JP2017200301A - Onboard communication device and vehicle - Google Patents

Onboard communication device and vehicle Download PDF

Info

Publication number
JP2017200301A
JP2017200301A JP2016088701A JP2016088701A JP2017200301A JP 2017200301 A JP2017200301 A JP 2017200301A JP 2016088701 A JP2016088701 A JP 2016088701A JP 2016088701 A JP2016088701 A JP 2016088701A JP 2017200301 A JP2017200301 A JP 2017200301A
Authority
JP
Japan
Prior art keywords
power wave
frequency
power
communication device
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016088701A
Other languages
Japanese (ja)
Other versions
JP6698416B2 (en
Inventor
泰志 近江
Yasushi Omi
泰志 近江
長谷川 修
Osamu Hasegawa
修 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2016088701A priority Critical patent/JP6698416B2/en
Publication of JP2017200301A publication Critical patent/JP2017200301A/en
Application granted granted Critical
Publication of JP6698416B2 publication Critical patent/JP6698416B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an onboard communication device in which plural power wave signals having different frequencies can be produced by a pair of power wave producers and can be transmitted by one onboard piece.SOLUTION: Plural resonant circuits (14 and 15) associated with plural power waves having different frequencies are included in an onboard piece (1) that constitutes an onboard communication device. Switching is performed to select a resonant circuit which is adaptable for a frequency, according to a frequency switch command sent from an onboard transceiver (11). A power wave producer (111) incorporated in the onboard transceiver switches between power wave frequencies to select a power wave frequency to be produced, in response to a power wave frequency selection command. Thus, a pair of power wave producers (111) enable transmission of plural frequencies.SELECTED DRAWING: Figure 1

Description

本発明は、車上通信装置、および車両に関する。例えば本発明は鉄道車両において、地上−車上間で通信するために特定の周波数に対応した複数の共振回路を用いる場合に、複数の共振回路を切り替える機能を持つ車上通信装置に関する。   The present invention relates to an on-vehicle communication device and a vehicle. For example, the present invention relates to an on-vehicle communication device having a function of switching a plurality of resonance circuits when a plurality of resonance circuits corresponding to a specific frequency are used in a railway vehicle for communication between the ground and the vehicle.

本技術分野の背景技術として、例えば、特許第3842142号公報(特許文献1)がある。この公報には「無電源地上子を駆動するために、列車の車上装置からトランスポンダを利用して車上子から無電源地上子に送信する電力波の送信周波数を、車上装置側の切替条件で異なる周波数に切替えて、周波数の異なる無電源地上子を1種類の車上子で駆動する車上送受信装置」に関する発明として、「電力波伝送部は、2 組の電力波周波数発振器と電力波増幅器と、電力波送信切替回路を有し、一方の電力波周波数発振器は周波数f1の電力波を発生し、他方の電力波周波数発振器は周波数f1と異なる周波数f2の電力波を発生し、一方の電力波増幅器は電力波送信周波数選択条件で周波数f 1 が選択されているときに、一方の電力波周波数発振器から出力される周波数f 1 の電力波を規定レベルまで増幅して出力し、他方の電力波増幅器は電力波送信周波数選択条件で周波数f 2 が選択されているときに、他方の電力波周波数発振器から出力される周波数f 2 の電力波を規定レベルまで増幅して出力し、電力波送信切替回路は電力波送信周波数選択条件に応じて周波数f1の電力波と周波数f2の電力波を切替えて車上子に送り、車上子の電力波送信部には周波数f1の共振回路と周波数f2の共振回路と、共振回路切替部を有し、周波数f 1 の共振回路は共振コンデンサと電力波送信アンテナの最大の巻き数で形成されるコイルで直列共振回路を構成し、周波数f 1 より高い周波数f 2 の共振回路は共振コンデンサと電力波送信アンテナの中間タップで形成される巻き数のコイルで直列共振回路を構成し、共振回路切替部は電力波送信周波数選択条件に応じて周波数f 1 の共振回路と周波数f 2 の共振回路を切替えて電力波伝送部から送られた電力波を送り出す」と記載されている。   As background art of this technical field, for example, there is Japanese Patent No. 3842142 (Patent Document 1). The gazette states that, in order to drive the non-powered ground unit, the transmission frequency of the power wave transmitted from the vehicle top unit to the non-powered ground unit using the transponder from the on-board unit of the train is switched on the on-board unit side. As an invention related to an on-vehicle transmission / reception device that switches to a different frequency depending on conditions and drives a non-powered ground element having a different frequency with one type of vehicle element, the “power wave transmission unit comprises two sets of power wave frequency oscillators and power A power amplifier and a power wave transmission switching circuit, wherein one power wave frequency oscillator generates a power wave having a frequency f1, and the other power wave frequency oscillator generates a power wave having a frequency f2 different from the frequency f1, When the frequency f 1 is selected under the power wave transmission frequency selection condition, the power wave amplifier of FIG. 1 amplifies the power wave of the frequency f 1 output from one power wave frequency oscillator to a specified level and outputs the other. Power of When the frequency f 2 is selected under the power wave transmission frequency selection condition, the wave amplifier amplifies the power wave of the frequency f 2 output from the other power wave frequency oscillator to a specified level and outputs the amplified power wave. The switching circuit switches the power wave of the frequency f1 and the power wave of the frequency f2 in accordance with the power wave transmission frequency selection condition and sends the power wave to the vehicle upper child, and the power wave transmission unit of the vehicle upper child has the resonance circuit and the frequency f2 of the frequency f1. And the resonance circuit switching unit, and the resonance circuit having the frequency f 1 forms a series resonance circuit with a coil formed by the maximum number of turns of the resonance capacitor and the power wave transmission antenna, and is higher than the frequency f 1. The resonance circuit of frequency f 2 forms a series resonance circuit with a coil having the number of turns formed by the resonance capacitor and the intermediate tap of the power wave transmission antenna, and the resonance circuit switching unit is in accordance with the power wave transmission frequency selection condition Has been described as switching the resonant circuit of the resonant circuit and the frequency f 2 of the frequency f 1 sends a power wave sent from the power-wave transmission section ".

特許第3842142号公報Japanese Patent No. 3842142

前記特許文献1には、車上子の周波数f 1 の共振回路は共振コンデンサと電力波送信アンテナの最大の巻き数で形成されるコイルで直列共振回路を構成し、周波数f 1 より高い周波数f 2 の共振回路は共振コンデンサと電力波送信アンテナの中間タップで形成される巻き数のコイルで直列共振回路を構成し、共振回路切替部は電力波送信周波数選択条件に応じて周波数f 1 の共振回路と周波数f 2 の共振回路を切替えて電力波伝送部から送られた電力波を送り出すと記載されている。   In Patent Document 1, the resonance circuit having the frequency f 1 of the vehicle upper part is a series resonance circuit composed of a resonance capacitor and a coil formed by the maximum number of turns of the power wave transmitting antenna, and a frequency f higher than the frequency f 1. The resonance circuit of 2 constitutes a series resonance circuit with a coil having the number of turns formed by a resonance capacitor and an intermediate tap of the power wave transmitting antenna, and the resonance circuit switching unit resonates at the frequency f 1 according to the power wave transmission frequency selection condition. It is described that the power wave sent from the power wave transmission unit is sent out by switching the circuit and the resonance circuit of frequency f 2.

しかし特許文献1の上記構成方法では、周波数f1送信時と周波数f2送信時とでは電力波送信アンテナの巻き数が変化する。つまり周波数f1送信時と周波数f2送信時とではアンテナの特性が変化し、アンテナ1ターンあたりのアンテナ電流と地上子に送り出す電力波の電力量との関係が変化する。仮にアンテナ送信電流をモニタして送信レベルを調整する場合、一定の電力を送信する場合にf1送信時とf2送信時とでは目標電流が変化し送信レベル調整が難しくなるので、送信レベル調整を容易にしたいという課題がある。   However, in the above configuration method of Patent Document 1, the number of turns of the power wave transmitting antenna changes between the frequency f1 transmission and the frequency f2 transmission. That is, the characteristics of the antenna change between the frequency f1 transmission and the frequency f2 transmission, and the relationship between the antenna current per antenna turn and the power amount of the power wave sent to the ground unit changes. If the transmission level is adjusted by monitoring the antenna transmission current, the transmission level can be adjusted easily because the target current varies between f1 transmission and f2 transmission and transmission level adjustment becomes difficult. There is a problem to want to.

さらに前記特許文献1には、電力波伝送部は、2 組の電力波周波数発振器と電力波増幅器と、電力波送信切替回路を有し、どちらの出力を選択するかは電力波送信周波数選択条件により決まることが記載されている。つまり2 組の電力波周波数発振器と電力波増幅器のうち実際に車上子と接続して機能している電力波周波数発振器と電力波増幅器はどちらか一方であり、もう一方は機能していない。したがって上記構成では2組の回路の合計稼働率は0.5であり、実装回路を効率よく機能させることができない。また実装面積も2組分必要であることから電力波周波数切替を行わない従来の構成に対し2倍の実装面積が必要となる。   Further, in Patent Document 1, the power wave transmission unit has two sets of power wave frequency oscillators, a power wave amplifier, and a power wave transmission switching circuit. Which output is selected depends on the power wave transmission frequency selection condition. It is described that it depends on. That is, one of the two sets of the power wave frequency oscillator and the power wave amplifier, which is actually connected to the vehicle upper unit and functioning, is one, and the other is not functioning. Therefore, in the above configuration, the total operating rate of the two sets of circuits is 0.5, and the mounted circuit cannot function efficiently. In addition, since two mounting areas are required, a mounting area twice as large as that of the conventional configuration in which power wave frequency switching is not performed is required.

そこで本発明では、電力波周波数f1送信時と周波数f2送信時とで電力波送信アンテナのアンテナ巻き数を変化させずに、周波数が異なる複数の電力波に対応した複数の共振回路の切替が可能な、車上通信装置を提供する。   Therefore, in the present invention, it is possible to switch a plurality of resonance circuits corresponding to a plurality of power waves having different frequencies without changing the number of antenna turns of the power wave transmitting antenna between the transmission of the power wave frequency f1 and the transmission of the frequency f2. A vehicle communication device is provided.

また、本発明では電力波送信周波数f1送信時と周波数f2送信時とで電力波周波数発振器の送信周波数を切替えることで2 組の電力波周波数発振器と電力波増幅器と、電力波送信切替回路を必要とせず、1組の電力波周波数発振器と電力波増幅器のみで周波数が異なる複数の電力波送信を可能とする車上通信装置を提供する。   Further, in the present invention, two sets of power wave frequency oscillators, power wave amplifiers, and power wave transmission switching circuits are required by switching the transmission frequency of the power wave frequency oscillator between the transmission of the power wave transmission frequency f1 and the transmission of the frequency f2. Instead, there is provided an on-vehicle communication device that enables transmission of a plurality of power waves having different frequencies by using only one set of a power wave frequency oscillator and a power wave amplifier.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、車両の走行路に沿って配置される地上装置と無線通信により列車制御情報を送信または受信する情報波送受信アンテナと、前記地上子を駆動するための電力波であって、周波数が異なる複数の前記電力波を送信可能な、一意の固定巻き数からなる電力波送信アンテナと、
前記電力波送信アンテナに接続し、前記周波数が異なる複数の電力波の各々と共振をとるための複数の共振コンデンサと、前記複数の共振コンデンサと前記電力波送信アンテナとの接続および切断を選択的に切替え可能な共振回路切替部と、前記共振回路切替部に対して共振コンデンサを切替えるための指示を入力する切替指令入力と、を備えた車上子と、前記切替指令入力に対する切替指令および情報波送受信アンテナに対する情報波信号の入出力および前記電力波送信アンテナに対する電力波信号の出力を行うための車上送受信器と、を備え、前記車上送受信器の電力波生成部では1組の電力波周波数発振器と電力波増幅器で電力波を生成し、電力波周波数選択部の指令に応じて前記電力波生成部から出力する電力波周波数と切替指令入力に対する切替指令を可変することで前記周波数が異なる複数の電力波と、前記車上子の共振周波数を一致させることを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present application includes a plurality of means for solving the above-described problems. For example, an information wave transmitting / receiving antenna that transmits or receives train control information by wireless communication with a ground device arranged along a traveling path of a vehicle. And a power wave transmitting antenna that is a power wave for driving the ground element and is capable of transmitting a plurality of the power waves having different frequencies, and having a unique fixed number of turns,
A plurality of resonant capacitors connected to the power wave transmitting antenna and resonating with each of the plurality of power waves having different frequencies, and selectively connecting and disconnecting the plurality of resonant capacitors and the power wave transmitting antenna And a switching command input for inputting an instruction to switch the resonance capacitor to the resonance circuit switching unit, and a switching command and information for the switching command input. An on-board transmitter / receiver for inputting / outputting an information wave signal to / from the wave transmitting / receiving antenna and outputting a power wave signal to the power wave transmitting antenna. A power wave is generated by a wave frequency oscillator and a power wave amplifier, and a power wave frequency output from the power wave generator and a switching command are input according to a command of the power wave frequency selector. It characterized a plurality of power waves the frequency by varying the switching command are different, to match the resonance frequency of the vehicle upper child against.

本発明によれば、複数の異なる送信周波数の電力波を送信する場合において、周波数に応じた共振回路を切替えてもアンテナ巻き数を変化させる必要がないため、アンテナの特性が変化せず、従来の手法と比較して送信レベル制御を容易に行うことができる。アンテナ巻き数が一意の固定巻き数であるためアンテナの構造を簡略化し装置コスト低減が可能となる。   According to the present invention, when transmitting power waves of a plurality of different transmission frequencies, it is not necessary to change the number of antenna turns even if the resonant circuit corresponding to the frequency is switched. Compared with this method, transmission level control can be easily performed. Since the number of antenna turns is a unique number of fixed turns, the structure of the antenna can be simplified and the apparatus cost can be reduced.

さらに本発明によれば1組の電力波周波数発振器と電力波増幅器のみで複数の異なる送信周波数の電力波を生成することが可能であり、電力波生成部の実装面積を小さくするともに、1組のみで構成可能であることから装置コストを低減することが可能となる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
Furthermore, according to the present invention, it is possible to generate power waves having a plurality of different transmission frequencies with only one set of power wave frequency oscillators and power wave amplifiers. Therefore, the apparatus cost can be reduced.
Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明で示す車上通信装置の構成ついて説明する図である。It is a figure explaining the structure of the on-vehicle communication apparatus shown by this invention. 本発明で示す車上通信装置を適用した列車情報制御装置の構成について一実施例を示す構成図である。It is a block diagram which shows one Example about the structure of the train information control apparatus to which the on-vehicle communication apparatus shown by this invention is applied. 本発明で示す車上通信装置において、共振回路の切替え手順について示すフロー図である。It is a flowchart shown about the switching procedure of a resonance circuit in the on-vehicle communication apparatus shown by this invention. 本発明で示す車上通信装置において、共振回路切替部を車上送受信器内部に構成した場合の構成図である。In the on-vehicle communication device shown in the present invention, it is a configuration diagram when a resonance circuit switching unit is configured inside an on-vehicle transceiver. 本発明で示す車上通信装置において、共振周波数の差に相当する共振コンデンサを接続/非接続とすることで共振回路を構成する方法を説明する図である。FIG. 5 is a diagram for explaining a method of configuring a resonance circuit by connecting / disconnecting a resonance capacitor corresponding to a difference in resonance frequency in the on-vehicle communication device shown in the present invention. 本発明で示す車上通信装置において、共振回路を2組用いて共振周波数切替えを実施する場合に共振回路切替部を車上子内に有する構成図である。In the on-vehicle communication device shown in the present invention, when resonance frequency switching is performed using two sets of resonance circuits, it is a configuration diagram having a resonance circuit switching unit in the vehicle element. 本発明で示す車上通信装置において、共振回路を2組用いて共振周波数切替えを実施する場合に電力波送信アンテナをレベルモニタアンテナ兼用とする構成図であるIn the on-vehicle communication device shown in the present invention, when the resonance frequency is switched using two sets of resonance circuits, the power wave transmitting antenna is also used as a level monitor antenna. 本発明で示す車上通信装置において、共振回路を2組用いて共振周波数切替えを実施する場合に共振回路切替部を車上送受信器内に有する構成図である。In the on-board communication device according to the present invention, when resonance frequency switching is performed using two sets of resonance circuits, the resonance circuit switching unit is included in the on-vehicle transceiver. 本発明で示す車上通信装置において、リレー接点を共振回路用コンデンサの両端に配置する構成図である。In the on-vehicle communication apparatus shown in the present invention, it is a configuration diagram in which relay contacts are arranged at both ends of a resonance circuit capacitor.

以下、本発明の実施形態の一例について、図を参照しつつ詳細に説明を行う。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings.

図1は、本発明の車上通信装置の一実施例を示す構成図である。   FIG. 1 is a block diagram showing an embodiment of the on-board communication device of the present invention.

同図において、車上通信装置の一例としてトランスポンダ送受信システムで使用する車上送受信器11と車上子1とを示している。車上子1は、例えば共振回路切替部13と、電力波送信アンテナ15および情報波送受信アンテナ16と、電力波送信アンテナ15と組み合わせで直列共振回路を構成する共振コンデンサ14から構成され、艤装線(車上子接続ケーブル)12を介して車上送受信器11に接続する。   In the figure, an on-vehicle transmitter / receiver 11 and an on-vehicle element 1 used in a transponder transmission / reception system are shown as an example of an on-vehicle communication device. The vehicle upper part 1 is composed of, for example, a resonance circuit switching unit 13, a power wave transmission antenna 15, an information wave transmission / reception antenna 16, and a resonance capacitor 14 that forms a series resonance circuit in combination with the power wave transmission antenna 15, (Vehicle connection cable) 12 is connected to the vehicle transceiver 11 via the vehicle.

本実施例における車上通信装置は、例えばトランスポンダ送受信システムで使用する車上子に適用でき、トランスポンダ送受信システムを用いる鉄道用保安システムATS−P(Automatic Train Stop−Pattern)や、自動運転システムであるATO(Automatic Train Operation)、デジタル式ATC(Automatic Train Control)などに適用できる。   The on-board communication device in the present embodiment can be applied to, for example, an on-board child used in a transponder transmission / reception system, and is a railway safety system ATS-P (Automatic Train Stop-Pattern) using a transponder transmission / reception system or an automatic driving system. It can be applied to ATO (Automatic Train Operation), digital ATC (Automatic Train Control), and the like.

図1の構成の詳細説明の前に、図2にて、本実施例品の車上通信装置を使用する環境の一例を説明する。   Prior to detailed description of the configuration of FIG. 1, an example of an environment in which the on-board communication device of this embodiment is used will be described with reference to FIG.

図2の実施形態では、例えばトランスポンダ送受信システムを用いて、列車21と地上信号システム間で列車制御情報や運転支援用の情報などを送受信するシステムを示す。   In the embodiment of FIG. 2, for example, a system that transmits and receives train control information, driving support information, and the like between the train 21 and the ground signal system using a transponder transmission / reception system is shown.

図2に示すように、列車21に搭載した車上子1は、車上送受信器11からの送受信情報を車上子1から地上子24へ電磁波として送受信し、地上側信号設備である地上子24と通信を行う。地上子24が自身で電源を持たない無電源地上子とよばれる地上子の場合は、列車21から地上子24を駆動するための電力を無線にて非接触で供給する必要があり、この無線で送信する電力を電力波と呼んでいる。電力波は一定周波数の無変調信号である。地上子24では、この無変調の電力波を受信後整流し、直流変換した電力で自身の地上子内の回路を起動し、列車21から電力波が供給されて回路が起動している間(つまり列車が地上子近傍に接近している間)地上子24から車上子1に対して制御情報を送信する。この制御情報の電磁波を情報波と呼ぶ。なお、制御情報は車両からも送信している。   As shown in FIG. 2, the vehicle upper element 1 mounted on the train 21 transmits / receives transmission / reception information from the vehicle transmitter / receiver 11 from the vehicle upper element 1 to the ground element 24 as electromagnetic waves, and is a ground element that is a ground side signal facility. 24 to communicate. In the case of a ground element called a non-powered ground element that does not have a power supply by itself, it is necessary to wirelessly supply power for driving the ground element 24 from the train 21. The power transmitted in is called a power wave. The power wave is an unmodulated signal having a constant frequency. The ground unit 24 rectifies after receiving this unmodulated power wave, activates the circuit in its own ground unit with the DC-converted power, and while the power wave is supplied from the train 21 and the circuit is activated ( That is, while the train is approaching the vicinity of the ground element, control information is transmitted from the ground element 24 to the vehicle upper element 1. This electromagnetic wave of control information is called an information wave. The control information is also transmitted from the vehicle.

このように、無電源地上子を起動するためには列車21から車上子1を介して電力を供給する必要があるが、この電力波の信号周波数は、区間や事業者により異なり、複数の周波数が存在する。これは、トランスポンダ送受信システムを導入する際に、既存の列車無線や沿線の設備と周波数干渉が生じない周波数を検討のうえ、その路線での電力波周波数を決定しているためである。   As described above, in order to activate the non-powered ground element, it is necessary to supply electric power from the train 21 via the vehicle upper element 1. The signal frequency of this electric wave differs depending on the section and the operator, There is a frequency. This is because, when a transponder transmission / reception system is introduced, the power wave frequency on the route is determined after considering frequencies that do not cause frequency interference with existing train radio and facilities along the line.

したがって、複数路線を相互乗り入れしている列車などで無電源地上子を駆動するためには、ある区間1は地上子24を駆動するための電力波として電力波周波数f1を送信する必要があり、ある区間2では地上子25を駆動するための電力波として電力波周波数f2を送信する必要が出てくる。   Therefore, in order to drive a non-powered ground element in a train or the like that is interleaved with a plurality of routes, a certain section 1 needs to transmit the power wave frequency f1 as a power wave for driving the ground element 24. In a certain section 2, it is necessary to transmit the power wave frequency f2 as a power wave for driving the ground element 25.

車上子1の電力波送信アンテナ15は、効率よく電力波を送信するために電力波送信アンテナ15のLとコンデンサのCでLC共振回路を構成し、特定のひとつの電力波周波数に共振周波数を合わせている。そのため、区間1と区間2で送信すべき電力波周波数が異なる場合、それぞれ区間1のf1を共振周波数とする区間1専用車上子と区間2のf2を共振周波数とする区間2専用車上子の少なくとも2台を設置することになり、車上子設置スペースが十分に確保できないことが想定される。本実施例では、このf1周波数の電力波とf2周波数の電力波を1つの車上子1で送信可能な構成とする。   In order to transmit power waves efficiently, the power wave transmitting antenna 15 of the vehicle upper 1 forms an LC resonance circuit with L of the power wave transmitting antenna 15 and C of the capacitor, and the resonance frequency is set to one specific power wave frequency. Are combined. Therefore, when the power wave frequencies to be transmitted are different between the section 1 and the section 2, the section 1 dedicated vehicle upper arm having the resonance frequency of f1 of the section 1 and the section 2 dedicated vehicle upper arm having the resonance frequency f2 of the section 2 respectively. Therefore, it is assumed that a sufficient space for installing the vehicle upper cannot be secured. In the present embodiment, the configuration is such that the power wave of the f1 frequency and the power wave of the f2 frequency can be transmitted by one vehicle upper element 1.

図1の説明に戻ると、本実施例の車上通信装置は例えば車上子1と車上送受信器11と車上子1と車上送受信器11を接続する艤装線12から構成され、車上子1は共振回路切替部13と、共振コンデンサ14、電力波送信アンテナ15および情報波送受信アンテナ16から構成され、共振回路切替部13は共振コンデンサ14を切替えるためのスイッチやリレー接点131と、スイッチやリレー接点131を動作させるためのリレーコイル132から構成され、リレーコイル132には切替指令入力133が接続され、共振コンデンサ14は複数の異なる電力波周波数とLC共振をとるための周波数f1用コンデンサ”C1”141および周波数f2用コンデンサ”C2”142の2種のコンデンサを備える。   Returning to the description of FIG. 1, the on-board communication device of the present embodiment is composed of, for example, an on-board element 1, an on-board transmitter / receiver 11, an on-board element 1 and an on-board transmitter / receiver 11, The upper element 1 includes a resonance circuit switching unit 13, a resonance capacitor 14, a power wave transmission antenna 15, and an information wave transmission / reception antenna 16. The resonance circuit switching unit 13 includes a switch and a relay contact 131 for switching the resonance capacitor 14, The relay coil 132 is connected to a switching command input 133 for operating a switch and a relay contact 131, and the resonance capacitor 14 is for a frequency f1 for taking LC resonance with a plurality of different power wave frequencies. The capacitor “C1” 141 and the capacitor “C2” 142 for frequency f2 are provided.

車上送受信器11は切替指令入力133を経由して共振回路切替部13に対する共振回路切替指令の出力と、情報波送受信アンテナ16に対する情報波信号の入出力と、電力波送信アンテナ15に対する電力波信号の出力を行う。車上送受信器11の電力波送信回路には電力波信号の出力を行う電力波生成部111と、送信出力する電力波周波数の選択および共振回路切替部13へ共振回路切替信号を出力する電力波周波数選択部114とを備え、電力波生成部111は少なくとも電力波周波数を生成するための電力波周波数発振器112と電力波を必要なレベルまで増幅するための電力波増幅器113を備える。   The on-vehicle transmitter / receiver 11 outputs a resonance circuit switching command to the resonance circuit switching unit 13 via the switching command input 133, an information wave signal input / output to the information wave transmitting / receiving antenna 16, and a power wave to the power wave transmitting antenna 15. Output the signal. A power wave generation unit 111 that outputs a power wave signal to the power wave transmission circuit of the on-vehicle transmitter / receiver 11, and a power wave that selects a power wave frequency to be transmitted and outputs a resonance circuit switching signal to the resonance circuit switching unit 13 The power wave generation unit 111 includes at least a power wave frequency oscillator 112 for generating a power wave frequency and a power wave amplifier 113 for amplifying the power wave to a necessary level.

車上子1と車上送受信器11は艤装線12で接続される。艤装線は電力波送信線121と情報波送受信線122と共振回路切替指令信号線123を備える。   The on-board element 1 and the on-board transmitter / receiver 11 are connected to each other by a lining wire 12. The outfitting line includes a power wave transmission line 121, an information wave transmission / reception line 122, and a resonance circuit switching command signal line 123.

地上子とデータの送受信を行うためのアンテナである情報波送受信アンテナ16については、図1の実施構成では区間に応じて送受信周波数が変わることが無く、また共振回路を有さない構成のため共振回路切替部13と共振コンデンサ14を図示していないが、情報波についても共振を取る場合は電力波同様に、共振回路切替部13および共振コンデンサ14を構成することで共振周波数の切替が可能である。   As for the information wave transmitting / receiving antenna 16 which is an antenna for transmitting / receiving data to / from the ground unit, the transmission / reception frequency does not change according to the section in the implementation configuration of FIG. Although the circuit switching unit 13 and the resonance capacitor 14 are not shown, when the information wave is also resonated, the resonance frequency can be switched by configuring the resonance circuit switching unit 13 and the resonance capacitor 14 as in the case of the power wave. is there.

この車上通信装置の動作を、図3の動作フローにて説明する。
車上送受信器11の電力波周波数選択部114は、線区や区間に応じて周波数f1またはf2のどちらの周波数の電力波を送信するか選択する(ステップ301)。このとき、送信すべき周波数がf2の場合、電力波周波数選択部114は、共振回路切替信号指令線123への信号印加を停止する(ステップ302)。ステップ302で共振回路切替信号指令線123への信号印加を停止すると、共振回路切替部13の共振回路切替リレーコイルへ132の電圧印加が停止するためリレーコイルが非励磁状態となる(ステップ303)。リレーコイルが非励磁状態となることで共振回路切替部13の共振回路切替リレー接点131が非動作状態となり(ステップ304)、その結果、周波数f2用の共振コンデンサ”C2”142が電力波送信アンテナ15に接続され、周波数f1用の共振コンデンサ”C1”141は電力波送信アンテナ15に非接続状態となる(ステップ305)。したがって電力波送信アンテナ15のインダクタLとf2用共振コンデンサ”C2”142のキャパシタCにて共振周波数f2となるLC直列共振回路を構成し、周波数f2に対する送信出力インピーダンスを最小とすることで電力波送信アンテナ15から地上装置に対して周波数f2の電力波が必要十分な電力量分送りだされる状態となる。最後に電力波周波数選択部114が周波数f2を電力波生成部111に設定し、車上送受信器11は周波数f2の電力波を車上子1に入力する(ステップ306)。以上により電力波送信アンテナ15から周波数f2の電力波が送信される(ステップ307)。なおステップ306を先に実施後にステップ302以降を実施しても構わない。
The operation of the on-board communication device will be described with reference to the operation flow of FIG.
The power wave frequency selection unit 114 of the on-vehicle transmitter / receiver 11 selects which frequency f1 or f2 of the power wave is transmitted according to the line section or section (step 301). At this time, when the frequency to be transmitted is f2, the power wave frequency selection unit 114 stops applying the signal to the resonance circuit switching signal command line 123 (step 302). When the signal application to the resonance circuit switching signal command line 123 is stopped in step 302, the voltage application of the voltage 132 to the resonance circuit switching relay coil of the resonance circuit switching unit 13 is stopped, so that the relay coil is de-energized (step 303). . When the relay coil is de-energized, the resonance circuit switching relay contact 131 of the resonance circuit switching unit 13 is deactivated (step 304). As a result, the resonance capacitor “C2” 142 for the frequency f2 becomes the power wave transmitting antenna. 15 and the resonance capacitor “C1” 141 for the frequency f1 is disconnected from the power wave transmitting antenna 15 (step 305). Therefore, an LC series resonance circuit having a resonance frequency f2 is configured by the inductor L of the power wave transmitting antenna 15 and the capacitor C of the resonance capacitor “C2” 142 for f2, and the power wave is obtained by minimizing the transmission output impedance for the frequency f2. The power wave of frequency f2 is sent from the transmitting antenna 15 to the ground device by a necessary and sufficient amount of power. Finally, the power wave frequency selection unit 114 sets the frequency f2 in the power wave generation unit 111, and the on-board transmitter / receiver 11 inputs the power wave of the frequency f2 to the on-board child 1 (step 306). Thus, the power wave having the frequency f2 is transmitted from the power wave transmitting antenna 15 (step 307). Step 302 and subsequent steps may be performed after step 306 is performed first.

走行線区や区間が変化し、送信すべき周波数がf1となると、車上送受信器11の電力波周波数選択部114は、共振回路切替信号指令線123へ指令信号を印加する(ステップ308)。よって共振回路切替部13の共振回路切替リレーコイル132へリレーコイル駆動用電圧が印加されるためリレーコイルが励磁状態となる(ステップ309)。リレーコイルが励磁状態となることで共振回路切替部13の共振回路切替リレー接点131が動作状態となり(ステップ310)、その結果、周波数f1用の共振コンデンサ”C1”141が電力波送信アンテナ15に接続され、周波数f2用の共振コンデンサ”C2”142は電力波送信アンテナ15に非接続状態となる(ステップ311)。したがって電力波送信アンテナ15のインダクタLとf1用共振コンデンサ”C1”141のキャパシタCにて共振周波数f1となるLC直列共振回路を構成され、周波数f1に対する送信出力インピーダンスを最小とすることで電力波送信アンテナ15から地上装置に対して周波数f1の電力波が必要十分な電力量分送りだされる状態となる。最後に電力波周波数選択部114が周波数f1を電力波生成部111に設定し、車上送受信器11は周波数f1の電力波を車上子1に入力する(ステップ312)。以上により電力波送信アンテナ15から周波数f1の電力波が送信される(ステップ313)。なおステップ312を先に実施後にステップ308以降を実施しても構わない。   When the travel line section or section changes and the frequency to be transmitted becomes f1, the power wave frequency selection unit 114 of the on-vehicle transceiver 11 applies a command signal to the resonance circuit switching signal command line 123 (step 308). Therefore, since the relay coil driving voltage is applied to the resonance circuit switching relay coil 132 of the resonance circuit switching unit 13, the relay coil is excited (step 309). When the relay coil is energized, the resonance circuit switching relay contact 131 of the resonance circuit switching unit 13 is activated (step 310). As a result, the resonance capacitor “C1” 141 for the frequency f1 is applied to the power wave transmitting antenna 15. The resonant capacitor “C2” 142 for the frequency f2 is connected and disconnected from the power wave transmitting antenna 15 (step 311). Therefore, an LC series resonance circuit having a resonance frequency f1 is configured by the inductor L of the power wave transmission antenna 15 and the capacitor C of the resonance capacitor “C1” 141 for f1, and the power wave is obtained by minimizing the transmission output impedance for the frequency f1. The power wave of frequency f1 is sent from the transmission antenna 15 to the ground device by a necessary and sufficient amount of power. Finally, the power wave frequency selection unit 114 sets the frequency f1 in the power wave generation unit 111, and the on-board transceiver 11 inputs the power wave of the frequency f1 to the on-board child 1 (step 312). Thus, the power wave having the frequency f1 is transmitted from the power wave transmitting antenna 15 (step 313). Note that step 308 and subsequent steps may be performed after step 312 is performed first.

以上で示したように、本実施例での実施形態はLC共振回路の切替えのみであり、電力波送信アンテナ15は切替え前後で同一のアンテナを使用する。つまりアンテナの巻き数やL値はLC共振回路の切替え前後で変化することはない。従って、f1用共振コンデンサ”C1”141を接続して周波数f1となる電力波を送信する場合と、f2用共振コンデンサ”C2”142を接続して周波数f2となる電力波を送信する場合とで電力波送信アンテナ15の特性が変化することは無い。共振周波数のみがシフトすることとなる。アンテナ巻き数の変化がないため必要な電力量を地上に送信する際の電力波送信アンテナ15のアンテナ1ターンあたりの電流値は共振回路の切替前後で変化することは無く、アンテナ電流を監視して送信レベル制御やレベル低下故障検知を行う場合に共振回路の切替前後で監視する目標値や故障判定閾値は同一とすることができる。   As described above, the embodiment in this embodiment is only switching of the LC resonance circuit, and the power wave transmitting antenna 15 uses the same antenna before and after switching. That is, the number of turns of the antenna and the L value do not change before and after switching of the LC resonance circuit. Therefore, when the f1 resonance capacitor “C1” 141 is connected to transmit a power wave having the frequency f1, and when the f2 resonance capacitor “C2” 142 is connected to transmit the power wave having the frequency f2. The characteristics of the power wave transmitting antenna 15 do not change. Only the resonance frequency will shift. Since there is no change in the number of antenna turns, the current value per antenna turn of the power wave transmitting antenna 15 when transmitting the required amount of power to the ground does not change before and after switching the resonance circuit, and the antenna current is monitored. Thus, when performing transmission level control and level drop failure detection, the target value and failure determination threshold value monitored before and after switching of the resonance circuit can be made the same.

また本発明本実施例の図1で示すように電力波周波数選択部114は、図2で運転区間切替SW(スイッチ)22や列車制御部23で示すような車上送受信器の外部の装置から入力される電力波周波数選択条件に応じて電力波周波数発振器112に対して送信周波数選択指令を、共振回路切替部13のリレーコイル132に対して共振回路切替指令信号を出力する。電力波周波数発振器112は電力波周波数と一致する任意の周波数の正弦波を演算する正弦波演算素子115と演算した正弦波をアナログ信号として出力するDA変換器116を備え、正弦波演算素子115はマイコンやCPUやDSPやFPGAなどの数値演算が可能な素子により構成する。正弦波演算素子115とDA変換器116は、DDS(Direct Digital Synthesizer)にて構成することも可能である。   In addition, as shown in FIG. 1 of the present embodiment of the present invention, the power wave frequency selection unit 114 is supplied from a device outside the on-board transceiver as shown by the operation section switching SW (switch) 22 or the train control unit 23 in FIG. A transmission frequency selection command is output to the power wave frequency oscillator 112 according to the input power wave frequency selection condition, and a resonance circuit switching command signal is output to the relay coil 132 of the resonance circuit switching unit 13. The power wave frequency oscillator 112 includes a sine wave calculation element 115 that calculates a sine wave having an arbitrary frequency that matches the power wave frequency, and a DA converter 116 that outputs the calculated sine wave as an analog signal. It is composed of elements that can perform numerical operations, such as a microcomputer, CPU, DSP, and FPGA. The sine wave arithmetic element 115 and the DA converter 116 can also be configured by a DDS (Direct Digital Synthesizer).

電力波周波数選択部114からの指令に応じて、正弦波演算素子115で生成する正弦波の周波数を切替えることで、任意の複数の周波数を出力可能な発振器を構成することができ、周波数f1と周波数f2の両周波数を1つの電力波周波数発振器112で出力可能な構成となる。発振器からの出力は電力波の送信レベルまで電力波増幅器113で増幅したのち、電力波送信線121を経由して車上子1のLC直列共振回路に入力されることとなる。なお、電力波増幅器113の出力は必要に応じてフィルタでノイズを除去してから車上子1に入力してもよい。   By switching the frequency of the sine wave generated by the sine wave computing element 115 in accordance with a command from the power wave frequency selection unit 114, an oscillator capable of outputting any of a plurality of frequencies can be configured, and the frequency f1 The frequency f2 can be output by one power wave frequency oscillator 112. The output from the oscillator is amplified by the power wave amplifier 113 to the power wave transmission level and then input to the LC series resonance circuit of the vehicle upper element 1 via the power wave transmission line 121. The output of the power wave amplifier 113 may be input to the vehicle upper 1 after removing noise with a filter as necessary.

以上のように電力波周波数選択部114の周波数選択指令を電力波周波数発振器112に入力し、かつ電力波周波数発振器112の構成は複数の周波数を切替出力可能な構成とすることで1組の電力波生成部111で周波数f1、f2の2つの異なる周波数の電力波を生成することが可能となる。したがって特許文献1で示される2組の電力波周波数発振器と電力波増幅器を1組の電力波周波数発振器と電力波増幅器に削減できるだけではなく、電力波送信切替回路を排すことが可能となり、回路実装面積の縮減や実装部縮減による製造コスト低減が可能である。   As described above, the frequency selection command of the power wave frequency selection unit 114 is input to the power wave frequency oscillator 112, and the power wave frequency oscillator 112 is configured so that a plurality of frequencies can be switched and output. The wave generator 111 can generate power waves having two different frequencies f1 and f2. Therefore, not only can the two sets of power wave frequency oscillators and power wave amplifiers disclosed in Patent Document 1 be reduced to a set of power wave frequency oscillators and power wave amplifiers, but also the power wave transmission switching circuit can be eliminated. The manufacturing cost can be reduced by reducing the mounting area and the mounting part.

図4は本実施例で示す車上通信装置において、共振回路切替部13を車上子1内部ではなく車上送受信器11内部に構成した場合の構成図である。図4に示すように、共振回路切替部13は車上送受信器11内部に構成しても共振コンデンサ14の切替は可能であり、機能上問題ない。一般的に車上子1の内部は防水・耐振動対策により樹脂モールドされるため分解不可構造である。したがって車上子1の内部に共振回路切替部13を構成するとリレーなどの機械的駆動部のメンテナンスが課題となるが、共振回路切替部13を車上送受信器11の内部に構成することで機械的駆動部のメンテナンス性が向上し動作信頼性を上げることが可能である。   FIG. 4 is a configuration diagram in the case where the resonance circuit switching unit 13 is configured inside the on-vehicle transceiver 11 instead of inside the on-vehicle core 1 in the on-vehicle communication device shown in the present embodiment. As shown in FIG. 4, even if the resonance circuit switching unit 13 is configured inside the on-vehicle transmitter / receiver 11, the resonance capacitor 14 can be switched and there is no functional problem. In general, the interior of the vehicle upper body 1 has a structure that cannot be disassembled because it is resin-molded to prevent water and vibration. Therefore, when the resonance circuit switching unit 13 is configured inside the vehicle upper element 1, maintenance of a mechanical drive unit such as a relay becomes a problem. However, by configuring the resonance circuit switching unit 13 inside the vehicle transmitter / receiver 11, the machine It is possible to improve the maintainability of the automatic drive unit and increase the operation reliability.

図5は、本実施例で示す車上通信装置において、共振周波数の差に相当する共振コンデンサを接続/非接続とすることで共振回路を構成する方法を説明する図である。情報波送受信アンテナ16の構成は実施例1と同様であるため情報波送受信アンテナ16の図示は省略している。実施例1では、周波数f1用の共振コンデンサ”C1”141と周波数f2用の共振コンデンサ”C2”142を備え、送信する周波数に応じて共振回路切替部13にてどちらか一方の共振コンデンサ14を選択し、電力波送信アンテナ15に接続する方法を示した。   FIG. 5 is a diagram for explaining a method of configuring a resonance circuit by connecting / disconnecting a resonance capacitor corresponding to the difference in resonance frequency in the on-board communication device shown in this embodiment. Since the configuration of the information wave transmitting / receiving antenna 16 is the same as that of the first embodiment, the information wave transmitting / receiving antenna 16 is not shown. In the first embodiment, the resonance capacitor “C1” 141 for the frequency f1 and the resonance capacitor “C2” 142 for the frequency f2 are provided, and either one of the resonance capacitors 14 is set in the resonance circuit switching unit 13 according to the transmission frequency. The method of selecting and connecting to the power wave transmitting antenna 15 was shown.

対して本実施例では、車上子1は共振回路切替部51と、共振コンデンサ53、電力波送信アンテナ15および情報波送受信アンテナ16(図示せず)から構成され、共振回路切替部51は共振コンデンサ53の”C3”54を接続するためスイッチやリレー接点52と、スイッチやリレー接点52を動作させるためのリレーコイルから構成され、共振コンデンサ53は”C3”54および”C4”55の2種のコンデンサを備えることを特徴とする。このとき”C4”55の容量は周波数f2において共振回路を構成する容量とし、”C3”54の容量は、周波数f1において共振回路を構成する容量から”C4”55の容量を引いた容量とする。周波数はf2>f1とする。   On the other hand, in the present embodiment, the vehicle upper element 1 includes a resonance circuit switching unit 51, a resonance capacitor 53, a power wave transmission antenna 15, and an information wave transmission / reception antenna 16 (not shown). It is composed of a switch / relay contact 52 for connecting “C3” 54 of the capacitor 53 and a relay coil for operating the switch / relay contact 52. The resonance capacitor 53 has two types of “C3” 54 and “C4” 55. The capacitor is provided. At this time, the capacity of “C4” 55 is a capacity constituting the resonance circuit at frequency f2, and the capacity of “C3” 54 is a capacity obtained by subtracting the capacity of “C4” 55 from the capacity constituting the resonance circuit at frequency f1. . The frequency is assumed to be f2> f1.

周波数f2送信時は、リレーコイルへの指令信号印加を停止することで”C4“55を電力波送信アンテナ15に接続する点は実施例1と同様であるが、周波数f1送信時は”C4“55を電力波送信アンテナから切り離さず、リレーコイルへの指令信号を印加することで”C3”54を電力波送信アンテナ15に追加接続する。このとき、”C3”54と”C4“55が並列接続となるように構成することで、電力波送信アンテナに接続されたコンデンサ容量はC3+C4となる。このC3+C4の容量が周波数f1時の共振容量となるようにC3を選択することで、”C4“55を電力波送信アンテナ15から切り離す必要なく周波数f1用の共振コンデンサ容量を構成可能となる。本実施例で示す方法を用いると、共振回路切替に用いる共振回路切替部51のリレー接点52の数を実施例1に対して削減可能である特徴がある。電力波送信アンテナ15の構成は実施例1と同様であるため周波数f1送信時とf2とでアンテナ巻き数や特性が変化することは無い。   At the time of frequency f2 transmission, “C4” 55 is connected to the power wave transmission antenna 15 by stopping application of the command signal to the relay coil, but the frequency f1 transmission is at “C4”. “C3” 54 is additionally connected to the power wave transmitting antenna 15 by applying a command signal to the relay coil without disconnecting 55 from the power wave transmitting antenna. At this time, by configuring so that “C3” 54 and “C4” 55 are connected in parallel, the capacitance of the capacitor connected to the power wave transmitting antenna becomes C3 + C4. By selecting C3 so that the capacitance of C3 + C4 becomes the resonant capacitance at the frequency f1, the resonant capacitor capacitance for the frequency f1 can be configured without having to separate “C4” 55 from the power wave transmission antenna 15. . When the method shown in this embodiment is used, the number of relay contacts 52 of the resonance circuit switching unit 51 used for switching the resonance circuit can be reduced compared to the first embodiment. Since the configuration of the power wave transmitting antenna 15 is the same as that of the first embodiment, the number of antenna turns and characteristics do not change between the frequency f1 transmission and the frequency f2.

なお、もちろん、リレー接点52に常開接点(a接点)を用いるのではなく、常閉接点(b接点)を用いることで、リレーコイルへの指令信号印加を停止時に“C1”54と“C2”55の両方が接続され周波数f1と共振可能な構成とし、リレーコイルへの指令信号印加時に“C2”55のみが接続され周波数f2と共振可能な構成としてもよい。   Of course, instead of using a normally open contact (a contact) as the relay contact 52, a normally closed contact (b contact) is used, so that the application of the command signal to the relay coil is stopped when “C1” 54 and “C2” are stopped. “55” may be connected to resonate with the frequency f1, and only “C2” 55 may be connected to resonate with the frequency f2 when a command signal is applied to the relay coil.

図6で示す実施例は、図1で示す実施例の構成から、電力波送信アンテナ15を、周波数f1用共振コンデンサ“C1”141に常時接続する電力波送信アンテナA62と、周波数f2用共振コンデンサ“C2”142に常時接続する電力波送信アンテナB63の2つのアンテナを用いる構成としたものである。本実施例においても情報波送受信アンテナは図示を省略している。共振回路切替部61によってf1用共振コンデンサ“C1”141選択時は電力波送信アンテナA62を用いて電力波を送信し、f2用共振コンデンサ“C2”142選択時は電力波送信アンテナB63を用いて電力波を送信する。   In the embodiment shown in FIG. 6, the power wave transmitting antenna 15 is always connected to the frequency f1 resonant capacitor “C1” 141 and the frequency f2 resonant capacitor from the configuration of the embodiment shown in FIG. The power wave transmitting antenna B63 that is always connected to “C2” 142 is configured to use two antennas. Also in this embodiment, the information wave transmitting / receiving antenna is not shown. When the resonance circuit switching unit 61 selects the resonance capacitor “C1” 141 for f1, the power wave is transmitted using the power wave transmission antenna A62, and when the resonance capacitor “C2” 142 for f2 is selected, the power wave transmission antenna B63 is used. Send power waves.

本実施例の構成のように、送信する電力波周波数に応じて複数の電力波送信アンテナを備える構成としても周波数が異なる複数の電力波送信に対応した車上通信装置を実現可能である。   As in the configuration of the present embodiment, an on-vehicle communication device that supports a plurality of power wave transmissions with different frequencies can be realized even with a configuration including a plurality of power wave transmission antennas according to the power wave frequency to be transmitted.

なお、複数のアンテナを備えることで、電力波送信に使用していないいずれかのアンテナを、電力波送信レベルを監視するモニタアンテナとして活用することが可能である。   By providing a plurality of antennas, any antenna that is not used for power wave transmission can be used as a monitor antenna for monitoring the power wave transmission level.

図7は本実施例で示す車上通信装置において、電力波送信アンテナをレベルモニタアンテナ兼用とする構成図である。周波数f1送信時に電力波送信に使用しないアンテナである電力波送信アンテナB63を、電力波送信アンテナA62の出力を監視するモニタアンテナとして使用し、周波数f2送信時に電力波送信に使用しないアンテナである電力波送信アンテナA62を、電力波送信アンテナB63の出力を監視するモニタアンテナとして使用する構成を示す。例えば周波数f1送信時は、電力波送信線121は電力波送信アンテナA62に接続され、電力波送信アンテナB63には接続されない。一方、電力波送信レベルモニタ線は、周波数f1送信時は電力波送信アンテナB63に接続され、電力波送信アンテナA62には接続されない。このとき、電力波送信アンテナA62から送信する周波数f1の電力波の一部電力を、電力波送信アンテナB63で受信し、その受信レベルを車上送受信器11にフィードバックすることで車上送受信器11で電力波送信アンテナA62からの電力波送信レベル監視が可能となる。なお、電力波送信レベルモニタ線72の終端抵抗73をハイインピーダンス接続とすることで、送信レベル監視に必要なわずかな電力のみを電力波送信レベルモニタ線72に分配し、地上子に対して送信する電力波の電力レベルを損なうことなくレベル監視が可能である。   FIG. 7 is a configuration diagram in which the power wave transmission antenna is also used as the level monitor antenna in the on-board communication device shown in this embodiment. The power wave transmitting antenna B63, which is an antenna that is not used for power wave transmission at the time of frequency f1 transmission, is used as a monitor antenna for monitoring the output of the power wave transmission antenna A62, and the power is an antenna that is not used for power wave transmission at the time of frequency f2 transmission. The structure which uses wave transmission antenna A62 as a monitor antenna which monitors the output of power wave transmission antenna B63 is shown. For example, when transmitting the frequency f1, the power wave transmission line 121 is connected to the power wave transmission antenna A62 and is not connected to the power wave transmission antenna B63. On the other hand, the power wave transmission level monitor line is connected to power wave transmission antenna B63 during frequency f1 transmission, and is not connected to power wave transmission antenna A62. At this time, a part of the power wave having the frequency f1 transmitted from the power wave transmitting antenna A62 is received by the power wave transmitting antenna B63, and the reception level is fed back to the onboard transceiver 11 so that the onboard transmitter 11 Thus, the power wave transmission level from the power wave transmission antenna A62 can be monitored. In addition, by setting the termination resistor 73 of the power wave transmission level monitor line 72 to a high impedance connection, only a small amount of power necessary for transmission level monitoring is distributed to the power wave transmission level monitor line 72 and transmitted to the ground unit. The level can be monitored without damaging the power level of the power wave.

また、図8は本実施例において共振回路切替部61を車上送受信器内に有する構成図である。実施例2同様に機械的駆動部のメンテナンス性が向上し動作信頼性を上げることが可能である。   Moreover, FIG. 8 is a block diagram which has the resonance circuit switching part 61 in a vehicle-mounted transceiver in a present Example. As in the second embodiment, the maintainability of the mechanical drive unit is improved and the operation reliability can be increased.

なお、本実施例においても電力波送信アンテナA62と電力波送信アンテナB63とを同巻き数のアンテナとすることで共振回路切替前後でアンテナ巻き数は変化しない一意の固定巻き数のアンテナとなり、アンテナ特性は共振回路切替前後同一とすることが可能である。ただし電力波送信アンテナA62と電力波送信アンテナB63とを異なる巻き数で構成することももちろん可能である。   In the present embodiment, the power wave transmission antenna A62 and the power wave transmission antenna B63 are antennas having the same number of turns, so that the antenna turns have a unique fixed number of turns that do not change before and after switching of the resonance circuit. The characteristics can be the same before and after switching the resonance circuit. However, it is of course possible to configure the power wave transmission antenna A62 and the power wave transmission antenna B63 with different numbers of turns.

図9は本実施例で示す車上通信装置において、リレー接点を共振回路用コンデンサの両端に配置する構成図である。共振コンデンサの両端にリレー接点(入力側)93とリレー接点(出力側)94を設け、この2つのリレー接点はリレーコイル92への共振回路切替指令によって両方同時に動作する。   FIG. 9 is a configuration diagram in which relay contacts are arranged at both ends of the resonance circuit capacitor in the on-board communication device shown in the present embodiment. A relay contact (input side) 93 and a relay contact (output side) 94 are provided at both ends of the resonance capacitor. Both of these two relay contacts operate simultaneously by a resonance circuit switching command to the relay coil 92.

リレー接点を共振コンデンサの両端に設けることで、共振回路切替時に電力波送信アンテナ15との接続を切り離すコンデンサの両端を電力波送信アンテナ15から接続断可能となる。実施例1から実施例4の構成では、コンデンサ片端のみを電力波送信アンテナ15から切り離す構成を示したが、実施例1から実施例4において本実施例のように両端での接続、切り離しを実施することも可能である。   By providing the relay contacts at both ends of the resonance capacitor, it is possible to disconnect the both ends of the capacitor that disconnects from the power wave transmission antenna 15 from the power wave transmission antenna 15 when switching the resonance circuit. In the configurations of the first to fourth embodiments, the configuration in which only one end of the capacitor is separated from the power wave transmitting antenna 15 is shown. However, in the first to fourth embodiments, connection and disconnection are performed at both ends as in the present embodiment. It is also possible to do.

図2を改めて用いて、上記実施例1から実施例5で示した構成の車上通信装置の適用例を示す。   An application example of the on-board communication device having the configuration shown in the first to fifth embodiments will be described with reference to FIG.

区間1において、車上送受信器11では地上子24が無電源地上子である場合に、地上子24を駆動するための電力波として周波数f1の電力波を車上送受信器11から車上子1に送信する。このとき、車上子1からは実施例1から実施例5で示したように、周波数f1に応じたLC共振回路が選択され、車上子1から周波数f1の電力波を地上に送信する。   In section 1, in the on-vehicle transmitter / receiver 11, when the ground element 24 is a non-powered ground element, a power wave of frequency f1 is transmitted from the on-vehicle transmitter / receiver 11 as the power wave for driving the ground element 24. Send to. At this time, as shown in the first to fifth embodiments, an LC resonance circuit corresponding to the frequency f1 is selected from the vehicle upper 1, and a power wave having the frequency f1 is transmitted from the vehicle upper 1 to the ground.

車上送受信器11が周波数f1を送信するための方法(条件)として、運転台などに備わる運転区間切替SW22(スイッチ)の選択状態を車上送受信器11の電力波周波数選択部114に取り込む方法、車上送受信器11に接続する他の装置からの周波数選択情報を車上送受信器11の電力波周波数選択部114で受信し、周波数f1を選択する方法、
地上子24や地上子25内に、当該区間で必要とする電力波の周波数がいくつであるかを示すデータを格納し、格納データより地上子との通信情報内に、電力波周波数選択を示すビット情報を設け、車上送受信器11が地上子から受信した情報より電力波周波数選択部114で周波数f1を選択する方法、またはパルスカウンタなどを用いて走行区間を自己推定し、車上送受信器11の電力波周波数選択部114で周波数f1を選択する方法などが考えられる。地上子から受信した情報より電力波周波数選択部114で周波数f1を選択する方法の場合、電力波による地上子起動を必要としなくても地上子からの情報を受信可能な有電源地上子との通信情報内に、電力波周波数選択を示すビット情報を設け、車上送受信器11が地上子24から受信した情報より電力波周波数選択部114で周波数f1を選択する方法や、区間1に進入する前に送信している、f1以外の電力波周波数で起動する無電源地上子との通信情報内に、電力波周波数選択を示すビット情報を設け、車上送受信器11が地上子24から受信した情報より電力波周波数選択部114で周波数f1を選択する方法のどちらでも実施可能である。なおここで車上送受信器11に接続する他の装置とは、例えばATC、ATSなどの保安装置を含む列車制御部23などである。
As a method (condition) for the on-vehicle transmitter / receiver 11 to transmit the frequency f1, a method of taking the selected state of the driving section switching SW 22 (switch) provided in the cab or the like into the power wave frequency selecting unit 114 of the on-vehicle transmitter / receiver 11 A method of receiving frequency selection information from another device connected to the on-vehicle transceiver 11 by the power wave frequency selecting unit 114 of the on-vehicle transceiver 11 and selecting the frequency f1;
Data indicating the frequency of the power wave required in the section is stored in the ground unit 24 or the ground unit 25, and the power wave frequency selection is indicated in the communication information with the ground unit from the stored data. Bit information is provided, and the on-vehicle transmitter / receiver 11 self-estimates the travel section using a method of selecting the frequency f1 by the power wave frequency selection unit 114 from the information received from the ground unit, or using a pulse counter, etc. A method of selecting the frequency f1 by the eleven power wave frequency selection units 114 is conceivable. In the case of the method in which the frequency f1 is selected by the power wave frequency selection unit 114 from the information received from the ground unit, the power source ground unit that can receive the information from the ground unit without the need to activate the ground unit by the power wave In the communication information, bit information indicating power wave frequency selection is provided, and the on-vehicle transmitter / receiver 11 selects the frequency f1 by the power wave frequency selection unit 114 based on the information received from the ground unit 24, or enters section 1. Bit information indicating power wave frequency selection is provided in the communication information with the power source ground element activated at a power wave frequency other than f1 that has been transmitted before, and the on-vehicle transceiver 11 receives from the ground element 24 Either of the methods of selecting the frequency f1 by the power wave frequency selection unit 114 from the information can be implemented. Here, the other device connected to the on-vehicle transmitter / receiver 11 is, for example, the train control unit 23 including a security device such as ATC or ATS.

列車が区間2に進入すると、運転区間切替SW22をはじめとする上記で説明した方法により区間2内で使用する無電源地上子25に対応した電力波周波数であるf2を選択する情報が車上送受信器11に設定され、車上送受信器11では周波数f2の電力波を送信する。このとき車上子1からは実施例1から実施例5で示したように、周波数f2に応じたLC共振回路が選択され、車上子から周波数f2の電力波を地上に送信する。   When the train enters section 2, information for selecting f2 which is a power wave frequency corresponding to the non-powered ground element 25 used in section 2 by the method described above including operation section switching SW22 is transmitted and received on the vehicle. The on-vehicle transmitter / receiver 11 transmits a power wave having a frequency f2. At this time, the LC resonance circuit corresponding to the frequency f2 is selected from the vehicle upper 1 as shown in the first to fifth embodiments, and the power wave of the frequency f2 is transmitted from the vehicle upper to the ground.

以上の構成および方法により、地上子を駆動するための電力波周波数が異なる複数の走行区間を走行する列車においても走行区間に応じて複数の周波数の電力波を送信し、地上−車上間の通信をひとつの車上子で行うことが可能となる。   With the above configuration and method, even in a train traveling in a plurality of traveling sections having different power wave frequencies for driving the ground unit, power waves of a plurality of frequencies are transmitted according to the traveling section, and between the ground and the vehicle It is possible to perform communication with a single car upper.

なお、実施例1から実施例5では、トランスポンダ送受信システムにおける電力波周波数の切替および、周波数に応じた共振回路の切替について説明したが、もちろん、本発明は複数の信号周波数を送信し、またその複数の周波数に対応した複数の共振回路を利用する様々なシステムに適用することが可能である。   In the first to fifth embodiments, the switching of the power wave frequency in the transponder transmission / reception system and the switching of the resonance circuit according to the frequency have been described. Of course, the present invention transmits a plurality of signal frequencies, and The present invention can be applied to various systems that use a plurality of resonance circuits corresponding to a plurality of frequencies.

また、実施例1から実施例5では、2つの異なる信号周波数に対応した共振回路を切替える場合を例に説明したが、もちろん本発明で示す車上通信装置では3つ以上の周波数に応じて、共振回路を切替え、3つ以上の共振周波数を持つ信号を送信することも可能である。3つ以上の共振周波数を送信するためには、LC共振回路を構成するための共振用コンデンサを送信する周波数の種類分用意し、送信する電力波周波数に対応した共振用コンデンサのいずれか一つを、共振回路切替部で選択すればよい。   Moreover, in Example 1 to Example 5, although the case where the resonance circuit corresponding to two different signal frequencies was switched was demonstrated to the example, of course in the on-board communication apparatus shown by this invention, according to three or more frequencies, It is also possible to switch the resonance circuit and transmit a signal having three or more resonance frequencies. In order to transmit three or more resonance frequencies, resonance capacitors for constituting the LC resonance circuit are prepared for the types of frequencies to be transmitted, and any one of the resonance capacitors corresponding to the power wave frequency to be transmitted is prepared. May be selected by the resonance circuit switching unit.

以上の説明のように、本発明によれば、電力波周波数f1送信時と周波数f2送信時とで電力波送信アンテナのアンテナ巻き数を変化させずに、周波数が異なる複数の電力波に対応した複数の共振回路の切替が可能な、車上通信装置を提供可能となる。アンテナ巻き数の変化がないため、必要な電力量を地上に送信する際の電力波送信アンテナ15のアンテナ1ターンあたりの電流値は共振回路の切替前後で変化することは無く、アンテナ電流を監視して送信レベル制御やレベル低下故障検知を行う場合に共振回路の切替前後で監視する目標値や故障判定閾値は同一とすることができる。またアンテナ巻き数が一意の固定巻き数であるため中間タップを有さず、アンテナの構造を簡略化し装置コスト低減が可能となる。   As described above, according to the present invention, it is possible to cope with a plurality of power waves having different frequencies without changing the number of turns of the power wave transmitting antenna between the power wave frequency f1 transmission and the frequency f2 transmission. An on-vehicle communication device capable of switching a plurality of resonance circuits can be provided. Since there is no change in the number of antenna turns, the current value per antenna turn of the power wave transmitting antenna 15 when transmitting the required amount of power to the ground does not change before and after switching of the resonance circuit, and the antenna current is monitored. Thus, when performing transmission level control or level drop failure detection, the target value and failure determination threshold value monitored before and after switching of the resonance circuit can be made the same. Further, since the number of turns of the antenna is a unique fixed number of turns, there is no intermediate tap, the structure of the antenna is simplified, and the apparatus cost can be reduced.

また、本発明によれば電力波周波数発振器の送信周波数を切替え可能な構成とすることで電力波周波数f1送信時と周波数f2送信時とで2組の電力波周波数発振器と電力波増幅器を必要とせず、1組の電力波周波数発振器と電力波増幅器のみで周波数が異なる複数の電力波送信が可能となる車上通信装置を提供することができる。したがって本発明によれば、特許文献1で示される2組の電力波周波数発振器と電力波増幅器を1組の電力波周波数発振器と電力波増幅器に削減できるだけではなく、電力波送信切替回路を排すことが可能となる。したがって回路実装面積の縮減や実装部品縮減による製造コスト低減が可能である。   Further, according to the present invention, the transmission frequency of the power wave frequency oscillator can be switched, so that two power wave frequency oscillators and a power wave amplifier are required for transmission of the power wave frequency f1 and transmission of the frequency f2. In addition, it is possible to provide an on-vehicle communication device capable of transmitting a plurality of power waves having different frequencies by using only one set of a power wave frequency oscillator and a power wave amplifier. Therefore, according to the present invention, not only the two sets of power wave frequency oscillators and power wave amplifiers disclosed in Patent Document 1 can be reduced to one set of power wave frequency oscillators and power wave amplifiers, but also the power wave transmission switching circuit is eliminated. It becomes possible. Therefore, it is possible to reduce the manufacturing cost by reducing the circuit mounting area and mounting parts.

なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、等の情報は、メモリや、ハードディスク、等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
In addition, this invention is not limited to the Example mentioned above, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as a program for realizing each function can be stored in a recording device such as a memory or a hard disk, or a recording medium such as an IC card, an SD card, or a DVD.
Further, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

1 車上子
11 車上送受信器
111 電力波生成部
112 電力波周波数発振器
113 電力波増幅器
114 電力波周波数選択部
115 正弦波演算素子
116 DA変換器
12 艤装線
121 艤装線(電力波送信線)
122 艤装線(情報波送受信線)
123 艤装線(共振回路切替指令信号線)
13 共振回路切替部(2種のコンデンサを切替える構成)
131 リレー接点
132 リレーコイル
133 切替指令入力
14 共振コンデンサ
141 周波数f1用共振コンデンサC1
142 周波数f2用共振コンデンサC2
15 電力波送信アンテナ
16 情報波送受信アンテナ
21 列車
22 運転区間切替SW(スイッチ)
23 列車制御部
24 地上子(電力周波数f1対応)
25 地上子(電力周波数f2対応)
51 共振回路切替部(コンデンサを加算(減算)する構成)
52 リレー接点
53 共振コンデンサ
54 コンデンサC3
55 コンデンサC4
61 共振回路切替部(2対の共振回路を切替える構成)
62 電力波送信アンテナA
63 電力波送信アンテナB
71 共振回路切替部
72 電力波送信レベルモニタ線
73 終端抵抗
91 共振回路切替部(リレー接点をコンデンサ両端とした構成)
92 リレーコイル
93 リレー接点(入力側)
94 リレー接点(出力側)
DESCRIPTION OF SYMBOLS 1 Car element 11 Car transmitter / receiver 111 Power wave generation part 112 Power wave frequency oscillator 113 Power wave amplifier 114 Power wave frequency selection part 115 Sine wave arithmetic element 116 DA converter 12 Outfitting line 121 Outfitting line (electric power wave transmission line)
122 Outfitting line (information wave transmission / reception line)
123 Outfitting line (Resonance circuit switching command signal line)
13 Resonant circuit switching unit (configuration to switch two types of capacitors)
131 Relay contact 132 Relay coil 133 Switching command input 14 Resonance capacitor 141 Resonance capacitor C1 for frequency f1
142 Resonant capacitor C2 for frequency f2
15 Power wave transmitting antenna 16 Information wave transmitting / receiving antenna 21 Train 22 Driving section switching SW (switch)
23 Train control unit 24 Ground unit (for power frequency f1)
25 Ground unit (for power frequency f2)
51 Resonant circuit switching unit (configuration to add (subtract) capacitor)
52 Relay contact 53 Resonant capacitor 54 Capacitor C3
55 Capacitor C4
61 Resonant circuit switching unit (configuration to switch between two pairs of resonant circuits)
62 Power wave transmitting antenna A
63 Power wave transmitting antenna B
71 Resonant circuit switching unit 72 Power wave transmission level monitor line 73 Terminating resistor 91 Resonant circuit switching unit (configuration with relay contacts as both ends of capacitor)
92 Relay coil 93 Relay contact (input side)
94 Relay contact (output side)

Claims (10)

車両(21)の走行路に沿って配置される地上装置(24、25)を駆動する電力波を送信可能なアンテナであって、周波数が異なる複数の電力波を送信可能な、一意の固定巻き数からなる少なくとも一つ以上の電力波送信アンテナ(15)と、
前記電力波送信アンテナ(15)に接続し、前記周波数が異なる複数の電力波の各々と共振をとる複数の共振コンデンサ(14)と、
前記複数の共振コンデンサ(14)と前記電力波送信アンテナ(15)との接続および切断を選択的に切替え可能な共振回路切替部(13)と、
前記共振回路切替部(13)に対して前記複数の共振コンデンサ(14)から任意の共振コンデンサを切替えるための切替指令入力(133)と、
前記周波数が異なる複数の電力波を生成し、電力波信号を出力する電力波生成部(111)と、
前記電力波信号の周波数選択及び切替指令信号を出力する電力波周波数選択部(114)を備え、
前記電力波生成部(111)は1組の電力波周波数発振器(112)と電力波増幅器(113)と、
を備えた車上通信装置において、
前記電力波信号は前記電力波送信アンテナ(15)に対する入力信号であり、前記切替指令信号は前記切替指令入力(133)に対する指令信号であり、
前記電力波周波数選択部(114)の指令に応じて前記切替指令信号の出力と前記電力波生成部(111)が出力する前記電力波信号の周波数を決定することで前記電力波送信アンテナ(15)から送信する電力波の周波数と、前記電力波送信アンテナ(15)の共振周波数を一致させることを特徴とする車上通信装置。
A unique fixed winding capable of transmitting a plurality of power waves having different frequencies, which is an antenna capable of transmitting a power wave for driving a ground device (24, 25) arranged along a traveling path of the vehicle (21). At least one power wave transmitting antenna (15) consisting of a number;
A plurality of resonant capacitors (14) connected to the power wave transmitting antenna (15) and resonating with each of the plurality of power waves having different frequencies;
A resonance circuit switching unit (13) capable of selectively switching connection and disconnection between the plurality of resonance capacitors (14) and the power wave transmission antenna (15);
A switching command input (133) for switching an arbitrary resonant capacitor from the plurality of resonant capacitors (14) to the resonant circuit switching unit (13);
A power wave generator (111) for generating a plurality of power waves having different frequencies and outputting a power wave signal;
A power wave frequency selection unit (114) for outputting a frequency selection and switching command signal of the power wave signal;
The power wave generator (111) includes a set of power wave frequency oscillator (112) and a power wave amplifier (113),
On-vehicle communication device with
The power wave signal is an input signal to the power wave transmitting antenna (15), the switching command signal is a command signal to the switching command input (133),
The power wave transmitting antenna (15) is determined by determining the output of the switching command signal and the frequency of the power wave signal output from the power wave generating unit (111) in accordance with a command of the power wave frequency selecting unit (114). The on-board communication device is characterized in that the frequency of the power wave transmitted from (1) matches the resonance frequency of the power wave transmitting antenna (15).
請求項1に記載の車上通信装置であって、
前記電力波送信アンテナ(15)と、前記複数の共振コンデンサ(14)と、前記共振回路切替部(13)と、前記切替指令入力(133)と、からなる車上子(1)と、
前記電力波生成部(111)と、前記電力波周波数選択部(114)と、からなる車上送受信器(11)により構成することを特徴とする車上通信装置。
The on-vehicle communication device according to claim 1,
A vehicle upper (1) comprising the power wave transmission antenna (15), the plurality of resonance capacitors (14), the resonance circuit switching unit (13), and the switching command input (133),
An on-vehicle communication device comprising an on-vehicle transceiver (11) including the power wave generation unit (111) and the power wave frequency selection unit (114).
請求項1に記載の車上通信装置であって、
前記電力波送信アンテナ(15)と、前記複数の共振コンデンサ(14)と、からなる車上子(1)と、
前記共振回路切替部(13)と、前記切替指令入力(133)と、前記電力波生成部(111)と、前記電力波周波数選択部(114)と、からなる車上送受信器(11)により構成することを特徴とする車上通信装置。
The on-vehicle communication device according to claim 1,
A vehicle upper (1) comprising the power wave transmitting antenna (15) and the plurality of resonant capacitors (14),
An on-vehicle transceiver (11) comprising the resonance circuit switching unit (13), the switching command input (133), the power wave generation unit (111), and the power wave frequency selection unit (114). An on-vehicle communication device characterized by comprising.
請求項1から請求項3のいずれか1つに記載の車上通信装置であって、
前記共振回路切替部(13)は、前記複数の共振コンデンサ(14)のうち1つ以上を選択的に切替えて前記電力波送信アンテナ(15)に接続するためのリレー接点(131)と、
前記切替指令入力(133)に基づいて前記リレー接点(131)を駆動するためのリレーコイル(132)と、を備えることを特徴とする車上通信装置。
The on-vehicle communication device according to any one of claims 1 to 3,
The resonant circuit switching unit (13) includes a relay contact (131) for selectively switching one or more of the plurality of resonant capacitors (14) to connect to the power wave transmitting antenna (15);
An on-vehicle communication device comprising: a relay coil (132) for driving the relay contact (131) based on the switching command input (133).
請求項1から請求項4のいずれか1つに記載の車上通信装置であって、
前記複数の共振コンデンサ(14)は前記周波数が異なる複数の電力波に対応した共振容量となるコンデンサを送信することができる電力波の数に応じて備え、
前記共振回路切替部(13)は電力波周波数に応じたいずれかの容量のコンデンサ1つのみを前記電力波送信アンテナ(15)に接続する構成であることを特徴とする車上通信装置。
The on-vehicle communication device according to any one of claims 1 to 4,
The plurality of resonance capacitors (14) are provided in accordance with the number of power waves that can transmit capacitors having resonance capacitances corresponding to the plurality of power waves having different frequencies.
The on-vehicle communication device characterized in that the resonance circuit switching unit (13) is configured to connect only one capacitor having any capacity according to a power wave frequency to the power wave transmitting antenna (15).
請求項1から請求項4のいずれか1つに記載の車上通信装置であって、
前記複数の共振コンデンサ(53)は前記周波数が異なる複数の電力波の中で最も高い周波数の電力波に対応した共振容量となるコンデンサCfmax(55)と、
前記最も高い周波数の電力波とそれ以外の周波数の電力波の周波数差分に応じた容量のコンデンサCdiff(54)を、前記最も高い周波数の電力波以外で、送信することができる電力波の数に応じて備え、
前記共振回路切替部(51)は電力波周波数に応じて、前記最も高い周波数の電力波送信時は前記コンデンサCfmax(55)のみを前記電力波送信アンテナ(15)に接続し、それ以外の周波数の電力波送信時はコンデンサCfmax(55)に加え、周波数差分に応じた前記コンデンサCdiff(54)を前記電力波送信アンテナ(15)に追加接続する構成であることを特徴とする車上通信装置。
The on-vehicle communication device according to any one of claims 1 to 4,
The plurality of resonant capacitors (53) include a capacitor Cfmax (55) having a resonance capacity corresponding to a power wave having the highest frequency among the plurality of power waves having different frequencies.
Capacitor Cdiff (54) having a capacity corresponding to the frequency difference between the highest frequency power wave and the other frequency power wave is set to the number of power waves that can be transmitted other than the highest frequency power wave. In response,
The resonant circuit switching unit (51) connects only the capacitor Cfmax (55) to the power wave transmitting antenna (15) during power wave transmission of the highest frequency according to the power wave frequency, and other frequencies. On-vehicle communication device characterized in that, in addition to the capacitor Cfmax (55), the capacitor Cdiff (54) corresponding to the frequency difference is additionally connected to the power wave transmitting antenna (15) at the time of power wave transmission .
請求項1から請求項4のいずれか1つに記載の車上通信装置であって、
前記共振コンデンサ(141、142)と前記電力波送信アンテナ(62、63)を組み合わせた共振回路を、送信することができる電力波の数に応じて複数備え、
前記共振回路の前記共振コンデンサ(141、142)は各々の周波数の電力波に対応した共振容量とし、
前記共振回路切替部(61)はいずれか一つの前記共振回路を選択的に切替える構成であることを特徴とする車上通信装置。
The on-vehicle communication device according to any one of claims 1 to 4,
A plurality of resonant circuits in combination with the resonant capacitors (141, 142) and the power wave transmitting antennas (62, 63) are provided according to the number of power waves that can be transmitted,
The resonance capacitors (141, 142) of the resonance circuit have resonance capacitors corresponding to the power waves of the respective frequencies,
The on-board communication device, wherein the resonance circuit switching unit (61) is configured to selectively switch any one of the resonance circuits.
請求項7に記載の車上通信装置であって、
前記電力波送信アンテナ(62、63)を前記電力波の送信のために使用していないときは、他の前記電力波送信アンテナ(62、63)が送信する前記電力波を受信し、受信した前記電力波を監視することにより他の前記電力波送信アンテナ(62、63)の前記電力波の送信状態を監視することを特徴とする車上通信装置。
The on-vehicle communication device according to claim 7,
When the power wave transmitting antenna (62, 63) is not used for transmitting the power wave, the power wave transmitted by another power wave transmitting antenna (62, 63) is received and received. The on-board communication device, wherein the power wave transmission state of the other power wave transmitting antennas (62, 63) is monitored by monitoring the power wave.
請求項1から請求項8のいずれか1つに記載の車上通信装置であって、
前記車両(21)の走行路に沿って配置される地上装置(24、25)は、前記地上装置各々を設置する区間に応じた電力波の周波数を示す情報である電力波周波数切替指令を情報波信号として前記車上通信装置に送信し、
前記車上通信装置は、前記情報波信号を送受信する情報波送受信アンテナ(16)を備え、
前記車上通信装置の前記電力波周波数選択部(114)は、地上装置(24、25)から受信した前記情報波信号に含まれる前記電力波周波数切替指令に従って、
前記電力波周波数選択部(114)から前記電力波生成部(111)および前記切替指令入力(133)に対する出力指令を決定することを特徴とする車上通信装置。
The on-vehicle communication device according to any one of claims 1 to 8,
The ground devices (24, 25) arranged along the travel path of the vehicle (21) receive a power wave frequency switching command that is information indicating the frequency of the power wave corresponding to the section in which each of the ground devices is installed. Transmitted to the on-board communication device as a wave signal,
The on-board communication device includes an information wave transmitting / receiving antenna (16) for transmitting and receiving the information wave signal,
The power wave frequency selection unit (114) of the on-board communication device, according to the power wave frequency switching command included in the information wave signal received from the ground device (24, 25),
An on-vehicle communication device that determines an output command for the power wave generation unit (111) and the switching command input (133) from the power wave frequency selection unit (114).
請求項1から請求項9のいずれか1つに記載の車上通信装置を搭載した車両(21)であって、前記車両(21)が走行する区間の地上装置(24、25)に対応した前記電力波の周波数を選択する手段を備える車両。   A vehicle (21) equipped with the on-board communication device according to any one of claims 1 to 9, wherein the vehicle (21) corresponds to a ground device (24, 25) in a section in which the vehicle (21) travels. A vehicle comprising means for selecting a frequency of the power wave.
JP2016088701A 2016-04-27 2016-04-27 On-board communication device and vehicle Active JP6698416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088701A JP6698416B2 (en) 2016-04-27 2016-04-27 On-board communication device and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088701A JP6698416B2 (en) 2016-04-27 2016-04-27 On-board communication device and vehicle

Publications (2)

Publication Number Publication Date
JP2017200301A true JP2017200301A (en) 2017-11-02
JP6698416B2 JP6698416B2 (en) 2020-05-27

Family

ID=60238342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088701A Active JP6698416B2 (en) 2016-04-27 2016-04-27 On-board communication device and vehicle

Country Status (1)

Country Link
JP (1) JP6698416B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237580A (en) * 2002-02-18 2003-08-27 Kyosan Electric Mfg Co Ltd Transmitting-receiving device on vehicle
JP2005323445A (en) * 2004-05-07 2005-11-17 Mitsubishi Electric Corp On-vehicle radio device of train control system
JP2007172964A (en) * 2005-12-21 2007-07-05 Mitsubishi Electric Corp Induction heating cooker
JP2009083782A (en) * 2007-10-02 2009-04-23 Kyosan Electric Mfg Co Ltd Frequency multiple resonance device, on-vehicle information transmission device, and on-ground information transmission device
JP2012065484A (en) * 2010-09-17 2012-03-29 Tamura Seisakusho Co Ltd Non-contact power transmission apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003237580A (en) * 2002-02-18 2003-08-27 Kyosan Electric Mfg Co Ltd Transmitting-receiving device on vehicle
JP2005323445A (en) * 2004-05-07 2005-11-17 Mitsubishi Electric Corp On-vehicle radio device of train control system
JP2007172964A (en) * 2005-12-21 2007-07-05 Mitsubishi Electric Corp Induction heating cooker
JP2009083782A (en) * 2007-10-02 2009-04-23 Kyosan Electric Mfg Co Ltd Frequency multiple resonance device, on-vehicle information transmission device, and on-ground information transmission device
JP2012065484A (en) * 2010-09-17 2012-03-29 Tamura Seisakusho Co Ltd Non-contact power transmission apparatus

Also Published As

Publication number Publication date
JP6698416B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
JP5858711B2 (en) On-board equipment for train control systems
JP5242283B2 (en) Railway vehicle information network equipment
CN102341290B (en) Devices for detecting the occupied state or free state of a track section and method for operating such devices
JP2004096602A (en) Repeater for power source superimposition multiplex communication equipment for vehicle
JP2011143880A (en) Train detecting device for three-wire track circuit and train security device
US8387925B2 (en) Track circuit
US9102340B2 (en) Railway circuit for sending signalling information along a railway line to a vehicle travelling along the railway line
JP6948852B2 (en) Vehicles equipped with on-board communication devices, on-board communication systems and on-board communication devices
JP5737859B2 (en) Rail break detection device
JP2010258565A (en) Train radio system
JP6698416B2 (en) On-board communication device and vehicle
CN102762431A (en) Method and device for securing the path of railborne vehicles
JP2016174493A (en) On-vehicle communication apparatus and vehicle
CN111919392B (en) Communication device
EP3381762A1 (en) System and method for detecting the presence of a train on a railway track
JP3842142B2 (en) On-vehicle transceiver
US1328865A (en) And train-control system
CA3021172A1 (en) Wheel detector for detecting a wheel of a rail vehicle
JP2009040251A (en) Axle detection device and vehicle control device
KR100700199B1 (en) Protection-System for ATS's malfunction and method thereof
KR20140023015A (en) Aparatus for audio frequency track circuit
JP6047419B2 (en) Track circuit transmitter
JP3850140B2 (en) Vehicle detection device
JP5702916B2 (en) On-vehicle equipment
KR101414069B1 (en) AF Track Circuit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200428

R150 Certificate of patent or registration of utility model

Ref document number: 6698416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150