JP2017205706A - Organic substance treatment method and organic substance treatment equipment by methane fermentation - Google Patents

Organic substance treatment method and organic substance treatment equipment by methane fermentation Download PDF

Info

Publication number
JP2017205706A
JP2017205706A JP2016099717A JP2016099717A JP2017205706A JP 2017205706 A JP2017205706 A JP 2017205706A JP 2016099717 A JP2016099717 A JP 2016099717A JP 2016099717 A JP2016099717 A JP 2016099717A JP 2017205706 A JP2017205706 A JP 2017205706A
Authority
JP
Japan
Prior art keywords
methane fermentation
tank
methane
organic
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016099717A
Other languages
Japanese (ja)
Other versions
JP6666790B2 (en
Inventor
長谷川 進
Susumu Hasegawa
進 長谷川
直子 徳田
Naoko Tokuda
直子 徳田
徹也 竹林
Tetsuya Takebayashi
徹也 竹林
憲明 塩田
Noriaki Shioda
憲明 塩田
水口 護
Mamoru Mizuguchi
護 水口
利崇 加藤
Toshitaka Kato
利崇 加藤
祐二 山▲崎▼
Yuji Yamazaki
祐二 山▲崎▼
雅庸 井上
Masanobu Inoue
雅庸 井上
佳史 坂口
Yoshifumi Sakaguchi
佳史 坂口
文隆 射場
Fumitaka Iba
文隆 射場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Shinko Pantec Co Ltd
Takenaka Komuten Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Takenaka Komuten Co Ltd
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd, Takenaka Komuten Co Ltd, Kobelco Eco Solutions Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2016099717A priority Critical patent/JP6666790B2/en
Publication of JP2017205706A publication Critical patent/JP2017205706A/en
Application granted granted Critical
Publication of JP6666790B2 publication Critical patent/JP6666790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic matter treatment method enabling disorder of methane fermentation to be found by simple means and activity of methanogen to be recovered.SOLUTION: A liquid to be fermented containing an organic substance is supplied to a plurality of methane fermentation tanks arranged in parallel when organic waste water or organic solid substance is methane-fermented in the methane fermentation tank. Organic substance load of a certain tank of the plurality of the methane fermentation tank is set to be higher than organic substance load of the other tanks by the range of 20% to 50%. When methane fermentation condition of the high load tank is deteriorated and becomes not to satisfy an operation control reference value of the methane fermentation tank, the methane fermentation treatment liquid of at least a part of low load tanks is supplied to the high load tank. When methane fermentation condition becomes to satisfy the operation control reference value of the methane fermentation tank, a treatment liquid supply from at least one of the low load tanks to the high load tank is stopped.SELECTED DRAWING: Figure 2

Description

本発明は、並列に配置された複数のメタン発酵槽を用いて有機物をメタン発酵させる処理方法であって、メタン発酵槽の1槽のメタン発酵状態が悪化して、メタン発酵槽の運転管理基準値を満たさなくなった場合に、残りのメタン発酵槽のメタン発酵処理液を当該1槽へと供給する処理方法及び処理装置に関する。   The present invention is a processing method for methane fermentation of organic matter using a plurality of methane fermentation tanks arranged in parallel, and the methane fermentation state of one tank of the methane fermentation tank deteriorates, and the operation management standard of the methane fermentation tank It is related with the processing method and processing apparatus which supply the methane fermentation process liquid of the remaining methane fermentation tank to the said 1 tank, when a value is no longer satisfy | filled.

下水処理汚泥又は生ごみのような有機性廃棄物の処理方法として、環境負荷が小さく、エネルギー源となるメタンガスを回収し得るメタン発酵処理が広く用いられている。メタン発酵処理においては、メタン菌のような嫌気性微生物によって、効率良く有機性廃棄物を分解し、メタンガスを回収する必要がある。そのためには、メタン発酵槽内の発酵状態を最適に保持することが重要となる。   As a method for treating organic waste such as sewage treatment sludge or garbage, a methane fermentation treatment that has a low environmental load and can recover methane gas as an energy source is widely used. In methane fermentation treatment, it is necessary to efficiently decompose organic waste and recover methane gas by anaerobic microorganisms such as methane bacteria. For this purpose, it is important to optimally maintain the fermentation state in the methane fermenter.

メタン発酵槽において、有機物の負荷が過大となれば、有機物の分解により有機酸が生成されてメタン菌の被処理液のpHが7以下となったり、ORP(酸化還元電位)が-300mV以下になったりする。このような状態になると、メタン菌の活性が低下し、メタン発酵槽を継続して運転することが困難となる。低下したメタン発酵槽内のメタン菌の活性を回復するためには、メタン発酵槽内の菌体を入れ替える必要も生じ、長期間運転を中止せざるを得ない自体もあり得る。   In a methane fermenter, if the load of organic matter becomes excessive, organic acid is generated by decomposition of organic matter, and the pH of the liquid to be treated with methane bacteria becomes 7 or less, and the ORP (redox potential) is -300 mV or less It becomes. If it becomes such a state, the activity of methane bacteria will fall and it will become difficult to operate a methane fermentation tank continuously. In order to recover the reduced activity of the methane bacteria in the methane fermentation tank, it is necessary to replace the cells in the methane fermentation tank, and it may be necessary to stop the operation for a long time.

特許文献1は、加水分解槽の後段にメタン発酵槽を並列に接続し、あるメタン発酵槽内で嫌気性微生物の活性が低下した場合には、メタン発酵槽内の内容物を入れ替えることにより、活性の低下を抑制又は回復させる方法を開示している。   Patent document 1 connects a methane fermentation tank in parallel to the latter part of a hydrolysis tank, and when the activity of anaerobic microorganisms falls in a certain methane fermentation tank, by replacing the contents in the methane fermentation tank, Disclosed is a method for suppressing or restoring a decrease in activity.

特許文献2は、排水中の有機物を酸生成菌によって発酵処理した後、並列に設置された嫌気性処理槽を用いて嫌気性処理することにより、嫌気性処理槽の負荷の管理を容易とする方法が開示されている。   Patent document 2 makes it easy to manage the load of an anaerobic treatment tank by performing anaerobic treatment using an anaerobic treatment tank installed in parallel after fermenting organic matter in wastewater with acid-producing bacteria. A method is disclosed.

特許文献3は、廃水流入管路から分岐された複数の流入管路毎にそれぞれ嫌気性リアクタを設け、流入負荷分配制御装置によって各嫌気性リアクタに対する廃水分配量を調整し、嫌気性リアクタの負荷を安定化させる技術が開示されている。   In Patent Document 3, an anaerobic reactor is provided for each of a plurality of inflow pipes branched from the waste water inflow pipe, and the amount of waste water distributed to each anaerobic reactor is adjusted by the inflow load distribution control device, and the load of the anaerobic reactor is A technique for stabilizing the above is disclosed.

特許第3389211号公報Japanese Patent No. 3389211 特開2006−198484号公報JP 2006-198484 A 特開昭62−286594号公報JP-A-62-286594

特許文献1〜3に開示されている発明においては、並列に配置された複数の嫌気性発酵槽(メタン発酵槽)を使用して有機性廃水を処理しているが、有機物の負荷が上昇した場合には、負荷を下げるように流入量を減少させるか、種汚泥を追加してメタン菌の活性を上昇させることになる。   In the inventions disclosed in Patent Documents 1 to 3, organic wastewater is treated using a plurality of anaerobic fermenters (methane fermenters) arranged in parallel, but the load of organic matter has increased. In some cases, the inflow is reduced to reduce the load, or seed sludge is added to increase the activity of methane bacteria.

しかし、流入量を減少させる場合には、その間の処理量が減少し、処理できなかった廃棄物等がそのまま産業廃棄物として処理せざるを得なくなる。また、種汚泥を投入したり、嫌気性発酵槽の内容物を入れ替えたりする場合には、多くの労力と費用がかかる。   However, in the case of reducing the inflow amount, the processing amount during that time decreases, and the waste that could not be processed must be treated as industrial waste as it is. Further, when introducing seed sludge or replacing the contents of the anaerobic fermenter, a lot of labor and cost are required.

本発明は、メタン発酵槽全体の処理能力を維持しつつ、容易な手段でメタン発酵の不調を発見し、メタン菌の活性を回復させ得る有機物処理方法及び有機物処理装置の提供を目的とする。   An object of the present invention is to provide an organic matter treatment method and an organic matter treatment apparatus capable of discovering a malfunction of methane fermentation by an easy means and recovering the activity of methane bacteria while maintaining the treatment capacity of the entire methane fermentation tank.

本発明者は、複数のメタン発酵槽を使用して有機物を含有する被発酵液を処理する場合に、有機物負荷が上昇しても、全部のメタン発酵槽が同時に不調とならず、処理能力を落とさず、労力もかからないようにするための方法について、鋭意検討した。その結果、本発明者は、複数のメタン発酵槽のうちの1槽を、他のメタン発酵槽よりも有機物負荷が高くなるように設定すれば、その1槽のメタン発酵槽が最先に不調となるので、全部のメタン発酵槽が同時に不調となることを防止し得ることを見出した。   The present inventor uses a plurality of methane fermenters to treat a fermented liquid containing organic matter, and even if the load on organic matter rises, all the methane fermenters do not malfunction at the same time. We studied earnestly on how to prevent it from dropping and not requiring labor. As a result, if the present inventor sets one of the plurality of methane fermentation tanks so that the organic matter load is higher than that of the other methane fermentation tanks, the one methane fermentation tank is malfunctioning first. Therefore, it has been found that all methane fermentation tanks can be prevented from malfunctioning at the same time.

また、本発明者は、その1槽のメタン発酵槽が不調となった場合には、他のメタン発酵槽のメタン発酵処理液を不調となった1槽のメタン発酵槽へ供給することにより、正常なメタン発酵槽の性能を維持したまま、不調となった1槽のメタン発酵槽の不調の原因となる阻害物質を速やかに排出すると同時に、メタン菌を補充可能となることを見出し、本発明を完成させるに至った。   Moreover, this inventor supplies the methane fermentation processing liquid of the other methane fermentation tank to the 1 methane fermentation tank which became unsatisfactory when the methane fermentation tank of the 1 tank becomes unsatisfactory, The present invention finds that the methane bacteria can be replenished at the same time that the inhibitory substance causing the malfunction of one tank of the methane fermentation tank that has failed is rapidly discharged while maintaining the performance of the normal methane fermentation tank. It came to complete.

具体的に、本発明は、
有機性廃水又は有機性固形物をメタン発酵槽内でメタン発酵させる有機物処理方法であって、
有機物を含有する被発酵液を、並列に配置された複数のメタン発酵槽に供給し、
前記複数のメタン発酵槽のうち、ある一つの槽の有機物負荷が、他槽の有機物負荷よりも20%以上50%以下の範囲で高くなるように設定し、
前記一つの槽のメタン発酵状態が悪化して、メタン発酵槽の運転管理基準値を満たさなくなった場合、前記他槽の少なくとも一部の槽のメタン発酵処理液を前記一つの槽へと供給し、
前記一つの槽のメタン発酵状態がメタン発酵槽の運転管理基準値を満たすようになった場合、前記他槽の少なくとも一部の槽からのメタン発酵処理液の前記一つの槽への供給を停止する、ことを特徴とする、有機物処理方法に関する。
Specifically, the present invention
An organic matter treatment method for methane fermentation of organic wastewater or organic solids in a methane fermentation tank,
Supply the fermented liquid containing organic matter to a plurality of methane fermentation tanks arranged in parallel,
Among the plurality of methane fermentation tanks, the organic substance load of one tank is set to be higher in the range of 20% or more and 50% or less than the organic substance load of the other tanks,
When the methane fermentation state of the one tank deteriorates and does not satisfy the operation management standard value of the methane fermentation tank, the methane fermentation treatment liquid of at least a part of the other tanks is supplied to the one tank. ,
When the methane fermentation state of the one tank satisfies the operation management standard value of the methane fermentation tank, supply of the methane fermentation treatment liquid from at least a part of the other tank to the one tank is stopped. The present invention relates to an organic matter processing method.

本発明では、有機性廃水のような有機物を含有する被発酵液を、並列に配置された複数槽のメタン発酵槽によってメタン発酵させる際に、特定の1槽のみ、他のメタン発酵槽よりも有機物負荷が20%以上50%以下の範囲で高くなるように設定する。この特定の1槽以外のメタン発酵槽は、すべて有機物負荷は同じとする。この状態で被発酵液の処理を継続すると、有機物負荷が上昇した場合、有機物負荷が高く設定されている特定の1槽の処理能力が最先に限界に達する。   In this invention, when fermenting the to-be-fermented liquid containing organic substance like organic wastewater with the methane fermentation tank of the multiple tank arrange | positioned in parallel, only one specific tank is more than other methane fermentation tanks. Set so that the organic load becomes higher in the range of 20% to 50%. All of the methane fermentation tanks other than this specific tank have the same organic load. If processing of the to-be-fermented liquid is continued in this state, when the organic matter load rises, the treatment capacity of a specific one tank in which the organic matter load is set high reaches the limit first.

このとき、他のメタン発酵槽からメタン発酵処理液を特定の1槽へと供給することにより、特定の1槽の不調の原因となる阻害物質を速やかに排出すると同時に、メタン菌が供給されるため、特定の1槽の処理能力を回復させることが可能となる。また、この間、他のメタン発酵槽の処理能力も低下しない。   At this time, by supplying the methane fermentation treatment liquid from another methane fermenter to a specific one tank, the inhibitory substance causing the malfunction of the specific one tank is quickly discharged, and at the same time, methane bacteria are supplied. Therefore, it becomes possible to recover the processing capacity of one specific tank. During this time, the processing capacity of other methane fermenters does not decrease.

前記メタン発酵槽の運転管理基準値の項目は、メタン発酵槽内のpH、n-Hex(ノルマルヘキサン)抽出物質濃度、VFA(揮発性脂肪酸)濃度、NH4-N(アンモニア性窒素)濃度、発生ガス中のメタン濃度、又はガス発生量の少なくとも1つであることが好ましい。 The items of the operation management standard value of the methane fermenter include pH in the methane fermenter, n-Hex (normal hexane) extract substance concentration, VFA (volatile fatty acid) concentration, NH 4 -N (ammonia nitrogen) concentration, It is preferably at least one of the methane concentration in the generated gas or the amount of gas generated.

前記複数のメタン発酵槽の上流側に、有機物を含有する液体を嫌気性微生物によって生物処理する嫌気性生物処理槽を設け、
前記嫌気性生物処理槽の処理液を被発酵液として並列に配置された前記複数のメタン発酵槽に供給することも好ましい。
On the upstream side of the plurality of methane fermentation tanks, an anaerobic biological treatment tank that biologically treats liquids containing organic substances with anaerobic microorganisms is provided.
It is also preferable to supply the treatment liquid of the anaerobic biological treatment tank to the plurality of methane fermentation tanks arranged in parallel as the liquid to be fermented.

本発明はまた、
並列に配置された複数のメタン発酵槽と、
前記メタン発酵槽の運転管理基準値を検出する検出器と、
を備え、有機性廃水又は有機性固形物をメタン発酵槽内でメタン発酵させる有機物処理装置であって、
前記複数のメタン発酵槽のうち、一つの槽の有機物負荷が、他槽の有機物負荷よりも20%以上50%以下の範囲で高くなるように設定されており、
前記一つのメタン発酵槽の運転管理基準値が満たされなくなったことを前記検出器が検出した場合、前記他槽の少なくとも一部の槽の処理液を前記一つの槽に投入し、
前記一つの槽のメタン発酵状態がメタン発酵槽の運転管理基準値を満たすようになった場合、前記他槽の少なくとも一部の槽からのメタン発酵処理液の前記一つの槽への供給を停止する、ことを特徴とする、有機物処理装置に関する。
The present invention also provides
A plurality of methane fermenters arranged in parallel;
A detector for detecting an operation management reference value of the methane fermentation tank;
An organic matter treatment apparatus for methane fermentation of organic wastewater or organic solids in a methane fermentation tank,
Among the plurality of methane fermentation tanks, the organic load of one tank is set to be higher in the range of 20% or more and 50% or less than the organic load of other tanks,
When the detector detects that the operation management reference value of the one methane fermentation tank is not satisfied, the processing liquid of at least a part of the other tanks is charged into the one tank,
When the methane fermentation state of the one tank satisfies the operation management standard value of the methane fermentation tank, supply of the methane fermentation treatment liquid from at least a part of the other tank to the one tank is stopped. The present invention relates to an organic matter processing apparatus.

前記検出器の検出対象は、メタン発酵槽内のpH、n-Hex抽出物質濃度、VFA濃度、NH4-N濃度、発生ガス中のメタン濃度、又はガス発生量の少なくとも1つであることが好ましい。 The detection target of the detector may be at least one of pH in the methane fermentation tank, n-Hex extract concentration, VFA concentration, NH 4 -N concentration, methane concentration in the generated gas, or gas generation amount. preferable.

本発明によれば、メタン発酵槽全体の処理能力を維持しつつ、容易な手段でメタン発酵の不調を発見し、メタン菌の活性を回復させ得る。   ADVANTAGE OF THE INVENTION According to this invention, the disorder | damage | failure of methane fermentation can be discovered by an easy means, and the activity of methane bacteria can be recovered, maintaining the processing capacity of the whole methane fermentation tank.

本発明の有機物処理方法における、通常運転時のメタン発酵処理液のフローを示す。The flow of the methane fermentation processing liquid at the time of normal driving | operation in the organic substance processing method of this invention is shown. 本発明の有機物処理方法において、特定のメタン発酵槽1槽が不調となった場合のメタン発酵処理液のフローを示す。In the organic substance processing method of this invention, the flow of the methane fermentation processing liquid when one specific methane fermentation tank becomes unsatisfactory is shown.

本発明の実施の形態について、適宜図面を参照しながら説明する。本発明は、以下の記載に限定されない。   Embodiments of the present invention will be described with reference to the drawings as appropriate. The present invention is not limited to the following description.

図1は、本発明の有機物処理方法における、通常運転時のメタン発酵処理液のフローを示す。固形、半固形又は液状の有機性廃棄物は、必要に応じて水と混合された後、原料槽内で適宜ミキサーのような粉砕装置を用いて粉砕される。原料槽内の被発酵液は、有機物濃度がメタン発酵に適した状態になるように調整された後、ポンプPによってメタン発酵槽1及びメタン発酵槽2へと移送される。図1では、メタン発酵槽の前段に原料槽を設けられているが、メタン発酵槽1及びメタン発酵槽2へと有機性廃棄物及び水を直接投入してもよい。   FIG. 1 shows the flow of a methane fermentation treatment liquid during normal operation in the organic matter treatment method of the present invention. The solid, semi-solid or liquid organic waste is mixed with water as needed, and then pulverized in a raw material tank using a pulverizer such as a mixer as appropriate. The liquid to be fermented in the raw material tank is transferred to the methane fermentation tank 1 and the methane fermentation tank 2 by the pump P after the organic matter concentration is adjusted to a state suitable for methane fermentation. In FIG. 1, the raw material tank is provided in the front stage of the methane fermentation tank, but organic waste and water may be directly fed into the methane fermentation tank 1 and the methane fermentation tank 2.

図1には図示されていないが、原料槽とメタン発酵槽1及びメタン発酵槽2との間(メタン発酵槽1及びメタン発酵槽2の上流側)に、被発酵液(有機物を含有する液体)を嫌気性微生物によって生物処理する嫌気性生物処理槽を設け、嫌気性生物処理槽の処理液を被発酵液として並列に配置されたメタン発酵槽1及びメタン発酵槽2に供給するようにしてもよい。このような構成とすることにより、被発酵液中の有機性固形物を酸発酵によって生物学的に分解及び可溶化することが可能となり、後続するメタン発酵の発酵効率を向上させることが可能となる。   Although not illustrated in FIG. 1, a liquid to be fermented (a liquid containing an organic substance) is disposed between the raw material tank and the methane fermentation tank 1 and the methane fermentation tank 2 (upstream side of the methane fermentation tank 1 and the methane fermentation tank 2). ) Is provided with an anaerobic biological treatment tank for biological treatment with anaerobic microorganisms, and the treatment liquid of the anaerobic biological treatment tank is supplied to the methane fermentation tank 1 and the methane fermentation tank 2 arranged in parallel as the liquid to be fermented. Also good. By adopting such a configuration, it becomes possible to biologically decompose and solubilize organic solids in the liquid to be fermented by acid fermentation, and to improve the fermentation efficiency of subsequent methane fermentation. Become.

メタン発酵槽1及びメタン発酵槽2は、原料槽から移送される被発酵液をメタン発酵させるために並列に設置されている。ここでは、メタン発酵槽1の有機物負荷を、メタン発酵槽2の有機物負荷の20%以上50%以下の範囲で高くなるように設定されている。すなわち、メタン発酵槽1の有機物負荷は、メタン発酵槽2の有機物負荷の120%以上150%以下の範囲に調整される。有機物負荷の調整は、例えば、投入量を計量しながら、投入ポンプの吐出量を調整することによって行うことが可能である。   The methane fermentation tank 1 and the methane fermentation tank 2 are installed in parallel in order to ferment the liquid to be fermented transferred from the raw material tank. Here, the organic matter load of the methane fermenter 1 is set to be higher in the range of 20% to 50% of the organic matter load of the methane fermenter 2. That is, the organic matter load of the methane fermenter 1 is adjusted to a range of 120% to 150% of the organic matter load of the methane fermenter 2. The organic load can be adjusted, for example, by adjusting the discharge amount of the input pump while measuring the input amount.

攪拌を伴う中温消化タンクでは、低負荷のメタン発酵槽は2.4〜4.4 kgVSS/m3/dの範囲で、高負荷のメタン発酵槽は4.4〜6.4 kgVSS/m3/dの範囲で運転することが一般的である。設定負荷の差が大きい方が、高負荷であるメタン発酵槽1の異常を早く検知でき、低負荷であるメタン発酵槽2の発酵状態を確実に守ることができる。しかし、設定負荷の差が大きいと、高負荷であるメタン発酵槽1の異常が頻繁に起こる可能性がある。 In medium-temperature digestion tanks with agitation, low-load methane fermenters should be operated in the range of 2.4 to 4.4 kg VSS / m 3 / d, and high-load methane fermenters should be operated in the range of 4.4 to 6.4 kg VSS / m 3 / d. Is common. The one where the difference of setting load is larger can detect the abnormality of the methane fermentation tank 1 having a high load earlier, and can surely protect the fermentation state of the methane fermentation tank 2 having a low load. However, if the difference in the set load is large, abnormalities in the methane fermentation tank 1 that is a high load may frequently occur.

一方、設定負荷の差が小さい場合は、メタン発酵槽1及びメタン発酵槽2が同時に負荷過剰となってメタン発酵に異常を生じる可能性がある。このため、設定負荷の差は、経験的に低負荷であるメタン発酵槽の負荷の20〜50%の範囲内とすることが好ましい。   On the other hand, when the difference in the set load is small, the methane fermentation tank 1 and the methane fermentation tank 2 may be overloaded at the same time, causing an abnormality in methane fermentation. For this reason, it is preferable to make the difference of setting load into the range of 20 to 50% of the load of the methane fermenter which is empirically low load.

メタン発酵槽1及びメタン発酵槽2においては、それぞれメタン菌によって有機物の嫌気性処理が行われる。メタン発酵槽1及びメタン発酵槽2へと供給される被処理液の有機物負荷が、それぞれのメタン発酵槽の処理能力以下であれば、メタン発酵槽1及びメタン発酵槽2の処理液は、それぞれのメタン発酵槽から取り出され、後続する処理設備へと移送される。処理液中に残存する有機物は、通常、好気性生物処理によって処理され、河川あるいは下水道等に放流される。   In the methane fermentation tank 1 and the methane fermentation tank 2, anaerobic treatment of organic substances is performed by methane bacteria. If the organic load of the liquid to be treated supplied to the methane fermentation tank 1 and the methane fermentation tank 2 is equal to or less than the processing capacity of each methane fermentation tank, the treatment liquids of the methane fermentation tank 1 and the methane fermentation tank 2 are respectively From the methane fermenter and transferred to subsequent processing equipment. The organic matter remaining in the treatment liquid is usually treated by aerobic biological treatment and discharged into rivers or sewers.

図2は、本発明の有機物処理方法において、特定のメタン発酵槽1槽が不調となった場合のメタン発酵処理液のフローを示す。メタン発酵槽1及びメタン発酵槽2へと供給される被発酵液の有機物濃度が上昇する等した場合、まず有機物負荷が高く設定されているメタン発酵槽1の有機物負荷が過大となり、メタン発酵が不調となる。メタン発酵槽1のメタン発酵状態が不調となったことは、例えば、発酵槽内pH、n-Hex抽出物質濃度、VFA濃度、NH4-N濃度、発生ガスのメタンガス濃度、又は発生ガス量等によって確認し得る。 FIG. 2 shows the flow of the methane fermentation treatment liquid when one specific methane fermentation tank is malfunctioning in the organic matter treatment method of the present invention. When the organic matter concentration of the liquid to be fermented supplied to the methane fermenter 1 and the methane fermenter 2 is increased, the organic matter load of the methane fermenter 1 that is set to a high organic matter load is excessive, and methane fermentation is performed. It becomes ill. The fact that the methane fermentation state of the methane fermentation tank 1 has become unsatisfactory includes, for example, the fermenter pH, n-Hex extract concentration, VFA concentration, NH 4 -N concentration, methane gas concentration of the generated gas, or the amount of generated gas Can be confirmed by.

メタン発酵槽のメタン発酵が不調になったことは、例えば、発酵槽内pHが7未満(7以上の場合は正常)、n-Hex抽出物質濃度が1500mg/L以上、VFAが3000mg/L以上、NH4-N濃度が2000mg/L以上、又はバイオガス中のメタン濃度が60%未満のいずれか一つ以上に該当することによって判断し得る。 The methane fermentation in the methane fermenter has failed. For example, the fermenter pH is less than 7 (normal if 7 or more), the n-Hex extract concentration is 1500 mg / L or more, and the VFA is 3000 mg / L or more. , NH 4 -N concentration is 2000 mg / L or more, or methane concentration in biogas is less than 60%, and can be judged by any one or more.

メタン発酵処理液のpHは、n-Hex抽出物質濃度のような他の因子に影響を与えるため、pH値によって、pH以外の基準値を補正するようにしてもよい。例えば、pHが高い(アルカリ側)場合、NH4-N濃度の基準値を低くするように補正し、VFAの基準値を高くするように補正することが好ましい。 Since the pH of the methane fermentation treatment solution affects other factors such as the concentration of the n-Hex extract substance, a reference value other than pH may be corrected by the pH value. For example, when the pH is high (alkaline side), it is preferable to correct the NH 4 —N concentration so that the reference value is lowered and to make the VFA reference value higher.

なお、メタン発酵槽のメタン発酵が不調になったか否かを判定するための各因子のうち、pH及びバイオガス中のメタンガス濃度は、連続測定可能であるため、通常1日の測定の平均値を基準値と比較することでメタン発酵の状態を確認することができる。一方、これら以外の連続測定できない因子については、分析毎に判断を行うようにすればよく、確実に判断する観点では時間をおいて2回以上測定し、平均値に基づいて判断するようにしてもよい。   In addition, among each factor for judging whether methane fermentation of methane fermenter became unsuccessful, pH and methane gas concentration in biogas are continuously measurable, so it is usually the average value of one day measurement The state of methane fermentation can be confirmed by comparing the value with the reference value. On the other hand, factors other than these that cannot be measured continuously should be determined for each analysis. From the viewpoint of reliable determination, measure at least twice over time, and determine based on the average value. Also good.

例えば、メタン発酵槽1の発生ガス中のメタン濃度が60%未満となったような場合、メタン発酵槽1のメタン発酵状態が不調となったと判断される。この場合、図2に示されるように、メタン発酵状態が正常であるメタン発酵槽2のメタン発酵処理液の少なくとも一部を、図1において破線で描かれている配管を介して、図示されていない移送ポンプの動力によってメタン発酵槽1へと供給する。あるいは、図1において破線で描かれている配管の途中に設置されている流量制御弁(図示されていない)の開度を変化させ、流路を形成することによって、メタン発酵槽2のメタン発酵処理液の少なくとも一部をメタン発酵槽1へと供給してもよい。これにより、正常なメタン発酵槽2の処理液によって不調となったメタン発酵槽1の被発酵液を希釈することになる。その結果、メタン発酵槽2の性能低下を招くことはなく、メタン発酵槽1の被発酵液をメタン発酵槽槽2の処理液で希釈しつつ、メタン菌も補充される。また、メタン発酵槽2からの処理液をメタン発酵槽1に供給することで、メタン発酵槽1の処理液の温度が低下せず、希釈時にメタン発酵槽1を加温する必要がないため、省エネルギー効果も期待できる。   For example, when the methane concentration in the generated gas of the methane fermentation tank 1 is less than 60%, it is determined that the methane fermentation state of the methane fermentation tank 1 has become unstable. In this case, as shown in FIG. 2, at least a part of the methane fermentation treatment liquid in the methane fermentation tank 2 in which the methane fermentation state is normal is illustrated via a pipe drawn by a broken line in FIG. 1. It supplies to the methane fermenter 1 with the power of the transfer pump which is not. Alternatively, the methane fermentation in the methane fermentation tank 2 is performed by changing the opening of a flow rate control valve (not shown) installed in the middle of the piping drawn with a broken line in FIG. At least a part of the treatment liquid may be supplied to the methane fermentation tank 1. Thereby, the to-be-fermented liquid of the methane fermentation tank 1 which became unsatisfactory by the process liquid of the normal methane fermentation tank 2 will be diluted. As a result, the performance of the methane fermentation tank 2 is not deteriorated, and the methane bacteria are also supplemented while diluting the liquid to be fermented in the methane fermentation tank 1 with the treatment liquid in the methane fermentation tank 2. Moreover, since the temperature of the processing liquid of the methane fermentation tank 1 does not fall by supplying the processing liquid from the methane fermentation tank 2 to the methane fermentation tank 1, it is not necessary to heat the methane fermentation tank 1 at the time of dilution. Energy saving effect can also be expected.

正常なメタン発酵槽と不調となっているメタン発酵槽の被発酵液を入れ替える従来技術の場合には、不調となっているメタン発酵槽の改善は期待できるが、正常なメタン発酵槽の性能は低下することになる。しかし、本発明の有機物処理方法によれば、正常なメタン発酵槽の性能を低下させることなく、不調となっているメタン発酵槽の発酵状態を効率よく改善させることが可能である。   In the case of the conventional technology that replaces the fermented liquid of the normal methane fermenter and the malfunctioning methane fermenter, improvement of the malfunctioning methane fermenter can be expected, but the performance of the normal methane fermenter is Will be reduced. However, according to the organic matter treatment method of the present invention, it is possible to efficiently improve the fermentation state of a malfunctioning methane fermenter without reducing the performance of a normal methane fermenter.

ここで、メタン発酵槽2からメタン発酵槽1へと移送する処理液の移送量は、メタン発酵阻害物質(例えば、n-Hex抽出物質)の希釈後の予想濃度より決定する。高負荷であるメタン発酵槽1について、
原料投入量:Q(t/d)
原料の阻害物質濃度:Ni(mg/L)
原料阻害物質の分解率:D(%)
発酵槽容積:V(m3
処理液投入後に目指す阻害物質濃度:Ne(mg/L)
とする。
Here, the transfer amount of the processing liquid transferred from the methane fermentation tank 2 to the methane fermentation tank 1 is determined from the expected concentration after dilution of the methane fermentation inhibitor (for example, n-Hex extract). About methane fermentation tank 1 which is high load,
Raw material input: Q (t / d)
Raw material inhibitor concentration: Ni (mg / L)
Decomposition rate of raw material inhibitor: D (%)
Fermenter volume: V (m 3 )
Target inhibitor concentration after processing solution is charged: Ne (mg / L)
And

一方、低負荷であるメタン発酵槽2について、
メタン発酵槽2から移送する処理液の移送倍率:C
処理液中の阻害物質濃度:N1(mg/L)
処理液中の阻害物質の分解率:E(%)
Ne={Q・Ni・(1-D/100)+C・Q・N1・(1-E/100)−(C+1)・Q・Ne}/V
V/Q=H(水力学的滞留時間HRT(d))
とする。
On the other hand, for the methane fermenter 2 that has a low load,
Transfer ratio of processing liquid transferred from methane fermentation tank 2: C
Inhibitor concentration in treatment solution: N1 (mg / L)
Decomposition rate of inhibitor in processing solution: E (%)
Ne = {Q ・ Ni ・ (1-D / 100) + C ・ Q ・ N1 ・ (1-E / 100) − (C + 1) ・ Q ・ Ne} / V
V / Q = H (hydraulic residence time HRT (d))
And

すると、
C={(H+1)・Ne−Ni・(1-D/100)}/{N1・(1-E/100)-Ne}
となるため、低負荷槽から高負荷槽への移送量は、C・Q(t/d)と算出される。
Then
C = {(H + 1) ・ Ne−Ni ・ (1-D / 100)} / {N1 ・ (1-E / 100) -Ne}
Therefore, the transfer amount from the low load tank to the high load tank is calculated as C · Q (t / d).

図1及び図2においては、メタン発酵槽が2槽並列に設けられているが、3槽以上設けられている場合には、特定の1槽のみ有機物負荷が高くなるように設定し、他のメタン発酵槽は同一の有機物負荷に設定する。この場合にも、特定の1槽の有機物負荷は、他のメタン発酵槽1槽の有機物負荷の120%以上150%以下の範囲となるように設定する。   1 and 2, two methane fermentation tanks are provided in parallel. However, when three or more tanks are provided, only one specific tank is set so that the organic load is increased. The methane fermenter is set to the same organic load. Also in this case, the organic substance load of one specific tank is set to be in a range of 120% to 150% of the organic substance load of the other one methane fermentation tank.

このように、並列に設けられたメタン発酵槽のうちの1槽を高負荷に設定することにより、複数のメタン発酵槽へと供給される被発酵液中の有機物負荷が上昇した場合、高負荷の1槽が最初に負荷過剰となる。従って、高負荷の1槽の発酵状態を観察し、有機物負荷過剰によって不調と判断されれば、低負荷のメタン発酵槽から処理液を高負荷の1槽へと供給する。その結果、全部のメタン発酵槽が同時に負荷過剰によって不調となることを有効に防止し、処理施設を安定して連続運転することが可能となる。   In this way, when one of the methane fermentation tanks provided in parallel is set to a high load, when the organic matter load in the liquid to be fermented supplied to the plurality of methane fermentation tanks increases, the high load One tank is overloaded first. Therefore, the fermentation state of one high-loading tank is observed, and if it is judged that the organic substance is excessively loaded, the treatment liquid is supplied from the low-loading methane fermentation tank to one high-loading tank. As a result, it is possible to effectively prevent all the methane fermentation tanks from becoming unsatisfactory due to excessive load at the same time, and to stably operate the treatment facility continuously.

また、高負荷のメタン発酵槽のメタン発酵が不調と判断された場合、数日遅れて低負荷のメタン発酵槽も不調になることが予測される。このため、低負荷のメタン発酵槽へ供給する原料の希釈倍率の調整、栄養塩の添加、他原料の混合、原料投入量の減少、又はメタン菌に有害な物質の除去といった操作のいずれか一つ若しくは複数の操作を行うことにより、低負荷のメタン発酵槽のメタン発酵が不調になることを回避することができる。   Moreover, when it is judged that the methane fermentation of a high-load methane fermenter is unsatisfactory, it is predicted that a low-load methane fermenter also becomes unsatisfactory after several days. For this reason, any one of operations such as adjusting the dilution ratio of the raw material supplied to the low-load methane fermenter, adding nutrients, mixing other raw materials, reducing the amount of raw material input, or removing substances harmful to methane bacteria By performing one or a plurality of operations, it is possible to avoid malfunction of methane fermentation in a low-load methane fermentation tank.

メタン発酵槽を3槽以上設ける場合には、低負荷の1槽から高負荷の1槽へと処理液を供給してもよく、低負荷の2槽以上から高負荷の1槽へと処理液を供給してもよい。   When three or more methane fermentation tanks are installed, the treatment liquid may be supplied from one low-load tank to one high-load tank, or from two or more low-load tanks to one high-load tank. May be supplied.

メタン発酵槽1の運転管理基準値が基準値の範囲内となり、正常なメタン発酵状態に戻ったと判断されれば、メタン発酵槽2からメタン発酵槽1への処理液の移送を中止し、図1に示されるフローに戻す。メタン発酵槽1の発酵状態が不調となれば、再度図2に示されるフローに切り替え、以後、同様の操作を繰り返す。   If it is judged that the operation management reference value of the methane fermentation tank 1 is within the range of the reference value and has returned to the normal methane fermentation state, the transfer of the processing liquid from the methane fermentation tank 2 to the methane fermentation tank 1 is stopped, Return to the flow shown in FIG. If the fermentation state of the methane fermenter 1 becomes unsatisfactory, the flow is switched again to the flow shown in FIG. 2, and thereafter the same operation is repeated.

メタン発酵槽1の発生ガス中のメタン濃度が60%以上に戻れば、メタン発酵槽2のメタン発酵処理液のメタン発酵槽1への供給を停止する。実務上は、変動を考慮してメタン発酵槽1の発生ガス中のメタン濃度60%以上の状態が2日継続することを確認した後、メタン発酵槽2のメタン発酵処理液のメタン発酵槽1への供給を停止することが好ましい。   When the methane concentration in the gas generated in the methane fermentation tank 1 returns to 60% or more, the supply of the methane fermentation treatment liquid in the methane fermentation tank 2 to the methane fermentation tank 1 is stopped. In practice, after confirming that the state in which the methane concentration in the gas generated in the methane fermentation tank 1 is 60% or more continues for two days in consideration of fluctuations, the methane fermentation tank 1 of the methane fermentation treatment liquid in the methane fermentation tank 2 It is preferable to stop the supply to

なお、本実施形態においては、高負荷槽と低負荷槽の大きさを特に限定していないが、それぞれの槽を同じ大きさとしてもよく、異なる大きさとしてもよい。高負荷の1槽を小型にすることで、不調となった後に低負荷槽からの消化液の供給によって高負荷槽内の阻害物質を排出させやすくなるため、高負荷槽を正常な状態に復帰させやすくなる。   In addition, in this embodiment, although the magnitude | size of a high load tank and a low load tank is not specifically limited, each tank may be made the same magnitude | size and may be made into a different magnitude | size. By reducing the size of one high-load tank, it becomes easier to discharge the inhibitory substances in the high-load tank by supplying digestive juice from the low-load tank after malfunctioning, so the high-load tank is returned to a normal state. It becomes easy to let you.

高負荷のメタン発酵槽が小型の場合、不調となる液量も少ないため、槽内のメタン発酵処理液の入れ替えが早く、早期に復旧可能であり、システム全体としても正常化させることが容易である。また、高負荷のメタン発酵槽が不調の時には、メタン発酵状態が正常に戻るまでに処理する廃棄物量(メタン発酵槽への投入量)が減少するが、本発明では不調になった高負荷のメタン発酵槽へ供給される処理量を減少させれば足りるため、高負荷槽を小型にした場合は、メタン発酵槽のメタン発酵が不調な場合にも、システム全体の処理量が大きく減少することを抑制し得る。   When the high-load methane fermentation tank is small, the amount of liquid that becomes unstable is small, so the methane fermentation treatment liquid in the tank can be replaced quickly and can be restored quickly, and it is easy to normalize the entire system. is there. In addition, when the high-load methane fermenter is malfunctioning, the amount of waste to be processed (the amount of input to the methane fermenter) is reduced until the methane fermentation state returns to normal. Since it is sufficient to reduce the amount of processing supplied to the methane fermentation tank, if the high-load tank is downsized, the throughput of the entire system will be greatly reduced even if the methane fermentation in the methane fermentation tank is poor. Can be suppressed.

また、本実施形態においては、メタン発酵槽1が不調時に原料槽からの供給を継続しつつ、メタン発酵槽2から処理液を供給しているが、原料槽からメタン発酵槽1への供給を停止して、メタン発酵槽2からの処理液のみを供給するようにしてもよい。   Moreover, in this embodiment, although the methane fermentation tank 1 continues the supply from a raw material tank at the time of malfunction, the process liquid is supplied from the methane fermentation tank 2, The supply from the raw material tank to the methane fermentation tank 1 is carried out. You may make it stop and supply only the process liquid from the methane fermentation tank 2. FIG.

本発明の有機物処理方法は、有機性廃棄物処理又は有機性廃水処理等の技術分野において有用である。   The organic matter treatment method of the present invention is useful in technical fields such as organic waste treatment or organic wastewater treatment.

Claims (5)

有機性廃水又は有機性固形物をメタン発酵槽内でメタン発酵させる有機物処理方法であって、
有機物を含有する被発酵液を、並列に配置された複数のメタン発酵槽に供給し、
前記複数のメタン発酵槽のうち、ある一つの槽の有機物負荷が、他槽の有機物負荷よりも20%以上50%以下の範囲で高くなるように設定し、
前記一つの槽のメタン発酵状態が悪化して、メタン発酵槽の運転管理基準値を満たさなくなった場合、前記他槽の少なくとも一部の槽のメタン発酵処理液を前記一つの槽へと供給し、
前記一つの槽のメタン発酵状態がメタン発酵槽の運転管理基準値を満たすようになった場合、前記他槽の少なくとも一部の槽からのメタン発酵処理液の前記一つの槽への供給を停止する、ことを特徴とする、有機物処理方法。
An organic matter treatment method for methane fermentation of organic wastewater or organic solids in a methane fermentation tank,
Supply the fermented liquid containing organic matter to a plurality of methane fermentation tanks arranged in parallel,
Among the plurality of methane fermentation tanks, the organic substance load of one tank is set to be higher in the range of 20% or more and 50% or less than the organic substance load of the other tanks,
When the methane fermentation state of the one tank deteriorates and does not satisfy the operation management standard value of the methane fermentation tank, the methane fermentation treatment liquid of at least a part of the other tanks is supplied to the one tank. ,
When the methane fermentation state of the one tank satisfies the operation management standard value of the methane fermentation tank, supply of the methane fermentation treatment liquid from at least a part of the other tank to the one tank is stopped. And a method for treating an organic substance.
前記メタン発酵槽の運転管理基準値の項目が、メタン発酵槽内のpH、n-Hex抽出物質濃度、VFA濃度、NH4-N濃度、発生ガス中のメタン濃度、又はガス発生量の少なくとも1つである、請求項1に記載の有機物処理方法。 The operation management reference value of the methane fermenter includes at least one of pH, n-Hex extract concentration, VFA concentration, NH 4 -N concentration, methane concentration in the generated gas, or gas generation amount in the methane fermenter. 2. The organic matter treatment method according to claim 1, wherein 前記複数のメタン発酵槽の上流側に、有機物を含有する液体を嫌気性微生物によって生物処理する嫌気性生物処理槽を設け、
前記嫌気性生物処理槽の処理液を被発酵液として並列に配置された前記複数のメタン発酵槽に供給する、請求項1又は2に記載の有機物処理方法。
On the upstream side of the plurality of methane fermentation tanks, an anaerobic biological treatment tank that biologically treats liquids containing organic substances with anaerobic microorganisms is provided.
The organic substance processing method of Claim 1 or 2 which supplies the process liquid of the said anaerobic biological treatment tank to these several methane fermentation tank arrange | positioned in parallel as to-be-fermented liquid.
並列に配置された複数のメタン発酵槽と、
前記メタン発酵槽の運転管理基準値を検出する検出器と、
を備え、有機性廃水又は有機性固形物をメタン発酵槽内でメタン発酵させる有機物処理装置であって、
前記複数のメタン発酵槽のうち、一つの槽の有機物負荷が、他槽の有機物負荷よりも20%以上50%以下の範囲で高くなるように設定されており、
前記一つのメタン発酵槽の運転管理基準値が満たされなくなったことを前記検出器が検出した場合、前記他槽の少なくとも一部の槽の処理液を前記一つの槽に投入し、
前記一つの槽のメタン発酵状態がメタン発酵槽の運転管理基準値を満たすようになった場合、前記他槽の少なくとも一部の槽からのメタン発酵処理液の前記一つの槽への供給を停止する、ことを特徴とする、有機物処理装置。
A plurality of methane fermenters arranged in parallel;
A detector for detecting an operation management reference value of the methane fermentation tank;
An organic matter treatment apparatus for methane fermentation of organic wastewater or organic solids in a methane fermentation tank,
Among the plurality of methane fermentation tanks, the organic load of one tank is set to be higher in the range of 20% or more and 50% or less than the organic load of other tanks,
When the detector detects that the operation management reference value of the one methane fermentation tank is not satisfied, the processing liquid of at least a part of the other tanks is charged into the one tank,
When the methane fermentation state of the one tank satisfies the operation management standard value of the methane fermentation tank, supply of the methane fermentation treatment liquid from at least a part of the other tank to the one tank is stopped. An organic matter processing apparatus characterized by comprising:
前記検出器の検出対象が、メタン発酵槽内のpH、n-Hex抽出物質濃度、VFA濃度、NH4-N濃度、発生ガス中のメタン濃度、又はガス発生量の少なくとも1つである、請求項4に記載の有機物処理装置。 The detection target of the detector is at least one of pH in a methane fermenter, n-Hex extract concentration, VFA concentration, NH 4 -N concentration, methane concentration in generated gas, or gas generation amount. Item 5. The organic substance processing apparatus according to Item 4.
JP2016099717A 2016-05-18 2016-05-18 Organic matter treatment method and organic matter treatment device by methane fermentation Active JP6666790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016099717A JP6666790B2 (en) 2016-05-18 2016-05-18 Organic matter treatment method and organic matter treatment device by methane fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016099717A JP6666790B2 (en) 2016-05-18 2016-05-18 Organic matter treatment method and organic matter treatment device by methane fermentation

Publications (2)

Publication Number Publication Date
JP2017205706A true JP2017205706A (en) 2017-11-24
JP6666790B2 JP6666790B2 (en) 2020-03-18

Family

ID=60416054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016099717A Active JP6666790B2 (en) 2016-05-18 2016-05-18 Organic matter treatment method and organic matter treatment device by methane fermentation

Country Status (1)

Country Link
JP (1) JP6666790B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739117A (en) * 2019-01-25 2019-05-10 广东通朗环保科技有限公司 A kind of control method of the electronic control unit applied to sewage disposal system
JP2019176840A (en) * 2018-03-30 2019-10-17 大和ハウス工業株式会社 Methane fermentation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019176840A (en) * 2018-03-30 2019-10-17 大和ハウス工業株式会社 Methane fermentation method
JP7164963B2 (en) 2018-03-30 2022-11-02 大和ハウス工業株式会社 Methane fermentation method
CN109739117A (en) * 2019-01-25 2019-05-10 广东通朗环保科技有限公司 A kind of control method of the electronic control unit applied to sewage disposal system

Also Published As

Publication number Publication date
JP6666790B2 (en) 2020-03-18

Similar Documents

Publication Publication Date Title
Peng et al. Long-term high-solids anaerobic digestion of food waste: effects of ammonia on process performance and microbial community
Maragkaki et al. Improving biogas production from anaerobic co-digestion of sewage sludge with a thermal dried mixture of food waste, cheese whey and olive mill wastewater
Westerholm et al. Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production
Yacob et al. Start-up operation of semi-commercial closed anaerobic digester for palm oil mill effluent treatment
Tabatabaei et al. Importance of the methanogenic archaea populations in anaerobic wastewater treatments
De la Rubia et al. Thermophilic anaerobic digestion of sewage sludge: focus on the influence of the start-up. A review
Gelegenis et al. Optimization of biogas production by co-digesting whey with diluted poultry manure
Bertin et al. Innovative two-stage anaerobic process for effective codigestion of cheese whey and cattle manure
Tejedor-Sanz et al. Merging microbial electrochemical systems with electrocoagulation pretreatment for achieving a complete treatment of brewery wastewater
Wett et al. Systematic comparison of mechanical and thermal sludge disintegration technologies
Kundu et al. Changes in microbial communities in a hybrid anaerobic reactor with organic loading rate and temperature
US8765449B2 (en) Three stage, multiple phase anaerobic digestion system and method
Gannoun et al. Mesophilic and thermophilic anaerobic digestion of biologically pretreated abattoir wastewaters in an upflow anaerobic filter
Jáuregui-Jáuregui et al. Anaerobic treatment of tequila vinasses under seasonal operating conditions: Start-up, normal operation and restart-up after a long stop and starvation period
Zha et al. Evaluation of an anaerobic baffled reactor for pretreating black water: Potential application in rural China
van Haandel et al. Methanosaeta dominate acetoclastic methanogenesis during high‐rate methane production in anaerobic reactors treating distillery wastewaters
Xiao et al. Process stability and microbial response of anaerobic membrane bioreactor treating high-strength kitchen waste slurry under different organic loading rates
El-Fadel et al. Startup and stability of thermophilic anaerobic digestion of OFMSW
Xiao et al. Acetic acid effects on methanogens in the second stage of a two-stage anaerobic system
Kassongo et al. Renewable energy from the solid-state anaerobic digestion of grape marc and cheese whey at high treatment capacity
EP3044172B1 (en) Digestion of organic sludge
Moertelmaier et al. Fatty acid metabolism and population dynamics in a wet biowaste digester during re-start after revision
Chen et al. Swine wastewater treatment using combined up-flow anaerobic sludge blanket and anaerobic membrane bioreactor: Performance and microbial community diversity
Pramanik et al. Effects of hydraulic retention time on the process performance and microbial community structure of an anaerobic single-stage semi-pilot scale reactor for the treatment of food waste
Sabba et al. Impact of operational strategies on a sidestream enhanced biological phosphorus removal (S2EBPR) reactor in a carbon limited wastewater plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190306

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200221

R150 Certificate of patent or registration of utility model

Ref document number: 6666790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250