JP2017201275A - Imaging apparatus - Google Patents

Imaging apparatus Download PDF

Info

Publication number
JP2017201275A
JP2017201275A JP2016093249A JP2016093249A JP2017201275A JP 2017201275 A JP2017201275 A JP 2017201275A JP 2016093249 A JP2016093249 A JP 2016093249A JP 2016093249 A JP2016093249 A JP 2016093249A JP 2017201275 A JP2017201275 A JP 2017201275A
Authority
JP
Japan
Prior art keywords
imaging
clock signal
signal
temperature
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016093249A
Other languages
Japanese (ja)
Other versions
JP6350590B2 (en
Inventor
田中 正人
Masato Tanaka
正人 田中
齋藤 達彦
Tatsuhiko Saito
達彦 齋藤
小林 亮一
Ryoichi Kobayashi
亮一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2016093249A priority Critical patent/JP6350590B2/en
Publication of JP2017201275A publication Critical patent/JP2017201275A/en
Application granted granted Critical
Publication of JP6350590B2 publication Critical patent/JP6350590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Studio Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an imaging apparatus which can precisely measure the temperature of an imaging element.SOLUTION: An imaging apparatus 1 includes: an imaging element 11 for outputting an imaging signal in synchronization with an imaging clock signal; a cooling section 12 for cooling the imaging element 11; an AD converter 14 for converting a temperature signal showing the temperature of the imaging element 11 into a digital signal and outputting the digital signal in synchronization with the AD clock signal; and a controller 16 for controlling the cooling operation of the cooling section 12 on the basis of an average value obtained by equalizing the value of the digital signal output from the AD converter 14 over a specific time. The ratio of cycles of the clock signal and the AD clock signal is represented by a pair of relatively prime numbers.SELECTED DRAWING: Figure 1

Description

本発明は、撮像装置に関するものである。   The present invention relates to an imaging apparatus.

近赤外域(1000〜2500nm)に感度を有する撮像素子を有する撮像装置は、近赤外域の光の吸収や反射の分布を示す画像を取得することができることから、可視域では区別できない物質や含有成分の判別をする際に利用されている。特に波長1700nm以上に感度を有する撮像素子は、常温において暗電流が大きいので、ペルチェクーラーやスターリングクーラー等の冷却機構を用いて低温で動作させる必要がある。また、このような撮像素子を低温で動作させる場合に、撮像素子の温度によって暗電流が変動し、撮像素子から得られる撮像信号も変動する。したがって、撮像素子の温度を高精度に測定して、撮像素子の温度を高精度に制御する必要がある(特許文献1参照)。   An imaging device having an imaging device having sensitivity in the near infrared region (1000 to 2500 nm) can acquire an image showing the absorption and reflection distribution of light in the near infrared region. It is used when discriminating components. In particular, an imaging device having sensitivity at a wavelength of 1700 nm or more has a large dark current at room temperature, and therefore needs to be operated at a low temperature using a cooling mechanism such as a Peltier cooler or a Stirling cooler. Further, when such an image sensor is operated at a low temperature, the dark current varies depending on the temperature of the image sensor, and the image signal obtained from the image sensor also varies. Therefore, it is necessary to measure the temperature of the image sensor with high accuracy and control the temperature of the image sensor with high accuracy (see Patent Document 1).

特表2003−532111号公報Special table 2003-532111 gazette

上記のような撮像装置において、撮像素子の温度を高精度に測定することができない場合がある。その結果、撮像素子の温度の制御が不安定になって、暗電流が変動し、撮像素子から得られる撮像信号も変動する場合がある。   In the imaging apparatus as described above, the temperature of the imaging element may not be measured with high accuracy. As a result, the temperature control of the image sensor becomes unstable, the dark current varies, and the image signal obtained from the image sensor may also vary.

本発明は、上記問題点を解消する為になされたものであり、撮像素子の温度を高精度に測定することができる撮像装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an imaging apparatus capable of measuring the temperature of the imaging element with high accuracy.

本発明の撮像装置は、撮像信号を撮像クロック信号に同期して出力する撮像素子と、前記撮像素子を冷却する冷却部と、前記撮像素子の温度を示す温度信号をデジタル信号に変換して該デジタル信号をADクロック信号に同期して出力するAD変換部と、前記AD変換部から出力されるデジタル信号の値を一定時間に亘って平均化して得られる平均値に基づいて前記冷却部の冷却動作を制御する制御部とを備え、前記撮像クロック信号および前記ADクロック信号それぞれの周期の比が互いに素の数の組で表される。   An imaging device of the present invention converts an imaging element that outputs an imaging signal in synchronization with an imaging clock signal, a cooling unit that cools the imaging element, and a temperature signal indicating the temperature of the imaging element into a digital signal, AD converter that outputs a digital signal in synchronization with an AD clock signal, and cooling of the cooling unit based on an average value obtained by averaging the value of the digital signal output from the AD converter over a certain period of time A control unit that controls the operation, and the ratio of the periods of the imaging clock signal and the AD clock signal is expressed by a set of prime numbers.

本発明の撮像装置は、撮像素子の温度を高精度に測定することができる。   The imaging apparatus of the present invention can measure the temperature of the imaging element with high accuracy.

図1は、撮像装置1の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of the imaging apparatus 1. 図2は、比較例における各信号のタイミングチャートである。FIG. 2 is a timing chart of each signal in the comparative example. 図3は、本実施形態における各信号のタイミングチャートである。FIG. 3 is a timing chart of each signal in the present embodiment.

本発明の撮像装置は、撮像信号を撮像クロック信号に同期して出力する撮像素子と、前記撮像素子を冷却する冷却部と、前記撮像素子の温度を示す温度信号をデジタル信号に変換して該デジタル信号をADクロック信号に同期して出力するAD変換部と、前記AD変換部から出力されるデジタル信号の値を一定時間に亘って平均化して得られる平均値に基づいて前記冷却部の冷却動作を制御する制御部とを備え、前記撮像クロック信号および前記ADクロック信号それぞれの周期の比が互いに素の数の組で表される。   An imaging device of the present invention converts an imaging element that outputs an imaging signal in synchronization with an imaging clock signal, a cooling unit that cools the imaging element, and a temperature signal indicating the temperature of the imaging element into a digital signal, AD converter that outputs a digital signal in synchronization with an AD clock signal, and cooling of the cooling unit based on an average value obtained by averaging the value of the digital signal output from the AD converter over a certain period of time A control unit that controls the operation, and the ratio of the periods of the imaging clock signal and the AD clock signal is expressed by a set of prime numbers.

本発明において、前記撮像素子が1000〜2500nmの波長の光に対して感度を有するのが好適である。また、前記撮像クロック信号および前記ADクロック信号それぞれの周期の比を一定に維持しつつ前記撮像クロック信号および前記ADクロック信号それぞれの周期が可変であるのが好適である。   In the present invention, it is preferable that the imaging element has sensitivity to light having a wavelength of 1000 to 2500 nm. In addition, it is preferable that the period of each of the imaging clock signal and the AD clock signal is variable while the ratio of the period of the imaging clock signal and the AD clock signal is kept constant.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。本発明は、これらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. The present invention is not limited to these exemplifications, but is defined by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

図1は、撮像装置1の構成を示すブロック図である。この図は、撮像素子11の冷却に関わる構成を主に示している。撮像装置1は、撮像素子11、冷却部12、増幅部13、AD変換部14、温度換算部15および制御部16を備える。   FIG. 1 is a block diagram illustrating a configuration of the imaging apparatus 1. This figure mainly shows a configuration relating to cooling of the image sensor 11. The imaging device 1 includes an imaging element 11, a cooling unit 12, an amplification unit 13, an AD conversion unit 14, a temperature conversion unit 15, and a control unit 16.

撮像素子11は、光の入射に応じて撮像信号を撮像クロック信号に同期して出力する。撮像素子11は、1000〜2500nmの波長の光に対して感度を有する。また、撮像素子11は、温度を示す温度信号を出力する感温部を有する。冷却部12は、撮像素子11を冷却するものであり、例えばペルチェクーラーやスターリングクーラー等を含む。増幅部13は、温度信号を増幅する。   The imaging element 11 outputs an imaging signal in synchronization with the imaging clock signal according to the incidence of light. The image sensor 11 is sensitive to light having a wavelength of 1000 to 2500 nm. The image sensor 11 has a temperature sensing unit that outputs a temperature signal indicating the temperature. The cooling unit 12 cools the image sensor 11 and includes, for example, a Peltier cooler, a Stirling cooler, and the like. The amplifying unit 13 amplifies the temperature signal.

AD変換部14は、増幅部13により増幅された温度信号を入力し、この温度信号(アナログ信号)をデジタル信号に変換して、このデジタル信号をADクロック信号に同期して出力する。温度換算部15は、AD変換部14から出力されたデジタル信号を入力して、このデジタル信号を設定温度と照合可能な信号に換算して、その換算後のデジタル信号を出力する。   The AD conversion unit 14 receives the temperature signal amplified by the amplification unit 13, converts the temperature signal (analog signal) into a digital signal, and outputs the digital signal in synchronization with the AD clock signal. The temperature conversion unit 15 receives the digital signal output from the AD conversion unit 14, converts the digital signal into a signal that can be collated with the set temperature, and outputs the converted digital signal.

制御部16は、撮像素子11からの撮像信号の出力タイミングを決める撮像クロック信号を撮像素子11に与える。制御部16は、AD変換部14からのデジタル信号の出力タイミングを決めるADクロック信号をAD変換部14に与える。制御部16は、温度換算部15から出力されたデジタル信号を入力して、このデジタル信号の値を一定時間に亘って平均化して平均値を求め、この平均値に基づいて冷却部12による冷却動作を制御する。制御部16は、このようなフィードバック制御により、撮像素子11の温度が目標値または目標範囲内になるようにする。   The control unit 16 gives the imaging device 11 an imaging clock signal that determines the output timing of the imaging signal from the imaging device 11. The control unit 16 provides the AD conversion unit 14 with an AD clock signal that determines the output timing of the digital signal from the AD conversion unit 14. The control unit 16 receives the digital signal output from the temperature conversion unit 15, averages the value of the digital signal over a predetermined time, obtains an average value, and cools by the cooling unit 12 based on the average value. Control the behavior. The control unit 16 causes the temperature of the image sensor 11 to be within the target value or the target range by such feedback control.

図2は、比較例における各信号のタイミングチャートである。この図には、(a) 撮像クロック信号、(b) 温度信号、(c) ADクロック信号、が示されている。この比較例では、撮像クロック信号とADクロック信号とは、周期が互いに同じであり、位相も互いに同じである。一般に、撮像素子11に入力される撮像クロック信号を伝送する信号線と、撮像素子11から出力される温度信号を伝送する信号線とは、互いに並列して配置される。このことから、撮像素子11から出力される温度信号には、撮像クロック信号の周期に応じたパターンの雑音が重畳され易い。   FIG. 2 is a timing chart of each signal in the comparative example. In this figure, (a) an imaging clock signal, (b) a temperature signal, and (c) an AD clock signal are shown. In this comparative example, the imaging clock signal and the AD clock signal have the same period and the same phase. In general, a signal line that transmits an imaging clock signal input to the image sensor 11 and a signal line that transmits a temperature signal output from the image sensor 11 are arranged in parallel to each other. For this reason, noise of a pattern corresponding to the period of the imaging clock signal is easily superimposed on the temperature signal output from the imaging element 11.

例えば、図2(b)に示されるように、撮像クロック信号の立上りタイミングおよび立下りタイミングそれぞれにおいて、温度信号にスパイクが観察される場合がある。撮像クロック信号とADクロック信号とが互いに同期していると、AD変換部14から、温度信号のスパイク部分の値を有するデジタル信号が常に出力されることになる。AD変換部14から出力されるデジタル信号は、真の温度の値(スパイクがない部分での値)を示すものではなく、真の温度の値に対してオフセットが加えられたものとなる。   For example, as shown in FIG. 2B, spikes may be observed in the temperature signal at the rising timing and falling timing of the imaging clock signal. When the imaging clock signal and the AD clock signal are synchronized with each other, a digital signal having a spike portion value of the temperature signal is always output from the AD conversion unit 14. The digital signal output from the AD conversion unit 14 does not indicate a true temperature value (a value at a portion where there is no spike), but is obtained by adding an offset to the true temperature value.

このオフセットがデジタル信号の1LSB以上である場合はAD変換後も、その影響が残り、温度の読み取りに誤差が生じる。また、このようなパターン雑音は読み取りの度に変動すること場合があり、この読み取りの誤差も変動して、結果として温度制御を不安定にさせる要因となる場合がある。   If this offset is 1LSB or more of the digital signal, the effect remains after AD conversion, and an error occurs in temperature reading. In addition, such pattern noise may fluctuate every time reading is performed, and the reading error may also fluctuate, resulting in unstable temperature control.

図3は、本実施形態における各信号のタイミングチャートである。この図には、(a) クロック源信号、(b) 撮像クロック信号、(c) 温度信号、(d) ADクロック信号、が示されている。本実施形態では、撮像クロック信号およびADクロック信号それぞれの周期の比は互いに素の数の組で表される。   FIG. 3 is a timing chart of each signal in the present embodiment. This figure shows (a) a clock source signal, (b) an imaging clock signal, (c) a temperature signal, and (d) an AD clock signal. In the present embodiment, the ratio of the periods of the imaging clock signal and the AD clock signal is represented by a set of relatively prime numbers.

撮像クロック信号およびADクロック信号それぞれは、クロック源信号を分周することで生成されるのが好適である。クロック源信号を分周して撮像クロック信号を生成する際の分周比をMとし、クロック源信号を分周してADクロック信号を生成する際の分周比をNとする。このとき、分周比M,Nは、なるべく共通因子を持たないように設定される。分周比M,Nは、互いに素であることが望ましい。しかし、制御の制約上これが困難である場合は、M=aM’,N=aN’ (M’ とN’ は相異なる互いに素の自然数、aは任意の自然数)として、aがなるべく小さい数になるように設定する。なお、図3では、M’=7,N’=8,a=1 としている。   Each of the imaging clock signal and the AD clock signal is preferably generated by dividing the clock source signal. A frequency division ratio when the clock source signal is divided to generate the imaging clock signal is M, and a frequency division ratio when the clock source signal is divided to generate the AD clock signal is N. At this time, the frequency division ratios M and N are set so as not to have a common factor as much as possible. It is desirable that the frequency division ratios M and N are relatively prime. However, if this is difficult due to control restrictions, M = aM ′, N = aN ′ (M ′ and N ′ are different prime natural numbers, a is an arbitrary natural number), and a is as small as possible. Set as follows. In FIG. 3, M ′ = 7, N ′ = 8, and a = 1.

また、フレームレートを変更する場合は、撮像クロック信号およびADクロック信号それぞれの周期の比を一定に維持しつつ、撮像クロック信号およびADクロック信号それぞれの周期を変更するのが好適である。   When changing the frame rate, it is preferable to change the period of each of the imaging clock signal and the AD clock signal while maintaining a constant ratio of the period of the imaging clock signal and the AD clock signal.

本実施形態では、図3(c)において太矢印で示されるように、ADクロック信号に同期してAD変換部14から出力されるデジタル信号の値は、一部雑音の影響により増減する。しかし、クロック源信号の周期のaM’N’ 倍より長い時間範囲では、デジタル信号の値の偏りが緩和される。したがって、温度信号に雑音の影響があったとしても、制御部16は、その時間に亘る読み取り値の平均値を用いることで、真の温度を知ることができる。   In the present embodiment, as indicated by a thick arrow in FIG. 3C, the value of the digital signal output from the AD conversion unit 14 in synchronization with the AD clock signal partially increases or decreases due to the influence of noise. However, in the time range longer than aM'N 'times the period of the clock source signal, the deviation of the digital signal value is alleviated. Therefore, even if there is an influence of noise on the temperature signal, the control unit 16 can know the true temperature by using the average value of the reading values over the time.

1…撮像装置、11…撮像素子、12…冷却部、13…増幅部、14…AD変換部、15…温度換算部、16…制御部。   DESCRIPTION OF SYMBOLS 1 ... Imaging device, 11 ... Imaging element, 12 ... Cooling part, 13 ... Amplifying part, 14 ... AD conversion part, 15 ... Temperature conversion part, 16 ... Control part.

Claims (3)

撮像信号を撮像クロック信号に同期して出力する撮像素子と、
前記撮像素子を冷却する冷却部と、
前記撮像素子の温度を示す温度信号をデジタル信号に変換して該デジタル信号をADクロック信号に同期して出力するAD変換部と、
前記AD変換部から出力されるデジタル信号の値を一定時間に亘って平均化して得られる平均値に基づいて前記冷却部の冷却動作を制御する制御部と、
を備え、
前記撮像クロック信号および前記ADクロック信号それぞれの周期の比が互いに素の数の組で表される、
撮像装置。
An image sensor that outputs an imaging signal in synchronization with an imaging clock signal;
A cooling unit for cooling the image sensor;
An AD converter that converts a temperature signal indicating the temperature of the image sensor into a digital signal and outputs the digital signal in synchronization with an AD clock signal;
A control unit that controls the cooling operation of the cooling unit based on an average value obtained by averaging the value of the digital signal output from the AD conversion unit over a certain period of time;
With
A ratio of the periods of the imaging clock signal and the AD clock signal is represented by a set of prime numbers.
Imaging device.
前記撮像素子が1000〜2500nmの波長の光に対して感度を有する、
請求項1に記載の撮像装置。
The image sensor has sensitivity to light having a wavelength of 1000 to 2500 nm.
The imaging device according to claim 1.
前記撮像クロック信号および前記ADクロック信号それぞれの周期の比を一定に維持しつつ前記撮像クロック信号および前記ADクロック信号それぞれの周期が可変である、
請求項1または2に記載の撮像装置。
The period of each of the imaging clock signal and the AD clock signal is variable while maintaining a constant ratio of the period of the imaging clock signal and the AD clock signal.
The imaging device according to claim 1 or 2.
JP2016093249A 2016-05-06 2016-05-06 Imaging device Active JP6350590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016093249A JP6350590B2 (en) 2016-05-06 2016-05-06 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016093249A JP6350590B2 (en) 2016-05-06 2016-05-06 Imaging device

Publications (2)

Publication Number Publication Date
JP2017201275A true JP2017201275A (en) 2017-11-09
JP6350590B2 JP6350590B2 (en) 2018-07-04

Family

ID=60264667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016093249A Active JP6350590B2 (en) 2016-05-06 2016-05-06 Imaging device

Country Status (1)

Country Link
JP (1) JP6350590B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647778A (en) * 1985-01-23 1987-03-03 General Dynamics, Pomona Division Clear aperture cryostat for an infrared detector
JPH04115623A (en) * 1990-08-31 1992-04-16 Nec Corp Clock frequency divider circuit
JPH08219874A (en) * 1995-02-14 1996-08-30 Hamamatsu Photonics Kk Solid body photographing apparatus
JPH09163238A (en) * 1995-12-07 1997-06-20 Canon Inc Image pickup device
US20040238741A1 (en) * 2003-05-28 2004-12-02 Opto-Knowledge Systems, Inc. Method and apparatus for using temperature controlled variable diaphragms or swappable fixed apertures with infrared cameras
US20080048121A1 (en) * 2006-08-24 2008-02-28 Pacific Advanced Technology Uncooled Infrared Camera System for Detecting Chemical Leaks and Method for Making the Same
JP2010142596A (en) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd Living body component detection device
JP2012205060A (en) * 2011-03-25 2012-10-22 Fujitsu Ltd Infrared solid-state imaging element and driving method therefor
JP2012205194A (en) * 2011-03-28 2012-10-22 Fujifilm Corp Photographing device, photographing program, and photographing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4647778A (en) * 1985-01-23 1987-03-03 General Dynamics, Pomona Division Clear aperture cryostat for an infrared detector
JPH04115623A (en) * 1990-08-31 1992-04-16 Nec Corp Clock frequency divider circuit
JPH08219874A (en) * 1995-02-14 1996-08-30 Hamamatsu Photonics Kk Solid body photographing apparatus
JPH09163238A (en) * 1995-12-07 1997-06-20 Canon Inc Image pickup device
US20040238741A1 (en) * 2003-05-28 2004-12-02 Opto-Knowledge Systems, Inc. Method and apparatus for using temperature controlled variable diaphragms or swappable fixed apertures with infrared cameras
US20080048121A1 (en) * 2006-08-24 2008-02-28 Pacific Advanced Technology Uncooled Infrared Camera System for Detecting Chemical Leaks and Method for Making the Same
JP2010142596A (en) * 2008-12-22 2010-07-01 Sumitomo Electric Ind Ltd Living body component detection device
JP2012205060A (en) * 2011-03-25 2012-10-22 Fujitsu Ltd Infrared solid-state imaging element and driving method therefor
JP2012205194A (en) * 2011-03-28 2012-10-22 Fujifilm Corp Photographing device, photographing program, and photographing method

Also Published As

Publication number Publication date
JP6350590B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP4277887B2 (en) Encoder signal correction circuit
JP4791334B2 (en) Optical receiver and bias voltage control method for optical receiver
JP5507053B2 (en) Distance measuring device
JP2019053048A5 (en)
JP2017134048A (en) Temperature detection circuit
JP6350590B2 (en) Imaging device
JP2015070481A (en) Sensor signal output circuit and method of adjusting sensor signal output circuit
JP5803280B2 (en) Light filter device
JP2008082789A (en) Infrared sensor device
KR101223953B1 (en) Self Temperature Compensated Precision Event timer using Standard Time reference Frequency
WO2016208422A1 (en) Pressure measurement device, pressure measurement method, and program
JPH11118617A (en) Temperature controller
TWI536835B (en) Image sensing method and image sensor utlizing the methods
JP4670354B2 (en) Temperature control device in analyzer
JP6413425B2 (en) Optical fiber temperature distribution measuring device
WO2019031329A1 (en) Wind speed measurement device and air flow measurement device
JP6963488B2 (en) Temperature measuring device
JP2014160939A (en) Analog-digital conversion device and analog-digital conversion system
TWI633286B (en) Temperature-sensing circuit and correction method therefor
JP2009133698A (en) Zero point correction circuit
JP2008042627A (en) A/d conversion device and programmable controller system
JP6439865B2 (en) Sensor signal converter and sensor signal conversion method
JP2016011922A (en) Voltage measurement circuit
WO2011048786A1 (en) Two-wire transmitter
JP6400463B2 (en) Light intensity measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180521

R150 Certificate of patent or registration of utility model

Ref document number: 6350590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250