JP2017203732A - Voltage measurement device - Google Patents

Voltage measurement device Download PDF

Info

Publication number
JP2017203732A
JP2017203732A JP2016096720A JP2016096720A JP2017203732A JP 2017203732 A JP2017203732 A JP 2017203732A JP 2016096720 A JP2016096720 A JP 2016096720A JP 2016096720 A JP2016096720 A JP 2016096720A JP 2017203732 A JP2017203732 A JP 2017203732A
Authority
JP
Japan
Prior art keywords
voltage
circuit
detection
switching element
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016096720A
Other languages
Japanese (ja)
Inventor
直之 松尾
Naoyuki Matsuo
直之 松尾
工藤 高裕
Takahiro Kudo
高裕 工藤
英樹 太田
Hideki Ota
英樹 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016096720A priority Critical patent/JP2017203732A/en
Publication of JP2017203732A publication Critical patent/JP2017203732A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a voltage measurement device which can contactlessly measure the applied voltage of an electric power line with high accuracy.SOLUTION: The voltage measurement device comprises: a modulation circuit 4 for modulating a current flowing via the coupling capacitance of a core wire 1a of an electric power line 1 and a detection electrode 2 to a higher frequency than a voltage to be measured, by turning a switching element on and off; a drive circuit 8 of the switching element; a transformer 32, connected in series to the switching element, for generating a detection signal proportionate to a potential difference between the voltage to be measured and a reference potential; a demodulation circuit 4 for extracting a frequency component of the voltage to be measured from the detection signal; a post-stage amplification circuit 5; and a high voltage generation circuit 6 for generating a reference potential to reduce a current flowing in the primary winding of the transformer 32 on the basis of the output signal of the post-stage amplification circuit and applying it to the primary winding, the voltage to be measured being identified on the basis of the reference voltage when the potential difference drops to or below a prescribed value, the detection electrode 2 containing a metal thin-film 2a in an insulation member 2b and having flexibility sufficient for it to be wound around the outer circumference of the electric power line 1.SELECTED DRAWING: Figure 2

Description

本発明は、電力線の芯線に印加された電圧を、電力線に装着される検出電極を用いて測定する電圧測定装置に関するものである。   The present invention relates to a voltage measuring apparatus that measures a voltage applied to a core of a power line using a detection electrode attached to the power line.

従来、電力線の芯線と検出プローブ内の電極との結合容量を利用して電力線への印加電圧を非接触にて測定する電圧測定装置が知られている。
この種の電圧測定装置では、電力線に対する検出プローブの位置関係や電力線の絶縁被覆の材質、温湿度等の周囲環境による誘電率の違いに起因して前記結合容量が変化し、これが測定誤差となるため、電力線の電圧を高精度に測定できない場合があった。
このため、上記の問題を解決する電圧測定装置として、特許文献1〜3に記載された従来技術が知られている。
2. Description of the Related Art Conventionally, a voltage measuring apparatus that measures a voltage applied to a power line in a non-contact manner using a coupling capacitance between the core of the power line and an electrode in a detection probe is known.
In this type of voltage measuring apparatus, the coupling capacitance changes due to the positional relationship of the detection probe with respect to the power line, the material of the insulation coating of the power line, the difference in dielectric constant depending on the surrounding environment such as temperature and humidity, and this becomes a measurement error. Therefore, there is a case where the voltage of the power line cannot be measured with high accuracy.
For this reason, the prior art described in patent documents 1-3 is known as a voltage measuring device which solves the above-mentioned problem.

特許文献1,2に記載された電圧測定装置は、検出電極、ダイオードやコンデンサ等の容量変化機能体及びその駆動回路からなる可変容量回路、電流検出器、増幅回路、同期検波回路、積分回路、電圧生成回路等を備えている。
これらの電圧測定装置では、容量変化機能体の容量を変化させ、測定対象、例えば電力線と検出電極との結合容量を介して流れる電流が容量変化機能体の動作周波数に応じて変化するように構成されている。上記の電流を、電流検出器を介して電圧に変換し、同期検波回路、増幅回路、積分回路等を介して電力線の電圧に応じた信号を生成すると共に、この信号を電圧生成回路により増幅する。
The voltage measuring device described in Patent Documents 1 and 2 includes a detection electrode, a variable capacitance circuit including a capacitance changing function body such as a diode and a capacitor, and a driving circuit thereof, a current detector, an amplifier circuit, a synchronous detection circuit, an integration circuit, A voltage generation circuit and the like are provided.
In these voltage measuring devices, the capacitance of the capacitance changing function body is changed, and the current flowing through the measurement target, for example, the coupling capacitance between the power line and the detection electrode, is changed according to the operating frequency of the capacitance changing function body. Has been. The current is converted into a voltage via a current detector, and a signal corresponding to the voltage of the power line is generated via a synchronous detection circuit, an amplifier circuit, an integration circuit, etc., and this signal is amplified by the voltage generation circuit. .

そして、検出電極、容量変化機能体、電流検出器、電圧生成回路を直列に接続することにより、電流検出器に流れる電流が減少してゼロになるように電圧生成回路の出力を電流検出器側にフィードバックし、電圧生成回路の出力電圧が電力線の電圧と等しくなるように制御している。
この従来技術によれば、電圧生成回路の出力電圧が被測定電圧と等しくなるようにフィードバック制御されるため、測定対象と検出電極との結合容量が変動した場合の影響を抑制することができる。
And, by connecting the detection electrode, capacitance change function body, current detector, and voltage generation circuit in series, the output of the voltage generation circuit is connected to the current detector side so that the current flowing through the current detector is reduced to zero. And the output voltage of the voltage generation circuit is controlled to be equal to the voltage of the power line.
According to this prior art, feedback control is performed so that the output voltage of the voltage generation circuit becomes equal to the voltage to be measured, so that it is possible to suppress the influence when the coupling capacitance between the measurement target and the detection electrode varies.

次に、特許文献3に記載された電圧測定装置では、芯線に絶縁被覆を施した電力線に、所定の静電容量の補助コンデンサを備えた検出プローブを取り付けると共に、補助コンデンサに検出用コンデンサ及び電圧検出回路を接続し、この電圧検出回路によって芯線に印加された交流電圧を測定している。ここで、検出プローブは、電力線の絶縁被覆の外側に巻き付け可能な可撓性を有する絶縁部材に、電力線側の大面積の第1電極とその一部に対向する電圧検出用の第2電極とを所定の間隔を置いて配置し、第2電極から測定線を引き出すことによって全体が一体的に形成されている。なお、補助コンデンサの容量は、電力線の芯線と第1電極との間の静電容量に比べて十分小さい値に設定されている。   Next, in the voltage measuring apparatus described in Patent Document 3, a detection probe including an auxiliary capacitor having a predetermined electrostatic capacity is attached to a power line having an insulating coating on a core wire, and a detection capacitor and a voltage are attached to the auxiliary capacitor. A detection circuit is connected, and the AC voltage applied to the core wire is measured by the voltage detection circuit. Here, the detection probe has a flexible insulating member that can be wound around the outside of the insulation of the power line, a first electrode having a large area on the power line side, and a second electrode for voltage detection that faces a part of the first electrode. Are arranged at a predetermined interval, and the whole is integrally formed by drawing a measurement line from the second electrode. Note that the capacity of the auxiliary capacitor is set to a value sufficiently smaller than the capacitance between the core of the power line and the first electrode.

特許文献3では、上記のような検出プローブを用いることで、電圧検出回路の入力電圧は第1電極,第2電極間の静電容量と検出用コンデンサの容量との比によってほぼ決定されるので、結合容量の変動の影響を抑制することができる。   In Patent Document 3, by using the detection probe as described above, the input voltage of the voltage detection circuit is almost determined by the ratio between the capacitance between the first electrode and the second electrode and the capacitance of the detection capacitor. The influence of fluctuations in the coupling capacity can be suppressed.

特開2007−163415号公報(段落[0036]〜[0054]、図1等)JP 2007-163415 A (paragraphs [0036] to [0054], FIG. 1, etc.) 特開2009−162608号公報(段落[0037]〜[0051]、図1等)JP 2009-162608 A (paragraphs [0037] to [0051], FIG. 1, etc.) 特開2012−163394号公報(段落[0022]〜[0035]、図1〜図3等)JP 2012-163394 A (paragraphs [0022] to [0035], FIGS. 1 to 3 etc.)

特許文献1,2に係る電圧測定装置では、電流検出器側にフィードバックされる電圧生成回路の出力電圧を制御することにより、この電圧を電力線の電圧に一致させている。しかし、フィードバック制御には比例制御に基づく誤差が発生し、この誤差は電流検出器により得られる検出信号の大きさとその後段の増幅回路の利得によって変化する。
ここで、電流検出器により得られる検出信号の大きさが大きいほど、また、その後の増幅回路の利得が大きいほど、上記誤差は小さくなる。このため、この種の電圧測定装置では、測定精度等を考慮して許容できる誤差を決定し、その誤差に対応するように増幅回路の利得を決定している。
In the voltage measuring devices according to Patent Documents 1 and 2, this voltage is matched with the voltage of the power line by controlling the output voltage of the voltage generation circuit fed back to the current detector side. However, an error based on proportional control occurs in the feedback control, and this error varies depending on the magnitude of the detection signal obtained by the current detector and the gain of the amplifier circuit at the subsequent stage.
Here, the larger the detection signal obtained by the current detector and the larger the gain of the subsequent amplifier circuit, the smaller the error. For this reason, in this type of voltage measurement apparatus, an allowable error is determined in consideration of measurement accuracy and the like, and the gain of the amplifier circuit is determined so as to correspond to the error.

しかし、許容できる誤差を小さくするために増幅回路の利得を大きくし過ぎると、フィードバック回路の安定性や耐ノイズ性が低下し、十分な測定精度や信頼性を得ることができなくなる。また、増幅回路の利得をできるだけ小さくして目的の精度を得るための他の方法として、電流検出器による検出信号を大きくすることが考えられるが、電力線の芯線と検出電極との結合容量は数[pF]程度と小さいため、電流検出器に流れる電流は上記結合容量によってほぼ決定されてしまう。この結合容量は検出電極の面積と誘電率とに比例し、芯線と検出電極との間の距離に反比例するので、芯線と検出電極との間の距離をできるだけ短くすると共に、検出電極の面積や誘電率をできるだけ大きくする必要がある。   However, if the gain of the amplifier circuit is increased too much in order to reduce the allowable error, the stability and noise resistance of the feedback circuit are lowered, and sufficient measurement accuracy and reliability cannot be obtained. As another method for obtaining the desired accuracy by reducing the gain of the amplifier circuit as much as possible, it is conceivable to increase the detection signal by the current detector. However, the coupling capacity between the core of the power line and the detection electrode is several. Since it is as small as [pF], the current flowing through the current detector is almost determined by the coupling capacitance. This coupling capacitance is proportional to the area of the detection electrode and the dielectric constant, and inversely proportional to the distance between the core wire and the detection electrode. Therefore, the distance between the core wire and the detection electrode is made as short as possible, and the area of the detection electrode and It is necessary to make the dielectric constant as large as possible.

ところが、特許文献1,2に開示された技術では、電力線を貫通させる貫通孔を有すると共に形状が定まったケースに検出電極を内蔵する構造となっている。このため、例えば太い電力線径に適合させた貫通孔を有するケースを細い電力線径に適用した場合、電力線の芯線と検出電極との間の距離が長くなり、また、芯線と検出電極との間に存在する空気によって誘電率が低下し、結合容量が小さくなるため十分な測定精度を得ることができない。   However, the techniques disclosed in Patent Documents 1 and 2 have a structure in which a detection electrode is built in a case having a through-hole through which a power line penetrates and having a fixed shape. For this reason, for example, when a case having a through hole adapted to a thick power line diameter is applied to a thin power line diameter, the distance between the core line of the power line and the detection electrode is increased, and the distance between the core line and the detection electrode is increased. Since the dielectric constant is lowered by the air present and the coupling capacitance is reduced, sufficient measurement accuracy cannot be obtained.

更に、特許文献1,2に係る電圧測定装置においては、検出信号を変調するためにインピーダンスを変化させる容量変化機能体が検出電極と電流検出器との間に直列に接続されるため、容量変化機能体の駆動信号(駆動電流)が電流検出器にノイズ成分として検出され、測定精度に影響を与える場合がある。その対策として、これらの電圧測定装置では、容量変化機能体をダイオード等からなるブリッジにより構成して駆動信号成分が電流検出器によって検出されないようにしているが、ブリッジの平衡状態を厳密に管理しなくてはならず、製造上または調整上のコストが増大するおそれがある。   Further, in the voltage measuring devices according to Patent Documents 1 and 2, since the capacitance changing function body that changes the impedance in order to modulate the detection signal is connected in series between the detection electrode and the current detector, the capacitance change The drive signal (drive current) of the functional body may be detected as a noise component by the current detector, which may affect the measurement accuracy. As a countermeasure, in these voltage measuring devices, the capacitance changing function body is configured by a bridge made of a diode or the like so that the drive signal component is not detected by the current detector, but the equilibrium state of the bridge is strictly controlled. There is a risk that manufacturing or adjustment costs may increase.

また、特許文献3に開示されている電圧測定装置において、検出信号は補助コンデンサの容量と検出コンデンサの容量との比によって決定されるため、各コンデンサの容量を常に高精度に保つ必要がある。しかしながら、周囲温度の影響等により絶縁部材の誘電率が変化するので、この絶縁部材の内部に形成される補助コンデンサ及び検出コンデンサの容量を常に高精度に保つことは困難である。
更に、取り付け時に可撓性の検出プローブに加わる応力の影響によって検出電極の位置関係がずれ、特に小容量が求められる補助コンデンサの容量が変化しやすい点を考慮すると、電圧を高精度に測定することは一層困難である。
In the voltage measuring device disclosed in Patent Document 3, since the detection signal is determined by the ratio of the capacity of the auxiliary capacitor and the capacity of the detection capacitor, it is necessary to always maintain the capacity of each capacitor with high accuracy. However, since the dielectric constant of the insulating member changes due to the influence of the ambient temperature or the like, it is difficult to always keep the capacitance of the auxiliary capacitor and the detection capacitor formed inside the insulating member with high accuracy.
Furthermore, taking into account the fact that the positional relationship of the detection electrodes is shifted due to the influence of the stress applied to the flexible detection probe during mounting, and the capacitance of the auxiliary capacitor that requires a small capacitance is likely to change, the voltage is measured with high accuracy. It is even more difficult.

そこで、本発明の解決課題は、電力線の芯線への印加電圧を低コストかつ高精度に測定可能とした電圧測定装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a voltage measuring device that can measure a voltage applied to a core of a power line with low cost and high accuracy.

上記課題を解決するため、請求項1に係る発明は、電力線の芯線に印加された被測定電圧を、前記電力線に装着される検出電極を用いて測定する電圧測定装置において、
前記芯線と前記検出電極との結合容量を介して流れる電流を、スイッチング素子のオン/オフにより前記被測定電圧の周波数よりも高い周波数に変調する変調回路と、前記スイッチング素子を駆動するための駆動信号を生成する駆動回路と、前記スイッチング素子に直列に接続されて前記被測定電圧と参照電位との電位差に比例した大きさの検出信号を生成する電流検出回路と、前記検出信号から前記被測定電圧の周波数成分を抽出する復調回路と、前記復調回路の出力信号を増幅する増幅回路と、前記増幅回路の出力信号に基づいて前記電流検出回路を流れる電流が減少するような前記参照電位を生成して前記電流検出回路に印加する電圧生成回路と、を備え、
前記電位差が所定値以下になったときの前記参照電位に基づいて前記被測定電圧を同定すると共に、前記検出電極は、前記スイッチング素子に接続される金属薄膜を絶縁部材に内蔵することにより、前記電力線の外周面に巻き付け可能な可撓性を有するものである。
In order to solve the above-described problem, the invention according to claim 1 is a voltage measuring device that measures a voltage to be measured applied to a core wire of a power line using a detection electrode attached to the power line.
A modulation circuit that modulates the current flowing through the coupling capacitance between the core wire and the detection electrode to a frequency higher than the frequency of the voltage to be measured by turning on / off the switching element; and driving for driving the switching element A drive circuit for generating a signal, a current detection circuit connected in series to the switching element to generate a detection signal having a magnitude proportional to a potential difference between the voltage to be measured and a reference potential, and the signal to be measured from the detection signal A demodulating circuit for extracting a frequency component of the voltage; an amplifying circuit for amplifying the output signal of the demodulating circuit; and generating the reference potential such that a current flowing through the current detecting circuit is reduced based on the output signal of the amplifying circuit And a voltage generation circuit to be applied to the current detection circuit,
The voltage to be measured is identified based on the reference potential when the potential difference becomes a predetermined value or less, and the detection electrode incorporates a metal thin film connected to the switching element in an insulating member, thereby It has the flexibility which can be wound around the outer peripheral surface of a power line.

請求項2に係る発明は、電力線の芯線に印加された被測定電圧を、前記電力線に装着される検出電極を用いて測定する電圧測定装置において、
前記芯線と前記検出電極との結合容量を介して流れる電流を、スイッチング素子のオン/オフにより前記被測定電圧の周波数よりも高い周波数に変調する変調回路と、前記スイッチング素子を駆動するための駆動信号を生成する駆動回路と、前記スイッチング素子に並列に接続されて前記被測定電圧と前記参照電位との電位差に比例した大きさの検出信号を生成する電流検出回路と、前記検出信号から前記被測定電圧の周波数成分を抽出する復調回路と、前記復調回路の出力信号を増幅する増幅回路と、前記増幅回路の出力信号に基づいて前記電流検出回路を流れる電流が減少するような前記参照電位を生成して前記電流検出回路に印加する電圧生成回路と、を備え、
前記電位差が所定値以下になったときの前記参照電位に基づいて前記被測定電圧を同定すると共に、前記検出電極は、前記スイッチング素子に接続される金属薄膜を絶縁部材に内蔵することにより、前記電力線の外周面に巻き付け可能な可撓性を有するものである。
The invention according to claim 2 is a voltage measuring device for measuring a voltage to be measured applied to a core wire of a power line using a detection electrode attached to the power line.
A modulation circuit that modulates the current flowing through the coupling capacitance between the core wire and the detection electrode to a frequency higher than the frequency of the voltage to be measured by turning on / off the switching element; and driving for driving the switching element A drive circuit for generating a signal; a current detection circuit connected in parallel to the switching element to generate a detection signal having a magnitude proportional to a potential difference between the voltage to be measured and the reference potential; and A demodulating circuit for extracting a frequency component of the measurement voltage, an amplifying circuit for amplifying the output signal of the demodulating circuit, and the reference potential that reduces the current flowing through the current detection circuit based on the output signal of the amplifying circuit. A voltage generation circuit that generates and applies to the current detection circuit,
The voltage to be measured is identified based on the reference potential when the potential difference becomes a predetermined value or less, and the detection electrode incorporates a metal thin film connected to the switching element in an insulating member, thereby It has the flexibility which can be wound around the outer peripheral surface of a power line.

請求項3に係る発明は、請求項1または2に記載した電圧測定装置において、前記電流検出回路は、前記スイッチング素子に流れる電流により励磁される一次巻線と、前記復調回路に接続される二次巻線と、を備えたトランスであることを特徴とする。   According to a third aspect of the present invention, in the voltage measuring apparatus according to the first or second aspect, the current detection circuit is connected to the primary winding excited by the current flowing through the switching element and the demodulation circuit. And a transformer having a next winding.

請求項4に係る発明は、請求項1〜3の何れか1項に記載した電圧測定装置において、前記増幅回路が、前記復調回路の出力信号の位相を電気角で90°遅らせる機能を備えたものである。   According to a fourth aspect of the present invention, in the voltage measurement device according to any one of the first to third aspects, the amplifier circuit has a function of delaying the phase of the output signal of the demodulator circuit by 90 degrees in electrical angle. Is.

請求項5に係る発明は、請求項1〜4の何れか1項に記載した電圧測定装置において、前記スイッチング素子としてMOS−FETを用いたものである。   The invention according to claim 5 is the voltage measuring device according to any one of claims 1 to 4, wherein a MOS-FET is used as the switching element.

本発明によれば、ブリッジ回路により構成された容量変化機能体に代えてスイッチング素子をオン/オフさせることにより検出信号を変調する構成であるため、ブリッジの平衡状態の厳密な管理を不要にして製造上または調整上のコストを低減することができる。
更に、絶縁部材に金属薄膜を内蔵して構成される検出電極が、電力線の外周面に巻き付け可能な可撓性を有することにより、検出電極を電力線に密着させた状態で装着することができる。これにより、芯線と検出電極(金属薄膜)との位置関係がずれる恐れもなく、両者間の結合容量が変化する心配がないため、電力線の電圧を高精度に測定することができる。加えて、可撓性を有する検出電極は様々な径を有する電力線に装着可能であるから、被測定電圧の範囲が広いという利点もある。
According to the present invention, since the detection signal is modulated by turning on / off the switching element instead of the capacitance change function body configured by the bridge circuit, strict management of the equilibrium state of the bridge is unnecessary. Manufacturing or adjustment costs can be reduced.
Furthermore, since the detection electrode configured by incorporating the metal thin film in the insulating member has flexibility that can be wound around the outer peripheral surface of the power line, the detection electrode can be mounted in a state of being in close contact with the power line. Thereby, there is no fear that the positional relationship between the core wire and the detection electrode (metal thin film) is shifted, and there is no fear that the coupling capacitance between the two changes, so that the voltage of the power line can be measured with high accuracy. In addition, since the flexible detection electrode can be attached to power lines having various diameters, there is an advantage that the range of the voltage to be measured is wide.

本発明の第1実施形態に係る電圧測定装置の構成図である。It is a lineblock diagram of the voltage measuring device concerning a 1st embodiment of the present invention. 本発明の各実施形態における電力線及び検出電極の構造を示す図である。It is a figure which shows the structure of the power line and detection electrode in each embodiment of this invention. 本発明の第1実施形態における検出回路の構成図である。It is a block diagram of the detection circuit in 1st Embodiment of this invention. 本発明の各実施形態における増幅回路の構成図である。It is a block diagram of the amplifier circuit in each embodiment of this invention. 本発明の第2実施形態における検出回路の構成図である。It is a block diagram of the detection circuit in 2nd Embodiment of this invention.

以下、図に沿って本発明の実施形態を説明する。
図1は、本発明の第1実施形態に係る電圧測定装置の全体的な構成図である。
この電圧測定装置は、系統電源Gにより電力線1の芯線1aに印加されている交流電圧vを芯線1aに対し非接触にて測定する検出電極(検出プローブ)2と、この検出電極2に接続された検出回路3とを備えている。なお、Cは、電力線1に検出電極2を装着した際に形成される、芯線1aと検出電極2との結合容量である。
以下では、芯線1aの電圧(被測定電圧)vを「電力線1の電圧」と同義なものとして説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram of a voltage measuring apparatus according to a first embodiment of the present invention.
This voltage measuring apparatus is connected to a detection electrode (detection probe) 2 that measures the AC voltage v 1 applied to the core wire 1 a of the power line 1 by the system power supply G in a non-contact manner with respect to the core wire 1 a, and to this detection electrode 2. The detection circuit 3 is provided. C 0 is a coupling capacitance between the core wire 1 a and the detection electrode 2 formed when the detection electrode 2 is attached to the power line 1.
Hereinafter, the voltage (measured voltage) v 1 of the core wire 1 a is described as being synonymous with “voltage of the power line 1”.

図2は、電力線1及び検出電極2の構造を示す図である。
電力線1は、前述した芯線1aと絶縁被覆1bとを備えている。検出電極2は、後述する変調回路31内のスイッチング素子311に接続される金属薄膜2aを絶縁部材2bに内蔵してなるもので、全体として可撓性、柔軟性を有することにより、様々な径を有する電力線1に対して、絶縁被覆1bの外周面に密着させた状態で巻き付け可能に構成されている。
FIG. 2 is a diagram showing the structure of the power line 1 and the detection electrode 2.
The power line 1 includes the core wire 1a and the insulating coating 1b described above. The detection electrode 2 includes a metal thin film 2a connected to a switching element 311 in a modulation circuit 31 (described later) in an insulating member 2b. The detection electrode 2 has various diameters by having flexibility and flexibility as a whole. It is comprised so that it can wind around the power line 1 which has this, in the state closely_contact | adhered to the outer peripheral surface of the insulation coating 1b.

図1に戻って、検出回路3は、検出電極2に接続された変調回路31と、電流検出回路としての絶縁型パルストランス等のトランス32とを有する。
図3は、変調回路31の構成図であり、この変調回路31は、検出電極2とトランス32の一次巻線との間で互いに逆方向に直列接続された2個のスイッチング素子311,312を備えている。なお、トランス32の一次巻線の他端は、後述する高電圧生成回路6の出力側に接続されている。
Returning to FIG. 1, the detection circuit 3 includes a modulation circuit 31 connected to the detection electrode 2 and a transformer 32 such as an insulation type pulse transformer as a current detection circuit.
FIG. 3 is a configuration diagram of the modulation circuit 31. The modulation circuit 31 includes two switching elements 311 and 312 connected in series in opposite directions between the detection electrode 2 and the primary winding of the transformer 32. I have. The other end of the primary winding of the transformer 32 is connected to the output side of a high voltage generation circuit 6 described later.

この実施形態の測定対象となる芯線1aの電圧vは、例えば商用周波数の交流電圧であるため、スイッチング素子311,312を流れる電流は正負の両方向となる。スイッチング素子311,312は、上記の電流を電圧vの周波数よりも十分に高い周波数で変調するためのものであり、電流制御素子であるバイポーラトランジスタより電圧制御素子であるFET(Field Effect Transistor)を用いることが望ましい。 Voltage v 1 of the core wire 1a to be measured in this embodiment, since for instance an alternating voltage of a commercial frequency, the current flowing through the switching element 311, 312 is the positive and negative directions. The switching elements 311 and 312 are for modulating the current at a frequency sufficiently higher than the frequency of the voltage v 1 , and are FETs (Field Effect Transistors) that are voltage control elements rather than bipolar transistors that are current control elements. It is desirable to use

FETにはJ−FET(接合型FET)とMOS−FET(金属酸化物半導体型FET)とがあり、また、ドレイン電流を遮断するためにゲート電圧にマイナスバイアスが必要なディプレッションタイプとゲート電圧を0[V]にしてドレイン電流を遮断可能なエンハンスメントタイプとがある。本実施形態において、スイッチング素子311,312にエンハンスメントタイプのMOS−FETを使用すれば、後述する駆動回路8の構成を簡略化することができる。
また、MOS−FETは、逆方向の電流を素子内部の寄生ダイオードを通して通流できるので、図3に示す如くスイッチング素子311,312を逆方向に直列接続すれば、両方向の電流のオン/オフが可能となる。
There are two types of FETs: J-FET (junction FET) and MOS-FET (metal oxide semiconductor FET), and a depletion type and gate voltage that require a negative bias in the gate voltage to cut off the drain current. There is an enhancement type that can cut the drain current by setting it to 0 [V]. In the present embodiment, if enhancement type MOS-FETs are used for the switching elements 311 and 312, the configuration of the drive circuit 8 to be described later can be simplified.
Further, since the MOS-FET can pass a reverse current through a parasitic diode inside the element, if the switching elements 311 and 312 are connected in series in the reverse direction as shown in FIG. It becomes possible.

図3において、スイッチング素子311,312のゲート・ソース間に正のバイアスが加わり、電流が矢印A方向に流れる場合は、スイッチング素子311のドレインからソースに向かって電流が流れ、更に、スイッチング素子312のソース・ドレイン間の寄生ダイオードに電流が流れる。また、スイッチング素子311,312のゲート・ソース間に負のバイアスが加わり、電流が矢印B方向に流れる場合は、スイッチング素子312のドレインからソースに向かって電流が流れ、更に、スイッチング素子311のソース・ドレイン間の寄生ダイオードに電流が流れる。
なお、図3における313は、スイッチング素子311,312のゲート・ソース間に接続された抵抗である。
In FIG. 3, when a positive bias is applied between the gate and source of the switching elements 311, 312 and current flows in the direction of arrow A, current flows from the drain to the source of the switching element 311, and further, the switching element 312. Current flows in the parasitic diode between the source and drain of the transistor. When a negative bias is applied between the gate and source of the switching elements 311 and 312 and current flows in the direction of arrow B, current flows from the drain to the source of the switching element 312, and further, the source of the switching element 311・ Current flows through the parasitic diode between the drains.
Note that reference numeral 313 in FIG. 3 denotes a resistor connected between the gate and source of the switching elements 311 and 312.

図1,図3に示すように、スイッチング素子311,312のゲート・ソース間には、駆動回路8内のトランス82の二次巻線が接続されている。また、駆動回路8は、トランス82の一次巻線に接続された発振回路81を備えている。
この発振回路81は、商用周波数(50または60[Hz])の電圧vより充分に高い周波数(数百[kHz]〜数[MHz])の矩形波状の駆動信号Sを出力し、トランス82を介してスイッチング素子311,312をオン/オフさせる。
As shown in FIGS. 1 and 3, the secondary winding of the transformer 82 in the drive circuit 8 is connected between the gate and source of the switching elements 311 and 312. Further, the drive circuit 8 includes an oscillation circuit 81 connected to the primary winding of the transformer 82.
The oscillation circuit 81 outputs a rectangular-wave drive signal S 1 having a frequency (several hundreds [kHz] to several [MHz]) sufficiently higher than a voltage v 1 having a commercial frequency (50 or 60 [Hz]), and a transformer The switching elements 311 and 312 are turned on / off via 82.

このため、結合容量Cを介してスイッチング素子311,312に流れる電流は、上記駆動信号Sの周波数によって変調される。これにより、スイッチング素子311,312に流れる電流の大きさに比例し、かつ、高周波数の検出信号Sがトランス32を介してC−MOSマルチプレクサ等からなる復調回路4に伝送される。ここで、トランス32の二次巻線から出力される検出信号Sは、電力線1の電圧vと、後述する高電圧生成回路6から出力される参照電位との電位差に比例した大きさを有する。 For this reason, the current flowing through the switching elements 311 and 312 via the coupling capacitor C 0 is modulated by the frequency of the drive signal S 1 . Thus, in proportion to the magnitude of the current flowing through the switching element 311 and 312, and the detection signal S 2 of the high frequency is transmitted to the demodulation circuit 4 consisting of C-MOS multiplexer or the like via a transformer 32. Here, the detection signal S 2 output from the secondary winding of the transformer 32 includes a voltage v 1 of the power line 1, a magnitude proportional to the potential difference between the reference potential output from the high voltage generating circuit 6 to be described later Have.

復調回路4により電力線1の電圧vの商用周波数成分が復調されると共に、復調後の信号は後段の増幅回路5により増幅される。なお、復調回路4において、前述した発振回路81からの駆動信号Sは、検出信号Sを検波するタイミングの設定に用いられる。 The demodulating circuit 4 demodulates the commercial frequency component of the voltage v 1 of the power line 1, and the demodulated signal is amplified by the subsequent amplifying circuit 5. Incidentally, the demodulation circuit 4, the drive signals S 1 from the oscillation circuit 81 described above is used to set the timing for detecting the detection signal S 2.

図4は、増幅回路5の構成例を示す回路図である。
この増幅回路5は、増幅率を決定する抵抗51b〜51e及び演算増幅器51aを備えた差動増幅部51と、演算増幅器52a,抵抗52b〜52d及びコンデンサ52e,52fを備えた二次のアクティブローパスフィルタ機能付き増幅部52と、演算増幅器53a,抵抗53b〜53d及びコンデンサ53eを備えた一次のハイパスフィルタ機能付き増幅部53と、を有する。
FIG. 4 is a circuit diagram illustrating a configuration example of the amplifier circuit 5.
The amplifier circuit 5 includes a differential amplifying unit 51 including resistors 51b to 51e and an operational amplifier 51a for determining an amplification factor, and a secondary active low pass including an operational amplifier 52a, resistors 52b to 52d, and capacitors 52e and 52f. It has an amplifying unit 52 with a filter function, and an amplifying unit 53 with a primary high-pass filter function including an operational amplifier 53a, resistors 53b to 53d, and a capacitor 53e.

前述した検出回路3では、スイッチング素子311,312のオン/オフにより結合容量Cを介して流れる電流から電力線1の電圧vを検出しており、変調回路4の出力信号の位相は電圧vの位相より90°進んでいる。このため、前記各増幅部51〜53における複数の抵抗やコンデンサの時定数を適宜設定して変調回路4の出力信号の位相を90°遅らせれば、増幅回路5により、電圧vと同位相のアナログ信号を生成することができる。また、各増幅部52,53からなる一種のバンドパスフィルタは商用周波数帯のみを通過させるので、スイッチング素子311,312のオン/オフに伴って発生する高周波ノイズを確実に除去することができる。 In the detection circuit 3 described above, the voltage v 1 of the power line 1 is detected from the current flowing through the coupling capacitor C 0 by turning on / off the switching elements 311 and 312, and the phase of the output signal of the modulation circuit 4 is the voltage v It is 90 ° ahead of the phase of 1 . Therefore, if the delayed by a phase of 90 ° of the appropriately set to an output signal of the modulating circuit 4 to the time constant of the plurality of resistors and capacitors in each amplification unit 51 to 53, the amplification circuit 5, the voltage v 1 and the same phase The analog signal can be generated. In addition, since a kind of band-pass filter composed of the amplifying units 52 and 53 passes only the commercial frequency band, it is possible to reliably remove the high-frequency noise generated when the switching elements 311 and 312 are turned on / off.

増幅回路5の出力信号は、例えばD級増幅を行う高電圧生成回路6により増幅され、参照電位として前記トランス32の一次巻線の他端(非変調回路31側)に印加されている。
高電圧生成回路6は、トランス32の一次巻線の一端に印加される電圧vとの電位差が小さくなるように、すなわち、一次巻線を流れる電流が少なくなるように参照電位を出力し、 分圧回路9は、参照電位を予め設定された分圧比により分圧して出力する。このため、例えば、増幅回路5の出力信号のゼロクロス点をA/Dコンバータ(図示せず)により検出し、その時点の分圧回路9の出力電圧から電力線1の電圧vを測定可能である。
The output signal of the amplifier circuit 5 is amplified by, for example, a high voltage generation circuit 6 that performs class D amplification, and is applied to the other end (non-modulation circuit 31 side) of the primary winding of the transformer 32 as a reference potential.
The high voltage generation circuit 6 outputs the reference potential so that the potential difference from the voltage v 1 applied to one end of the primary winding of the transformer 32 is small, that is, the current flowing through the primary winding is small. The voltage dividing circuit 9 divides the reference potential by a preset voltage dividing ratio and outputs it. For this reason, for example, the zero cross point of the output signal of the amplifier circuit 5 can be detected by an A / D converter (not shown), and the voltage v 1 of the power line 1 can be measured from the output voltage of the voltage dividing circuit 9 at that time. .

この電圧測定装置によれば、フィードバック制御によって発生する偏差に起因した測定誤差を低減することができ、その結果、電力線1(芯線1a)の電圧vを高精度に測定することができる。また、前述した特許文献1〜3のように、ブリッジ構成の容量変化機能体を用いないことにより、ブリッジの平衡状態の管理が不要であり、製造上または調整上のコストが増大する恐れもない。 According to this voltage measuring apparatus, it is possible to reduce measurement errors caused by deviations caused by feedback control, and as a result, it is possible to measure the voltage v 1 of the power line 1 (core line 1a) with high accuracy. In addition, as described in Patent Documents 1 to 3, by not using a bridge configuration capacity change function body, it is not necessary to manage the equilibrium state of the bridge, and there is no risk of increasing manufacturing or adjustment costs. .

更に、検出電極2が有する可撓性を利用して、検出電極2を電力線1に密着させた状態で装着することができる。これにより、芯線1aと金属薄膜2aとの位置関係がずれる恐れもなく、両者間の結合容量Cが変化する心配がないため、電圧vを高精度に測定することができる。加えて、可撓性を有する検出電極2は様々な径の電力線1に装着可能であるから、被測定電圧の範囲も広くなる等の利点がある。 Furthermore, the detection electrode 2 can be mounted in a state of being in close contact with the power line 1 by utilizing the flexibility of the detection electrode 2. Thereby, there is no fear that the positional relationship between the core wire 1a and the metal thin film 2a is deviated, and there is no fear that the coupling capacitance C 0 between the two changes, so the voltage v 1 can be measured with high accuracy. In addition, since the flexible detection electrode 2 can be attached to the power line 1 having various diameters, there is an advantage that the range of the voltage to be measured is widened.

次に、図5は、本発明の第2実施形態における検出回路の構成図である。
本実施形態の検出回路3Aでは、電流検出回路としてのトランス32の一次巻線と抵抗314との直列回路に対して並列に、スイッチング素子311,312を備えた変調回路31が接続されている。その他の構成は第1実施形態における検出回路3と同一である。
本実施形態によれば、スイッチング素子311,312がオフである時にトランス32が励磁されるため、復調回路4では駆動信号Sを反転させた信号に基づいて検波タイミングを設定することで検出信号Sの検波が可能となる。
Next, FIG. 5 is a configuration diagram of a detection circuit in the second embodiment of the present invention.
In the detection circuit 3A of the present embodiment, a modulation circuit 31 including switching elements 311 and 312 is connected in parallel to a series circuit of a primary winding of a transformer 32 as a current detection circuit and a resistor 314. Other configurations are the same as those of the detection circuit 3 in the first embodiment.
According to this embodiment, since the switching elements 311 and 312 are transformer 32 when an OFF is energized, the detection signal by setting the detection timing based on a signal obtained by inverting the demodulation circuit 4, the drive signals S 1 detection of S 2 is possible.

本発明の電圧測定装置は単体で使用しても良いし、この電圧測定装置と公知の電流測定装置とを組み合わせれば、電力測定装置を構成することもできる。   The voltage measuring device of the present invention may be used alone, or a power measuring device can be configured by combining this voltage measuring device and a known current measuring device.

G:系統電源
1:電力線
1a:芯線
1b:絶縁被覆
2:検出電極
2a:金属薄膜
2b:絶縁部材
3,3A:検出回路
31:変調回路
311,312:半導体スイッチング素子
313,314:抵抗
32:トランス(電流検出回路)
4:復調回路
5:増幅回路
51:差動増幅部
51a:演算増幅器
51b〜51e:抵抗
52:アクティブローパスフィルタ機能付き増幅部
52a:演算増幅器
52b〜52d:抵抗
52e,52f:コンデンサ
53:ハイパスフィルタ機能付き増幅部
53a:演算増幅器
53b〜53d:抵抗
53e:コンデンサ
6:高電圧生成回路
8:駆動回路
81:発振回路
82:トランス
9:分圧回路
G: System power supply 1: Power line 1a: Core wire 1b: Insulation coating 2: Detection electrode 2a: Metal thin film 2b: Insulation member 3, 3A: Detection circuit 31: Modulation circuit 311, 312: Semiconductor switching elements 313, 314: Resistance 32: Transformer (current detection circuit)
4: Demodulator 5: Amplifier 51: Differential amplifier 51a: Operational amplifiers 51b-51e: Resistor 52: Amplifier with active low-pass filter function 52a: Operational amplifiers 52b-52d: Resistors 52e, 52f: Capacitor 53: High-pass filter Amplifier 53a with function: operational amplifiers 53b to 53d: resistor 53e: capacitor 6: high voltage generation circuit 8: drive circuit 81: oscillation circuit 82: transformer 9: voltage dividing circuit

Claims (5)

電力線の芯線に印加された被測定電圧を、前記電力線に装着される検出電極を用いて測定する電圧測定装置において、
前記芯線と前記検出電極との結合容量を介して流れる電流を、スイッチング素子のオン/オフにより前記被測定電圧の周波数よりも高い周波数に変調する変調回路と、前記スイッチング素子を駆動するための駆動信号を生成する駆動回路と、前記スイッチング素子に直列に接続されて前記被測定電圧と参照電位との電位差に比例した大きさの検出信号を生成する電流検出回路と、前記検出信号から前記被測定電圧の周波数成分を抽出する復調回路と、前記復調回路の出力信号を増幅する増幅回路と、前記増幅回路の出力信号に基づいて前記電流検出回路を流れる電流が減少するような前記参照電位を生成して前記電流検出回路に印加する電圧生成回路と、を備え、
前記電位差が所定値以下になったときの前記参照電位に基づいて前記被測定電圧を同定すると共に、
前記検出電極は、前記スイッチング素子に接続される金属薄膜を絶縁部材に内蔵することにより、前記電力線の外周面に巻き付け可能な可撓性を有することを特徴とする電圧測定装置。
In a voltage measuring device that measures a voltage to be measured applied to the core of a power line using a detection electrode attached to the power line,
A modulation circuit that modulates the current flowing through the coupling capacitance between the core wire and the detection electrode to a frequency higher than the frequency of the voltage to be measured by turning on / off the switching element; and driving for driving the switching element A drive circuit for generating a signal, a current detection circuit connected in series to the switching element to generate a detection signal having a magnitude proportional to a potential difference between the voltage to be measured and a reference potential, and the signal to be measured from the detection signal A demodulating circuit for extracting a frequency component of the voltage; an amplifying circuit for amplifying the output signal of the demodulating circuit; and generating the reference potential such that a current flowing through the current detecting circuit is reduced based on the output signal of the amplifying circuit And a voltage generation circuit to be applied to the current detection circuit,
Identifying the voltage to be measured based on the reference potential when the potential difference is less than or equal to a predetermined value;
The voltage detection device according to claim 1, wherein the detection electrode has flexibility that can be wound around an outer peripheral surface of the power line by incorporating a metal thin film connected to the switching element in an insulating member.
電力線の芯線に印加された被測定電圧を、前記電力線に装着される検出電極を用いて測定する電圧測定装置において、
前記芯線と前記検出電極との結合容量を介して流れる電流を、スイッチング素子のオン/オフにより前記被測定電圧の周波数よりも高い周波数に変調する変調回路と、前記スイッチング素子を駆動するための駆動信号を生成する駆動回路と、前記スイッチング素子に並列に接続されて前記被測定電圧と前記参照電位との電位差に比例した大きさの検出信号を生成する電流検出回路と、前記検出信号から前記被測定電圧の周波数成分を抽出する復調回路と、前記復調回路の出力信号を増幅する増幅回路と、前記増幅回路の出力信号に基づいて前記電流検出回路を流れる電流が減少するような前記参照電位を生成して前記電流検出回路に印加する電圧生成回路と、を備え、
前記電位差が所定値以下になったときの前記参照電位に基づいて前記被測定電圧を同定すると共に、
前記検出電極は、前記スイッチング素子に接続される金属薄膜を絶縁部材に内蔵することにより、前記電力線の外周面に巻き付け可能な可撓性を有することを特徴とする電圧測定装置。
In a voltage measuring device that measures a voltage to be measured applied to the core of a power line using a detection electrode attached to the power line,
A modulation circuit that modulates the current flowing through the coupling capacitance between the core wire and the detection electrode to a frequency higher than the frequency of the voltage to be measured by turning on / off the switching element; and driving for driving the switching element A drive circuit for generating a signal; a current detection circuit connected in parallel to the switching element to generate a detection signal having a magnitude proportional to a potential difference between the voltage to be measured and the reference potential; and A demodulating circuit for extracting a frequency component of the measurement voltage, an amplifying circuit for amplifying the output signal of the demodulating circuit, and the reference potential that reduces the current flowing through the current detection circuit based on the output signal of the amplifying circuit. A voltage generation circuit that generates and applies to the current detection circuit,
Identifying the voltage to be measured based on the reference potential when the potential difference is less than or equal to a predetermined value;
The voltage detection device according to claim 1, wherein the detection electrode has flexibility that can be wound around an outer peripheral surface of the power line by incorporating a metal thin film connected to the switching element in an insulating member.
請求項1または2に記載した電圧測定装置において、
前記電流検出回路は、前記スイッチング素子に流れる電流により励磁される一次巻線と、前記復調回路に接続される二次巻線と、を備えたトランスであることを特徴とする電圧測定装置。
In the voltage measuring device according to claim 1 or 2,
The voltage measuring device, wherein the current detection circuit is a transformer including a primary winding excited by a current flowing through the switching element and a secondary winding connected to the demodulation circuit.
請求項1〜3の何れか1項に記載した電圧測定装置において、
前記増幅回路が、前記復調回路の出力信号の位相を電気角で90°遅らせる機能を備えたことを特徴とする電圧測定装置。
In the voltage measuring device according to any one of claims 1 to 3,
The voltage measuring device, wherein the amplifier circuit has a function of delaying the phase of the output signal of the demodulator circuit by 90 degrees in electrical angle.
請求項1〜4の何れか1項に記載した電圧測定装置において、
前記スイッチング素子としてMOS−FETを用いたことを特徴とする電圧測定装置。
In the voltage measuring device according to any one of claims 1 to 4,
A voltage measuring apparatus using a MOS-FET as the switching element.
JP2016096720A 2016-05-13 2016-05-13 Voltage measurement device Pending JP2017203732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016096720A JP2017203732A (en) 2016-05-13 2016-05-13 Voltage measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016096720A JP2017203732A (en) 2016-05-13 2016-05-13 Voltage measurement device

Publications (1)

Publication Number Publication Date
JP2017203732A true JP2017203732A (en) 2017-11-16

Family

ID=60322256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016096720A Pending JP2017203732A (en) 2016-05-13 2016-05-13 Voltage measurement device

Country Status (1)

Country Link
JP (1) JP2017203732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119944A (en) * 2017-01-24 2018-08-02 矢崎エナジーシステム株式会社 Voltage measuring device and voltage measuring method
CN113994221A (en) * 2019-05-31 2022-01-28 大金工业株式会社 Power measuring device and power measuring method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119944A (en) * 2017-01-24 2018-08-02 矢崎エナジーシステム株式会社 Voltage measuring device and voltage measuring method
JP7009025B2 (en) 2017-01-24 2022-01-25 矢崎エナジーシステム株式会社 Voltage measuring device, voltage measuring method
CN113994221A (en) * 2019-05-31 2022-01-28 大金工业株式会社 Power measuring device and power measuring method

Similar Documents

Publication Publication Date Title
EP3176593B1 (en) Hall electromotive force signal detection circuit and current sensor
JP4602941B2 (en) Capacitance sensor circuit
JP4726722B2 (en) Voltage measuring device
EP2709271B1 (en) Quiescent current determination using in-package voltage measurements
US9660592B2 (en) Psuedo resistor circuit and charge amplifier
US11012044B2 (en) Amplifier with common mode detection
US20130173196A1 (en) Physical quantity sensor
JP6562241B2 (en) Non-contact voltage sensor and power measuring device
JP2017203732A (en) Voltage measurement device
JP2017194420A (en) Voltage measurement device
US20110227607A1 (en) Sensor Circuit
JP4671768B2 (en) Impedance measuring device
US7368920B2 (en) Potential fixing device and potential fixing method
JP6032243B2 (en) Current-voltage conversion circuit and self-excited oscillation circuit
JP2015122635A (en) Amplification circuit
US9949028B2 (en) Device for measuring an electric current generated by an acoustic amplifier in order to actuate an acoustic speaker
JP2006033185A (en) Diode detection circuit
WO2014199654A1 (en) Current sensor
JP2010256125A (en) Voltage detection apparatus and line voltage detecting apparatus
JP6357182B2 (en) Sensor device
JP2003075481A (en) Impedance detection circuit and capacitance detection circuit
JP3583699B2 (en) Sensor device
JP2003075486A (en) Impedance detection circuit, and capacitance detection circuit and method
JP2017194419A (en) Voltage measurement device
US20050116700A1 (en) Potential fixing device, potential fixing method, and capacitance mearuing instrument