JP2017198380A - Boiler and method of controlling boiler - Google Patents

Boiler and method of controlling boiler Download PDF

Info

Publication number
JP2017198380A
JP2017198380A JP2016088209A JP2016088209A JP2017198380A JP 2017198380 A JP2017198380 A JP 2017198380A JP 2016088209 A JP2016088209 A JP 2016088209A JP 2016088209 A JP2016088209 A JP 2016088209A JP 2017198380 A JP2017198380 A JP 2017198380A
Authority
JP
Japan
Prior art keywords
combustion
blower
exhaust gas
boiler
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016088209A
Other languages
Japanese (ja)
Other versions
JP6711112B2 (en
Inventor
幸洋 山口
Koyo Yamaguchi
幸洋 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2016088209A priority Critical patent/JP6711112B2/en
Publication of JP2017198380A publication Critical patent/JP2017198380A/en
Application granted granted Critical
Publication of JP6711112B2 publication Critical patent/JP6711112B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a boiler configured to suppress variation in EGR quantity and thus stabilize combustion performance.SOLUTION: According to the present invention, a boiler comprises: a combustion chamber; a burner for heating the inside of the combustion chamber; an air blower for supplying combustion air to the burner through a combustion flow passage; an exhaust gas path for guiding an exhaust gas out of the combustion chamber; an exhaust gas recirculation path connecting the exhaust gas path and an intake of the air blower together; and control means of controlling the burner into combustion in at least two combustion states which are a first combustion state and a second combustion state less in combustion quantity than the first combustion state, the boiler comprising a damper at the intake of the air blower so that while the intake amount of outside air by the air blower is maintained during transition to the second combustion state, the opening area of the intake of the air blower is made smaller by the damper.SELECTED DRAWING: Figure 1

Description

この発明は、排ガスの一部を再循環させて燃焼させるボイラ及び、このボイラの制御方法に関するものである。   The present invention relates to a boiler that recirculates a part of exhaust gas and burns it, and a control method for the boiler.

従来、排ガスの一部を吸気側に循環させて燃料ガス及び燃料用空気に混合し、この混合ガスを噴出して燃焼させることで、排ガス路から排出されるNOx濃度の低減を図るボイラがある。例えば、特許文献1に記載のボイラは、排ガス路(煙突)と吸気側である送風機の吸込口とを接続する排ガス再循環路を備えることで、酸素濃度の低下した排ガスを吸気側に再循環させる。その結果、バーナにおける燃焼温度が低下し、その結果排ガス中に含まれるNOx濃度を低下させることが可能である。   Conventionally, there is a boiler that reduces the NOx concentration discharged from the exhaust gas passage by circulating a part of the exhaust gas to the intake side, mixing it with fuel gas and fuel air, and jetting and burning the mixed gas . For example, the boiler described in Patent Document 1 includes an exhaust gas recirculation path that connects an exhaust gas path (chimney) and a suction port of a blower on the intake side, thereby recirculating exhaust gas with a reduced oxygen concentration to the intake side. Let As a result, the combustion temperature in the burner is lowered, and as a result, the NOx concentration contained in the exhaust gas can be lowered.

特開2004−60984号公報JP 2004-60984 A

しかしながら、特許文献1のボイラでは、燃焼条件によっては単位時間あたりの再循環ガス流量(以下、EGR量とする)の変動が大きくなり、その結果、バーナの燃焼性能が不安定となるという問題が生じることが分かった。   However, in the boiler of Patent Document 1, there is a problem that the recirculation gas flow rate per unit time (hereinafter referred to as EGR amount) varies greatly depending on the combustion conditions, and as a result, the combustion performance of the burner becomes unstable. I found it to happen.

本発明はこのような事情に鑑みてなされたものであり、EGR量の変動を抑制し、燃焼性能を安定させる構成を備えるボイラと、このボイラの制御方法を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the control method of this boiler provided with the structure which suppresses the fluctuation | variation of the amount of EGR, and stabilizes combustion performance.

本発明によれば、燃焼室と、燃焼室内を加熱するバーナと、燃焼用流路を介して燃焼用空気を前記バーナへ供給する送風機と、前記燃焼室から排ガスを導出する排ガス路と、前記排ガス路と前記送風機の吸込口を接続する排ガス再循環路と、前記バーナを第1燃焼状態と当該第1燃焼状態よりも燃焼量の少ない第2燃焼状態の少なくとも2つの燃焼状態で燃焼させるよう制御する制御手段と、を備えたボイラであって、前記送風機の吸込口にダンパを備え、前記第2燃焼状態に移る際、前記送風機による外気の取込量を維持できるようにしたまま、前記ダンパにより前記送風機の吸込口の開口面積を小さくする、ボイラが提供される。   According to the present invention, a combustion chamber, a burner that heats the combustion chamber, a blower that supplies combustion air to the burner via a combustion channel, an exhaust gas path that extracts exhaust gas from the combustion chamber, An exhaust gas recirculation path connecting the exhaust gas path and the suction port of the blower, and the burner are burned in at least two combustion states of a first combustion state and a second combustion state having a smaller combustion amount than the first combustion state. A boiler having a control means for controlling, wherein a damper is provided at a suction port of the blower, and when moving to the second combustion state, the amount of outside air taken in by the blower can be maintained while being maintained, A boiler is provided that reduces the opening area of the inlet of the blower by means of a damper.

本発明者は、段階値制御ボイラや比例ボイラ等において、燃焼量の多い状態に対して燃焼量の少ない状態では、排ガス再循環路の前後、すなわち排ガス路側と燃焼用流路側の差圧が小さくなり、相対的に、排ガス路におけるドラフト変動(外気温の変動等による通風の変動)に起因するEGR量の変動が大きくなることに着目した。そして、送風機の吸込口にダンパを設けて、燃焼量の少ない状態において送風機への外気の取込量を維持できるようにしたままダンパにより送風機の吸込口の開口面積を小さくすることで、排ガス路側と燃焼用流路側の差圧を増加させることを思いつき、本発明に至った。   In the case of a step value control boiler, a proportional boiler, etc., in a state where the combustion amount is small compared to a state where the combustion amount is large, the differential pressure between the exhaust gas recirculation passage, that is, the exhaust gas passage side and the combustion passage side is small. Therefore, it has been noted that the fluctuation of the EGR amount due to the draft fluctuation in the exhaust gas passage (the fluctuation of the ventilation due to the fluctuation of the outside air temperature, etc.) becomes relatively large. And by providing a damper at the suction port of the blower and reducing the opening area of the suction port of the blower with the damper while maintaining the intake amount of the outside air into the blower in a state with a small amount of combustion, the exhaust gas side The inventors have come up with the present invention to increase the differential pressure on the combustion flow path side.

このような構成によれば、EGR量の変動を低減することが可能となり、燃焼性能を安定させることが可能となる。   According to such a configuration, fluctuations in the EGR amount can be reduced, and combustion performance can be stabilized.

以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。   Hereinafter, various embodiments of the present invention will be exemplified. The following embodiments can be combined with each other.

好ましくは、前記第2燃焼状態に移る際、前記制御手段は、前記送風機のインバータの回転数を前記第2燃焼状態に対応する回転数よりも高くする制御及び/又は、前記燃焼用流路に設けられたメインダンパにより、前記第2燃焼状態に対応する前記燃焼用流路の断面積より大きくする制御を行う。   Preferably, when moving to the second combustion state, the control means controls the rotation speed of the inverter of the blower to be higher than the rotation speed corresponding to the second combustion state and / or the combustion flow path. The main damper provided is controlled to be larger than the cross-sectional area of the combustion flow path corresponding to the second combustion state.

好ましくは、前記送風機は複数の吸込口を備え、これらの吸込口の少なくとも1つに前記ダンパを備えている。   Preferably, the blower includes a plurality of suction ports, and at least one of the suction ports includes the damper.

また、本発明によれば、燃焼室と、燃焼室内を加熱するバーナと、燃焼用空気路を介して燃焼用空気を前記バーナへ供給する送風機と、前記燃焼室から排ガスを導出する排ガス路と、前記排ガス路と前記送風機の吸込口を接続する排ガス再循環路とを備え、前記バーナを第1燃焼状態と当該第1燃焼状態よりも燃焼量の少ない第2燃焼状態の少なくとも2つの燃焼状態で燃焼させるボイラの制御方法であって、前記第2燃焼状態に移る際、前記送風機の吸込口に設けられたダンパにより、前記送風機への外気の取込量を維持できるようにしたまま、前記送風機の吸込口の開口面積を小さくする、ボイラの制御方法が提供される。   According to the present invention, a combustion chamber, a burner for heating the combustion chamber, a blower for supplying combustion air to the burner via a combustion air passage, and an exhaust gas passage for exhausting exhaust gas from the combustion chamber, And an exhaust gas recirculation path connecting the exhaust gas passage and the blower suction port, and the burner has at least two combustion states of a first combustion state and a second combustion state having a smaller combustion amount than the first combustion state. In the control method of the boiler to be burned in, when moving to the second combustion state, the damper provided in the suction port of the blower, while maintaining the intake amount of the outside air to the blower, Provided is a boiler control method for reducing the opening area of a suction port of a blower.

好ましくは、前記第2燃焼状態に移る際、前記送風機のインバータの回転数を前記第2燃焼状態に対応する回転数よりも高くする制御と、前記燃焼用空気路の断面積を前記燃焼用空気路に設けられたメインダンパにより大きくする制御の少なくとも一方を行う。   Preferably, when shifting to the second combustion state, the control is performed such that the rotational speed of the inverter of the blower is higher than the rotational speed corresponding to the second combustion state, and the cross-sectional area of the combustion air passage is set to the combustion air. At least one of the enlargement control is performed by a main damper provided on the road.

本発明の実施形態に係るボイラの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the boiler which concerns on embodiment of this invention. 図1のボイラの送風機及び排ガス再循環路を同図のX−X断面で切断した時の断面図である。It is sectional drawing when the blower and exhaust gas recirculation path of the boiler of FIG. 1 are cut | disconnected by the XX cross section of the same figure. 図1のボイラの制御を示すブロック図である。It is a block diagram which shows control of the boiler of FIG. 本発明の変形例に係るボイラの送風機及び排ガス再循環路を図1のX−X断面で切断した時の断面図である。It is sectional drawing when the blower and exhaust gas recirculation path of the boiler which concern on the modification of this invention are cut | disconnected by the XX cross section of FIG. 本発明の他の変形例に係るボイラの送風機及び排ガス再循環路を図1のX−X断面で切断した時の断面図である。It is sectional drawing when the air blower and exhaust gas recirculation path of the boiler which concerns on the other modification of this invention are cut | disconnected in the XX cross section of FIG. 本発明の実施形態に係るボイラの制御方法の実施例を比較して示す図である。It is a figure which compares and shows the Example of the control method of the boiler which concerns on embodiment of this invention.

以下、本発明の実施形態について説明する。以下に示す実施形態中で示した各種特徴事項は、互いに組み合わせ可能である。また、各特徴について独立して発明が成立する。   Hereinafter, embodiments of the present invention will be described. Various characteristic items shown in the following embodiments can be combined with each other. The invention is established independently for each feature.

<ボイラ>
本発明の第1実施形態に係るボイラ1は、図1の縦断面の説明図に示すように、多数の水管2を備えた燃焼室3と、水管2を加熱するバーナ4と、バーナ4に燃焼用空気を供給する送風機5と、バーナ4に燃料ガスを供給するガス供給路6と、水管2に給水を行う給水路7と、燃焼室3から排ガスを導出する排ガス路8と、排ガス路8と送風機5の吸込口51(図2参照)を接続する排ガス再循環路9と、ボイラ1を制御する制御手段10(図3参照)とを備える。
<Boiler>
The boiler 1 according to the first embodiment of the present invention includes a combustion chamber 3 having a large number of water pipes 2, a burner 4 for heating the water pipes 2, and a burner 4 as shown in the explanatory view of the longitudinal section of FIG. A blower 5 for supplying combustion air, a gas supply path 6 for supplying fuel gas to the burner 4, a water supply path 7 for supplying water to the water pipe 2, an exhaust gas path 8 for extracting exhaust gas from the combustion chamber 3, and an exhaust gas path 8 and an exhaust gas recirculation path 9 connecting the suction port 51 (see FIG. 2) of the blower 5 and a control means 10 (see FIG. 3) for controlling the boiler 1.

燃焼室3は、バーナ4によって燃料が燃焼して生成される熱を吸熱する缶体であり、下部管寄せ11と上部管寄せ12との間を多数の水管2で接続して構成される。水管2内には、給水路7を介して下部管寄せ11から適宜給水されており、水管2内の水位が維持される。また、燃焼室3は、一端部(図1の左側)にバーナ4が設けられ、他端部(図1の右側)に排ガス路8が接続される。 Combustion chamber 3, the can body which absorbs the heat of the fuel by the burner 4 is produced by burning is not less, and connects between the lower header 11 and upper header 12 with a number of water pipes 2 . In the water pipe 2, water is appropriately supplied from the lower header 11 through the water supply path 7, and the water level in the water pipe 2 is maintained. The combustion chamber 3 is provided with a burner 4 at one end (left side in FIG. 1), and an exhaust gas path 8 is connected to the other end (right side in FIG. 1).

各水管2内の水は、バーナ4からの燃焼ガスによって加熱され、蒸気として上部管寄せ12から気水分離器(図示せず)を介して蒸気路13へ導出される。蒸気は、蒸気ヘッダなどを介して各種の蒸気使用設備へ送られる。一方、バーナ4による燃焼ガスは、各水管2内の水と熱交換した後、排ガスとして排ガス路8から排出される。なお、排ガス路8には、余熱によって給水を予加熱するエコノマイザ(図示せず)を設けても良い。   The water in each water pipe 2 is heated by the combustion gas from the burner 4 and is led out as steam from the upper header 12 to the steam path 13 via a steam separator (not shown). Steam is sent to various steam-using facilities via a steam header or the like. On the other hand, the combustion gas produced by the burner 4 exchanges heat with the water in each water pipe 2 and is then discharged from the exhaust gas path 8 as exhaust gas. Note that the exhaust gas path 8 may be provided with an economizer (not shown) for preheating the feed water with residual heat.

バーナ4は、本実施形態においては予混合バーナとされ、このバーナ4には燃焼量に応じた量の燃焼用空気と燃料ガスとが、燃焼用流路14を通って供給される。燃焼用空気は、送風機5により、燃焼用流路14を介してバーナ4へ送り込まれる。   In this embodiment, the burner 4 is a premixed burner, and the burner 4 is supplied with combustion air and fuel gas in an amount corresponding to the amount of combustion through the combustion flow path 14. Combustion air is sent to the burner 4 by the blower 5 through the combustion channel 14.

送風機5は、図2に示すように、外気を吸込む2つの吸込口51,52及び燃焼用流路14に空気を送り出す吐出口53(図1参照)を備える。吸込口51には排ガス再循環路9が接続され、外気と同時に排ガス路8からの再循環ガスが取り込まれる。一方、吸込口52には、流路方向と直交回転軸周りに回転可能に、板状の吸込口ダンパ55が設けられる。吸込口52内に吸込口ダンパ55が回転可能に保持されることで、その傾き角を調整して、バーナ4へ送り出す空気流量を調整することができる。なお、吸込口ダンパ55は、制御手段10によって開閉制御を行う構成としても、手動で開閉する構成としてもよい。   As shown in FIG. 2, the blower 5 includes two suction ports 51 and 52 for sucking outside air and a discharge port 53 (see FIG. 1) for sending air to the combustion flow path 14. The exhaust gas recirculation path 9 is connected to the suction port 51, and the recirculation gas from the exhaust gas path 8 is taken in simultaneously with the outside air. On the other hand, the suction port 52 is provided with a plate-shaped suction port damper 55 so as to be rotatable about a rotation axis orthogonal to the flow path direction. The suction port damper 55 is rotatably held in the suction port 52, whereby the inclination angle of the suction port damper 55 can be adjusted and the air flow rate sent to the burner 4 can be adjusted. The inlet damper 55 may be configured to be opened and closed by the control means 10 or manually opened and closed.

また、送風機5は、図3に示すように、インバータ56及びモータ57を備える。燃焼用空気の流量はモータ57の回転数により調整され、モータ57の回転数はインバータ56の周波数により制御される。インバータ56の周波数は、制御手段10からの駆動信号により制御される。なお、これに代えて又はこれに加えて、燃焼用流路14に設けられたメインダンパ15によって燃焼用空気の流量を調整してもよい。   Moreover, the air blower 5 is provided with the inverter 56 and the motor 57, as shown in FIG. The flow rate of the combustion air is adjusted by the rotational speed of the motor 57, and the rotational speed of the motor 57 is controlled by the frequency of the inverter 56. The frequency of the inverter 56 is controlled by a drive signal from the control means 10. Instead of or in addition to this, the flow rate of the combustion air may be adjusted by the main damper 15 provided in the combustion flow path 14.

一方、燃料ガスは、図1に示すように、ガス供給路6から供給される。燃料ガスは、燃焼用流路14内において噴出され、送風機5からの空気に混合されて、バーナ4へ送られる。ガス供給路6には、燃焼ガスの供給と供給の停止を切り替える遮蔽弁61が設けられ、遮蔽弁61より下流には流量調整弁62が設けられる。燃焼量に応じて、制御手段10からの駆動信号により流量調整弁62の開度を変更することで、燃焼量に応じた空気比に調整することができる。   On the other hand, the fuel gas is supplied from a gas supply path 6 as shown in FIG. The fuel gas is ejected in the combustion channel 14, mixed with the air from the blower 5, and sent to the burner 4. The gas supply path 6 is provided with a shielding valve 61 for switching between supply and stop of combustion gas, and a flow rate adjusting valve 62 is provided downstream of the shielding valve 61. By changing the opening degree of the flow rate adjusting valve 62 according to the drive signal from the control means 10 according to the combustion amount, it is possible to adjust the air ratio according to the combustion amount.

排ガス再循環路9は、上述したように排ガス路8と送風機5の吸込口51を接続することで、排ガス路8を通って排出される排ガスの一部を燃焼用流路14側へと送り込み、燃焼室3内へ再循環させるものである。このように、酸素濃度の低下した排ガスを吸気側に再循環させることでバーナ4における燃焼温度が低下し、その結果、排ガスに含まれるNOx濃度を低下させることが可能となる。なお、排ガス再循環路9には再循環調整ダンパ91が設置され、再循環調整ダンパ91は制御手段10によって開閉が制御される。   As described above, the exhaust gas recirculation path 9 connects a part of the exhaust gas discharged through the exhaust gas path 8 to the combustion channel 14 side by connecting the exhaust gas path 8 and the suction port 51 of the blower 5. This is recirculated into the combustion chamber 3. Thus, by recirculating the exhaust gas whose oxygen concentration is reduced to the intake side, the combustion temperature in the burner 4 is reduced, and as a result, the NOx concentration contained in the exhaust gas can be reduced. A recirculation adjustment damper 91 is installed in the exhaust gas recirculation path 9, and the recirculation adjustment damper 91 is controlled to be opened and closed by the control means 10.

制御手段10は、コントロールユニットとして構成され、送風機5による燃焼用空気の供給量の制御、流量調整弁62による燃焼ガスの供給量の制御等、ボイラ1の各部の制御を行う。この際、例えば、燃焼用空気と燃料ガスの比を設定した比とする制御が行われる。そして、制御手段10の制御により、ボイラ1が発生させる蒸気量や蒸気圧力が調整される。   The control means 10 is configured as a control unit, and controls each part of the boiler 1 such as control of the supply amount of combustion air by the blower 5 and control of the supply amount of combustion gas by the flow rate adjusting valve 62. At this time, for example, control is performed so that the ratio of combustion air and fuel gas is set. The steam amount and steam pressure generated by the boiler 1 are adjusted by the control of the control means 10.

<ボイラの動作>
次に、本実施形態に係るボイラ1の動作を説明する。ボイラ1は、制御手段10が各部の動作を制御することで、各動作を実現する。制御手段10は、送風機5、ガス供給路6の遮蔽弁61及び流量調整弁62を駆動してバーナ4での燃焼を開始する。ボイラ1は、バーナ4で燃料を燃焼して火炎を形成し、燃料の燃焼で生成される燃焼ガスで水管2を加熱し、蒸気を生成する。
<Operation of boiler>
Next, the operation of the boiler 1 according to this embodiment will be described. The boiler 1 implement | achieves each operation | movement, when the control means 10 controls the operation | movement of each part. The control means 10 drives the blower 5, the shielding valve 61 of the gas supply path 6 and the flow rate adjustment valve 62 to start combustion in the burner 4. The boiler 1 burns fuel with a burner 4 to form a flame, heats the water pipe 2 with combustion gas generated by the combustion of the fuel, and generates steam.

ここで、本実施形態のボイラ1は、高燃焼状態(特許請求の範囲における第1燃焼状態)及び低燃焼状態(特許請求の範囲における第2燃焼状態)の2つの燃焼モードで制御するよう構成される。低燃焼は、燃焼量が高燃焼の燃焼量よりも低い燃焼のことであり、高燃焼の時の燃料の供給量を100%とすると、低燃焼の時の供給量は、例えば50%に設定される。なお、以下に説明する燃料供給態様は、制御手段10による送風機5及び流量調整弁62の制御等によって実現される。   Here, the boiler 1 of this embodiment is configured to be controlled in two combustion modes: a high combustion state (first combustion state in the claims) and a low combustion state (second combustion state in the claims). Is done. Low combustion is combustion where the amount of combustion is lower than that of high combustion. When the amount of fuel supplied during high combustion is 100%, the amount supplied during low combustion is set to 50%, for example. Is done. The fuel supply mode described below is realized by controlling the blower 5 and the flow rate adjusting valve 62 by the control means 10.

まず、高燃焼時においては、ガス供給路6の流量調整弁62を開にして燃料ガスをバーナ4に供給するとともに、上記燃料ガスの供給量に応じた燃料用空気が供給されるよう、送風機5の回転数を制御する。ここで、高燃焼時には、送風機5の吸込口ダンパ55及び排ガス再循環路9の再循環調整ダンパ91はともに開いた状態とする。これにより、高燃焼時に必要な燃焼用空気を外気及び排ガスから得ることができる。なお、燃焼用空気量に対する排ガス量の割合を、NOxの発生が最も少なくなる所定の割合とするため、吸込口ダンパ55又は再循環調整ダンパ91の開度を調整してもよい。   First, at the time of high combustion, the flow rate adjusting valve 62 of the gas supply path 6 is opened to supply the fuel gas to the burner 4, and the blower is supplied with fuel air corresponding to the supply amount of the fuel gas. 5 is controlled. Here, at the time of high combustion, the inlet damper 55 of the blower 5 and the recirculation adjustment damper 91 of the exhaust gas recirculation path 9 are both opened. Thereby, the combustion air required at the time of high combustion can be obtained from outside air and exhaust gas. In order to set the ratio of the amount of exhaust gas to the amount of combustion air to a predetermined ratio that minimizes the generation of NOx, the opening degree of the suction damper 55 or the recirculation adjustment damper 91 may be adjusted.

次に、低燃焼時においては、ガス供給路6の流量調整弁62の開度を調整して燃料ガスの供給量を絞り、これに応じて、送風機5の回転数を低下させて燃料用空気の供給量を調整する。この時、排ガス再循環路9の再循環調整ダンパを絞ることで再循環する排ガスを調整し、燃焼用空気量に対する排ガス量の割合を高燃焼時と低燃焼時とで同じになるように調整する。また、低燃焼時には、送風機5の吸込口ダンパ55も絞る。これにより、送風機5の2つの吸込口51,55全体での開口面積が、高燃焼時よりも小さくなる。   Next, at the time of low combustion, the opening amount of the flow rate adjustment valve 62 of the gas supply path 6 is adjusted to reduce the supply amount of the fuel gas, and the rotational speed of the blower 5 is reduced accordingly, and the fuel air Adjust the supply amount. At this time, the exhaust gas to be recirculated is adjusted by restricting the recirculation adjustment damper of the exhaust gas recirculation path 9, and the ratio of the exhaust gas amount to the combustion air amount is adjusted to be the same at high combustion and low combustion. To do. Further, at the time of low combustion, the inlet damper 55 of the blower 5 is also throttled. Thereby, the opening area in the two suction inlets 51 and 55 of the air blower 5 becomes smaller than the time of high combustion.

ここで、低燃焼時は、高燃焼時と比較して排ガス再循環路9の排ガス路8側と燃焼用流路14側の差圧が小さくなるため、上述したように、排ガス路8のドラフト変動によって再循環する排ガス量が大きく変動することになる。具体的には、排ガスの非圧縮性を仮定し、EGR量をQ、空気の密度をρ、排ガス路の断面積をA、差圧をΔPとすると、
が成り立っている。そして、排ガス路におけるドラフト変動による変動圧をPとし、これを考慮したEGR量をQ'とすると、
となることから、差圧ΔPが小さい場合に、ドラフト変動による圧力PのEGR量Q'への影響が大きくなるのである。なお、排ガス路8のドラフト変動の要因としては、季節変動による外気温の変化や燃焼開始時と燃焼中の燃焼室内の温度の変化によるもの、さらには、ボイラ室に複数のボイラ1を設置して複数のボイラ1からの排気ガスをまとめて排出する場合の、他のボイラの影響等が挙げられる。
Here, at the time of low combustion, the differential pressure between the exhaust gas recirculation path 9 side and the combustion flow path 14 side of the exhaust gas recirculation path 9 is smaller than that at the time of high combustion. The amount of exhaust gas recirculated greatly fluctuates due to the fluctuation. Specifically, assuming the incompressibility of the exhaust gas, if the EGR amount is Q, the air density is ρ, the cross-sectional area of the exhaust gas path is A, and the differential pressure is ΔP,
Is true. And, if the fluctuation pressure due to the draft fluctuation in the exhaust gas passage is P, and the EGR amount considering this is Q ′,
Therefore, when the differential pressure ΔP is small, the influence of the pressure P on the EGR amount Q ′ due to the draft fluctuation becomes large. The draft fluctuations in the exhaust gas passage 8 are caused by changes in the outside air temperature due to seasonal fluctuations, changes in the temperature of the combustion chamber at the start of combustion and during combustion, and a plurality of boilers 1 are installed in the boiler chamber. For example, the influence of other boilers when exhaust gases from a plurality of boilers 1 are exhausted collectively.

この点、従来のボイラでは、低燃焼時に燃焼用流路に設けられたダンパ(2次側のダンパ)を絞ることによって空気供給量を削減しており、この方法では、供給する燃焼用空気量に対する再循環による排ガス量の割合の変動を抑えることができなかった。   In this regard, in the conventional boiler, the amount of air supply is reduced by restricting the damper (secondary damper) provided in the combustion flow path at the time of low combustion. The fluctuation of the ratio of the amount of exhaust gas due to recirculation with respect to was not able to be suppressed.

これに対して、本実施形態に係るボイラ1では、送風機5の吸込口52に設けられた吸込口ダンパ55(1次側のダンパ)を絞って吸込口52からの外気の吸込みを制限することにより空気を流れにくくするとともに、インバータ56により送風機5の回転数を上げる制御を行っている。これにより、送風機5が排ガス再循環路9の空気を吸込む力が増加し、排ガス路側と燃焼用流路側の差圧が増加して、EGR量の変動を低減することが可能となり、燃焼性能を安定させることが可能となっている。なお、高燃焼状態において送風機5の吸込口ダンパ55を開いた状態とするのは、吸込口ダンパ55を絞ってしまうと送風機の負荷(回転数及び回転トルク)が限界を超え、必要な燃焼用空気量を吐出することができないからである。   On the other hand, in the boiler 1 according to the present embodiment, the intake damper 55 (primary damper) provided in the intake port 52 of the blower 5 is throttled to restrict the intake of outside air from the intake port 52. Thus, the air is made difficult to flow, and the inverter 56 controls the rotation speed of the blower 5 to be increased. As a result, the force with which the blower 5 sucks the air in the exhaust gas recirculation path 9 increases, the differential pressure between the exhaust gas path side and the combustion flow path side increases, and the fluctuation of the EGR amount can be reduced, and the combustion performance is reduced. It is possible to stabilize. Note that the intake port damper 55 of the blower 5 is opened in the high combustion state because the load (the number of rotations and the rotation torque) of the blower exceeds the limit when the intake port damper 55 is throttled, and the necessary combustion is required. This is because the amount of air cannot be discharged.

なお、送風機5の回転数を上げる制御とともに、またはこの制御に代えて、メインダンパ15により燃焼用流路14の断面積を大きくする制御を行なっても良い。図6に、従来のボイラと本実施形態に係るボイラ1の実施例1〜実施例3の比較を示す。従来例及び実施例1〜実施例3において、送風機の吐出量は略同一となっている。一方、実施例1では、低燃焼状態において送風機5の回転数を従来例よりも高回転としており、実施例2では、低燃焼状態においてメインダンパ15の開度を従来例よりも大きくしている。ここで、従来例における「低燃焼状態の送風機回転数」が、特許請求の範囲における「第2燃焼状態に対応する回転数」である。また、実施例3では、低燃焼状態において送風機5の回転数を従来例よりも高回転とするとともに、メインダンパ15の開度も従来例よりも大きくしている。このような実施例1〜実施例3の制御によって、低燃焼状態において従来例と比較してEGR量の変動を低減させることが可能となる。   In addition, with the control which raises the rotation speed of the air blower 5, or it replaces with this control, you may perform control which enlarges the cross-sectional area of the combustion flow path 14 with the main damper 15. FIG. FIG. 6 shows a comparison between Examples 1 to 3 of the conventional boiler and the boiler 1 according to the present embodiment. In the conventional example and Examples 1 to 3, the discharge amount of the blower is substantially the same. On the other hand, in the first embodiment, the rotational speed of the blower 5 is set to be higher than that in the conventional example in the low combustion state, and in the second embodiment, the opening degree of the main damper 15 is set larger than that in the conventional example in the low combustion state. . Here, “the rotational speed of the blower in the low combustion state” in the conventional example is “the rotational speed corresponding to the second combustion state” in the claims. Further, in the third embodiment, the rotational speed of the blower 5 is set to be higher than that of the conventional example in the low combustion state, and the opening degree of the main damper 15 is also made larger than that of the conventional example. Such control of the first to third embodiments makes it possible to reduce fluctuations in the EGR amount in the low combustion state as compared with the conventional example.

なお、本発明は、以下の態様でも実施可能である。
・上記実施形態では、ボイラ1は高燃焼及び低燃焼の2つの燃焼モードで制御される構成であったが、本発明を3つ以上の燃焼モードで制御される多段階値制御ボイラや、燃焼量を連続的に制御可能な比例ボイラに適用することも可能である。これらの場合は、高燃焼時にのみ吸込口ダンパ55を開き、低燃焼時には吸込口ダンパ55を閉じる構成とすることが好ましい。あるいは、ある燃焼モード以上では吸込口ダンパ55を開き、当該燃焼モード以下で運転するときには吸込口ダンパ55を閉じる構成とする事も考えられる。さらには、複数の燃焼モードに応じて吸込口ダンパ55の開度を多段階に調整する構成とすることも可能である。
・上記実施形態では、図2に示すように、送風機5の2つの吸込口51,52が互いに垂直な方向から外気を吸込む構成となっていたが、図4に示すように、2つの吸込口51,52を水平に配置し、これらの吸込口51,52が同じ方向から外気を吸込む構成とすることも可能である。
・また、上記実施形態では、2つの吸込口51,52のうち吸込口51に排ガス再循環路9が接続され、吸込口52に吸込口ダンパ55が設けられていたが、図5に示すように、送風機5がただ1つの吸込口51を備え、この吸込口51に排ガス再循環路9を接続するとともに、吸込口ダンパ55を設置する構成とすることもできる。この構成の場合、排ガス再循環路9は、吸込口ダンパ55よりも下流側、すなわち吐出口53側に接続される。なお、送風機に3つ以上の吸込口を設けることも可能である。
・上記実施形態のボイラ1は、送風機5の空気取込量を制限する手段として吸込口ダンパ55を備えていたが、ダンパに代えて、電磁弁を備える構成とすることも可能である。
In addition, this invention can be implemented also with the following aspects.
In the above embodiment, the boiler 1 is configured to be controlled in two combustion modes of high combustion and low combustion, but the present invention is a multi-stage value control boiler that is controlled in three or more combustion modes, It is also possible to apply to a proportional boiler whose quantity can be controlled continuously. In these cases, it is preferable that the inlet damper 55 is opened only during high combustion, and the inlet damper 55 is closed during low combustion. Alternatively, it is also conceivable that the inlet damper 55 is opened above a certain combustion mode, and the inlet damper 55 is closed when operating below the combustion mode. Furthermore, it is also possible to adopt a configuration in which the opening degree of the inlet damper 55 is adjusted in multiple stages according to a plurality of combustion modes.
In the above embodiment, as shown in FIG. 2, the two suction ports 51 and 52 of the blower 5 are configured to suck outside air from directions perpendicular to each other, but as shown in FIG. It is also possible to arrange 51 and 52 horizontally and to have these suction ports 51 and 52 suck in outside air from the same direction.
In the above embodiment, the exhaust gas recirculation path 9 is connected to the suction port 51 out of the two suction ports 51 and 52, and the suction port damper 55 is provided in the suction port 52. However, as shown in FIG. In addition, the blower 5 may include only one suction port 51, and the exhaust gas recirculation path 9 may be connected to the suction port 51 and the suction port damper 55 may be installed. In the case of this configuration, the exhaust gas recirculation path 9 is connected to the downstream side of the suction port damper 55, that is, the discharge port 53 side. In addition, it is also possible to provide three or more suction ports in the blower.
-Although the boiler 1 of the said embodiment was provided with the suction inlet damper 55 as a means to restrict | limit the air intake amount of the air blower 5, it can replace with a damper and can be set as the structure provided with an electromagnetic valve.

なお、この発明は、上記実施形態に限定されるものではなく、発明の要旨の範囲内において種々の変形や変更が可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation and change are possible within the range of the summary of invention.

1:ボイラ、3:燃焼室、4:バーナ、5:送風機、8:排ガス路、9:排ガス再循環路、10:制御手段、14:燃焼用流路、15:メインダンパ、51,52:吸込口、55:吸込口ダンパ、56:インバータ、91:再循環調整ダンパ   1: boiler, 3: combustion chamber, 4: burner, 5: blower, 8: exhaust gas passage, 9: exhaust gas recirculation passage, 10: control means, 14: combustion passage, 15: main damper, 51, 52: Suction port, 55: Suction port damper, 56: Inverter, 91: Recirculation adjustment damper

Claims (5)

燃焼室と、燃焼室内を加熱するバーナと、燃焼用流路を介して燃焼用空気を前記バーナへ供給する送風機と、前記燃焼室から排ガスを導出する排ガス路と、前記排ガス路と前記送風機の吸込口を接続する排ガス再循環路と、前記バーナを第1燃焼状態と当該第1燃焼状態よりも燃焼量の少ない第2燃焼状態の少なくとも2つの燃焼状態で燃焼させるよう制御する制御手段と、を備えたボイラであって、
前記送風機の吸込口にダンパを備え、前記第2燃焼状態に移る際、前記送風機による外気の取込量を維持できるようにしたまま、前記ダンパにより前記送風機の吸込口の開口面積を小さくする、ボイラ。
A combustion chamber, a burner that heats the combustion chamber, a blower that supplies combustion air to the burner via a combustion flow path, an exhaust gas path that leads exhaust gas from the combustion chamber, and the exhaust gas path and the blower An exhaust gas recirculation path connecting the suction port, and control means for controlling the burner to burn in at least two combustion states of a first combustion state and a second combustion state having a smaller combustion amount than the first combustion state; A boiler with
When the damper of the blower is provided with a damper and the second combustion state is entered, the opening area of the suction port of the blower is reduced by the damper while maintaining the amount of outside air taken in by the blower. boiler.
前記第2燃焼状態に移る際、前記制御手段は、前記送風機のインバータの回転数を前記第2燃焼状態に対応する回転数よりも高くする制御及び/又は、前記燃焼用流路に設けられたメインダンパにより、前記第2燃焼状態に対応する前記燃焼用流路の断面積より大きくする制御を行う、請求項1に記載のボイラ。   When moving to the second combustion state, the control means is provided in the control and / or the combustion flow path for making the rotation speed of the inverter of the blower higher than the rotation speed corresponding to the second combustion state. The boiler according to claim 1, wherein the main damper performs control to be larger than a cross-sectional area of the combustion flow path corresponding to the second combustion state. 前記送風機は複数の吸込口を備え、これらの吸込口の少なくとも1つに前記ダンパを備えている、請求項1または請求項2に記載のボイラ。   The boiler according to claim 1, wherein the blower includes a plurality of suction ports, and the damper is provided in at least one of the suction ports. 燃焼室と、燃焼室内を加熱するバーナと、燃焼用空気路を介して燃焼用空気を前記バーナへ供給する送風機と、前記燃焼室から排ガスを導出する排ガス路と、前記排ガス路と前記送風機の吸込口を接続する排ガス再循環路とを備え、前記バーナを第1燃焼状態と当該第1燃焼状態よりも燃焼量の少ない第2燃焼状態の少なくとも2つの燃焼状態で燃焼させるボイラの制御方法であって、
前記第2燃焼状態に移る際、前記送風機の吸込口に設けられたダンパにより、前記送風機への外気の取込量を維持できるようにしたまま、前記送風機の吸込口の開口面積を小さくする、ボイラの制御方法。
A combustion chamber; a burner that heats the combustion chamber; a blower that supplies combustion air to the burner via a combustion air passage; an exhaust passage that extracts exhaust gas from the combustion chamber; and the exhaust passage and the blower An exhaust gas recirculation path connected to the suction port, wherein the burner is burned in at least two combustion states of a first combustion state and a second combustion state having a smaller combustion amount than the first combustion state. There,
When moving to the second combustion state, the damper provided at the suction port of the blower reduces the opening area of the suction port of the blower while maintaining the amount of outside air taken into the blower. Boiler control method.
前記第2燃焼状態に移る際、前記送風機のインバータの回転数を前記第2燃焼状態に対応する回転数よりも高くする制御と、前記燃焼用空気路の断面積を前記燃焼用空気路に設けられたメインダンパにより大きくする制御の少なくとも一方を行う、請求項4に記載のボイラの制御方法。   When shifting to the second combustion state, the combustion air passage is provided with a control for making the rotation speed of the inverter of the blower higher than the rotation speed corresponding to the second combustion state, and a cross-sectional area of the combustion air passage. The boiler control method according to claim 4, wherein at least one of the control to be increased by the main damper is performed.
JP2016088209A 2016-04-26 2016-04-26 Boiler and boiler control method Active JP6711112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088209A JP6711112B2 (en) 2016-04-26 2016-04-26 Boiler and boiler control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088209A JP6711112B2 (en) 2016-04-26 2016-04-26 Boiler and boiler control method

Publications (2)

Publication Number Publication Date
JP2017198380A true JP2017198380A (en) 2017-11-02
JP6711112B2 JP6711112B2 (en) 2020-06-17

Family

ID=60239188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088209A Active JP6711112B2 (en) 2016-04-26 2016-04-26 Boiler and boiler control method

Country Status (1)

Country Link
JP (1) JP6711112B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118358A (en) * 2019-01-23 2020-08-06 三浦工業株式会社 Hydrogen combustion boiler device
JP2020118359A (en) * 2019-01-23 2020-08-06 三浦工業株式会社 Boiler device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011008A (en) * 1983-07-01 1985-01-21 Ebara Corp Combustion device for heater
JPH06193821A (en) * 1992-12-24 1994-07-15 Ebara Corp Low-nox boiler
JPH09170711A (en) * 1995-12-18 1997-06-30 Kawaju Reinetsu Kogyo Kk Nitrogen oxide reducing method and nitrogen oxide reducing device for oil-burning type absorption refrigerating device
JPH1130405A (en) * 1997-07-08 1999-02-02 Samson Co Ltd Boiler to regulate combustion exhaust gas circulation amount
JPH11148606A (en) * 1997-11-14 1999-06-02 Samson Co Ltd Boiler capable of controlling combustion waste gas circulation amount
JP2013088024A (en) * 2011-10-18 2013-05-13 Miura Co Ltd Heat medium boiler
JP2015087075A (en) * 2013-10-31 2015-05-07 株式会社日本サーモエナー Exhaust gas recirculation/combustion control method for equipment equipped with combustion apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6011008A (en) * 1983-07-01 1985-01-21 Ebara Corp Combustion device for heater
JPH06193821A (en) * 1992-12-24 1994-07-15 Ebara Corp Low-nox boiler
JPH09170711A (en) * 1995-12-18 1997-06-30 Kawaju Reinetsu Kogyo Kk Nitrogen oxide reducing method and nitrogen oxide reducing device for oil-burning type absorption refrigerating device
JPH1130405A (en) * 1997-07-08 1999-02-02 Samson Co Ltd Boiler to regulate combustion exhaust gas circulation amount
JPH11148606A (en) * 1997-11-14 1999-06-02 Samson Co Ltd Boiler capable of controlling combustion waste gas circulation amount
JP2013088024A (en) * 2011-10-18 2013-05-13 Miura Co Ltd Heat medium boiler
JP2015087075A (en) * 2013-10-31 2015-05-07 株式会社日本サーモエナー Exhaust gas recirculation/combustion control method for equipment equipped with combustion apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118358A (en) * 2019-01-23 2020-08-06 三浦工業株式会社 Hydrogen combustion boiler device
JP2020118359A (en) * 2019-01-23 2020-08-06 三浦工業株式会社 Boiler device
JP7135885B2 (en) 2019-01-23 2022-09-13 三浦工業株式会社 Hydrogen-fired boiler equipment
JP7275601B2 (en) 2019-01-23 2023-05-18 三浦工業株式会社 boiler equipment

Also Published As

Publication number Publication date
JP6711112B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
CA2824674C (en) Separate flow path type of air-gas mixing device
JP6042558B2 (en) Combustion device
JP5846264B1 (en) Water heater
JP6711112B2 (en) Boiler and boiler control method
JP6247503B2 (en) Exhaust gas recirculation combustion control method for equipment equipped with a combustion device
JP5868270B2 (en) Combustion method of composite tubular flame burner and composite tubular flame burner
KR102312889B1 (en) Gas Burner
JP6485790B2 (en) boiler
JP2023068693A (en) Combustion facility
TWI415947B (en) Top burner hot air stove
JP2001343104A (en) Heating equipment and method for operating heating furnace
WO2021029028A1 (en) Combustible waste blowing device and method for operating same
JP6488550B2 (en) boiler
JP5903828B2 (en) Heating medium boiler
JP2007101129A (en) Heat storage type burner device and its operation method
JP2020098069A (en) Boiler and control method for the same
JP6102350B2 (en) boiler
WO2013046733A1 (en) Heat medium boiler
JP5767075B2 (en) Radiant tube burner and operation method thereof
JP2020098071A (en) Boiler and control method for the same
JP2022181523A (en) boiler
JP2023048282A (en) Premixing device, and combustion device and hot water device including the same
KR100880576B1 (en) Recycling system for reducing the nox contained in the combustion gas
JP2020098070A (en) Boiler and control method for the same
JP2023034570A (en) boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6711112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250