JP2017202953A - Encapsulation material laminate and conjugate - Google Patents

Encapsulation material laminate and conjugate Download PDF

Info

Publication number
JP2017202953A
JP2017202953A JP2016095170A JP2016095170A JP2017202953A JP 2017202953 A JP2017202953 A JP 2017202953A JP 2016095170 A JP2016095170 A JP 2016095170A JP 2016095170 A JP2016095170 A JP 2016095170A JP 2017202953 A JP2017202953 A JP 2017202953A
Authority
JP
Japan
Prior art keywords
sealing material
material layer
thermal expansion
expansion coefficient
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016095170A
Other languages
Japanese (ja)
Inventor
洋平 細田
Yohei Hosoda
洋平 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2016095170A priority Critical patent/JP2017202953A/en
Publication of JP2017202953A publication Critical patent/JP2017202953A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an encapsulation material capable of suppressing breakage of members caused by residual stress during conjugating a low expansion member and a high expansion member.SOLUTION: There is provided an encapsulation material laminate 3 manufactured by conjugating an encapsulation material layer 1 having thermal expansion coefficient αand a second encapsulation material layer 2 having thermal expansion coefficient αeach other, satisfying a relationship of -25×10/K≤α≤25×10/K and α<α, and having α-α≥10×10-7/K, the first encapsulation material layer 1 and/or the second encapsulation material layer 2 contain glass, the first encapsulation material layer 1 contains β-quartz solid solution as a main crystal, and contains glass containing, by mol%, SiO:48 to 75%, AlO:5 to 25%, LiO:5 to 30%, BO:10 to 23% excluding 10%, ZnO:0 to 2.5% excluding 2.5% as a composition. There is provided a conjugation 100 having the encapsulation material laminate 3 inclusion conjugated between a first member 10 and a second member 20.SELECTED DRAWING: Figure 1

Description

本発明は、低膨張部材と高膨張部材の接合に好適な封止材積層体、及びそれを用いた接合体に関する。   The present invention relates to a sealing material laminate suitable for joining a low expansion member and a high expansion member, and a joined body using the same.

石英ガラス、結晶化ガラス、低膨張セラミック等は低い熱膨張係数を有し、耐熱性にも優れているため、高温処理治具、ヒーター、エンジン等の構造部材として広く使用されている。これらの低膨張材料からなる部材を各種装置に組み込む際には、金属等からなる高膨張部材への接合が必要になる場合がある。このような接合として、溶接や、ガラスフリット等の封止材による接合等が挙げられる。しかしながら、溶接は安全性に問題があり、大面積加工も困難であるため、封止材による接合が好ましく用いられている。   Quartz glass, crystallized glass, low expansion ceramics and the like have a low coefficient of thermal expansion and are excellent in heat resistance, and are therefore widely used as structural members for high temperature processing jigs, heaters, engines, and the like. When these members made of a low expansion material are incorporated into various devices, it may be necessary to join the high expansion member made of metal or the like. Examples of such joining include welding and joining with a sealing material such as glass frit. However, since welding has a safety problem and large-area processing is difficult, joining with a sealing material is preferably used.

上記の構造部材は高温下で使用される場合が多いため、封止材にも高い耐熱性が要求される。耐熱性に優れた封止材として、ガラス封止材、特に結晶性ガラス封止材が提案されている(例えば特許文献1参照)。   Since the above structural member is often used at high temperatures, the sealing material also requires high heat resistance. As a sealing material excellent in heat resistance, a glass sealing material, particularly a crystalline glass sealing material has been proposed (for example, see Patent Document 1).

特許第2715138号公報Japanese Patent No. 2715138

低膨張部材と高膨張部材を封止材により接合する際には、各材料間における熱膨張係数の整合が問題となる。即ち、低膨張部材と封止材の熱膨張係数を整合させると、封止材と高膨張部材の熱膨張係数差が大きくなる。一方、高膨張部材と封止材の熱膨張係数を整合させると、封止材と低膨張部材の熱膨張係数差が大きくなる。部材と封止材の熱膨張係数差が大きくなると、接合時に残留応力が発生して破損しやすくなる。   When joining a low expansion member and a high expansion member with a sealing material, matching of thermal expansion coefficients between materials becomes a problem. That is, when the thermal expansion coefficients of the low expansion member and the sealing material are matched, the difference in thermal expansion coefficient between the sealing material and the high expansion member becomes large. On the other hand, when the thermal expansion coefficients of the high expansion member and the sealing material are matched, the difference in thermal expansion coefficient between the sealing material and the low expansion member becomes large. When the difference in coefficient of thermal expansion between the member and the sealing material becomes large, residual stress is generated at the time of joining, and breakage easily occurs.

以上に鑑み、本発明は、低膨張部材と高膨張部材を接合するに当たり、残留応力に起因する部材の破損を抑制することが可能な封止材を提供することを目的とする。   In view of the above, an object of the present invention is to provide a sealing material capable of suppressing damage to a member due to residual stress when joining a low expansion member and a high expansion member.

本発明者が鋭意検討した結果、特定の積層構造を有する封止材により前記課題を解消できることを見出した。   As a result of intensive studies by the present inventors, it has been found that the above problems can be solved by a sealing material having a specific laminated structure.

即ち、本発明は、熱膨張係数αを有する第1の封止材層及び熱膨張係数αを有する第2の封止材層が互いに接合してなる封止材積層体であって、−25×10−7/K≦α≦25×10−7/K、かつ、α<αの関係を満たすことを特徴とする封止材積層体に関する。 That is, the present invention provides a sealing material laminate second sealing material layer having a first sealing material layer and the thermal expansion coefficient alpha 2 having a thermal expansion coefficient alpha 1 is formed by joining together, It is related with the sealing material laminated body characterized by satisfying the relationship of −25 × 10 −7 / K ≦ α 1 ≦ 25 × 10 −7 / K and α 12 .

このように封止材層の熱膨張係数が段階的に大きくなる積層構造をとることにより、熱膨張係数の異なる2種の部材を接合する際に、各部材と各封止材層との界面における熱膨張係数差を小さくすることができる。結果として、各部材と各封止材層との間に生じる残留応力を小さくでき、部材の破損を抑制することが可能となる。なお、本発明において、熱膨張係数は30〜380℃の温度範囲における値を示す。   Thus, by joining the two types of members having different thermal expansion coefficients by adopting a laminated structure in which the thermal expansion coefficient of the sealing material layer increases stepwise, the interface between each member and each sealing material layer The difference in coefficient of thermal expansion can be reduced. As a result, the residual stress generated between each member and each sealing material layer can be reduced, and damage to the member can be suppressed. In addition, in this invention, a thermal expansion coefficient shows the value in the temperature range of 30-380 degreeC.

本発明の封止材積層体において、α−α≧10×10−7/Kであることが好ましい。このようにすれば、2種の部材の熱膨張差が比較的大きい場合であっても、各部材と各封止材層の界面における熱膨張係数差を小さくすることが可能となり、封止時における部材の破損を抑制しやすくなる。 In the sealing material laminate of the present invention, α 2 −α 1 ≧ 10 × 10 −7 / K is preferable. In this way, even when the difference in thermal expansion between the two types of members is relatively large, it becomes possible to reduce the difference in thermal expansion coefficient at the interface between each member and each sealing material layer. It becomes easy to suppress the damage of the member.

本発明の封止材積層体において、第1の封止材層及び第2の封止材層がガラスを含むことが好ましい。このようにすれば、封止部の耐熱性を高めることができる。   The sealing material laminated body of this invention WHEREIN: It is preferable that a 1st sealing material layer and a 2nd sealing material layer contain glass. If it does in this way, the heat resistance of a sealing part can be improved.

本発明の封止材積層体において、第1の封止材層として例えば結晶化ガラスを含むものが使用できる。このようにすれば、第1の封止材層の低膨張化が容易になり、低膨張部材との熱膨張係数を整合させやすくなる。   In the sealing material laminate of the present invention, a material containing, for example, crystallized glass can be used as the first sealing material layer. If it does in this way, the low expansion of the 1st sealing material layer will become easy, and it will become easy to match a thermal expansion coefficient with a low expansion member.

本発明の封止材積層体において、第1の封止材層が主結晶としてβ−石英固溶体を含有することが好ましい。   In the sealing material laminate of the present invention, it is preferable that the first sealing material layer contains a β-quartz solid solution as a main crystal.

本発明の封止材積層体において、第1の封止材層が、組成として、モル%で、SiO 48〜75%、Al 5〜25%、LiO 5〜30%、B 10〜23%(ただし10%を含まない)、ZnO 0〜2.5%(ただし2.5%を含まない)を含有するガラスを含むことが好ましい。当該組成を有するガラスは、熱処理によりβ−石英固溶体を析出しやすい。 In the sealing material laminate of the present invention, the first sealing material layer has a composition of mol%, SiO 2 48 to 75%, Al 2 O 3 5 to 25%, Li 2 O 5 to 30%, It is preferable to include glass containing 10 to 23% (excluding 10%) of B 2 O 3 (excluding 10%) and 0 to 2.5% (excluding 2.5%) of ZnO. Glass having this composition is likely to precipitate a β-quartz solid solution by heat treatment.

本発明の封止材積層体において、第1の封止材層及び第2の封止材層が粉末焼結体からなることが好ましい。このようにすれば、第1の封止材層及び第2の封止材層の界面応力に起因する封止材層の破損を抑制することができる。これは、粉末焼結体中に含まれる空隙が応力を緩和する役割を果たすためであると推察される。   In the sealing material laminate of the present invention, it is preferable that the first sealing material layer and the second sealing material layer are made of a powder sintered body. If it does in this way, the failure | damage of the sealing material layer resulting from the interface stress of a 1st sealing material layer and a 2nd sealing material layer can be suppressed. This is presumably because the voids contained in the powder sintered body play a role of relaxing stress.

本発明の接合体は、第1の部材及び第2の部材と、第1の部材及び第2の部材の間に介在する上記の封止材積層体とを備え、第1の部材と第1の封止材層、及び、第2の部材と第2の封止材層が各々接合していることを特徴とする。   The joined body of the present invention includes the first member and the second member, and the above-described sealing material laminate interposed between the first member and the second member, and the first member and the first member. The sealing material layer and the second member and the second sealing material layer are bonded to each other.

本発明の接合体において、第1の部材と第2の部材の熱膨張係数差が20×10−7/K以上であることが好ましい。この場合、本発明の封止材積層体を使用する効果を享受しやすくなる。 In the joined body of the present invention, the difference in thermal expansion coefficient between the first member and the second member is preferably 20 × 10 −7 / K or more. In this case, it becomes easy to enjoy the effect of using the sealing material laminate of the present invention.

本発明の接合体において、第1の部材と第1の封止材層の熱膨張係数差、及び、第2の部材と第2の封止材層の熱膨張係数差が、各々20×10−7/K以下であることが好ましい。このようにすれば、各部材と封止材層の間で発生する応力を低減することができ、部材の破損を抑制することが可能となる。 In the joined body of the present invention, the difference in thermal expansion coefficient between the first member and the first sealing material layer and the difference in thermal expansion coefficient between the second member and the second sealing material layer are each 20 × 10. It is preferably −7 / K or less. If it does in this way, the stress which generate | occur | produces between each member and a sealing material layer can be reduced, and it becomes possible to suppress the failure | damage of a member.

本発明の接合体において、第1の部材として例えば石英ガラス、結晶化ガラスまたは低膨張セラミックスを使用することができる。   In the joined body of the present invention, for example, quartz glass, crystallized glass, or low expansion ceramics can be used as the first member.

本発明の接合体において、第2の部材として例えば金属、ガラスまたは高膨張セラミックスを使用することができる。   In the joined body of the present invention, for example, metal, glass, or high expansion ceramics can be used as the second member.

本発明の接合体の製造方法は、上記の接合体を製造するための方法であって、第1の部材上に第1の封止材を配置した状態で焼成することにより、第1の部材上に第1の封止材層を形成する工程、及び、第1の封止材層上に第2の封止材を配置し、さらに第2の封止材上に第2の部材を配置した状態で焼成することにより、第2の封止材層を形成するとともに、第2の封止材層により第1の封止材層と第2の部材を接合する工程、を含むことを特徴とする。なお、本発明において、封止材を「配置」するとは、載置や塗布等の形態を含む。   The method for manufacturing a joined body according to the present invention is a method for producing the above joined body, wherein the first member is fired in a state where the first sealing material is disposed on the first member. Forming a first sealing material layer on the first sealing material layer; arranging a second sealing material on the first sealing material layer; and further arranging a second member on the second sealing material And firing the product in a state where the second sealing material layer is formed and joining the first sealing material layer and the second member with the second sealing material layer. And In the present invention, “arranging” the sealing material includes forms such as placement and application.

本発明の接合体の製造方法は、上記の接合体を製造するための方法であって、第2の部材上に第2の封止材を配置した状態で焼成することにより、第2の部材上に第2の封止材層を形成する工程、及び、第2の封止材層上に第1の封止材を配置し、さらに第1の封止材上に第1の部材を配置した状態で焼成することにより、第1の封止材層を形成するとともに、第1の封止材層により第2の封止材層と第1の部材を接合する工程、を含むことを特徴とする。   The method for producing a joined body according to the present invention is a method for producing the above joined body, wherein the second member is fired in a state where the second sealing material is disposed on the second member. A step of forming a second sealing material layer thereon, a first sealing material is disposed on the second sealing material layer, and a first member is further disposed on the first sealing material. And bake in the state of forming the first sealing material layer, and joining the second sealing material layer and the first member with the first sealing material layer. And

本発明の封止材積層体を用いれば、低膨張部材と高膨張部材を接合するに当たり、各部材と各封止材層との間に生じる残留応力を小さくでき、部材の破損を抑制することが可能となる。   If the sealing material laminated body of this invention is used, in joining a low expansion member and a high expansion member, the residual stress produced between each member and each sealing material layer can be made small, and the failure | damage of a member is suppressed. Is possible.

本発明の接合体の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the conjugate | zygote of this invention. 本発明の接合体の製造方法の第1の実施形態を示す模式的断面図である。It is typical sectional drawing which shows 1st Embodiment of the manufacturing method of the conjugate | zygote of this invention. 本発明の接合体の製造方法の第2の実施形態を示す模式的断面図である。It is typical sectional drawing which shows 2nd Embodiment of the manufacturing method of the conjugate | zygote of this invention. 本発明の接合体の製造方法の第3の実施形態を示す模式的断面図である。It is typical sectional drawing which shows 3rd Embodiment of the manufacturing method of the conjugate | zygote of this invention.

本発明の封止材積層体は、熱膨張係数αを有する第1の封止材層及び熱膨張係数αを有する第2の封止材層が互いに接合してなるものである。ここで、αとαはα<αの関係を満たす。 Sealing material laminate of the present invention is one in which the second sealing material layer having a first sealing material layer and the thermal expansion coefficient alpha 2 having a thermal expansion coefficient alpha 1 is formed by joining together. Here, α 1 and α 2 satisfy the relationship of α 12 .

第1の封止材層の熱膨張係数αは−25×10−7〜25×10−7/Kであり、−15×10−7〜15×10−7/K、特に−10×10−7〜10×10−7/Kであることが好ましい。このようにすれば、低膨張部材との熱膨張係数を整合させることができるため、接合時に部材におけるクラックの発生を抑制することができる。 The thermal expansion coefficient α1 of the first sealing material layer is −25 × 10 −7 to 25 × 10 −7 / K, −15 × 10 −7 to 15 × 10 −7 / K, particularly −10 ×. is preferably 10 -7 ~10 × 10 -7 / K . If it does in this way, since a thermal expansion coefficient with a low expansion member can be matched, generation | occurrence | production of the crack in a member can be suppressed at the time of joining.

第2の封止材層は、熱膨張係数αが第1の封止材層の熱膨張係数αより大きいものであれば特に限定されない。好ましくは、α−αは10×10−7/K以上、15×10−7/K以上、特に20×10−7/K以上である。このようにすれば、2種の被接合部材の熱膨張差が比較的大きい場合であっても、各部材と各封止材層の界面における熱膨張係数差を小さくすることが可能となり、接合時における各部材の破損を抑制しやすくなる。ただし、α−αが大きすぎると、第1の封止材層と第2の封止材層の界面にクラックが発生したり、両者が接合しなくなるため、30×10−7/K以下、特に25×10−7/K以下であることが好ましい。 The second sealing material layer, not particularly limited as long as the thermal expansion coefficient alpha 2 is greater than the thermal expansion coefficient alpha 1 of the first sealing material layer. Preferably, α 21 is 10 × 10 −7 / K or more, 15 × 10 −7 / K or more, particularly 20 × 10 −7 / K or more. In this way, even if the difference in thermal expansion between the two types of members to be joined is relatively large, it becomes possible to reduce the difference in thermal expansion coefficient at the interface between each member and each sealing material layer. It becomes easy to suppress damage of each member at the time. However, if α 2 −α 1 is too large, cracks are generated at the interface between the first sealing material layer and the second sealing material layer, or the two are not bonded together, so that 30 × 10 −7 / K. Hereinafter, it is particularly preferably 25 × 10 −7 / K or less.

第1の封止材層及び第2の封止材層の厚みは特に限定されないが、厚みが小さすぎると封止材層の機械的強度が低下しやすくなる。一方、厚みが大きすぎる場合も、封止材層における残留応力が大きくなって機械的強度が低下する可能性がある。さらには接合体全体のサイズが大きくなる傾向がある。そのため、第1の封止材層及び第2の封止材層の厚みは1μm〜5mm、特に10μm〜3mmであることが好ましい。   The thicknesses of the first sealing material layer and the second sealing material layer are not particularly limited. However, if the thickness is too small, the mechanical strength of the sealing material layer tends to decrease. On the other hand, when the thickness is too large, the residual stress in the encapsulant layer may increase and the mechanical strength may decrease. Furthermore, the size of the entire joined body tends to increase. Therefore, the thickness of the first sealing material layer and the second sealing material layer is preferably 1 μm to 5 mm, particularly preferably 10 μm to 3 mm.

なお、第1の封止材層と第2の封止材層の間に、第1の封止材層より熱膨張係数が高く、かつ第2の封止材層より熱膨張係数が低い第3の封止材層を設けてもよい。このようにすれば、当該第3の封止材層が緩衝材の役割を果たすため、第1の封止材層と第2の封止材層の熱膨張係数差が大きい場合であっても、クラック等の不具合の発生を抑制することが可能となる。   In addition, between the 1st sealing material layer and the 2nd sealing material layer, a thermal expansion coefficient is higher than a 1st sealing material layer, and a thermal expansion coefficient is lower than a 2nd sealing material layer. 3 sealing material layers may be provided. In this case, since the third sealing material layer serves as a buffer material, even if the difference in thermal expansion coefficient between the first sealing material layer and the second sealing material layer is large. It is possible to suppress the occurrence of defects such as cracks.

第1の封止材層及び第2の封止材層はいずれもガラスからなることが好ましい。このようにすれば封止部の耐熱性を向上させることができる。特に、第1の封止材層が結晶化ガラスを含むものであると、低膨張化が容易になり、低膨張部材との熱膨張係数を整合させやすくなる。具体的には、第1の封止材層は低膨張結晶であるβ−石英固溶体を含有することが好ましい。第1の封止材層におけるβ−石英固溶体の含有量は75〜99質量%、80〜97質量%、特に85〜95質量%であることが好ましい。β−石英固溶体の含有量が少なすぎると、封止部の低膨張化が困難になる傾向がある。一方、β−石英固溶体の含有量が多すぎると、接合時における流動性が低下しやすくなる。なお、結晶化ガラスを含む封止材層は、結晶性ガラスを含む封止材を熱処理することにより得られる。   Both the first sealing material layer and the second sealing material layer are preferably made of glass. If it does in this way, the heat resistance of a sealing part can be improved. In particular, when the first sealing material layer contains crystallized glass, it is easy to reduce the expansion, and it is easy to match the thermal expansion coefficient with the low expansion member. Specifically, the first sealing material layer preferably contains a β-quartz solid solution that is a low expansion crystal. The content of β-quartz solid solution in the first sealing material layer is preferably 75 to 99% by mass, 80 to 97% by mass, and particularly preferably 85 to 95% by mass. When there is too little content of (beta) -quartz solid solution, there exists a tendency for the low expansion of a sealing part to become difficult. On the other hand, if the content of β-quartz solid solution is too large, the fluidity at the time of joining tends to decrease. In addition, the sealing material layer containing crystallized glass is obtained by heat-processing the sealing material containing crystalline glass.

第1の封止材層の具体例としては、組成として、モル%で、SiO 48〜75%、Al 5〜25%、LiO 5〜30%、B 10〜23%(ただし10%を含まない)、ZnO 0〜2.5%(ただし2.5%を含まない)を含有するガラスを含むものが挙げられる。このような組成にした理由を以下に説明する。なお、以下の各成分の含有量に関する説明において、特に断りのない限り、「%」は「モル%」を意味する。 As a specific example of the first sealing material layer, the composition is mol%, SiO 2 48 to 75%, Al 2 O 3 5 to 25%, Li 2 O 5 to 30%, B 2 O 3 10 to 10%. Examples include those containing glass containing 23% (however, not including 10%) and ZnO 0-2.5% (not including 2.5%). The reason for this composition will be described below. In the following description of the content of each component, “%” means “mol%” unless otherwise specified.

SiOはガラス骨格を形成する成分であり、またβ−石英固溶体の構成成分である。SiOの含有量は48〜75%、53〜70%、特に58〜65%であることが好ましい。SiOの含有量が少なすぎると、β−石英固溶体の析出量が少なくなり、低熱膨張特性が得にくくなる。一方、SiOが多すぎると、軟化点が上昇するため、封止時の熱処理による軟化流動性が低下しやすくなる。 SiO 2 is a component that forms a glass skeleton, and is a constituent component of the β-quartz solid solution. The content of SiO 2 is preferably 48 to 75%, 53 to 70%, particularly 58 to 65%. When the content of SiO 2 is too small, the amount of β-quartz solid solution precipitated becomes small, and it becomes difficult to obtain low thermal expansion characteristics. On the other hand, when the SiO 2 is too large, the softening point increases, softening fluidity by heat treatment at the time of sealing tends to decrease.

Alはβ−石英固溶体の構成成分である。Alの含有量は5〜25%、7〜15%、特に7〜13%であることが好ましい。Alの含有量が少なすぎると、β−石英固溶体の析出量が少なくなり、低熱膨張特性が得にくくなる。一方、Alが多すぎると、軟化点が上昇するため、封止時の熱処理による軟化流動性が低下しやすくなる。 Al 2 O 3 is a constituent component of the β-quartz solid solution. The content of Al 2 O 3 is preferably 5 to 25%, 7 to 15%, particularly preferably 7 to 13%. When Al 2 content of O 3 is too small, beta-precipitation amount of quartz solid solution is reduced, the low thermal expansion characteristics are difficult to obtain. On the other hand, when the Al 2 O 3 is too large, since the softening point is raised, softening fluidity by heat treatment at the time of sealing it tends to decrease.

LiOはβ−石英固溶体の構成成分であり、また軟化点を低下させる成分である。LiOの含有量は5〜30%、10〜25%、特に10〜20%であることが好ましい。LiOの含有量が少なすぎると、β−石英固溶体の析出量が少なくなり、低熱膨張特性が得にくくなる。また軟化点が上昇するため、封止時の熱処理による軟化流動性が低下しやすくなる。一方、LiOの含有量が多すぎると、熱処理後の残留ガラス中におけるLiOの含有量が多くなり、残留ガラスの熱膨張係数が大きくなることから、結果として低熱膨張特性が得にくくなる。 Li 2 O is a component of the β-quartz solid solution and a component that lowers the softening point. The content of Li 2 O is preferably 5 to 30%, 10 to 25%, particularly 10 to 20%. When Li 2 O content is too small, beta-precipitation amount of quartz solid solution is reduced, the low thermal expansion characteristics are difficult to obtain. Moreover, since the softening point rises, the softening fluidity due to heat treatment during sealing tends to decrease. On the other hand, if the content of Li 2 O is too large, the content of Li 2 O in the residual glass after heat treatment increases and the coefficient of thermal expansion of the residual glass increases. As a result, it is difficult to obtain low thermal expansion characteristics. Become.

はガラス骨格を形成する成分であり、軟化点を低下させる成分である。Bの含有量は10〜23%(ただし10%を含まない)、12〜16%、特に13〜15%であることが好ましい。Bの含有量が少なすぎると、軟化点が上昇して、軟化点と結晶化温度の差が小さくなる。そのため、封止時の熱処理による軟化流動前に結晶が析出する傾向があり、流動性が低下しやすくなる。一方、Bの含有量が多すぎると、熱処理後の残留ガラス相の割合が増加する(β−石英固溶体の析出量が低下する)ため、また残留ガラス相の熱膨張係数が増大するため、結果として低熱膨張特性が得にくくなる。 B 2 O 3 is a component that forms a glass skeleton and a component that lowers the softening point. The content of B 2 O 3 is preferably 10 to 23% (excluding 10%), 12 to 16%, and particularly preferably 13 to 15%. If the content of B 2 O 3 is too small, the softening point increases, the difference between the crystallization temperature and the softening point is reduced. Therefore, crystals tend to precipitate before the softening flow by heat treatment at the time of sealing, and the fluidity tends to decrease. On the other hand, if the content of B 2 O 3 is too large, the proportion of the residual glass phase after heat treatment increases (the amount of β-quartz solid solution deposited decreases), and the thermal expansion coefficient of the residual glass phase increases. As a result, low thermal expansion characteristics are difficult to obtain.

なお、BとLiOの各含有量の割合を適宜調整することにより、低熱膨張特性が得やすくなる。具体的には、B/LiOの値を0.5〜1、0.7〜1、特に0.8〜1に調整することが好ましい。なお、「B/LiO」はBとLiOの各含有量のモル比を意味する。 Incidentally, by suitably adjusting the proportion of B 2 O 3 and Li 2 content of each O, low thermal expansion characteristics are easily obtained. Specifically, it is preferable to adjust the value of B 2 O 3 / Li 2 O to 0.5 to 1, 0.7 to 1, particularly 0.8 to 1. Incidentally, "B 2 O 3 / Li 2 O" means the molar ratio of each B 2 O 3 content and Li 2 O.

ZnOは耐候性を向上させる成分である。また、封止時の熱処理による軟化流動性を向上させる効果がある。ZnOの含有量は0〜2.5%(ただし2.5%を含まない)、特に0〜2%であることが好ましい。ZnOの含有量が多すぎると、β−石英固溶体の析出量が少なくなったり、Zn−Al系結晶等の低膨張化に寄与しない異種結晶が析出しやすくなる。また、熱処理後の残留ガラスの熱膨張係数が大きくなる傾向がある。結果として、熱膨張係数が大きくなる傾向がある。   ZnO is a component that improves weather resistance. Moreover, there exists an effect which improves the softening fluidity | liquidity by the heat processing at the time of sealing. The ZnO content is preferably 0 to 2.5% (excluding 2.5%), particularly preferably 0 to 2%. When the content of ZnO is too large, the amount of β-quartz solid solution precipitated is reduced, or dissimilar crystals that do not contribute to low expansion, such as Zn—Al-based crystals, are likely to precipitate. Moreover, the thermal expansion coefficient of the residual glass after heat treatment tends to increase. As a result, the thermal expansion coefficient tends to increase.

なお、耐候性を向上させる成分としてMgO、CaO、SrOまたはBaOを含有させても良い。これらの成分は封止時の熱処理による軟化流動性を向上させる効果もある。MgO+CaO+SrO+BaOの含有量は0〜10%、0〜5%、特に0.1〜2%であることが好ましい。MgO+CaO+SrO+BaOの含有量が多すぎると、β−石英固溶体の析出量が少なくなったり、熱処理後の残留ガラス相の熱膨張係数が大きくなる傾向がある。その結果、熱膨張係数が大きくなる傾向がある。   In addition, you may contain MgO, CaO, SrO, or BaO as a component which improves a weather resistance. These components also have the effect of improving the softening fluidity by heat treatment during sealing. The content of MgO + CaO + SrO + BaO is preferably 0 to 10%, 0 to 5%, particularly preferably 0.1 to 2%. When the content of MgO + CaO + SrO + BaO is too large, the amount of β-quartz solid solution precipitated tends to decrease or the thermal expansion coefficient of the residual glass phase after heat treatment tends to increase. As a result, the thermal expansion coefficient tends to increase.

また、同じく耐候性を向上させる成分としてLa、ZrOまたはBiを含有させても良い。これらのうちZrO及びBiは、封止時の熱処理による軟化流動性を向上させる効果もある。La+ZrO+Biの含有量は0〜10%、0〜5%、特に0.1〜2%であることが好ましい。La+ZrO+Biの含有量が多すぎると、β−石英固溶体の析出量が少なくなったり、熱処理後の残留ガラス相の熱膨張係数が大きくなる傾向がある。特に、Laに関してはその含有量が多すぎると、La−B系結晶等の、低膨張化に寄与しない異種結晶が析出しやすい。その結果、熱膨張係数が大きくなる傾向がある。 Similarly, La 2 O 3 , ZrO 2 or Bi 2 O 3 may be included as a component for improving weather resistance. Among these, ZrO 2 and Bi 2 O 3 also have an effect of improving softening fluidity by heat treatment during sealing. The content of La 2 O 3 + ZrO 2 + Bi 2 O 3 is preferably 0 to 10%, 0 to 5%, particularly preferably 0.1 to 2%. When La 2 O 3 + content of ZrO 2 + Bi 2 O 3 is too large, or fewer precipitation amount of β- quartz solid solution, tends to thermal expansion coefficient of the residual glassy phase after the heat treatment increases. In particular, when the content of La 2 O 3 is too large, heterogeneous crystals that do not contribute to low expansion, such as La-B crystals, are likely to precipitate. As a result, the thermal expansion coefficient tends to increase.

上記成分以外にも、本発明の効果を損なわない範囲で、NaO、KO、MnO、P、MoO、TiO、V等を合量で30%以下、20%以下、さらには10%以下の範囲で含有させることが可能である。 In addition to the above components, the total amount of Na 2 O, K 2 O, MnO, P 2 O 5 , MoO 2 , TiO 2 , V 2 O 5 and the like is 30% or less in a range not impairing the effects of the present invention. It is possible to make it contain in 20% or less, Furthermore, 10% or less of range.

第2の封止材層は、熱膨張係数αが第1の封止材層の熱膨張係数αより大きいものであれば特に限定されない。好ましくは、α−αは10×10−7/K以上、15×10−7/K以上、特に20×10−7/K以上である。このようにすれば、2種の被接合部材の熱膨張差が比較的大きい場合であっても、各部材と各封止材層の界面における熱膨張係数差を小さくすることが可能となり、接合時における各部材の破損を抑制しやすくなる。 The second sealing material layer, not particularly limited as long as the thermal expansion coefficient alpha 2 is greater than the thermal expansion coefficient alpha 1 of the first sealing material layer. Preferably, α 21 is 10 × 10 −7 / K or more, 15 × 10 −7 / K or more, particularly 20 × 10 −7 / K or more. In this way, even if the difference in thermal expansion between the two types of members to be joined is relatively large, it becomes possible to reduce the difference in thermal expansion coefficient at the interface between each member and each sealing material layer. It becomes easy to suppress damage of each member at the time.

第2の封止材層は、例えばホウケイ酸ガラス、ビスマス系ガラス、リン酸系ガラス、スズリン酸系ガラス、バナジウム系ガラス、鉛系ガラス、ホウ酸系ガラス、アルカリケイ酸系ガラス等のガラスを含むものが挙げられる。   The second sealing material layer is made of glass such as borosilicate glass, bismuth glass, phosphate glass, tin phosphate glass, vanadium glass, lead glass, borate glass, or alkali silicate glass. Including.

第1の封止材層及び第2の封止材層は粉末焼結体からなることが好ましい。このようにすれば、粉末焼結体中に含まれる空隙が応力を緩和するため、第1の封止材層及び第2の封止材層の界面応力に起因する封止材層の破損を抑制することができる。   The first sealing material layer and the second sealing material layer are preferably made of a powder sintered body. In this case, since the voids contained in the powder sintered body relieve stress, the sealing material layer is damaged due to the interface stress between the first sealing material layer and the second sealing material layer. Can be suppressed.

なお、第1の封止材層及び第2の封止材層には、熱膨張係数調整のため耐火性フィラー粉末が含まれていてもよい。第1の封止材層及び第2の封止材層における耐火性フィラーの含有量は、0〜30質量%、0.1〜20質量%、特に1〜10質量%であることが好ましい。耐火性フィラー粉末の含有量が多すぎると、被接合部材に対する接合性が低下しやすくなる。   Note that the first sealing material layer and the second sealing material layer may contain a refractory filler powder for adjusting the thermal expansion coefficient. The content of the refractory filler in the first sealing material layer and the second sealing material layer is preferably 0 to 30% by mass, 0.1 to 20% by mass, and particularly preferably 1 to 10% by mass. When there is too much content of a refractory filler powder, the bondability with respect to a to-be-joined member will fall easily.

耐火性フィラー粉末としては、コーディエライト、ウイレマイト、アルミナ、リン酸ジルコニウム、ジルコン、ジルコニア、酸化スズ、ムライト、シリカ、β−ユークリプタイト、β−スポジュメン、β−石英固溶体、リン酸タングステン酸ジルコニウム等が使用可能である。   As the refractory filler powder, cordierite, willemite, alumina, zirconium phosphate, zircon, zirconia, tin oxide, mullite, silica, β-eucryptite, β-spodumene, β-quartz solid solution, zirconium tungstate phosphate Etc. can be used.

次に、本発明の封止材積層体を用いた接合体について説明する。   Next, a bonded body using the sealing material laminate of the present invention will be described.

図1は、本発明の接合体の一実施形態を示す模式的断面図である。接合体100は、第1の部材10及び第2の部材20と、その間に介在する、第1の封止材層1及び第2の封止材層2からなる封止材積層体3とを備えている。ここで、第1の部材10と第1の封止材層1、及び、第2の部材20と第2の封止材層1が各々接合するよう配置されている。   FIG. 1 is a schematic cross-sectional view showing an embodiment of the joined body of the present invention. The joined body 100 includes a first member 10 and a second member 20, and a sealing material laminate 3 composed of the first sealing material layer 1 and the second sealing material layer 2 interposed therebetween. I have. Here, the 1st member 10 and the 1st sealing material layer 1, and the 2nd member 20 and the 2nd sealing material layer 1 are arrange | positioned so that each may join.

第1の部材は低膨張部材であり、第2の部材は高膨張部材である。第1の部材と第2の部材の熱膨張係数差は例えば20×10−7/K以上、25×10−7/K以上、さらには30×10−7/K以上である。本発明は、熱膨張係数差が大きい部材同士を破損することなく接合することを目的としたものであるため、第1の部材と第2の部材の熱膨張係数差が大きい場合、本発明の封止材積層体を使用する効果を享受しやすくなる。ただし、第1の部材と第2の部材の熱膨張係数差が大きすぎると、接合が困難になる傾向があるため、60×10−7/K以下、特に50×10−7/K以下であることが好ましい。 The first member is a low expansion member, and the second member is a high expansion member. The difference in thermal expansion coefficient between the first member and the second member is, for example, 20 × 10 −7 / K or more, 25 × 10 −7 / K or more, and further 30 × 10 −7 / K or more. Since the present invention aims to join members having a large difference in thermal expansion coefficient without damaging them, when the difference in thermal expansion coefficient between the first member and the second member is large, It becomes easy to enjoy the effect of using the sealing material laminate. However, if the difference in coefficient of thermal expansion between the first member and the second member is too large, joining tends to be difficult, so it is 60 × 10 −7 / K or less, particularly 50 × 10 −7 / K or less. Preferably there is.

第1の部材と第1の封止材層の熱膨張係数差、及び、第2の部材と第2の封止材層の熱膨張係数差が、各々20×10−7/K以下、各々18×10−7/K以下、特に各々15×10−7/K以下であることが好ましい。このようにすれば、各部材と封止材層の間で発生する応力を低減することができ、部材の破損を抑制することが可能となる。 The difference in thermal expansion coefficient between the first member and the first sealing material layer and the difference in thermal expansion coefficient between the second member and the second sealing material layer are each 20 × 10 −7 / K or less, respectively. It is preferable that it is 18 * 10 < -7 > / K or less, especially 15 * 10 < -7 > / K or less respectively. If it does in this way, the stress which generate | occur | produces between each member and a sealing material layer can be reduced, and it becomes possible to suppress the failure | damage of a member.

第1の部材の熱膨張係数は、例えば−25×10−7〜25×10−7/K、−15×10−7〜15×10−7/K、特に−10×10−7〜10×10−7/Kである。第1の部材の具体例としては、石英ガラス、結晶化ガラス、低膨張セラミックス等が挙げられる。 The thermal expansion coefficient of the first member is, for example, −25 × 10 −7 to 25 × 10 −7 / K, −15 × 10 −7 to 15 × 10 −7 / K, particularly −10 × 10 −7 to 10 × 10 −7 / K. Specific examples of the first member include quartz glass, crystallized glass, and low expansion ceramics.

第2の部材の熱膨張係数は、例えば25×10−7〜60×10−7/K、25×10−7〜55×10−7/K、特に25×10−7〜50×10−7/Kである。第2の部材の具体例としては、金属、ガラスまたは高膨張セラミックス等が挙げられる。 The thermal expansion coefficient of the second member is, for example, 25 × 10 −7 to 60 × 10 −7 / K, 25 × 10 −7 to 55 × 10 −7 / K, particularly 25 × 10 −7 to 50 × 10 − 7 / K. Specific examples of the second member include metal, glass, high expansion ceramics, and the like.

図2は、本発明の接合体の製造方法の第1の実施形態を示す模式的断面図である。   FIG. 2 is a schematic cross-sectional view showing a first embodiment of a method for producing a joined body according to the present invention.

まず、第1の部材10上に、焼成により第1の封止材層1となる第1の封止材1’を配置する(図2のa)。その状態で焼成することにより、第1の部材10上に第1の封止材層1を形成する(図2のb)。   First, a first sealing material 1 ′ that becomes the first sealing material layer 1 by firing is disposed on the first member 10 (a in FIG. 2). By firing in this state, the first sealing material layer 1 is formed on the first member 10 (b in FIG. 2).

次に、第1の封止材層1上に、焼成により第2の封止材層2となる第2の封止材2’を配置し、さらに第2の封止材2’上に第2の部材20を配置する(図2のc)。その状態で焼成することにより、第2の封止材層2を形成するとともに、第2の封止材層2により第1の封止材層1と第2の部材20を接合する(図2のd)。   Next, on the first sealing material layer 1, a second sealing material 2 ′ that becomes the second sealing material layer 2 by firing is disposed, and further on the second sealing material 2 ′. Two members 20 are arranged (c in FIG. 2). By firing in this state, the second sealing material layer 2 is formed, and the first sealing material layer 1 and the second member 20 are joined by the second sealing material layer 2 (FIG. 2). D).

図3は、本発明の接合体の製造方法の第2の実施形態を示す模式的断面図である。   FIG. 3 is a schematic cross-sectional view showing a second embodiment of the method for producing a joined body according to the present invention.

まず、第2の部材20上に、焼成により第2の封止材層2となる第2の封止材2’を配置する(図3のa)。その状態で焼成することにより、第2の部材20上に第2の封止材層2を形成する(図3のb)。   First, the second sealing material 2 ′ that becomes the second sealing material layer 2 by firing is disposed on the second member 20 (a in FIG. 3). By firing in this state, the second sealing material layer 2 is formed on the second member 20 (b in FIG. 3).

次に、第2の封止材層2上に、焼成により第1の封止材層1となる第1の封止材1’を配置し、さらに第1の封止材1’上に第1の部材10を配置する(図3のc)。その状態で焼成することにより、第1の封止材層1を形成するとともに、第1の封止材層1により第2の封止材層2と第1の部材10を接合する(図3のd)。   Next, a first sealing material 1 ′ that becomes the first sealing material layer 1 by firing is disposed on the second sealing material layer 2, and the first sealing material 1 ′ is further disposed on the first sealing material 1 ′. 1 member 10 is arranged (c in FIG. 3). By firing in this state, the first sealing material layer 1 is formed, and the second sealing material layer 2 and the first member 10 are joined by the first sealing material layer 1 (FIG. 3). D).

第1の実施形態の製造方法は、第1の封止材1’が第2の封止材2’より軟化点が高い(焼成温度が高い)場合に適用される。一方、第2の実施形態の製造方法は、第2の封止材2’が第1の封止材1’より軟化点が高い(焼成温度が高い)場合に適用される。即ち、基本的に軟化点(焼成温度)が高いほうの封止材から順に焼成が行われる。軟化点が低い封止材を先に焼成して封止材層を形成した場合、後に軟化点が高い封止材を焼成する際に、軟化点が低い封止材層が軟化流動してしまい、封止状態が悪化するおそれがあるためである。   The manufacturing method of the first embodiment is applied when the first sealing material 1 ′ has a higher softening point (higher firing temperature) than the second sealing material 2 ′. On the other hand, the manufacturing method of the second embodiment is applied when the second sealing material 2 ′ has a higher softening point (higher firing temperature) than the first sealing material 1 ′. That is, firing is performed in order from the sealing material having the higher softening point (firing temperature). When a sealing material layer is formed by firing a sealing material having a low softening point first, when the sealing material having a high softening point is fired later, the sealing material layer having a low softening point softens and flows. This is because the sealing state may be deteriorated.

図4は、本発明の接合体の製造方法の第3の実施形態を示す模式的断面図である。   FIG. 4 is a schematic cross-sectional view showing a third embodiment of the method for producing a joined body according to the present invention.

まず、第1の部材10上に、焼成により第1の封止材層1となる第1の封止材1’を配置する。また、第2の部材20上に、焼成により第2の封止材層2となる第2の封止材2’を配置する(図4のa)。その状態で、それぞれを焼成することにより、第1の部材10上に第1の封止材層1が形成されてなる第1の積層体11、及び、第2の部材20上に第2の封止材層2が形成されてなる第2の積層体21を得る(図4のb)。   First, the first sealing material 1 ′ that becomes the first sealing material layer 1 by firing is disposed on the first member 10. In addition, a second sealing material 2 ′ that becomes the second sealing material layer 2 by firing is disposed on the second member 20 (a in FIG. 4). In this state, by firing each of them, a first laminate 11 in which the first sealing material layer 1 is formed on the first member 10 and a second laminate on the second member 20. The 2nd laminated body 21 in which the sealing material layer 2 is formed is obtained (b of FIG. 4).

次に、第1の積層体11と第2の積層体21を、第1の封止材層1と第2の封止材層2が接するように積層する(図4のc)。その状態で焼成することにより、第1の封止材層1または第2の封止材層2を軟化流動させることにより、第1の封止材層1と第2の封止材層2を接合する(図4のd)。なお焼成温度は、第1の封止材層1が第2の封止材層2より軟化点が低い場合は、第1の封止材層1の軟化点付近とし、第2の封止材層2が第1の封止材層1より軟化点が低い場合は、第2の封止材層2の軟化点付近とする。   Next, the 1st laminated body 11 and the 2nd laminated body 21 are laminated | stacked so that the 1st sealing material layer 1 and the 2nd sealing material layer 2 may contact | connect (c of FIG. 4). By firing in that state, the first sealing material layer 1 or the second sealing material layer 2 is softened and fluidized, whereby the first sealing material layer 1 and the second sealing material layer 2 are made to flow. They are joined (d in FIG. 4). When the first sealing material layer 1 has a softening point lower than that of the second sealing material layer 2, the firing temperature is set near the softening point of the first sealing material layer 1 and the second sealing material. When the softening point of the layer 2 is lower than that of the first sealing material layer 1, the softening point is set near the second sealing material layer 2.

第1の封止材1’及び第2の封止材2’は、粉末、圧粉体、ペースト等の形態で供される。焼成温度は、各封止材の軟化点±100℃、特に軟化点±50℃の範囲内とすることが好ましい。焼成温度が低すぎると軟化流動が不十分となり、接着強度に劣る傾向がある。一方、焼成温度が高すぎると、流動性が過剰になって接合が困難になる傾向がある。また、封止材が結晶性ガラスの場合、結晶転移(例えばβ−石英固溶体からβ−スポジュメン固溶体への結晶転移)が生じて封止部が高膨張化するおそれがある。   The first sealing material 1 'and the second sealing material 2' are provided in the form of powder, green compact, paste, or the like. The firing temperature is preferably within the range of the softening point ± 100 ° C., particularly the softening point ± 50 ° C. of each sealing material. If the firing temperature is too low, the softening flow becomes insufficient and the adhesive strength tends to be inferior. On the other hand, if the firing temperature is too high, the fluidity becomes excessive and joining tends to be difficult. In addition, when the sealing material is crystalline glass, a crystal transition (for example, a crystal transition from a β-quartz solid solution to a β-spodumene solid solution) may occur, and the sealing portion may be highly expanded.

第1の封止材1’及び第2の封止材2’の平均粒子径D50は15μm以下、0.5〜10μm、特に0.7〜5μmが好ましい。平均粒子径D50の粒度が大きすぎると、焼成後に得られる封止材層において気孔が多くなりすぎて接合強度に劣る傾向がある。ここで、「平均粒子径D50」とは、レーザー回折装置で測定した値を指し、レーザー回折法により測定した際の体積基準の累積粒度分布曲線において、その積算量が粒子の小さい方から累積して50%である粒子径を表す。 The average particle diameter D 50 of the first sealing member 1 'and the second sealing member 2' 15 [mu] m or less, 0.5 to 10 [mu] m, particularly 0.7~5μm is preferred. When the particle size of the average particle diameter D 50 is too large, the pores in the sealing material layer obtained after firing becomes too much tends to be inferior in joint strength. Here, the “average particle diameter D 50 ” refers to a value measured with a laser diffractometer, and in the volume-based cumulative particle size distribution curve measured by the laser diffraction method, the accumulated amount is accumulated from the smaller particle. The particle diameter is 50%.

以下、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these Examples.

表1は、実施例で使用する第1及び第2の封止材の組成及び特性を示す。   Table 1 shows the composition and characteristics of the first and second sealing materials used in the examples.

(1)第1及び第2の封止材の作製
表1に記載のガラス組成となるように原料粉末を調合し、均一に混合することにより原料バッチを作製した。原料バッチを白金坩堝に入れて、1400〜1600℃で均質になるまで溶融した。得られた溶融ガラスを一対の成形ローラー間に流し込み、急冷しながら成形することによりフィルム状ガラスを得た。ボールミルを用いてフィルム状ガラスを12〜14時間乾式粉砕した後、目開き100μmの金属製篩で分級を行うことにより、平均粒子径D50が8μmのガラス粉末からなる第1及び第2の封止材を得た。
(1) Preparation of 1st and 2nd sealing material The raw material batch was produced by preparing the raw material powder so that it might become the glass composition of Table 1, and mixing uniformly. The raw material batch was placed in a platinum crucible and melted at 1400-1600 ° C. until homogeneous. The obtained molten glass was poured between a pair of molding rollers and molded while being rapidly cooled to obtain a film-like glass. After 12-14 hours dry grinding the film-like glass using a ball mill, mesh by performing classification with a metal sieve of 100 [mu] m, the first and second sealing average particle diameter D 50 is made of glass powder 8μm A stop was obtained.

(2)熱膨張係数の測定
第1の封止材の熱膨張係数(第1の封止材層の熱膨張係数)は以下のようにして測定した。ガラス粉末をステンレス製金型(内寸:10mm×10mm×50mm)に投入し、0.4MPaの圧力でプレスすることにより圧粉体を作製した。箱型電気炉内で700℃、30分間(昇温速度:10℃/分)の焼成条件にて圧粉体を焼成して焼結体を得た。得られた焼結体を所定形状に加工することにより測定用試料を作製した。得られた測定用試料について、熱機械分析装置(リガク製Thermo Plus TMA8310)を用いて30〜380℃の温度範囲における熱膨張係数を測定した。
(2) Measurement of thermal expansion coefficient The thermal expansion coefficient of the first sealing material (thermal expansion coefficient of the first sealing material layer) was measured as follows. Glass powder was put into a stainless steel mold (inner dimensions: 10 mm × 10 mm × 50 mm) and pressed at a pressure of 0.4 MPa to produce a green compact. The green compact was fired in a box-type electric furnace under firing conditions of 700 ° C. for 30 minutes (heating rate: 10 ° C./minute) to obtain a sintered body. A sample for measurement was produced by processing the obtained sintered body into a predetermined shape. About the obtained sample for a measurement, the thermal expansion coefficient in a 30-380 degreeC temperature range was measured using the thermomechanical analyzer (Thermo Thermo TMA8310 by Rigaku).

なお、アルミナ乳鉢を用いて第1の封止材の測定用試料を平均粒子径D50が約20μmとなるよう粉砕し、得られた粉末試料を用いて粉末X線回折法により測定を行ったところ、主結晶としてβ−石英固溶体結晶が析出していることが確認された。 Incidentally, the measurement sample of the first encapsulant average particle diameter D 50 was pulverized so as to be approximately 20μm with alumina mortar, by powder X-ray diffraction method using the obtained powder sample was measured However, it was confirmed that β-quartz solid solution crystals were precipitated as main crystals.

第2の封止材の熱膨張係数は、溶融ガラスを鋳型成形し所定形状に加工することにより得られた測定用試料を用いて、封止材1と同様にして測定した。   The thermal expansion coefficient of the second sealing material was measured in the same manner as the sealing material 1 using a measurement sample obtained by molding molten glass into a predetermined shape.

(3)接合体の作製
石英ガラス基板(熱膨張係数4×10−7/K)及びホウケイ酸ガラス基板(熱膨張係数38×10−7/K;日本電気硝子株式会社製OA−10G)を、以下の手順に従って表2に記載の各封止材層により接合することにより接合体を作製した。表2のNo.1は実施例、No.2、3は比較例を示す。
(3) Production of bonded body A quartz glass substrate (thermal expansion coefficient 4 × 10 −7 / K) and a borosilicate glass substrate (thermal expansion coefficient 38 × 10 −7 / K; OA-10G manufactured by Nippon Electric Glass Co., Ltd.) Then, a joined body was prepared by joining with each sealing material layer described in Table 2 according to the following procedure. No. in Table 2 No. 1 is an example, no. 2 and 3 show comparative examples.

(3−1)No.1
第1の封止材をステンレス製金型(内径φ10mm)に投入し、0.4MPaの圧力でプレスすることにより第1の圧粉体を作製した。また、第2の封止材についても同様にプレスを行うことにより第2の圧粉体を作製した。
ホウケイ酸ガラス基板上に第2の圧粉体を配置し、箱型電気炉内で900℃、10分間(昇温速度:10℃/分)の条件で焼成することにより、粉末焼結体からなる第2の封止材層をホウケイ酸ガラス基板上に形成した。第2の封止材層のホウケイ酸ガラス基板とは反対側の表面に、第1の圧粉体を配置し、さらにその上に石英ガラス基板を配置した状態で、箱型電気炉内で700℃、30分間(昇温速度:10℃/分)の条件で焼成した。これにより、粉末焼結体からなる第1の封止材層が形成され、当該第1の封止材層を介して第2の封止材層及び石英ガラス基板が接合された。以上のようにして、石英ガラス基板とホウケイ酸ガラス基板が、第1の封止材層及び第2の封止材層からなる封止材積層体により接合されてなる接合体が得られた。
(3-1) No. 1
The first green compact was produced by putting the first sealing material into a stainless steel mold (inner diameter φ10 mm) and pressing it at a pressure of 0.4 MPa. Also, the second green compact was produced by pressing the second sealing material in the same manner.
By placing the second green compact on the borosilicate glass substrate and firing it at 900 ° C. for 10 minutes (temperature increase rate: 10 ° C./min) in a box-type electric furnace, A second sealing material layer was formed on the borosilicate glass substrate. In a state where the first green compact is disposed on the surface of the second sealing material layer opposite to the borosilicate glass substrate and the quartz glass substrate is disposed on the first green compact, it is 700 in a box-type electric furnace. Firing was performed at a temperature of 30 ° C. for 30 minutes (temperature increase rate: 10 ° C./min). Thereby, the 1st sealing material layer which consists of a powder sintered compact was formed, and the 2nd sealing material layer and the quartz glass substrate were joined via the said 1st sealing material layer. As described above, a joined body was obtained in which the quartz glass substrate and the borosilicate glass substrate were joined by the sealing material laminate including the first sealing material layer and the second sealing material layer.

得られた接合体において、各基板における封止材層との界面を観察したところ、クラックは確認されなかった。なお、第1の封止材層及び第2の封止材層の界面においてもクラックは確認されなかった。   In the obtained joined body, when the interface with the sealing material layer in each substrate was observed, no crack was confirmed. Note that no cracks were observed at the interface between the first sealing material layer and the second sealing material layer.

(3−2)No.2
ホウケイ酸ガラス基板上に第1の圧粉体を配置し、さらにその上に石英ガラス基板を配置した状態で、箱型電気炉内で700℃、30分間(昇温速度:10℃/分)の条件で焼成した。これにより、ホウケイ酸ガラス基板及び石英ガラス基板が、粉末焼結体からなる第1の封止材層により接合されてなる接合体が得られた。
(3-2) No. 2
With the first green compact placed on the borosilicate glass substrate and the quartz glass substrate placed on it, 700 ° C. for 30 minutes in a box-type electric furnace (heating rate: 10 ° C./min) It baked on the conditions of this. Thereby, the joined body formed by joining the borosilicate glass substrate and the quartz glass substrate by the first sealing material layer made of the powder sintered body was obtained.

得られた接合体において、各基板における封止材との界面を観察したところ、ホウケイ酸ガラス基板にクラックが確認された。   In the obtained bonded body, when the interface with the sealing material in each substrate was observed, cracks were confirmed in the borosilicate glass substrate.

(3−3)No.3
ホウケイ酸塩ガラス基板上に第2の圧粉体を配置し、さらにその上に石英ガラス基板を配置した状態で、箱型電気炉内で900℃、10分間(昇温速度:10℃/分)の条件で焼成した。これにより、ホウケイ酸ガラス基板及び石英ガラス基板が、粉末焼結体からなる第2の封止材層により接合されてなる接合体が得られた。
(3-3) No. 3
The second green compact is placed on the borosilicate glass substrate, and further the quartz glass substrate is placed on the second green compact, and the temperature is 900 ° C. for 10 minutes in a box-type electric furnace (heating rate: 10 ° C./min. ). Thereby, the joined body formed by joining the borosilicate glass substrate and the quartz glass substrate by the second sealing material layer made of the powder sintered body was obtained.

得られた接合体において、各基板における封止材との界面を観察したところ、石英ガラス基板にクラックが確認された。   In the obtained joined body, when the interface with the sealing material in each substrate was observed, cracks were confirmed in the quartz glass substrate.

本発明の封止材積層体は、高温処理治具、ヒーター、エンジン等に使用される低膨張構造部材を、金属等からなる高膨張部材への接合する際に好適である。その他にも、ハロゲンランプにおける石英バルブと金属フィラメントの接合にも好適である。   The sealing material laminate of the present invention is suitable for joining a low expansion structure member used for a high temperature processing jig, a heater, an engine, or the like to a high expansion member made of metal or the like. In addition, it is also suitable for bonding a quartz bulb and a metal filament in a halogen lamp.

1 第1の封止材層
1’ 第1の封止材
2 第2の封止材層
2’ 第2の封止材
3 封止材積層体
10 第1の部材
11 第1の積層体
20 第2の部材
21 第2の積層体
100 接合体
DESCRIPTION OF SYMBOLS 1 1st sealing material layer 1 '1st sealing material 2 2nd sealing material layer 2' 2nd sealing material 3 Sealing material laminated body 10 1st member 11 1st laminated body 20 Second member 21 Second laminate 100 Bonded body

Claims (14)

熱膨張係数αを有する第1の封止材層及び熱膨張係数αを有する第2の封止材層が互いに接合してなる封止材積層体であって、
−25×10−7/K≦α≦25×10−7/K、かつ、α<αの関係を満たすことを特徴とする封止材積層体。
A sealant laminate second sealing material layer having a first sealing material layer and the thermal expansion coefficient alpha 2 having a thermal expansion coefficient alpha 1 is formed by joining together,
−25 × 10 −7 / K ≦ α 1 ≦ 25 × 10 −7 / K and satisfy the relationship of α 12 .
α−α≧10×10−7/Kであることを特徴とする請求項1に記載の封止材積層体。 It is (alpha) 2- ( alpha) 1 > = 10 * 10 < -7 > / K, The sealing material laminated body of Claim 1 characterized by the above-mentioned. 第1の封止材層及び/または第2の封止材層がガラスを含むことを特徴とする請求項1または2に記載の封止材積層体。   The sealing material laminate according to claim 1 or 2, wherein the first sealing material layer and / or the second sealing material layer contains glass. 第1の封止材層が結晶化ガラスを含むことを特徴とする請求項1〜3のいずれか一項に記載の封止材積層体。   The sealing material laminate according to claim 1, wherein the first sealing material layer contains crystallized glass. 第1の封止材層が主結晶としてβ−石英固溶体を含有することを特徴とする請求項4に記載の封止材積層体。   The sealing material laminate according to claim 4, wherein the first sealing material layer contains β-quartz solid solution as a main crystal. 第1の封止材層が、組成として、モル%で、SiO 48〜75%、Al 5〜25%、LiO 5〜30%、B 10〜23%(ただし10%を含まない)、ZnO 0〜2.5%(ただし2.5%を含まない)を含有するガラスを含むことを特徴とする請求項3〜5のいずれか一項に記載の封止材積層体。 First sealing material layer, a composition, in mol%, SiO 2 48~75%, Al 2 O 3 5~25%, Li 2 O 5~30%, B 2 O 3 10~23% ( provided that 10), ZnO 0-2.5% (however, not including 2.5%) glass is included, The sealing as described in any one of Claims 3-5 characterized by the above-mentioned Material laminate. 第1の封止材層及び第2の封止材層が粉末焼結体からなることを特徴とする請求項1〜6のいずれか一項に記載の封止材積層体。   The first sealing material layer and the second sealing material layer are made of a powder sintered body, and the sealing material laminate according to any one of claims 1 to 6. 第1の部材及び第2の部材と、第1の部材及び第2の部材の間に介在する請求項1〜5のいずれか一項に記載の封止材積層体とを備えた接合体であって、
第1の部材と第1の封止材層、及び、第2の部材と第2の封止材層が各々接合していることを特徴とする接合体。
A joined body comprising the first member and the second member, and the sealing material laminate according to any one of claims 1 to 5 interposed between the first member and the second member. There,
A joined body, wherein the first member and the first sealing material layer, and the second member and the second sealing material layer are joined to each other.
第1の部材と第2の部材の熱膨張係数差が20×10−7/K以上であることを特徴とする請求項8に記載の接合体。 The joined body according to claim 8, wherein a difference in thermal expansion coefficient between the first member and the second member is 20 × 10 −7 / K or more. 第1の部材と第1の封止材層の熱膨張係数差、及び、第2の部材と第2の封止材層の熱膨張係数差が、各々20×10−7/K以下であることを特徴とする請求項8または9に記載の接合体。 The difference in thermal expansion coefficient between the first member and the first sealing material layer and the difference in thermal expansion coefficient between the second member and the second sealing material layer are each 20 × 10 −7 / K or less. The joined body according to claim 8 or 9, characterized in that. 第1の部材が石英ガラス、結晶化ガラスまたは低膨張セラミックスであることを特徴とする請求項8〜10のいずれか一項に記載の接合体。   The bonded member according to any one of claims 8 to 10, wherein the first member is quartz glass, crystallized glass, or low expansion ceramics. 第2の部材が金属、ガラスまたは高膨張セラミックスであることを特徴とする請求項8〜11のいずれか一項に記載の接合体。   The joined body according to any one of claims 8 to 11, wherein the second member is metal, glass, or high expansion ceramics. 請求項8〜12のいずれか一項に記載の接合体を製造するための方法であって、
第1の部材上に第1の封止材を配置した状態で焼成することにより、第1の部材上に第1の封止材層を形成する工程、及び、
第1の封止材層上に第2の封止材を配置し、さらに第2の封止材上に第2の部材を配置した状態で焼成することにより、第2の封止材層を形成するとともに、第2の封止材層により第1の封止材層と第2の部材を接合する工程、
を含むことを特徴とする接合体の製造方法。
A method for producing the joined body according to any one of claims 8 to 12,
Forming a first encapsulant layer on the first member by firing with the first encapsulant disposed on the first member; and
The second sealing material layer is disposed on the first sealing material layer, and the second sealing material layer is further baked in a state where the second member is disposed on the second sealing material. Forming and bonding the first sealing material layer and the second member with the second sealing material layer;
The manufacturing method of the conjugate | zygote characterized by including.
請求項8〜12のいずれか一項に記載の接合体を製造するための方法であって、
第2の部材上に第2の封止材を配置した状態で焼成することにより、第2の部材上に第2の封止材層を形成する工程、
第2の封止材層上に第1の封止材を配置し、さらに第1の封止材上に第1の部材を配置した状態で焼成することにより、第1の封止材層を形成するとともに、第1の封止材層により第2の封止材層と第1の部材を接合する工程、
を含むことを特徴とする接合体の製造方法。
A method for producing the joined body according to any one of claims 8 to 12,
A step of forming a second sealing material layer on the second member by firing in a state where the second sealing material is disposed on the second member;
The first sealing material layer is fired in a state where the first sealing material is disposed on the second sealing material layer and the first member is disposed on the first sealing material. Forming and bonding the second sealing material layer and the first member with the first sealing material layer;
The manufacturing method of the conjugate | zygote characterized by including.
JP2016095170A 2016-05-11 2016-05-11 Encapsulation material laminate and conjugate Pending JP2017202953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016095170A JP2017202953A (en) 2016-05-11 2016-05-11 Encapsulation material laminate and conjugate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016095170A JP2017202953A (en) 2016-05-11 2016-05-11 Encapsulation material laminate and conjugate

Publications (1)

Publication Number Publication Date
JP2017202953A true JP2017202953A (en) 2017-11-16

Family

ID=60323151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016095170A Pending JP2017202953A (en) 2016-05-11 2016-05-11 Encapsulation material laminate and conjugate

Country Status (1)

Country Link
JP (1) JP2017202953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637071A1 (en) * 2018-10-12 2020-04-15 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method for manufacturing an electromagnetic-radiation detection device with improved encapsulation structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3637071A1 (en) * 2018-10-12 2020-04-15 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method for manufacturing an electromagnetic-radiation detection device with improved encapsulation structure

Similar Documents

Publication Publication Date Title
US8658549B2 (en) Crystallizing glass solder and use thereof
US5516733A (en) Fusion seal and sealing mixtures
JP2009013056A (en) Lead-free glass composite with low thermal expansion coefficient
US10882778B2 (en) Glass substrate, laminated substrate, laminate, and method for producing semiconductor package
CN113880430B (en) Glass solder for connecting transparent magnesia-alumina spinel ceramic and method for connecting transparent magnesia-alumina spinel ceramic
JPWO2018008379A1 (en) Composite ceramic powder, sealing material and method for producing composite ceramic powder
US8664134B2 (en) Crystallizing glass solders and uses thereof
JP6881312B2 (en) Crystalline glass encapsulant
JPWO2003045864A1 (en) SEALING COMPOSITION AND SEALING MATERIAL
JP2017202953A (en) Encapsulation material laminate and conjugate
JP2014047123A (en) Joining material and method of manufacturing joined body using the same
WO2022158457A1 (en) Lamination member and glass composition
TW201901866A (en) Method for manufacturing hermetic package and hermetic package
KR20190079114A (en) Glass bonding member, and manufacturing method and using method of the same
JP2602187B2 (en) Low expansion heat resistant crystallized glass bonding material and bonding method thereof
WO2024057823A1 (en) Sealant-layer-equipped glass substrate and method for producing hermetic package
JP7506566B2 (en) Sealing and coating materials
WO2021199613A1 (en) Bonded body manufacturing method and bonded body
JP7487601B2 (en) Manufacturing method of the joint body
JPS59131542A (en) Sealing composition
JP2008514532A (en) Method for producing glass ceramic composite molded body and composite molded body
KR101165216B1 (en) Low temperature sintering and filler that come environment-friendly binder that can treat with heat and is suitable to sealant glass-frit and crystallinity increase method
JP2022018818A (en) Protective cap and electronic device
JPH09315840A (en) Adhesive for heat resistant low expansion material and bonded structure
JP2015020927A (en) Highly heat-resistant glass bonding material