JP2017198525A - Fault diagnosis device and method using noncontact vibration measurement - Google Patents

Fault diagnosis device and method using noncontact vibration measurement Download PDF

Info

Publication number
JP2017198525A
JP2017198525A JP2016089029A JP2016089029A JP2017198525A JP 2017198525 A JP2017198525 A JP 2017198525A JP 2016089029 A JP2016089029 A JP 2016089029A JP 2016089029 A JP2016089029 A JP 2016089029A JP 2017198525 A JP2017198525 A JP 2017198525A
Authority
JP
Japan
Prior art keywords
vibration acceleration
sound pressure
measurement object
microphone
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016089029A
Other languages
Japanese (ja)
Other versions
JP6396943B2 (en
Inventor
崇 落岩
Takashi Ochiiwa
崇 落岩
内海 聡
Satoshi Utsumi
聡 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2016089029A priority Critical patent/JP6396943B2/en
Publication of JP2017198525A publication Critical patent/JP2017198525A/en
Application granted granted Critical
Publication of JP6396943B2 publication Critical patent/JP6396943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To easily and certainly detect rattling or the like of a measuring object formed of a component or the like disposed in a device or the like.SOLUTION: A fault diagnosis device and method of the present invention using a noncontact vibration measurement includes: a microphone (3); a data logging system (4); a sound pressure/vibration acceleration calculation system (5) for converting sound pressure into vibration acceleration; and a fault prediction system (6). In this configuration and method, a sound pressure (1A) is obtained by a microphone (3) disposed near a measuring object (1) under drive, and a fault of the measuring object (1) is predicted on the basis of the vibration acceleration (5A) obtained from the sound pressure (1A).SELECTED DRAWING: Figure 1

Description

本発明は、非接触振動測定による故障診断装置及び方法に関し、特に、駆動中の測定対象物の付近に設けられたマイクロフォンによりその音圧を得て、この音圧から得た振動加速度により前記測定対象物の故障の予知を行うための新規な改良に関する。   The present invention relates to a failure diagnosis apparatus and method based on non-contact vibration measurement, and in particular, the sound pressure is obtained by a microphone provided in the vicinity of a measurement object being driven, and the measurement is performed by vibration acceleration obtained from the sound pressure. The present invention relates to a new improvement for predicting a failure of an object.

従来の振動測定では、測定対象物に直接、加速度センサを設置する必要があるため、駆動している箇所に加速度センサを設置するのは、センサの配線の引き回しや、設置箇所に大きな制約が生じてしまい、計測自体が困難な場合が多かった。
更に、駆動している対象物に対しては、特許文献1のように、回転中の駆動系部品に対して速度変動を計測するため、非接触形磁気センサを用いているが、前後方向に駆動している測定物に対しては、一定の計測ギャップを保ちながら計測を行えず、正常に速度変動を計測できず、そのため、加速度センサをつけた計測を想定した場合においても計測が正常に行えないことが考えられる。
その他の非接触による測定方法として、特許文献2では、摺動部を有する可動機構部が潤滑油に満たされている必要があるという非常に限定的な構造で計測を行っており、汎用的に非接触に測定できない。
In conventional vibration measurement, it is necessary to install an acceleration sensor directly on the object to be measured. Therefore, installing an acceleration sensor at the location where it is driven has great restrictions on the wiring of the sensor and the installation location. In many cases, the measurement itself is difficult.
Furthermore, for the object to be driven, a non-contact type magnetic sensor is used to measure the speed fluctuation with respect to the rotating driving system parts as in Patent Document 1, Measurements that are driven cannot be measured while maintaining a certain measurement gap, and speed fluctuations cannot be measured normally. Therefore, even when measurement with an acceleration sensor is assumed, measurement is normal. It may be impossible to do this.
As another non-contact measurement method, in Patent Document 2, measurement is performed with a very limited structure in which a movable mechanism portion having a sliding portion needs to be filled with lubricating oil. It cannot be measured without contact.

特開2000−97813号公報JP 2000-97813 A 特開2000−241295号公報JP 2000-241295 A

従来の特許文献1及び2に開示された構成では、次のような課題が存在していた。
すなわち、前述の特許文献1の構成においては、回転中の駆動系部品に対して回転速度変動を計測するため、非接触形の磁気センサを用いているが、本願のように、前後方向又は振子式に駆動している測定対象物に対しては、その直線往復動作の速度変動を正確に計測することは困難であった。
The configurations disclosed in the conventional patent documents 1 and 2 have the following problems.
That is, in the configuration of the above-described Patent Document 1, a non-contact type magnetic sensor is used to measure rotational speed fluctuations for a rotating drive system component. It was difficult to accurately measure the speed fluctuation of the linear reciprocating motion for the measurement object driven by the equation.

また、潤滑油で潤滑される摺動部を有してなる可動機構の検査を、潤滑油中に含有される異物に基づいて行うための可動機構検査方法に関して提供されたものである。
この検知方法として2次元超音波アレイセンサを備えており、潤滑油中に含有される異物を立体的に、かつ、リアルタイムで把握することが可能となっていた。
The present invention also provides a movable mechanism inspection method for inspecting a movable mechanism having a sliding portion lubricated with lubricating oil based on foreign matter contained in the lubricating oil.
As this detection method, a two-dimensional ultrasonic array sensor is provided, and foreign substances contained in the lubricating oil can be grasped in three dimensions and in real time.

本発明は、上記のような従来のものの課題を解決するためになされたもので、特に、音圧データからこの振動加速度を算出することで、非接触の状態でも駆動している測定対象物の振動状態を計測でき、このデータを用いて駆動初期からの振動の経時変化を比較することで、駆動している測定対象物が大きく振動していれば、機構上に何らかのガタ等の問題点が発生していると考えられ、故障診断として用いるようにした非接触振動測定による故障診断装置及び方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems of the conventional ones, and in particular, by calculating this vibration acceleration from the sound pressure data, the measurement object that is driven even in a non-contact state is calculated. The vibration state can be measured, and by using this data to compare the changes over time of the vibration from the beginning of driving, if the measurement object being driven vibrates greatly, there will be some problems such as rattling on the mechanism. It is an object of the present invention to provide a failure diagnosis apparatus and method based on non-contact vibration measurement that is considered to have occurred and is used as failure diagnosis.

本発明による非接触振動測定による故障診断装置は、駆動状態の測定対象物の付近に設置されたマイクロフォンと、前記マイクロフォンに接続され、前記マイクロフォンで得た前記測定対象物の駆動中の音圧を収集するためのデータロギングシステムと、前記データロギングシステムに接続され、前記音圧を振動加速度に変換するための音圧/振動加速度算定システムと、前記音圧/振動加速度算定システムに接続され、前記振動加速度が予め設定された異常閾値以下か以上であるかを判定するための故障予知システムと、を備え、前記測定対象物の振動加速度を、前記測定対象物に対して非接触状態で計測するようにした構成であり、また、本発明による非接触振動測定による故障診断方法は、駆動状態の測定対象物の付近に設置されたマイクロフォンと、前記マイクロフォンに接続され、前記マイクロフォンで得た前記測定対象物の駆動中の音圧を収集するためのデータロギングシステムと、前記データロギングシステムに接続され、前記音圧を振動加速度に変換するための音圧/振動加速度算定システムと、前記音圧/振動加速度算定システムに接続され、前記振動加速度が予め設定された異常閾値以下か以上であるかを判定するための故障予知システムと、を用い、前記測定対象物の振動加速度を、前記測定対象物に対して非接触状態で計測する方法である。   A failure diagnosis apparatus by non-contact vibration measurement according to the present invention includes a microphone installed in the vicinity of a measurement target in a driving state, and a sound pressure during driving of the measurement target obtained by the microphone connected to the microphone. A data logging system for collecting, a sound pressure / vibration acceleration calculating system for converting the sound pressure into vibration acceleration, connected to the data logging system, and connected to the sound pressure / vibration acceleration calculating system, A failure prediction system for determining whether the vibration acceleration is equal to or lower than a preset abnormality threshold, and measures the vibration acceleration of the measurement object in a non-contact state with respect to the measurement object In addition, the fault diagnosis method based on non-contact vibration measurement according to the present invention is a device installed in the vicinity of a measurement object in a driving state. A microphone, a data logging system connected to the microphone and collecting the sound pressure obtained by the microphone during driving of the measurement object, and connected to the data logging system to convert the sound pressure into vibration acceleration A sound pressure / vibration acceleration calculating system for performing the operation, a failure prediction system connected to the sound pressure / vibration acceleration calculating system for determining whether the vibration acceleration is equal to or less than a preset abnormality threshold value; The vibration acceleration of the measurement object is measured in a non-contact state with respect to the measurement object.

本発明による非接触振動測定による故障診断装置及び方法は、以上のように構成されているため、次のような効果を得ることができる。
すなわち、駆動状態の測定対象物の付近に設置されたマイクロフォンと、前記マイクロフォンに接続され、前記マイクロフォンで得た前記測定対象物の駆動中の音圧を収集するためのデータロギングシステムと、前記データロギングシステムに接続され、前記音圧を振動加速度に変換するための音圧/振動加速度算定システムと、前記音圧/振動加速度算定システムに接続され、前記振動加速度が予め設定された異常閾値以下か以上であるかを判定するための故障予知システムと、を備え、前記測定対象物の振動加速度を、前記測定対象物に対して非接触状態で計測する構成と方法であるため、マイクロフォンとデータロギングシステムを介して得られた時々刻々の音圧データより、駆動中の測定対象物の振動加速度データをリアルタイムに算出することで、駆動中の測定対象物の故障状況を定量的に把握することが可能となり、迅速な故障予知ができる。
また、駆動中の測定対象物は、振動することにより音圧を発生するため、その音圧をマイクロフォンで計測され、その計測された音圧は、データロギングシステムに収集されながら、計算機により時々刻々の振動加速度を計算し、振動加速度のデータとして保存される。そして、算定された振動加速度データに対して、上下限異常設定値、すなわち、異常閾値を設けて比較していき、上下限異常値を越えれば、警報を発報することで故障診断を行うことができる。
従って、警報の発生により、測定対象物のグラツキ等の故障の有無を容易に知ることができ、測定対象物を有する装置全体の故障を未然に得て、例えば、装置全体の安全運転の実現に供することができる。
Since the failure diagnosis apparatus and method based on non-contact vibration measurement according to the present invention is configured as described above, the following effects can be obtained.
That is, a microphone installed in the vicinity of a measurement object in a driving state, a data logging system connected to the microphone and collecting sound pressure during driving of the measurement object obtained by the microphone, and the data A sound pressure / vibration acceleration calculating system connected to a logging system for converting the sound pressure to vibration acceleration; and a sound pressure / vibration acceleration calculating system connected to the sound pressure / vibration acceleration calculating system, wherein the vibration acceleration is equal to or less than a preset abnormality threshold value. A failure prediction system for determining whether or not the measurement object has a configuration and method for measuring vibration acceleration of the measurement object in a non-contact state with respect to the measurement object. The vibration acceleration data of the measurement object being driven in real time is obtained from the sound pressure data obtained through the system. By leaving, the fault status of the object to be measured in the drive it is possible to quantitatively grasp, it is quick failure prediction.
In addition, since the measurement object being driven generates sound pressure by vibrating, the sound pressure is measured with a microphone, and the measured sound pressure is collected by the data logging system and is momentarily recorded by a computer. Vibration acceleration is calculated and stored as vibration acceleration data. Then, upper and lower limit abnormal setting values, that is, abnormal threshold values are set and compared with the calculated vibration acceleration data, and if the upper and lower limit abnormal values are exceeded, a fault diagnosis is performed by issuing an alarm. Can do.
Therefore, it is possible to easily know whether there is a failure such as a flickering of the measurement object by the occurrence of an alarm, and to obtain the failure of the entire apparatus having the measurement object beforehand, for example, to realize safe operation of the entire apparatus. Can be provided.

本発明による非接触振動測定による故障診断装置及び方法を示すための概略構成図である。It is a schematic block diagram for showing the failure diagnosis apparatus and method by non-contact vibration measurement by this invention. 図1における振動加速度の正常時と異常時の状態を示す波形図である。It is a wave form diagram which shows the state at the time of the normal time of vibration acceleration in FIG. 1, and an abnormality.

本発明による非接触振動測定による故障診断装置及び方法は、駆動中の測定対象物の付近に設けられたマイクロフォンによりその音圧を得て、この音圧から得た振動加速度により前記測定対象物の故障の予知を行うことである。   According to the failure diagnosis apparatus and method by non-contact vibration measurement according to the present invention, the sound pressure is obtained by a microphone provided in the vicinity of the measurement object being driven, and the measurement object is measured by the vibration acceleration obtained from the sound pressure. It is to predict failure.

以下、図面と共に本発明による非接触振動測定による故障診断装置及び方法の好適な実施の形態について説明する。
図1において符号1で示されるものは、工作機及び自動車等の大型の装置2の一部として設けられている各種部品等からなる測定対象物であり、前記測定対象物1は、矢印Aで示される往復方向に沿って駆動する駆動状態Bとなるように構成されている。
前記測定対象物1の駆動状態Bは、矢印Aに沿って前記測定対象物1全体が、例えば、図示しない台座上において台座と共に水平状に往復駆動状態となるように構成されている。
また、前記測定対象物1は、例えば、下部が軸支されていて、左右方向Cに沿って往復回動するように構成することもできる。
Hereinafter, preferred embodiments of a failure diagnosis apparatus and method based on non-contact vibration measurement according to the present invention will be described with reference to the drawings.
What is indicated by reference numeral 1 in FIG. 1 is a measurement object composed of various parts and the like provided as a part of a large machine 2 such as a machine tool and an automobile, and the measurement object 1 is indicated by an arrow A. It is comprised so that it may become the drive state B which drives along the reciprocating direction shown.
The drive state B of the measurement object 1 is configured such that the entire measurement object 1 is in a reciprocating drive state along with the pedestal horizontally along the arrow A, for example, on a pedestal not shown.
Further, the measurement object 1 may be configured such that, for example, the lower part is pivotally supported and reciprocally rotates along the left-right direction C.

前記測定対象物1の付近には、マイクロフォン3が設けられ、このマイクロフォン3にはデータロギングシステム4を介して音圧/振動加速度算定システム5が接続されており、前記音圧/振動加速度算定システム5は故障予知システム6に接続されている。   A microphone 3 is provided in the vicinity of the measurement object 1, and a sound pressure / vibration acceleration calculation system 5 is connected to the microphone 3 via a data logging system 4. 5 is connected to the failure prediction system 6.

次に、前述の本発明による非接触振動測定による故障診断装置及び方法の動作について述べる。
まず、駆動中の測定対象物1は、振動することにより音圧を発生するため、その音圧をマイクロフォン3で計測し、その計測された音圧は、データロギングシステムに収集されながら、計算機により時々刻々の振動加速度5Aを計算し、この振動加速度5Aをデータとしてメモリ5Bに格納される。
Next, the operation of the fault diagnosis apparatus and method by non-contact vibration measurement according to the present invention will be described.
First, since the measuring object 1 being driven generates a sound pressure by vibrating, the sound pressure is measured by the microphone 3, and the measured sound pressure is collected by the data logging system by a computer. The vibration acceleration 5A is calculated every moment, and this vibration acceleration 5A is stored as data in the memory 5B.

前記振動加速度5Aは、前記故障予知システム6に入力され、この故障予知システム6においては、前記振動加速度5Aに対して異常閾値THを図2のように設定しておき、比較の結果、算定された振動加速度5Aが前記異常閾値THを越えれば、異常とみなして警報を発報するように構成されている。
すなわち、前記測定対象物1が駆動状態Bにある中で、ガタ等によって前記測定対象物1の振動が設定値よりも大となった時に、前述のように、前記故障予知システム6によって、異常状態が検出される。
The vibration acceleration 5A is input to the failure prediction system 6. In the failure prediction system 6, an abnormal threshold value TH is set for the vibration acceleration 5A as shown in FIG. If the vibration acceleration 5A exceeds the abnormal threshold value TH, it is regarded as abnormal and an alarm is issued.
That is, when the measurement object 1 is in the driving state B and the vibration of the measurement object 1 becomes larger than a set value due to looseness or the like, the failure prediction system 6 causes an abnormality as described above. A state is detected.

本発明を実施するにあたり、事前に測定対象物1の付近の干渉しない位置にマイクロフォン3を設置する。そして、測定対象物1を駆動させて、データロギングシステム4で音圧データ4Aを収集した後、音圧/振動加速度算定システム5で、収集された音圧データ4Aより振動加速度データ5Aを算出して、故障予知システム6内に記憶させておく。この手順をリアルタイムに実施することで、経時変化による故障予知を行う。
この中で、マイクロフォン3、データロギングシステム4は、市販のものを使用する。音圧/振動加速度算定システム5は、関係式としてa=2√2l0πP/pSに代入して振動加速度を算出する。ここで、aは振動加速度(m/s2)、l0は測定距離(m)、Pは音圧(実効値)(Pa)、pは空気の密度(kg/m3)、Sは断面積(m2)となる。この計算をリアルタイムに行いながら、時々刻々の算定した振動加速度データ5Aを蓄積していく。
故障予知システム6では、音圧/振動加速度算定システム5で算定した振動加速度データ5Aを用いて、事前に設定しておいた異常となる異常閾値THをこえた場合、図2、装置に異常を通知して、必要に応じて装置停止を促す。この故障システムは、上記のような単純な異常となる閾値による故障予知だけでなく、ロギングした振動加速度データ5Aの統計的処理やAI(人工知能)などを用いた学習予知などを用いて故障診断するなどの高度化も考えられる。
In carrying out the present invention, the microphone 3 is installed in the vicinity of the measurement object 1 at a position where there is no interference in advance. Then, after the measurement object 1 is driven and the sound pressure data 4A is collected by the data logging system 4, the vibration acceleration data 5A is calculated from the collected sound pressure data 4A by the sound pressure / vibration acceleration calculation system 5. And stored in the failure prediction system 6. By executing this procedure in real time, failure prediction due to changes over time is performed.
Among these, the microphone 3 and the data logging system 4 are commercially available. The sound pressure / vibration acceleration calculation system 5 calculates the vibration acceleration by substituting it into a = 2√2l 0 πP e / pS as a relational expression. Here, a is vibration acceleration (m / s 2 ), l 0 is measurement distance (m), Pe is sound pressure (effective value) (P a ), p is air density (kg / m 3 ), S Is the cross-sectional area (m 2 ). While performing this calculation in real time, the vibration acceleration data 5A calculated every moment is accumulated.
In the failure prediction system 6, when the abnormality threshold value TH that is an abnormality set in advance is exceeded using the vibration acceleration data 5 </ b> A calculated by the sound pressure / vibration acceleration calculation system 5, FIG. Notify and prompt the device to stop if necessary. In this failure system, not only failure prediction based on the above-mentioned simple abnormality threshold value, but also failure diagnosis using statistical processing of logged vibration acceleration data 5A, learning prediction using AI (artificial intelligence), etc. It can be considered to be sophisticated.

次に、本発明による非接触振動測定による故障診断装置及び方法の要旨とするところは、以下の通りである。
すなわち、駆動状態の測定対象物1の付近に設置されたマイクロフォン3と、前記マイクロフォン3に接続され、前記マイクロフォン3で得た前記測定対象物1の駆動中の音圧1Aを収集するためのデータロギングシステム4と、前記データロギングシステム4に接続され、前記音圧1Aを振動加速度5Aに変換するための音圧/振動加速度算定システム5と、前記音圧/振動加速度算定システム5に接続され、前記振動加速度5Aが予め設定された異常閾値TH以下か以上であるかを判定するための故障予知システム6と、を備え、前記測定対象物1の振動加速度5Aを、前記測定対象物1に対して非接触状態で計測する構成とした構成と方法である。
Next, the gist of the failure diagnosis apparatus and method by non-contact vibration measurement according to the present invention is as follows.
That is, the microphone 3 installed in the vicinity of the measurement object 1 in the driving state and the data for collecting the sound pressure 1A during the driving of the measurement object 1 connected to the microphone 3 and obtained by the microphone 3 A logging system 4, a sound pressure / vibration acceleration calculation system 5 connected to the data logging system 4 for converting the sound pressure 1A into a vibration acceleration 5A, and a sound pressure / vibration acceleration calculation system 5; A failure prediction system 6 for determining whether the vibration acceleration 5A is equal to or lower than a preset abnormality threshold value TH, and the vibration acceleration 5A of the measurement object 1 is set to the measurement object 1. The configuration and method are configured to measure in a non-contact state.

本発明による非接触振動測定による故障診断装置及び方法は、測定対象物の駆動状態を発生する音圧をマイクロフォンで捕捉して、その音圧を振動加速度のデータとして用いているため、測定対象物の良否を高精度に判定することができる。   In the failure diagnosis apparatus and method by non-contact vibration measurement according to the present invention, the sound pressure that generates the driving state of the measurement object is captured by the microphone, and the sound pressure is used as vibration acceleration data. Can be determined with high accuracy.

1 測定対象物
1A 音圧
2 装置
3 マイクロフォン
4 データロギングシステム
4A 音圧データ
5 音圧/振動加速度算定システム
5A 振動加速度
5B メモリ
6 故障予知システム
TH 異常閾値
1 Measurement Object 1A Sound Pressure 2 Device 3 Microphone 4 Data Logging System 4A Sound Pressure Data 5 Sound Pressure / Vibration Acceleration Calculation System 5A Vibration Acceleration 5B Memory 6 Failure Prediction System TH Abnormal Threshold

Claims (2)

駆動状態の測定対象物(1)の付近に設置されたマイクロフォン(3)と、前記マイクロフォン(3)に接続され、前記マイクロフォン(3)で得た前記測定対象物(1)の駆動中の音圧(1A)を収集するためのデータロギングシステム(4)と、前記データロギングシステム(4)に接続され、前記音圧(1A)を振動加速度(5A)に変換するための音圧/振動加速度算定システム(5)と、前記音圧/振動加速度算定システム(5)に接続され、前記振動加速度(5A)が予め設定された異常閾値(TH)以下か以上であるかを判定するための故障予知システム(6)と、を備え、
前記測定対象物(1)の振動加速度(5A)を、前記測定対象物(1)に対して非接触状態で計測する構成としたことを特徴とする非接触振動測定による故障診断装置。
A microphone (3) installed in the vicinity of the measurement object (1) in the driving state, and a sound during driving of the measurement object (1) obtained by the microphone (3) connected to the microphone (3) A data logging system (4) for collecting pressure (1A) and a sound pressure / vibration acceleration connected to the data logging system (4) for converting the sound pressure (1A) to vibration acceleration (5A) A fault connected to the calculation system (5) and the sound pressure / vibration acceleration calculation system (5) to determine whether the vibration acceleration (5A) is less than or equal to a preset abnormality threshold (TH) A prediction system (6),
A failure diagnosis apparatus based on non-contact vibration measurement, wherein the vibration acceleration (5A) of the measurement object (1) is measured in a non-contact state with respect to the measurement object (1).
駆動状態の測定対象物(1)の付近に設置されたマイクロフォン(3)と、前記マイクロフォン(3)に接続され、前記マイクロフォン(3)で得た前記測定対象物(1)の駆動中の音圧(1A)を収集するためのデータロギングシステム(4)と、前記データロギングシステム(4)に接続され、前記音圧(1A)を振動加速度(5A)に変換するための音圧/振動加速度算定システム(5)と、前記音圧/振動加速度算定システム(5)に接続され、前記振動加速度(5A)が予め設定された異常閾値(TH)以下か以上であるかを判定するための故障予知システム(6)と、を用い、
前記測定対象物(1)の振動加速度(5A)を、前記測定対象物(1)に対して非接触状態で計測することを特徴とする非接触振動測定による故障診断方法。
A microphone (3) installed in the vicinity of the measurement object (1) in the driving state, and a sound during driving of the measurement object (1) obtained by the microphone (3) connected to the microphone (3) A data logging system (4) for collecting pressure (1A) and a sound pressure / vibration acceleration connected to the data logging system (4) for converting the sound pressure (1A) to vibration acceleration (5A) A fault connected to the calculation system (5) and the sound pressure / vibration acceleration calculation system (5) to determine whether the vibration acceleration (5A) is less than or equal to a preset abnormality threshold (TH) With the prediction system (6),
A failure diagnosis method by non-contact vibration measurement, wherein vibration acceleration (5A) of the measurement object (1) is measured in a non-contact state with respect to the measurement object (1).
JP2016089029A 2016-04-27 2016-04-27 Failure diagnosis apparatus and method by non-contact vibration measurement Active JP6396943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016089029A JP6396943B2 (en) 2016-04-27 2016-04-27 Failure diagnosis apparatus and method by non-contact vibration measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016089029A JP6396943B2 (en) 2016-04-27 2016-04-27 Failure diagnosis apparatus and method by non-contact vibration measurement

Publications (2)

Publication Number Publication Date
JP2017198525A true JP2017198525A (en) 2017-11-02
JP6396943B2 JP6396943B2 (en) 2018-09-26

Family

ID=60237712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016089029A Active JP6396943B2 (en) 2016-04-27 2016-04-27 Failure diagnosis apparatus and method by non-contact vibration measurement

Country Status (1)

Country Link
JP (1) JP6396943B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110589021A (en) * 2019-09-25 2019-12-20 东方航空技术有限公司 Airplane anti-shake fault pre-judging system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108235A (en) * 1986-10-25 1988-05-13 Toushiyou Eng Kk Vibration and acoustic measurement integral type sensor
JP2003156388A (en) * 2001-11-22 2003-05-30 Okumura Corp Sensing method for noise environment, trial listening apparatus and information storage medium
JP2003222553A (en) * 2002-01-31 2003-08-08 Kobayashi Rigaku Kenkyusho Sound detecting method and device using the same
JP2005241089A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2009139343A (en) * 2007-12-10 2009-06-25 Mitsubishi Heavy Ind Ltd Vibration analyzer of engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108235A (en) * 1986-10-25 1988-05-13 Toushiyou Eng Kk Vibration and acoustic measurement integral type sensor
JP2003156388A (en) * 2001-11-22 2003-05-30 Okumura Corp Sensing method for noise environment, trial listening apparatus and information storage medium
JP2003222553A (en) * 2002-01-31 2003-08-08 Kobayashi Rigaku Kenkyusho Sound detecting method and device using the same
JP2005241089A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Apparatus diagnosing device, refrigeration cycle device, apparatus diagnosing method, apparatus monitoring system and refrigeration cycle monitoring system
JP2009139343A (en) * 2007-12-10 2009-06-25 Mitsubishi Heavy Ind Ltd Vibration analyzer of engine

Also Published As

Publication number Publication date
JP6396943B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
RU2711767C1 (en) Multifunctional equipment condition monitoring and accounting device and critical components monitoring method in lifting system
AU2015215266B2 (en) Vibrating machine
JP2017188030A (en) Machine learning device for learning failure prediction of main axis or motor driving main axis and machine learning method, and failure prediction device having machine learning device and failure prediction system
Dube et al. Vibration based condition assessment of rolling element bearings with localized defects
KR20120129938A (en) Method and apparatus for diagnosing bushing
JP2017219469A (en) State monitoring device and state monitoring method
US10829344B2 (en) Elevator sensor system calibration
KR102491553B1 (en) Condition diagnosis system and condition diagnosis method of cloud guidance device
KR101674686B1 (en) Structural integrity monitoring system
US20190010021A1 (en) Elevator sensor system calibration
RU2019123660A (en) METHODS AND DEVICES FOR MONITORING THE CONDITION OF A STRUCTURE
Martin et al. Methodical evaluation of sensor positions for condition monitoring of gears
JP7060078B2 (en) Abnormal type judgment device and abnormality type judgment method
Medjaher et al. Feature extraction and evaluation for Health Assessment and Failure prognostics.
KR101477993B1 (en) System for monitoring vibration of railway vehicles
JP6396943B2 (en) Failure diagnosis apparatus and method by non-contact vibration measurement
JP4031745B2 (en) Gear diagnosis method and gear diagnosis device
JP5476413B2 (en) Diagnostic method for soundness of rotating machinery
Agrawal et al. Analysis of the condition based monitoring system for heavy industrial machineries
Yang et al. A case study of bearing condition monitoring using SPM
JP7361573B2 (en) Abnormality diagnosis method and abnormality diagnosis device for feed shaft device
JP2011180082A (en) Diagnostic method and device of sliding bearing
JP2002188411A (en) Abnormality diagnosing apparatus
El Kihel et al. Optimization of industrial energy efficiency by intelligent Predictive Maintenance tools Case of misalignment of an industrial system
JP6497919B2 (en) Diagnosis method and diagnosis system for equipment including rotating body and its bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180814

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180830

R150 Certificate of patent or registration of utility model

Ref document number: 6396943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250