 was 220 nm.

<比較例1>
実施例1で用いられたのと同様な母粒子について(すなわち、ヒュームドシリカの平均粒子径46.8μmの母粒子をシリカ系複合微粒子として扱って)、研磨試験を行った。結果を第1表に示す。
<Comparative Example 1>
A polishing test was conducted on the same base particles as used in Example 1 (that is, base particles having an average particle diameter of 46.8 μm of fumed silica were treated as silica-based composite fine particles). The results are shown in Table 1.

<比較例2>
実施例2で得られた母粒子について(すなわち、ヒュームドシリカを湿式解砕した平均粒子径0.12μmの母粒子をシリカ系複合微粒子として扱って)、研磨試験を行った。
結果を第1表に示す。
<Comparative example 2>
A polishing test was performed on the base particles obtained in Example 2 (that is, base particles having an average particle size of 0.12 μm obtained by wet-pulverizing fumed silica were treated as silica-based composite fine particles).
The results are shown in Table 1.

<比較例3>
《シリカ微粒子分散液(シリカ微粒子の平均粒子径60nm)》の調製
エタノール12,090gと正珪酸エチル6,363.9gとを混合し、混合液a1とした。
次に、超純水6,120gと29%アンモニア水444.9gとを混合し、混合液b1とした。
次に、超純水192.9gとエタノール444.9gとを混合して敷き水とした。
そして、敷き水を撹拌しながら75℃に調整し、ここへ、混合液a1及び混合液b1を、各々10時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を75℃のまま3時間保持して熟成させた後、固形分濃度を調整し、SiO2固形分濃度19質量%、レーザー回折・散乱法大塚電子社製のPAR−IIIにより測定されたシリカ微粒子の平均粒子径60nmのシリカ微粒子分散液を9,646.3g得た。
<Comparative Example 3>
"Silica fine particle dispersion (average particle diameter 60nm of the silica fine particles)" were mixed and prepared ethanol 12,090g and ethyl orthosilicate 6,363.9g of was a mixture a 1.
Next, 6,120 g of ultrapure water and 444.9 g of 29% ammonia water were mixed to obtain a mixed solution b 1 .
Next, 192.9 g of ultrapure water and 444.9 g of ethanol were mixed and used as bedding water.
Then, the stirring water was adjusted to 75 ° C. while stirring, and the mixed solution a 1 and the mixed solution b 1 were simultaneously added so that the addition was completed in 10 hours each. When the addition is completed, the liquid temperature is kept at 75 ° C. for 3 hours and ripened, then the solid content concentration is adjusted, and the SiO 2 solid content concentration is 19% by mass. 9,646.3 g of a silica fine particle dispersion having an average particle diameter of 60 nm of silica fine particles measured by III was obtained.

《シリカ微粒子分散液(シリカ微粒子の平均粒子径108nm)》の調製
メタノール2,733.3gと正珪酸エチル1,822.2gとを混合し、混合液a2とした。
次に、超純水1,860.7gと29%アンモニア水40.6gとを混合し、混合液b2とした。
次に、超純水59gとメタノール1,208.9gとを混合して敷き水として、前工程で得たシリカ微粒子の平均粒子径60nmのシリカ微粒子分散液922.1gを加えた。
そして、シリカ微粒子分散液を含んだ敷き水を撹拌しながら65℃に調整し、ここへ、混合液a2及び混合液b2を、各々18時間で添加が終了するように、同時添加を行った。添加が終了したら、液温を65℃のまま3時間保持して熟成させた後、固形分濃度(SiO2固形分濃度)を19質量%に調整し、3,600gの高純度シリカ微粒子分散液を得た。
この高純度シリカ微粒子分散液の含まれる粒子は大塚電子社製のPAR−IIIにより測定した平均粒子径が108nmであった。
また、ICP測定によるアルカリ金属、アルカリ土類金属等の含有率は1ppm以下であった。母粒子に含まれる各種元素又はイオン種の分析結果を第1表に記す。
"Silica fine particle dispersion (average particle size 108nm of the silica fine particles)" was mixed with prepared methanol 2,733.3g and ethyl orthosilicate 1,822.2g of was a mixture a 2.
Next, 1,860.7 g of ultrapure water and 40.6 g of 29% ammonia water were mixed to obtain a mixed solution b 2 .
Next, 592.1 g of ultrapure water and 1,208.9 g of methanol were mixed and used as a covering water, and 922.1 g of a silica fine particle dispersion having an average particle diameter of 60 nm obtained in the previous step was added.
Then, the stirring water containing the silica fine particle dispersion is adjusted to 65 ° C. while stirring, and the mixed solution a 2 and the mixed solution b 2 are added simultaneously so that the addition is completed in 18 hours each. It was. After the addition is completed, the liquid temperature is kept at 65 ° C. for 3 hours and ripened, then the solid content concentration (SiO 2 solid content concentration) is adjusted to 19% by mass, and 3,600 g of high-purity silica fine particle dispersion Got.
The particles contained in this high-purity silica fine particle dispersion had an average particle diameter of 108 nm as measured by PAR-III manufactured by Otsuka Electronics Co., Ltd.
Further, the content of alkali metals, alkaline earth metals, and the like by ICP measurement was 1 ppm or less. Table 1 shows the analysis results of various elements or ionic species contained in the mother particles.

次に、この高純度シリカ微粒子分散液1,053gに陽イオン交換 三菱化学社製SK−1BH)114gを徐々に添加して30分間攪拌し樹脂を分離した。この時のpHは5.1であった。
得られたシリカ微粒子分散液に超純水を加えて、SiO2固形分濃度3質量%のA液6,000gを得た。
Next, 114 g of cation exchange SK-1BH (manufactured by Mitsubishi Chemical Corporation) was gradually added to 1,053 g of this high-purity silica fine particle dispersion, followed by stirring for 30 minutes to separate the resin. The pH at this time was 5.1.
Ultrapure water was added to the resulting silica fine particle dispersion to obtain 6,000 g of Liquid A having a SiO 2 solid content concentration of 3% by mass.

そして、実施例1と同じ条件にしてシリカ・セリア複合酸化物を含むシリカ系複合粒子分散液を調製した。実施例1と同様の操作を行い、同様の測定を行った。結果を第1表に示す。   Then, a silica-based composite particle dispersion containing silica / ceria composite oxide was prepared under the same conditions as in Example 1. The same operation as in Example 1 was performed, and the same measurement was performed. The results are shown in Table 1.

なお、実施例1のシリカ系複合微粒子分散液が含むシリカ系複合微粒子では、解砕・粉砕による子粒子(セリア結晶粒子)の脱落が僅かに確認された。
また、実施例1のシリカ系複合微粒子は、シリカとセリア(セリア結晶粒子)との質量比が100:11〜316の範囲内であった。
In addition, in the silica type composite fine particle which the silica type composite fine particle dispersion liquid of Example 1 contained, the drop-off | omission of the child particle (ceria crystal particle) by crushing and grinding | pulverization was confirmed slightly.
Further, in the silica-based composite fine particles of Example 1, the mass ratio of silica to ceria (ceria crystal particles) was in the range of 100: 11 to 316.

本発明の複合微粒子は、不純物を含まないため、半導体基板、配線基板などの半導体デバイスの表面の研磨に好ましく用いることができる。   Since the composite fine particle of the present invention does not contain impurities, it can be preferably used for polishing the surface of a semiconductor device such as a semiconductor substrate or a wiring substrate.

Claims (4)

下記の工程1〜工程3を含むことを特徴とするシリカ系複合微粒子分散液の製造方法。
工程1:二次粒子径(D2)と比表面積換算粒子径(DS)との比[(D2)/(DS)]が1.0より大きい、非球状のシリカ微粒子が溶媒に分散してなるシリカ微粒子分散液を撹拌し、温度を5〜98℃、pHを範囲7.0〜9.0に維持しながら、ここへセリウムの金属塩を連続的又は断続的に添加し、前駆体粒子を含む前駆体粒子分散液を得る工程。
工程2:前記前駆体粒子分散液を乾燥させ、400〜1,200℃で焼成し、得られた焼成体に、次の(i)又は(ii)の処理をして焼成体解砕分散液を得る工程。
(i)乾式で解砕・粉砕処理し、溶媒を加えて溶媒分散処理する。
(ii)溶媒を加えて、湿式で解砕・粉砕処理する。
工程3:前記焼成体解砕分散液を、相対遠心加速度300G以上にて遠心分離処理を行い、続いて沈降成分を除去することによりシリカ系複合微粒子分散液を得る工程。
The manufacturing method of the silica type composite fine particle dispersion characterized by including the following process 1-process 3.
Step 1: Non-spherical silica fine particles having a ratio [(D2) / (DS)] of the secondary particle size (D2) to specific surface area converted particle size (DS) of greater than 1.0 are dispersed in a solvent. While stirring the silica fine particle dispersion and maintaining the temperature at 5 to 98 ° C. and the pH in the range 7.0 to 9.0, the metal salt of cerium was added continuously or intermittently to the precursor particles. The process of obtaining the precursor particle dispersion liquid containing.
Step 2: The precursor particle dispersion is dried and fired at 400 to 1,200 ° C., and the fired body obtained is subjected to the following treatment (i) or (ii) to obtain a fired body crushed dispersion liquid. Obtaining.
(I) Crushing and pulverizing by a dry method, and adding a solvent to carry out a solvent dispersion treatment.
(Ii) A solvent is added, and the mixture is crushed and pulverized by a wet process.
Step 3: A step of obtaining a silica-based composite fine particle dispersion by subjecting the calcined dispersion to a centrifugal separation treatment at a relative centrifugal acceleration of 300 G or more and subsequently removing a sediment component.
前記シリカ微粒子に含まれる不純物の含有割合が、次の(a)及び(b)のとおりであることを特徴とする請求項1記載のシリカ系複合微粒子分散液の製造方法。
(a)Na、Ag、Al、Ca、Cr、Cu、Fe、K、Mg、Ni、Ti、Zn及びZrの含有率が、それぞれ100ppm以下。
(b)U、Th、Cl、NO3、SO4及びFの含有率が、それぞれ10ppm以下。
The method for producing a silica-based composite fine particle dispersion according to claim 1, wherein the content of impurities contained in the silica fine particles is as shown in the following (a) and (b).
(A) The contents of Na, Ag, Al, Ca, Cr, Cu, Fe, K, Mg, Ni, Ti, Zn, and Zr are each 100 ppm or less.
(B) The contents of U, Th, Cl, NO 3 , SO 4 and F are each 10 ppm or less.
二次粒子径(D2)と比表面積換算粒子径(DS)との比[(D2)/(DS)]が1.0より大きい、非球状のシリカ微粒子の表面の一部がシリカに被覆された結晶性セリアに被覆されたシリカ微粒子分散液。   A portion of the surface of the non-spherical silica fine particles having a ratio [(D2) / (DS)] of the secondary particle size (D2) to the specific surface area converted particle size (DS) of greater than 1.0 is coated with silica. Silica fine particle dispersion coated with crystalline ceria. 請求項3に記載のシリカ微粒子分散液を含む研磨スラリー。   A polishing slurry comprising the silica fine particle dispersion according to claim 3.
JP2016099813A 2016-05-18 2016-05-18 Method for producing silica-based composite fine particle dispersion Active JP6710100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099813A JP6710100B2 (en) 2016-05-18 2016-05-18 Method for producing silica-based composite fine particle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099813A JP6710100B2 (en) 2016-05-18 2016-05-18 Method for producing silica-based composite fine particle dispersion

Publications (2)

Publication Number Publication Date
JP2017206410A true JP2017206410A (en) 2017-11-24
JP6710100B2 JP6710100B2 (en) 2020-06-17

Family

ID=60416363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099813A Active JP6710100B2 (en) 2016-05-18 2016-05-18 Method for producing silica-based composite fine particle dispersion

Country Status (1)

Country Link
JP (1) JP6710100B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476910A1 (en) 2017-10-27 2019-05-01 Versum Materials US, LLC Composite particles, method of refining and use thereof
JP2019089670A (en) * 2017-11-13 2019-06-13 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite fine particle dispersion
EP3608378A1 (en) 2018-08-09 2020-02-12 Versum Materials US, LLC Chemical mechanical planarization composition for polishing oxide materials and method of use thereof
WO2022123820A1 (en) * 2020-12-09 2022-06-16 日揮触媒化成株式会社 Irregularly-shaped silica-based fine particle dispersion, method for producing same, particle-linked silica fine particle dispersion, method for producing same, and abrasive grain dispersion for polishing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137791A (en) * 2007-12-05 2009-06-25 Jgc Catalysts & Chemicals Ltd Non-spherical combined silica sol and method for producing the same
JP2013119131A (en) * 2011-12-06 2013-06-17 Jgc Catalysts & Chemicals Ltd Silica-based composite particle and production method thereof
JP2015199652A (en) * 2014-03-31 2015-11-12 日揮触媒化成株式会社 Tabular particle, and composition for polishing containing the tabular particle
JP2017178703A (en) * 2016-03-30 2017-10-05 日揮触媒化成株式会社 Method for producing silica-based composite particle dispersion liquid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009137791A (en) * 2007-12-05 2009-06-25 Jgc Catalysts & Chemicals Ltd Non-spherical combined silica sol and method for producing the same
JP2013119131A (en) * 2011-12-06 2013-06-17 Jgc Catalysts & Chemicals Ltd Silica-based composite particle and production method thereof
JP2015199652A (en) * 2014-03-31 2015-11-12 日揮触媒化成株式会社 Tabular particle, and composition for polishing containing the tabular particle
JP2017178703A (en) * 2016-03-30 2017-10-05 日揮触媒化成株式会社 Method for producing silica-based composite particle dispersion liquid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3476910A1 (en) 2017-10-27 2019-05-01 Versum Materials US, LLC Composite particles, method of refining and use thereof
EP3831901A1 (en) 2017-10-27 2021-06-09 Versum Materials US, LLC Composite particles, method of refining and use thereof
JP2019089670A (en) * 2017-11-13 2019-06-13 日揮触媒化成株式会社 Ceria-based composite fine particle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite fine particle dispersion
JP7037918B2 (en) 2017-11-13 2022-03-17 日揮触媒化成株式会社 Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
EP3608378A1 (en) 2018-08-09 2020-02-12 Versum Materials US, LLC Chemical mechanical planarization composition for polishing oxide materials and method of use thereof
WO2022123820A1 (en) * 2020-12-09 2022-06-16 日揮触媒化成株式会社 Irregularly-shaped silica-based fine particle dispersion, method for producing same, particle-linked silica fine particle dispersion, method for producing same, and abrasive grain dispersion for polishing

Also Published As

Publication number Publication date
JP6710100B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP6948423B2 (en) A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.
JP6803823B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion
WO2017183452A1 (en) Silica-based composite fine particle dispersion and method for manufacturing same
JP6829007B2 (en) A polishing slurry containing a silica-based composite fine particle dispersion, a method for producing the same, and a silica-based composite fine particle dispersion.
JP6603142B2 (en) Silica composite fine particle dispersion, method for producing the same, and polishing slurry containing silica composite fine particle dispersion
JP2019081672A (en) Ceria-based composite fine particle dispersion, production method thereof, and abrasive grain dispersion for polishing including the ceria-based composite fine dispersion
TWI656098B (en) Oxide-based composite fine particle dispersion, method for producing the same, and abrasive dispersion for polishing containing cerium oxide-based composite fine particle dispersion
JP6703437B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and polishing slurry containing the silica-based composite fine particle dispersion
JP7037918B2 (en) Abrasive grain dispersion for polishing containing ceria-based composite fine particle dispersion, its manufacturing method, and ceria-based composite fine particle dispersion.
JP6710100B2 (en) Method for producing silica-based composite fine particle dispersion
JP2019127405A (en) Ceria-based composite hollow microparticle dispersion, production method thereof, and polishing abrasive grain dispersion comprising ceria-based composite hollow microparticle dispersion
JP7348098B2 (en) Ceria-based composite fine particle dispersion, its manufacturing method, and polishing abrasive grain dispersion containing the ceria-based composite fine particle dispersion
JP6616794B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and abrasive abrasive dispersion containing silica-based composite fine particle dispersion
JP2020023408A (en) Ceria-based fine particle dispersion, method for producing the same and abrasive particle dispersion for polishing comprising ceria-based fine particle dispersion
JP6648064B2 (en) Silica-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing silica-based composite fine particle dispersion
JP7117225B2 (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
JP2020050571A (en) Ceria-based composite fine particle dispersion, method for producing the same, and abrasive grain dispersion for polishing containing the same
JP6588050B2 (en) Polishing abrasive dispersion containing silica composite fine particles
JP6616795B2 (en) Polishing abrasive dispersion containing silica composite fine particles
JP7315394B2 (en) Ceria-based fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based fine particle dispersion
JP7215977B2 (en) Ceria-based composite fine particle dispersion, method for producing the same, and polishing abrasive dispersion containing ceria-based composite fine particle dispersion
JP2019172533A (en) Ceria-based composite fine-particle dispersion, method of manufacturing the same, and abrasive grain dispersion comprising ceria-based composite fine-particle dispersion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200526

R150 Certificate of patent or registration of utility model

Ref document number: 6710100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250