JP2017197459A - Method for producing conjugated diene compound and dehydration catalyst of allyl-type unsaturated alcohol - Google Patents

Method for producing conjugated diene compound and dehydration catalyst of allyl-type unsaturated alcohol Download PDF

Info

Publication number
JP2017197459A
JP2017197459A JP2016088602A JP2016088602A JP2017197459A JP 2017197459 A JP2017197459 A JP 2017197459A JP 2016088602 A JP2016088602 A JP 2016088602A JP 2016088602 A JP2016088602 A JP 2016088602A JP 2017197459 A JP2017197459 A JP 2017197459A
Authority
JP
Japan
Prior art keywords
catalyst
conjugated diene
diene compound
group
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016088602A
Other languages
Japanese (ja)
Other versions
JP6684641B2 (en
Inventor
慎也 林
Shinya Hayashi
慎也 林
季弘 木村
Suehiro Kimura
季弘 木村
真幸 吉村
Masayuki Yoshimura
真幸 吉村
吉邦 奥村
Yoshikuni Okumura
吉邦 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2016088602A priority Critical patent/JP6684641B2/en
Publication of JP2017197459A publication Critical patent/JP2017197459A/en
Application granted granted Critical
Publication of JP6684641B2 publication Critical patent/JP6684641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst for efficiently producing a corresponding conjugated diene compound from an allyl-type unsaturated alcohol raw material and to provide a method for producing a conjugated diene compound.SOLUTION: There is provided a method for producing a conjugated diene compound represented by the formula (3) by dehydration reaction using an allyl-type unsaturated alcohol as a raw material in the presence of a dehydration catalyst, wherein the dehydration catalyst contains an oxide of at least one metal M selected from the group 2 metals and the group 13 metals and an oxide of silicon and the macropore volume measured by a mercury penetration method is 0.05 to 1.50 mL/g. (Rto Reach independently represent H, an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 12 carbon atoms.)SELECTED DRAWING: None

Description

本発明はアリル型不飽和アルコールを脱水し、効率的に共役ジエン化合物を製造することのできる触媒及びその触媒を用いた共役ジエン化合物の製造方法に関する。   The present invention relates to a catalyst that can efficiently produce a conjugated diene compound by dehydrating an allylic unsaturated alcohol and a method for producing a conjugated diene compound using the catalyst.

1,3−ブタジエン、イソプレン等の共役ジエンモノマーは、合成ゴム、プラスチックなどの樹脂原料としての工業的価値が高く、その効率的な製造法が求められている。   Conjugated diene monomers such as 1,3-butadiene and isoprene have high industrial value as resin raw materials such as synthetic rubbers and plastics, and their efficient production methods are required.

従来、ジエンモノマーはナフサの熱分解炉(クラッカー)の熱分解物を蒸留分離し、その一留分として得られている。しかしながら、この留分精製による方法では、ジエンモノマーを選択的に得たい場合であっても他のモノマー留分(エチレン、プロピレンなど)を含めた採算性を考慮せねばならず、工業的な製造の自由度が低かった。   Conventionally, the diene monomer is obtained as a fraction by distilling and separating a thermal decomposition product of a naphtha pyrolysis furnace (cracker). However, in this method of fraction purification, even when it is desired to selectively obtain a diene monomer, the profitability including other monomer fractions (ethylene, propylene, etc.) must be taken into consideration, and industrial production. The degree of freedom was low.

そこで、入手の容易なエチレン等の低分子量の化合物を原料としたジエンモノマーの製造方法が検討されている。例えば低級オレフィンの二量化を行った後にMo−Bi−X系触媒の存在下で酸化脱水素処理を行うことによる製造法が特許文献1及び特許文献2に開示されている。しかしこの方法では、酸素を用いることによる爆発の危険性があるほか、未反応ブテンの分離等を行うなど付帯設備が必要となり、設備全体が大型化するという問題がある。特にブテンの副生量が多い場合、1,3−ブタジエン中からブテンを除去する工程が必要となるが、ブテンは蒸留操作では除去することが困難であるため、溶媒抽出法等の多大なコスト又は設備投資が必要な精製操作が必要となる。   Therefore, a method for producing a diene monomer using a low molecular weight compound such as ethylene, which is easily available, as a raw material has been studied. For example, Patent Document 1 and Patent Document 2 disclose a production method in which a lower olefin is dimerized and then subjected to oxidative dehydrogenation in the presence of a Mo-Bi-X catalyst. However, in this method, there is a risk of explosion due to the use of oxygen, and incidental equipment such as separation of unreacted butene is required, resulting in an increase in size of the entire equipment. In particular, when the amount of butene produced as a by-product is large, a process for removing butene from 1,3-butadiene is required. However, since it is difficult to remove butene by distillation operation, a large amount of cost such as solvent extraction is required. Alternatively, a refining operation that requires capital investment is required.

別の方法として、不飽和アルコールの脱水反応による製造法があげられる。このような不飽和アルコールは、例えば特許文献3及び特許文献4に示すようなジオールの1分子脱水反応により得ることができる。しかし、ジエン生成物である1,3−ブタジエンの選択率が不十分であり、特にブテンの副生成量が多く、ブテンの分離のためには上述のような設備上の問題点を有している。   As another method, a production method by dehydration reaction of unsaturated alcohol can be mentioned. Such an unsaturated alcohol can be obtained, for example, by a one-molecule dehydration reaction of a diol as shown in Patent Document 3 and Patent Document 4. However, the selectivity of 1,3-butadiene, which is a diene product, is insufficient. Particularly, the amount of by-product of butene is large, and the above-mentioned equipment problems are necessary for the separation of butene. Yes.

別の方法として、特許文献5に記載されるようなアリル型不飽和アルコールの脱水反応による製造法があげられる。特許文献5では特定のケイバン比のシリカアルミナ触媒を用いてα,β−脂肪族不飽和アルコールを脱水して、共役ジエンを生成させている。実施例ではクロチアルコールの脱水反応により1,3−ブタジエンを製造しているが、その選択率は94〜96%にとどまっている。副生物の1−ブテンについての記述はない。また、複数種のα,β−不飽和アルコールを同時に脱水して共役ジエン化合物を得る可能性の記載もない。本反応の原料であるアリル型不飽和アルコール及び生成物である共役ジエンモノマーは重合性化合物である。また、副生物であるブテン等も重合性を示すほか、クロトンアルデヒドやメチルビニルケトンに代表される脱水素副生物は特に高い重合性を有する。そのため、本脱水反応は本質的にコークの生成が起こりやすい反応であり、触媒にコークが付着することが触媒失活の主要因となる。多量のコークの付着に起因して触媒寿命(連続使用時間)が短いこと、及び共役ジエンモノマーの消費による選択率低下が起こることが本脱水反応の大きな問題点として挙げられる。   As another method, there is a production method by dehydration reaction of allyl unsaturated alcohol as described in Patent Document 5. In Patent Document 5, α, β-aliphatic unsaturated alcohol is dehydrated using a silica alumina catalyst having a specific caivan ratio to produce a conjugated diene. In the examples, 1,3-butadiene is produced by dehydration reaction of clothyalcohol, but the selectivity is only 94 to 96%. There is no description of 1-butene as a by-product. In addition, there is no description of the possibility of obtaining a conjugated diene compound by simultaneously dehydrating a plurality of types of α, β-unsaturated alcohols. The allylic unsaturated alcohol that is the raw material of this reaction and the conjugated diene monomer that is the product are polymerizable compounds. In addition, butene as a by-product exhibits polymerizability, and dehydrogenation by-products represented by crotonaldehyde and methyl vinyl ketone have particularly high polymerizability. For this reason, this dehydration reaction is essentially a reaction in which coke formation is likely to occur, and adhesion of coke to the catalyst is the main factor of catalyst deactivation. A major problem of this dehydration reaction is that the catalyst life (continuous use time) is short due to the adhesion of a large amount of coke and the selectivity is lowered due to consumption of the conjugated diene monomer.

このようなコークの付着により失活した触媒は、例えば空気を含むガスの流通下に触媒を高温で処理するなど、適切な再生処理を行うことにより、その性能を回復させることができるが、その為には余分な設備、工程、費用などが必要となる。したがって、共役ジエン選択率がより高く、触媒の連続使用可能時間がより長い触媒が非常に望まれている。   Such a deactivated catalyst due to the adhesion of coke can be recovered in its performance by performing an appropriate regeneration treatment, for example, by treating the catalyst at a high temperature under the flow of a gas containing air. To do this, extra equipment, processes and costs are required. Therefore, a catalyst having a higher conjugated diene selectivity and a longer continuous usable time of the catalyst is highly desired.

特開2010−120933号公報JP 2010-120933 A 特開2011−006395号公報JP 2011-006395 A 特開2004−306011号公報Japanese Patent Laid-Open No. 2004-306011 特開2005−238095号公報Japanese Patent Laid-Open No. 2005-238095 特開2015−182032号公報Japanese Patent Laying-Open No. 2015-182032

本発明の課題は、アリル型不飽和アルコール原料から対応する共役ジエン化合物を効率よく製造する触媒及び共役ジエン化合物の製造方法を提供することである。   An object of the present invention is to provide a catalyst for efficiently producing a corresponding conjugated diene compound from an allylic unsaturated alcohol raw material and a method for producing the conjugated diene compound.

本発明者らは、鋭意検討を行った結果、アリル型不飽和アルコールに対し、第2族金属及び第13族金属からなる群より選択される少なくとも1種の金属Mの酸化物並びにケイ素の酸化物を含み、水銀圧入法により測定されたマクロ孔容積が0.05〜1.50mL/gである脱水触媒を作用させることにより、効率的に対応する共役ジエン化合物を製造できることを見いだし、本発明を完成させるに至った。   As a result of intensive studies, the present inventors have found that an allylic unsaturated alcohol is an oxide of at least one metal M selected from the group consisting of Group 2 metals and Group 13 metals and oxidation of silicon. It was found that the corresponding conjugated diene compound can be efficiently produced by the action of a dehydration catalyst having a macropore volume measured by mercury porosimetry of 0.05 to 1.50 mL / g. It came to complete.

すなわち本発明は以下の項目[1]〜[12]に関する。
[1]
脱水触媒の存在下、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造する方法であって、前記脱水触媒が、第2族金属及び第13族金属からなる群より選択される少なくとも1種の金属Mの酸化物並びにケイ素の酸化物を含み、水銀圧入法により測定されたマクロ孔容積が0.05〜1.50mL/gであることを特徴とする共役ジエン化合物の製造方法。

Figure 2017197459
(式中、R〜Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)
Figure 2017197459
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 2017197459
(式中、R〜Rは一般式(1)と同一のものを示す。)
[2]
前記脱水触媒の水銀圧入法により測定されたマクロ孔容積が0.16〜1.30mL/gである[1]に記載の共役ジエン化合物の製造方法。
[3]
前記脱水触媒の水銀圧入法により測定されたマクロ孔容積が0.40〜1.10mL/gである[2]に記載の共役ジエン化合物の製造方法。
[4]
前記脱水触媒の窒素ガス吸着法により測定された平均細孔径が6.0〜70.0nmであり、前記脱水触媒がマクロ孔とメソ孔の両方を有する多元細孔構造を有する[1]〜[3]のいずれかに記載の共役ジエン化合物の製造方法。
[5]
前記脱水触媒の窒素ガス吸着法により測定された平均細孔径が12.0〜40.0nmである[4]に記載の共役ジエン化合物の製造方法。
[6]
前記脱水触媒の金属Mとケイ素の原子比(M/Si)が0.001〜0.250である[1]〜[5]のいずれかに記載の共役ジエン化合物の製造方法。
[7]
前記脱水触媒の金属Mとケイ素の原子比(M/Si)が0.010〜0.050である[6]に記載の共役ジエン化合物の製造方法。
[8]
前記金属Mの少なくとも一種がAlである[1]〜[7]のいずれかに記載の共役ジエン化合物の製造方法。
[9]
前記脱水触媒がシリカアルミナである[1]〜[8]のいずれかに記載の共役ジエン化合物の製造方法。
[10]
一般式(1)及び一般式(2)のR〜Rがすべて水素原子である[1]〜[9]のいずれかに記載の共役ジエン化合物の製造方法。
[11]
一般式(1)で示されるアリル型不飽和アルコール及び一般式(2)で示されるアリル型不飽和アルコールの両方を原料とし、同時に脱水反応に供することを含む[1]〜[10]のいずれかに記載の共役ジエン化合物の製造方法。
[12]
第2族金属及び第13族金属からなる群より選択される少なくとも1種の金属Mの酸化物並びにケイ素の酸化物を含み、水銀圧入法により測定されたマクロ孔容積が0.05〜1.50mL/gであることを特徴とする、アリル型不飽和アルコールの脱水触媒。 That is, the present invention relates to the following items [1] to [12].
[1]
A method for producing a conjugated diene compound represented by general formula (3) by dehydration reaction using at least one of allyl unsaturated alcohol represented by general formula (1) or general formula (2) as a raw material in the presence of a dehydration catalyst The dehydration catalyst includes at least one metal M oxide selected from the group consisting of Group 2 metals and Group 13 metals and silicon oxide, and is measured by a mercury intrusion method. A method for producing a conjugated diene compound, wherein the pore volume is 0.05 to 1.50 mL / g.
Figure 2017197459
(In the formula, each of R 1 to R 6 independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
Figure 2017197459
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 2017197459
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
[2]
The method for producing a conjugated diene compound according to [1], wherein a macropore volume measured by a mercury intrusion method of the dehydration catalyst is 0.16 to 1.30 mL / g.
[3]
The method for producing a conjugated diene compound according to [2], wherein a macropore volume measured by a mercury intrusion method of the dehydration catalyst is 0.40 to 1.10 mL / g.
[4]
The average pore diameter measured by the nitrogen gas adsorption method of the dehydration catalyst is 6.0 to 70.0 nm, and the dehydration catalyst has a multi-pore structure having both macropores and mesopores [1] to [ 3] The manufacturing method of the conjugated diene compound in any one of.
[5]
The method for producing a conjugated diene compound according to [4], wherein the average pore diameter measured by a nitrogen gas adsorption method of the dehydration catalyst is 12.0 to 40.0 nm.
[6]
The method for producing a conjugated diene compound according to any one of [1] to [5], wherein the atomic ratio (M / Si) of metal M to silicon of the dehydration catalyst is 0.001 to 0.250.
[7]
The method for producing a conjugated diene compound according to [6], wherein the atomic ratio (M / Si) of metal M to silicon of the dehydration catalyst is 0.010 to 0.050.
[8]
The method for producing a conjugated diene compound according to any one of [1] to [7], wherein at least one of the metals M is Al.
[9]
The method for producing a conjugated diene compound according to any one of [1] to [8], wherein the dehydration catalyst is silica alumina.
[10]
Production method of general formula (1) and R 1 to R 6 are all hydrogen atoms of the general formula (2) [1] conjugated diene compound according to any one of - [9].
[11]
Any one of [1] to [10], including using both an allylic unsaturated alcohol represented by the general formula (1) and an allylic unsaturated alcohol represented by the general formula (2) as raw materials and simultaneously subjecting to a dehydration reaction A method for producing a conjugated diene compound according to claim 1.
[12]
A macropore volume measured by mercury porosimetry is at least 0.05 to 1. including at least one oxide of metal M selected from the group consisting of Group 2 metals and Group 13 metals and oxides of silicon. An allyl unsaturated alcohol dehydration catalyst, wherein the catalyst is 50 mL / g.

本発明の触媒を用いると、アリル型不飽和アルコールの脱水による共役ジエンの製造を非常に高い選択率で行うことができ、触媒寿命を大幅に伸ばすことができる。よって、工業的に価値のある共役ジエンを高い選択率で得ることができ、触媒再生頻度を抑えることで再生操作にかかる設備、工程、及び費用を大きく抑えることができる。   When the catalyst of the present invention is used, production of a conjugated diene by dehydration of an allylic unsaturated alcohol can be carried out with a very high selectivity, and the catalyst life can be greatly extended. Therefore, industrially valuable conjugated dienes can be obtained with high selectivity, and facilities, processes, and costs for the regeneration operation can be greatly suppressed by suppressing the catalyst regeneration frequency.

反応実施例1〜4及び反応比較例1におけるマクロ孔容積と触媒寿命の関係を示すグラフである。It is a graph which shows the relationship between the macropore volume and catalyst lifetime in Reaction Examples 1-4 and Reaction Comparative Example 1. 反応実施例1〜4及び反応比較例1におけるマクロ孔容積と生成物である1,3−ブタジエンの選択率の関係を示すグラフである。It is a graph which shows the relationship between the macropore volume in Reaction Examples 1-4 and the reaction comparative example 1, and the selectivity of 1, 3- butadiene which is a product.

本発明では、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造するにあたり、第2族金属及び第13族金属からなる群より選択される少なくとも1種の金属Mの酸化物並びにケイ素の酸化物を含み、水銀圧入法により測定されたマクロ孔容積が0.05〜1.50mL/gである脱水触媒を使用する。

Figure 2017197459
(式中、R〜Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)
Figure 2017197459
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 2017197459
(式中、R〜Rは一般式(1)と同一のものを示す。) In the present invention, the production of the conjugated diene compound represented by the general formula (3) using at least one allylic unsaturated alcohol represented by the general formula (1) or (2) as a raw material by a dehydration reaction, The macropore volume measured by mercury porosimetry is at least 0.05 to 1.50 mL, comprising at least one metal M oxide selected from the group consisting of Group 2 metals and Group 13 metals, and silicon oxide. / G of dehydration catalyst is used.
Figure 2017197459
(In the formula, each of R 1 to R 6 independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
Figure 2017197459
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 2017197459
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)

一般式(1)、(2)及び(3)においてR〜Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。炭素数1〜5のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、ペンチル基などが挙げられる。炭素数6〜12のアリール基としてはフェニル基、トリル基、ナフチル基などが挙げられる。R〜Rはそれぞれ独立に、水素原子、又は炭素数1〜5のアルキル基であることが好ましく、得られる共役ジエン化合物の有用性から水素原子であることがより好ましい。R〜Rは互いに同じであっても、異なっていてもよいが、すべて水素原子であることが最も好ましい。このとき、一般式(1)の化合物は2−ブテン−1−オール(クロチルアルコール)、一般式(2)の化合物は3−ブテン−2−オールとなり、生成物である一般式(3)の化合物は1,3−ブタジエンとなる。 In the general formulas (1), (2) and (3), R 1 to R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms. Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a pentyl group. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group, a tolyl group, and a naphthyl group. R 1 to R 6 are each independently preferably a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and more preferably a hydrogen atom in view of the usefulness of the resulting conjugated diene compound. R 1 to R 6 may be the same as or different from each other, but are all preferably hydrogen atoms. At this time, the compound of the general formula (1) is 2-buten-1-ol (crotyl alcohol), the compound of the general formula (2) is 3-buten-2-ol, and the product of the general formula (3) This compound is 1,3-butadiene.

本脱水反応では、一般式(1)で示されるアリル型不飽和アルコール及び一般式(2)で示されるアリル型不飽和アルコールの両方を原料とし、同時に脱水反応に供することが有利である。これにより、例えばジオールの一分子脱水反応によって得ることができる、一般式(1)で示されるアリル型不飽和アルコール及び一般式(2)で示されるアリル型不飽和アルコールの両方を含有する生成物を、これらのアリル型不飽和アルコールを互いに分離することなく脱水反応に使用することができる。脱水反応の前に上記生成物に対して必要に応じて他の成分の分離及び精製を行ってもよい。   In this dehydration reaction, it is advantageous to use both an allylic unsaturated alcohol represented by the general formula (1) and an allylic unsaturated alcohol represented by the general formula (2) as raw materials and simultaneously subject to the dehydrating reaction. Thereby, for example, a product containing both an allylic unsaturated alcohol represented by the general formula (1) and an allylic unsaturated alcohol represented by the general formula (2), which can be obtained by a monomolecular dehydration reaction of a diol. Can be used in the dehydration reaction without separating these allyl unsaturated alcohols from each other. Prior to the dehydration reaction, other components may be separated and purified as necessary.

本脱水反応においては、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコール以外の不飽和アルコールが併存していてもよい。   In the dehydration reaction, an unsaturated alcohol other than the allyl unsaturated alcohol represented by the general formula (1) or the general formula (2) may coexist.

本発明の脱水触媒は、第2族金属及び第13族金属からなる群より選択される少なくとも1種の金属Mの酸化物並びにケイ素の酸化物を含み、水銀圧入法により測定されたマクロ孔容積が0.05〜1.50mL/gである触媒である。本明細書において、「第2族金属及び第13族金属からなる群より選択される少なくとも1種の金属Mの酸化物並びにケイ素の酸化物を含む触媒」は、金属Mの酸化物とケイ素の酸化物の混合体である場合、すなわち担持型(本明細書において「表面型」ともいう。)触媒と、金属M、ケイ素及び酸素の複合酸化物の場合、すなわち複合型(本明細書において「バルク型」ともいう。)触媒の両方を包含する。   The dehydration catalyst of the present invention contains at least one metal M oxide selected from the group consisting of Group 2 metals and Group 13 metals and silicon oxide, and the macropore volume measured by mercury porosimetry. Is 0.05 to 1.50 mL / g. In the present specification, “a catalyst comprising at least one metal M oxide selected from the group consisting of Group 2 metals and Group 13 metals and silicon oxide” refers to an oxide of metal M and silicon. In the case of a mixture of oxides, that is, a supported type (also referred to as “surface type” in this specification) catalyst and a composite oxide of metal M, silicon, and oxygen, that is, a composite type (in this specification “ Also referred to as “bulk type.”) Includes both catalysts.

金属Mとしては、マグネシウム、カルシウム、ストロンチウム、バリウム等の第2族金属、及びアルミニウム、ガリウム、インジウム等の第13族金属が挙げられる。これらの金属Mは、単独で用いてもよいし、2種類以上のどの組み合わせのものでもよい。本明細書における周期表とは、IUPAC無機化学命名法改訂版(1989)の規定に基づく。金属Mとしては触媒活性及び/又は選択率の観点からマグネシウム及びアルミニウムが好ましく、アルミニウムが特に好ましい。   Examples of the metal M include Group 2 metals such as magnesium, calcium, strontium, and barium, and Group 13 metals such as aluminum, gallium, and indium. These metals M may be used alone or in any combination of two or more. The periodic table in the present specification is based on the provisions of the revised IUPAC inorganic chemical nomenclature (1989). As the metal M, magnesium and aluminum are preferable from the viewpoint of catalytic activity and / or selectivity, and aluminum is particularly preferable.

本発明の触媒の金属Mとケイ素の原子比(M/Si)は0.001〜0.250であることが好ましく、より好ましくは0.010〜0.100であり、最も好ましくは、0.010〜0.050である。原子比が0.001〜0.250であると細孔構造及び成形性を含めた触媒調製の自由度を高くでき、0.010〜0.100であると副生物の低減又はコーキングの抑制の面でより有利である。原子比(M/Si)は金属Mが複数種のときはそれらの合計原子数(モル数)とケイ素の原子数(モル数)の比とする。複合型(バルク型)触媒の原子比(M/Si)は、リガク製の走査型蛍光X線分析装置ZSX PrimusIIを用いて、XRF分析にて決定される。担持型(表面型)触媒の原子比(M/Si)は仕込み比から計算することもできるが、ICP−MSによりMの量を求め、触媒の乾燥質量から金属Mの酸化物の質量を差し引いた質量を二酸化ケイ素の質量とし、M/Siが計算される。測定方法の詳細は実施例の項に記載する。   The atomic ratio (M / Si) of metal M to silicon of the catalyst of the present invention is preferably 0.001 to 0.250, more preferably 0.010 to 0.100, most preferably 0.00. 010 to 0.050. When the atomic ratio is 0.001 to 0.250, the degree of freedom of catalyst preparation including the pore structure and moldability can be increased. More advantageous in terms of The atomic ratio (M / Si) is the ratio of the total number of atoms (number of moles) to the number of atoms (number of moles) of silicon when there are a plurality of types of metal M. The atomic ratio (M / Si) of the composite type (bulk type) catalyst is determined by XRF analysis using a scanning fluorescent X-ray analyzer ZSX Primus II manufactured by Rigaku. The atomic ratio (M / Si) of the supported (surface type) catalyst can be calculated from the charged ratio, but the amount of M is obtained by ICP-MS, and the mass of the metal M oxide is subtracted from the dry mass of the catalyst. The calculated mass is the mass of silicon dioxide, and M / Si is calculated. Details of the measurement method are described in the Examples section.

本発明の触媒には、第2族金属及び第13族金属である金属Mとは異なる金属酸化物又は金属が含まれていてもよい。そのような金属酸化物又は金属の例としては、酸化ランタン、酸化モリブデンなどがあげられる。   The catalyst of the present invention may contain a metal oxide or metal different from the metal M which is a Group 2 metal and a Group 13 metal. Examples of such metal oxides or metals include lanthanum oxide and molybdenum oxide.

金属Mの酸化物及びケイ素の酸化物を含む触媒は、調製法により大きく担持型と複合型の2種類に分類することができるが、本発明においては、両触媒は本質的に同等の特性及び作用効果を示す。触媒の調製方法としては種々の方法を用いることが可能であり、例えば含浸法、イオン交換法、CVD法、混練法、共沈法、ゾルゲル法等があげられる。   Catalysts containing metal M oxides and silicon oxides can be roughly classified into two types according to the preparation method: supported type and composite type. In the present invention, both catalysts have essentially the same characteristics and The effect is shown. Various methods can be used as a method for preparing the catalyst, and examples thereof include an impregnation method, an ion exchange method, a CVD method, a kneading method, a coprecipitation method, and a sol-gel method.

担持型(表面型)触媒は、二酸化ケイ素(SiO)担体に含浸法、イオン交換法、CVD法などによって金属Mの酸化物前駆体を付着又は堆積させて調製される触媒であり、二酸化ケイ素(SiO)担体上に金属Mの酸化物が担持されている。この型の場合、焼結時に一部の金属Mと二酸化ケイ素は混じり合い複合酸化物を形成することがあるが、金属Mの原子の多くが触媒表面に存在している。金属Mの酸化物として具体的には、MgO、CaO、Al等が挙げられる。これらの中では触媒活性及び/又は選択率の観点からMgO(マグネシア)、及びAl(アルミナ)が好ましい。二酸化ケイ素(SiO)は市販の物をそのまま、あるいは粉砕処理、強熱処理、酸処理等の前処理を行ってから使用することができる。含浸法としては、金属Mの硝酸塩水溶液又は金属Mのアルコキシドのアルコール溶液を二酸化ケイ素担体に加えた後、乾燥及び焼成する方法が挙げられる。加える溶液の量は二酸化ケイ素担体の細孔容積相当でもよいし、細孔容積以上の量を加えて溶液を濃縮し得られた含浸担体を濾別してもよい。 The supported type (surface type) catalyst is a catalyst prepared by adhering or depositing an oxide precursor of a metal M on a silicon dioxide (SiO 2 ) support by an impregnation method, an ion exchange method, a CVD method, etc. An oxide of metal M is supported on the (SiO 2 ) support. In this type, a part of the metal M and silicon dioxide may be mixed during sintering to form a composite oxide, but many of the atoms of the metal M are present on the catalyst surface. Specific examples of the metal M oxide include MgO, CaO, and Al 2 O 3 . Among these, MgO (magnesia) and Al 2 O 3 (alumina) are preferable from the viewpoint of catalytic activity and / or selectivity. As silicon dioxide (SiO 2 ), a commercially available product can be used as it is or after pretreatment such as pulverization, strong heat treatment, and acid treatment. Examples of the impregnation method include a method in which a metal M nitrate aqueous solution or a metal M alkoxide alcohol solution is added to a silicon dioxide support, followed by drying and firing. The amount of the solution to be added may be equivalent to the pore volume of the silicon dioxide support, or the impregnated support obtained by adding the amount larger than the pore volume to concentrate the solution may be filtered off.

複合型(バルク型)触媒は、二酸化ケイ素前駆体及び二酸化ケイ素から選ばれる第1触媒原料と、金属Mの酸化物前駆体及び金属Mの酸化物から選ばれる第2触媒原料との組み合わせを用いて、混練法、共沈法、ゾルゲル法などによって調製される。複合型(バルク型)触媒は、各成分が原子レベルで結合した複合酸化物であり、表面だけでなく固体内部にも金属Mの原子が多く存在している。ゾルゲル法としては、ケイ素アルコキシド及び金属Mのアルコキシドのアルコール溶液に、水を添加してゲルを調製した後、乾燥及び焼成する方法が挙げられる。この際、触媒として酸又は塩基を加えてもよいし、無触媒で触媒調製を行ってもよい。複合酸化物の例としてはシリカアルミナ等が挙げられる。   The composite type (bulk type) catalyst uses a combination of a first catalyst raw material selected from a silicon dioxide precursor and silicon dioxide and a second catalyst raw material selected from an oxide precursor of metal M and an oxide of metal M. And prepared by a kneading method, a coprecipitation method, a sol-gel method or the like. The composite type (bulk type) catalyst is a composite oxide in which each component is bonded at the atomic level, and many atoms of the metal M exist not only on the surface but also inside the solid. Examples of the sol-gel method include a method in which water is added to an alcohol solution of silicon alkoxide and metal M alkoxide to prepare a gel, followed by drying and baking. At this time, an acid or a base may be added as a catalyst, or the catalyst may be prepared without a catalyst. Examples of the composite oxide include silica alumina.

触媒成形体は、成形体に触媒成分を担持して得ることもできるし、粉末触媒を種々の方法で成形して得ることもできる。成形方法に特に制限はなく、例えば打錠成形、押出成形、転動造粒等から選択される。   The catalyst molded body can be obtained by supporting a catalyst component on the molded body, or can be obtained by molding a powder catalyst by various methods. There is no restriction | limiting in particular in a shaping | molding method, For example, it selects from tableting shaping | molding, extrusion molding, rolling granulation, etc.

触媒成形体の粒径及び形状は、反応方式、反応器の形状などに応じて適宜選択できる。   The particle size and shape of the catalyst molded body can be appropriately selected depending on the reaction method, the shape of the reactor, and the like.

触媒の成形に用いるバインダー、滑剤、腑孔剤等の添加剤は特に制限されない。マクロ孔を触媒成形体に付与するために添加剤を用いることは一般に知られていることであり、本発明においても種々の方法を適用することができる。その他、触媒調製時、成形時などにおいて、原料触媒粉末の粒子径の制御、成形圧力の制御等によってマクロ孔を増減させることも一般に行われることであり、これらを本発明に適用することができる。   Additives such as a binder, a lubricant, and a pore-forming agent used for forming the catalyst are not particularly limited. It is generally known to use an additive for imparting macropores to a catalyst molded body, and various methods can be applied in the present invention. In addition, macropores are generally increased / decreased by controlling the particle diameter of the raw material catalyst powder, controlling the molding pressure, etc. during catalyst preparation and molding, and these can be applied to the present invention. .

本発明の触媒のマクロ孔とはその孔径が0.05μm(50nm)〜200μmの範囲にある孔を意味する。触媒のマクロ孔容積は0.05〜1.50mL/gであり、好ましくは0.16〜1.30mL/g、特に好ましくは0.40〜1.10mL/gである。マクロ孔容積は、水銀表面張力を480dynes/cm、水銀と試料の接触角を140°として、水銀圧入法により測定される。測定方法の詳細は実施例の項に記載する。本発明の脱水反応では、触媒のマクロ孔が多いほど触媒寿命及び反応の選択率が向上すると考えられる。しかし、マクロ孔が増えると一般に触媒強度は下がることが知られており、強度が低すぎると反応中の振動等、又は触媒の運搬若しくは充填等の際に触媒が破損するおそれがある。また、マクロ孔の多い触媒は体積当たりの触媒質量が小さくなることから反応活性点が少なくなるため、過度に多くのマクロ孔を含む触媒では、マクロ孔が増えることによるメリットよりも反応活性点が少なくなったことによるデメリットの方が大きくなる。すなわち、触媒体積当たりの生産性が下がってしまうことに加え、生産量あたりの触媒の失活までの時間も短くなってしまう。そのため、反応方式、反応器の形状、触媒形状などに合わせて適当なマクロ孔容積が選択される。   The macropore of the catalyst of the present invention means a pore having a pore diameter in the range of 0.05 μm (50 nm) to 200 μm. The macropore volume of the catalyst is 0.05 to 1.50 mL / g, preferably 0.16 to 1.30 mL / g, and particularly preferably 0.40 to 1.10 mL / g. The macropore volume is measured by a mercury intrusion method with a mercury surface tension of 480 dynes / cm and a contact angle between the mercury and the sample of 140 °. Details of the measurement method are described in the Examples section. In the dehydration reaction of the present invention, it is considered that the catalyst life and the selectivity of the reaction are improved as the number of macropores of the catalyst increases. However, it is known that the catalyst strength generally decreases as the number of macropores increases, and if the strength is too low, the catalyst may be damaged during vibration during the reaction or during transportation or filling of the catalyst. In addition, since a catalyst having a large number of macropores has a smaller reaction mass due to a smaller catalyst mass per volume, a catalyst having an excessively large number of macropores has a reaction activity point than the merit of increasing the number of macropores. The disadvantages of having decreased are greater. That is, in addition to the productivity per catalyst volume being lowered, the time until the catalyst is deactivated per production amount is also shortened. Therefore, an appropriate macropore volume is selected according to the reaction system, the shape of the reactor, the shape of the catalyst, and the like.

本脱水反応の原料となるアリル型不飽和アルコール、生成物である共役ジエン化合物、及び脱水素副生物である不飽和ケトン、アルデヒド等は、いずれも重合性を有する化合物である。また、ブテン等のその他の副生物も重合性を有するものが多い。そのため、アリル型不飽和アルコールの脱水触媒上では、非常にコーキングが起こりやすい。よって、重合反応の抑制及び耐コーク性(重合物が付着した際の失活しにくさ)を向上させることで、触媒寿命(連続使用可能時間)を延ばすことができる。   The allyl unsaturated alcohol as a raw material for the dehydration reaction, the conjugated diene compound as a product, and the unsaturated ketone and aldehyde as dehydrogenation by-products are all compounds having polymerizability. Many other by-products such as butene are also polymerizable. Therefore, coking is very likely to occur on the dehydration catalyst of allyl unsaturated alcohol. Therefore, the catalyst life (continuous usable time) can be extended by suppressing the polymerization reaction and improving the coke resistance (hardness of deactivation when a polymer is attached).

本発明では、水銀圧入法により測定されるマクロ孔容積を0.05〜1.50mL/gとすることで、触媒寿命及び共役ジエン化合物の選択率を大幅に向上させている。マクロ孔を増やし拡散を向上させることで重合反応を抑制し、共役ジエン化合物の消費による選択率の低下及び/又はコーキングによる失活を抑制することができる。また、マクロ孔が多くあるため多少のコーク付着が起きても拡散が阻害されにくくなる(耐コーク性が向上する)ため、触媒寿命を延ばすことができる。そのため、マクロ孔容積を調整することで触媒寿命を大幅に伸ばすことが可能となり、同時に共役ジエン化合物の選択率も大幅に向上させることが可能となる。これらの利点は、以下に記載する実施例並びに図1及び図2からも理解することができる。本発明の触媒は、所定時間使用後に活性が低下しても酸素を含む気流下で焼成することでその性能を回復させることができる。マクロ孔が多く内部の気体拡散が良好であるため、再生にかける時間も短くすることができる。   In the present invention, the catalyst lifetime and the selectivity of the conjugated diene compound are greatly improved by setting the macropore volume measured by the mercury intrusion method to 0.05 to 1.50 mL / g. By increasing the macropores and improving diffusion, the polymerization reaction can be suppressed, and the decrease in selectivity due to consumption of the conjugated diene compound and / or the deactivation due to coking can be suppressed. Moreover, since there are many macropores, even if some coke adhesion occurs, diffusion is not easily inhibited (coke resistance is improved), so that the catalyst life can be extended. Therefore, it is possible to greatly extend the catalyst life by adjusting the macropore volume, and at the same time, it is possible to greatly improve the selectivity of the conjugated diene compound. These advantages can also be understood from the examples described below and FIGS. The catalyst of the present invention can recover its performance by calcination in an air stream containing oxygen even if the activity decreases after use for a predetermined time. Since there are many macropores and internal gas diffusion is good, the time required for regeneration can be shortened.

本発明の触媒は、マクロ孔とメソ孔の両方を有する多元細孔構造を有することが好ましい。これにより、共役ジエン化合物の選択率及び触媒寿命を向上させることができる。本発明の触媒は、窒素ガス吸着法により測定された平均細孔径が6.0〜70.0nmであるメソ孔を有することが好ましい。平均細孔径はより好ましくは9.0〜55.0nm、特に好ましくは12.0〜40.0nmである。測定方法の詳細は実施例の項に記載する。平均細孔径が6.0nm以上であると、コーキングの進行が遅く、触媒寿命が長くなる。また、副反応が少ないため共役ジエン化合物の選択率も向上する。平均細孔径が70.0nm以下である触媒は表面積及び反応点の数が適切であり、生産性(STY)の低下が小さい。   The catalyst of the present invention preferably has a multi-pore structure having both macropores and mesopores. Thereby, the selectivity of a conjugated diene compound and a catalyst lifetime can be improved. The catalyst of the present invention preferably has mesopores having an average pore diameter measured by a nitrogen gas adsorption method of 6.0 to 70.0 nm. The average pore diameter is more preferably 9.0 to 55.0 nm, and particularly preferably 12.0 to 40.0 nm. Details of the measurement method are described in the Examples section. When the average pore diameter is 6.0 nm or more, the progress of coking is slow and the catalyst life is prolonged. Moreover, since there are few side reactions, the selectivity of a conjugated diene compound is also improved. A catalyst having an average pore diameter of 70.0 nm or less has an appropriate surface area and the number of reaction points, and a decrease in productivity (STY) is small.

本発明の脱水反応で使用する反応装置として連続式の気相流通反応装置が好適である。触媒は固定床又は流動床のいずれの方式でもよく、特にメンテナンスの面などから固定床が望ましい。   A continuous gas-phase flow reaction apparatus is suitable as the reaction apparatus used in the dehydration reaction of the present invention. The catalyst may be either a fixed bed or a fluidized bed, and a fixed bed is desirable from the standpoint of maintenance.

反応装置の一例として、上部に反応原料であるアリル型不飽和アルコールの気化器を備えた直管型反応器が挙げられる。反応器に触媒を充填し、原料を気化器で蒸発させて生じた原料ストリームを反応器に導入する。反応器下部の熱交換器で反応生成物を冷却して水等を分離し、生成物を回収する。気化した原料のアリル型不飽和アルコールを窒素ガス、水蒸気などの不活性ガスで希釈して反応に供してもよい。   As an example of the reaction apparatus, a straight pipe type reactor having a vaporizer for an allyl unsaturated alcohol as a reaction raw material at the upper part can be mentioned. The reactor is filled with the catalyst, and the raw material stream generated by evaporating the raw material in the vaporizer is introduced into the reactor. The reaction product is cooled by a heat exchanger at the bottom of the reactor to separate water and the like, and the product is recovered. The vaporized raw material allyl unsaturated alcohol may be diluted with an inert gas such as nitrogen gas or water vapor and used for the reaction.

反応温度は200〜450℃の範囲であることが適しており、250〜350℃であることがより好ましい。200℃以上であると反応が速やかに進む。また、450℃以下とすると副反応による選択率低下の影響が小さくなる。反応圧力は加圧、常圧、又は減圧のいずれでもよい。   The reaction temperature is suitably in the range of 200 to 450 ° C, more preferably 250 to 350 ° C. If it is 200 ° C. or higher, the reaction proceeds rapidly. Moreover, if it is 450 degrees C or less, the influence of the selectivity fall by a side reaction will become small. The reaction pressure may be pressurized, normal pressure, or reduced pressure.

触媒充填容積あたりの不飽和アルコールの導入量は0.05〜20kg/(h・L−cat)の範囲とすることができ、好ましくは0.1〜10kg/(h・L−cat)であり、最も好ましくは0.2〜5kg/(h・L−cat)である。導入量が少ない場合は十分な生産量を得ることができないことがある。多い場合には未反応の原料が増加し、分離及び精製に余分な労力が必要となる。   The amount of unsaturated alcohol introduced per catalyst packing volume can be in the range of 0.05 to 20 kg / (h · L-cat), preferably 0.1 to 10 kg / (h · L-cat). Most preferably, it is 0.2 to 5 kg / (h · L-cat). When the introduction amount is small, a sufficient production amount may not be obtained. In many cases, unreacted raw materials increase, and extra labor is required for separation and purification.

アリル型不飽和アルコールを含む原料ストリームの触媒充填容積に対する空間速度[SV]は100〜40000[/h]の範囲とすることができ、特に400〜10000[/h]であることが好適である。空間速度が低すぎる場合は接触時間の増加により、不飽和アルコール原料及び生成したジエン化合物から副生成物が生じる可能性がある。空間速度が高すぎる場合には転化率が低下し、収率が低下することがある。   The space velocity [SV] with respect to the catalyst filling volume of the raw material stream containing the allylic unsaturated alcohol can be in the range of 100 to 40000 [/ h], particularly preferably 400 to 10,000 [/ h]. . When the space velocity is too low, by-products may be generated from the unsaturated alcohol raw material and the produced diene compound due to an increase in contact time. If the space velocity is too high, the conversion rate may decrease and the yield may decrease.

得られた共役ジエン化合物に対し、さらに蒸留等による精製操作を行うことで、純度を高めたジエン化合物を入手することができる。   By further purifying the resulting conjugated diene compound by distillation or the like, a diene compound with increased purity can be obtained.

触媒の空時収率STYは、反応圧力を上げる、原料ガス中の不飽和アルコール濃度を高める、又はSVを上げることにより大きくすることができるが、本脱水反応においては重合反応を加速させることとなるために、一般に触媒寿命が低下する。また、共役ジエン化合物の選択率の低下を招くことがある。本発明によれば、マクロ孔容積を増やすことで触媒寿命、選択性等に特に顕著な改善効果が見られるため、このような重合反応がより加速される条件下であっても脱水反応を有利に進行させることができる。   The space-time yield STY of the catalyst can be increased by increasing the reaction pressure, increasing the concentration of unsaturated alcohol in the raw material gas, or increasing SV. In this dehydration reaction, the polymerization reaction is accelerated. Therefore, the catalyst life is generally reduced. In addition, the selectivity of the conjugated diene compound may be reduced. According to the present invention, a remarkable improvement effect is seen in catalyst life, selectivity, etc. by increasing the macropore volume. Therefore, the dehydration reaction is advantageous even under such a condition that the polymerization reaction is further accelerated. Can proceed to.

上記に述べた方法は、本発明の実施形態の一つであり、実施に当たってはその神髄に照らして、別の実施形態をとることもできるが、それらは全て本発明の範疇に含まれる。   The method described above is one of the embodiments of the present invention, and in the light of its essence, other embodiments can be taken. However, they are all included in the scope of the present invention.

以下、実施例により本発明の効果を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   Examples The effects of the present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[測定方法]
触媒成形体のマクロ孔容積及びメソ孔容積は、Micromeritics社製オートポアIV9520を用いて、水銀圧入法にて測定する。前処理として120℃で4時間恒温処理を行い、水銀表面張力を480dynes/cmとして、水銀と試料の接触角140°で測定を行う。測定範囲は細孔直径で約0.0036〜200μmであり、直径0.05μm(50nm)〜200μmの細孔の細孔容積をマクロ孔容積、直径0.0036μm(3.6nm)〜200μmの細孔の細孔容積を全細孔容積として算出する。
[Measuring method]
The macropore volume and the mesopore volume of the catalyst molded body are measured by mercury porosimetry using an Autopore IV9520 manufactured by Micromeritics. As a pretreatment, a constant temperature treatment is performed at 120 ° C. for 4 hours, a mercury surface tension is set to 480 dynes / cm, and measurement is performed at a contact angle of 140 ° between mercury and the sample. The measurement range is about 0.0036 to 200 μm in pore diameter, and the pore volume of a pore having a diameter of 0.05 μm (50 nm) to 200 μm is defined as a macropore volume, and a pore diameter of 0.0036 μm (3.6 nm) to 200 μm. The pore volume of the pores is calculated as the total pore volume.

触媒成形体の窒素ガス吸着法によるメソ孔の平均細孔径は、以下のように測定する。150℃、40mTorrで3時間前処理したサンプルについて、Micromeritics社製の自動比表面積/細孔分布測定装置(TristarII 3020)を用い、液体窒素温度で、相対圧(P/P、P:飽和蒸気圧)が0.14〜0.992の範囲で窒素脱着等温線を測定する。窒素ガスを吸着質として用い、吸着質断面積は0.162nmとして計算する。平均細孔径はBJH法を用い、吸着膜の厚みをHarkins−Juraの式でt=[13.99/0.034―log(P/P)]^0.5として算出する。 The average pore diameter of the mesopores by the nitrogen gas adsorption method of the catalyst molded body is measured as follows. For a sample pretreated at 150 ° C. and 40 mTorr for 3 hours, using an automatic specific surface area / pore distribution measuring device (Tristar II 3020) manufactured by Micromeritics, at a liquid nitrogen temperature, relative pressure (P / P 0 , P 0 : saturation) The nitrogen desorption isotherm is measured in the range of (vapor pressure) in the range of 0.14 to 0.992. Nitrogen gas is used as the adsorbate, and the adsorbate cross section is calculated as 0.162 nm 2 . The average pore diameter is calculated using the BJH method, and the thickness of the adsorption film is calculated as Harkins-Jura as t = [13.9 / 0.034−log (P / P 0 )] ^ 0.5.

複合型触媒の原子比(M/Si)は、リガク製の走査型蛍光X線分析装置ZSX PrimusIIを用いて、XRF分析にて行う。乳鉢で粉砕した触媒粉を、外径18mm、内径13mm、高さ5mmのポリ塩化ビニル製のセルにつめて35kNで15秒間加圧して、測定試料を調製する。標準試料を外標準としてEZスキャンモードにて分析する。   The atomic ratio (M / Si) of the composite catalyst is determined by XRF analysis using a scanning fluorescent X-ray analyzer ZSX Primus II manufactured by Rigaku. A catalyst sample pulverized in a mortar is packed in a polyvinyl chloride cell having an outer diameter of 18 mm, an inner diameter of 13 mm, and a height of 5 mm, and pressurized at 35 kN for 15 seconds to prepare a measurement sample. The standard sample is analyzed as an external standard in the EZ scan mode.

担持型触媒の原子比(M/Si)はICP−MSによりMの量を求め、乾燥減量を考慮したうえで算出することができる。具体的には、以下の手順で求める。乳鉢で粉砕した試料にフッ酸2mL及び純水10mLを添加し試料を溶解させる。その後50mLに定容してICP発光分析により元素Mを定量する。TG−DTAを用いて、乳鉢で粉砕した試料を窒素ガス気流下300℃で1時間処理し、その質量変化から乾燥質量を算出する。乾燥質量から金属Mの酸化物の質量を差し引いた質量を二酸化ケイ素の質量とし、原子比(M/Si)を計算する。簡便のため、仕込み比から算出することも可能であり、本実施例ではこの簡便法によった。   The atomic ratio (M / Si) of the supported catalyst can be calculated after obtaining the amount of M by ICP-MS and considering the loss on drying. Specifically, the following procedure is used. 2 mL of hydrofluoric acid and 10 mL of pure water are added to the sample ground in the mortar to dissolve the sample. Thereafter, the volume is adjusted to 50 mL, and the element M is quantified by ICP emission analysis. Using TG-DTA, a sample pulverized in a mortar is treated at 300 ° C. for 1 hour in a nitrogen gas stream, and the dry mass is calculated from the mass change. The mass obtained by subtracting the mass of the metal M oxide from the dry mass is defined as the mass of silicon dioxide, and the atomic ratio (M / Si) is calculated. For simplicity, it is also possible to calculate from the charging ratio. In this example, this simple method was used.

触媒成形体の嵩密度は以下のように決定する。10mLメスシリンダーに約5mLの触媒を測りとる。その際、数回タッピングを行い、触媒をならし、その体積と重量を測定する。測定重量を測定体積で除算し、嵩密度を計算する。   The bulk density of the catalyst molded body is determined as follows. Weigh about 5 mL of catalyst into a 10 mL graduated cylinder. At that time, tapping is performed several times, the catalyst is smoothed, and its volume and weight are measured. Divide the measured weight by the measured volume to calculate the bulk density.

[反応装置]
以下の実施例及び比較例の脱水反応には、固定床の常圧気相流通反応装置を使用した。反応管(ステンレス製)は内径13mm、全長300mmで、上部に原料を蒸発させるための気化器、及び希釈剤(窒素ガス)の導入口が接続され、下部には冷却器、及び気液分離器が設置されている。反応によって生じたガス及び液はそれぞれ別々に回収し、ガスクロマトグラフィー装置にて測定し、検量線補正後、目的物の収量及び原料残量を求め、これらより転化率及び選択率を求めた。
[Reactor]
For the dehydration reactions of the following Examples and Comparative Examples, a fixed bed atmospheric pressure gas flow reactor was used. The reaction tube (made of stainless steel) has an inner diameter of 13 mm and an overall length of 300 mm. The vaporizer for evaporating the raw material and the diluent (nitrogen gas) inlet are connected to the upper part, and the lower part is a cooler and a gas-liquid separator. Is installed. The gas and liquid produced by the reaction were collected separately, measured with a gas chromatography apparatus, and after correcting the calibration curve, the yield of the target product and the remaining amount of the raw material were determined, and the conversion and selectivity were determined from these.

脱水反応における、転化率及び選択率の計算には以下の式を用いた。選択率は、転化率が98.5%を下回るまでの結果から計算した。

Figure 2017197459
Figure 2017197459
The following formulas were used for calculating the conversion and selectivity in the dehydration reaction. The selectivity was calculated from the results until the conversion rate fell below 98.5%.
Figure 2017197459
Figure 2017197459

代表的な副生成物であるブテンの選択率計算には、以下の式を用いた。選択率は、転化率が98.5%を下回るまでの結果から計算した。

Figure 2017197459
The following formula was used to calculate the selectivity for butene, which is a typical by-product. The selectivity was calculated from the results until the conversion rate fell below 98.5%.
Figure 2017197459

[触媒調製]
以下、脱水触媒の調製に関する実施例及び比較例を示す。
[Catalyst preparation]
Examples and comparative examples relating to the preparation of the dehydration catalyst are shown below.

(実施例1:担持型触媒Aの調製)
シリカ粉であるキャリアクト(登録商標)G−10(粒径5μm、富士シリシア化学株式会社)20gに対し、硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)1.34gを含む水溶液を含浸担持させ、エバポレーターで大部分の水を除いたのちに80℃のオーブン中で12時間風乾を行った。得られた粉末を、ポリ塩化ビニル製のセル(30mmφ)に入れ、80MPaの圧力で1分間プレスした。ディスク状のセル(厚さ5mm)を破砕し、1.4〜2.8mmのふるい間に残るものを回収し、その後、マッフル炉(ADVANTEC製KM−280)で600℃、5時間焼成し、触媒Aを得た。
(Example 1: Preparation of supported catalyst A)
Silica powder Carriertect (registered trademark) G-10 (particle size 5 μm, Fuji Silysia Chemical Co., Ltd.) 20 g, aluminum nitrate nonahydrate (made by Wako Pure Chemical Industries, Ltd., special grade) 1.34 g The aqueous solution was impregnated and supported, and after removing most of the water with an evaporator, it was air-dried in an oven at 80 ° C. for 12 hours. The obtained powder was put into a cell (30 mmφ) made of polyvinyl chloride and pressed at a pressure of 80 MPa for 1 minute. Disc-shaped cells (thickness 5 mm) were crushed, and what was left between the sieves of 1.4 to 2.8 mm was recovered, and then fired at 600 ° C. for 5 hours in a muffle furnace (ADVANTEC KM-280). Catalyst A was obtained.

(実施例2:担持型触媒Bの調製)
成形圧力を120MPaにした他は、実施例1と同様にして触媒Bを調製した。
(Example 2: Preparation of supported catalyst B)
A catalyst B was prepared in the same manner as in Example 1 except that the molding pressure was 120 MPa.

(実施例3:担持型触媒Cの調製)
成形圧力を160MPaにした他は、実施例1と同様にして触媒Cを調製した。
(Example 3: Preparation of supported catalyst C)
Catalyst C was prepared in the same manner as in Example 1 except that the molding pressure was 160 MPa.

(比較例1:担持型触媒Dの調製)
シリカ球であるキャリアクト(登録商標)Q−15(富士シリシア化学株式会社)20gに対し、硝酸アルミニウム・九水和物(和光純薬工業株式会社製、特級)0.92gを含む水溶液を含浸担持させ、エバポレーターで大部分の水を除いたのちに80℃のオーブン中で12時間風乾を行った。その後、マッフル炉(ADVANTEC製KM−280)で600℃、5時間焼成し、触媒Dを得た。
(Comparative Example 1: Preparation of supported catalyst D)
An aqueous solution containing 0.92 g of aluminum nitrate nonahydrate (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) is impregnated with 20 g of Carrieract (registered trademark) Q-15 (Fuji Silysia Chemical Co., Ltd.), which is a silica sphere. After supporting and removing most of the water with an evaporator, it was air-dried in an oven at 80 ° C. for 12 hours. Then, the catalyst D was obtained by baking at 600 ° C. for 5 hours in a muffle furnace (KM-280 manufactured by ADVANTEC).

(実施例4:複合型触媒Eの調製)
500mLの3口フラスコに、メカニカルスターラーに接続したテフロン(登録商標)半月板撹拌翼、滴下ロート、及びジムロート冷却管を装着した。このフラスコに、窒素ガス雰囲気中で、テトラエチルオルトシリケート(シグマアルドリッチ社製、>99%)60.0g、アルミニウムイソプロポキシド(東京化成工業株式会社製)2.9g、超脱水イソプロパノール(和光純薬工業株式会社製)173gを加え、液温が69〜70℃になるように油浴中で撹拌した。滴下ロートにイソプロパノール(特級、和光純薬工業株式会社製)9gと蒸留水(和光純薬工業株式会社製)10.9gの混合溶液を入れ、上記フラスコに30分間かけて滴下した。滴下終了後も撹拌を続け、合計24時間、69〜70℃で反応させた。得られた白色粉末を濾過後、イソプロパノールで洗浄した。70℃のオーブンで12時間乾燥したのち、マッフル炉(ADVANTEC製KM−280)で500℃、5時間焼成した。得られた粉末を実施例1と同様の方法で成形後、同じマッフル炉で500℃、2時間焼成し、触媒Eを得た。XRF分析で測定されたAlとSiの原子比(Al/Si)は0.09(mol/mol)であった。
(Example 4: Preparation of composite catalyst E)
A 500 mL three-necked flask was equipped with a Teflon (registered trademark) meniscus stirring blade connected to a mechanical stirrer, a dropping funnel, and a Dimroth condenser. In a nitrogen gas atmosphere, 60.0 g of tetraethylorthosilicate (Sigma Aldrich,> 99%), 2.9 g of aluminum isopropoxide (Tokyo Chemical Industry Co., Ltd.), ultra-dehydrated isopropanol (Wako Pure Chemical) 173 g (manufactured by Kogyo Co., Ltd.) was added, and the mixture was stirred in an oil bath so that the liquid temperature was 69 to 70 ° C. A mixed solution of 9 g of isopropanol (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and 10.9 g of distilled water (manufactured by Wako Pure Chemical Industries, Ltd.) was placed in the dropping funnel and dropped into the flask over 30 minutes. Stirring was continued after completion of the dropwise addition, and the reaction was performed at 69 to 70 ° C. for a total of 24 hours. The resulting white powder was filtered and washed with isopropanol. After drying in an oven at 70 ° C. for 12 hours, it was baked at 500 ° C. for 5 hours in a muffle furnace (KM-280 manufactured by ADVANTEC). The obtained powder was molded in the same manner as in Example 1, and then calcined in the same muffle furnace at 500 ° C. for 2 hours to obtain Catalyst E. The atomic ratio (Al / Si) of Al and Si measured by XRF analysis was 0.09 (mol / mol).

[脱水反応]
以下、反応実施例を示す。触媒寿命は、原料のアリル型不飽和アルコール(式(1)及び式(2)の合計)の転化率と反応時間とのグラフから、転化率が約100%から低下して、98.5%となるまでの時間を読み取り、その値とした。平均コーク付着速度は、反応後に抜き出した触媒を用いて以下のように算出する。TG−DTAを用いて、反応後の抜出触媒の室温から650℃の区間の質量減少を、乾燥空気流通下、10℃/分の速度で昇温しながら測定する。室温から300℃までの質量減少をx%、300℃から650℃までの質量減少をy%とした場合に、下式に当てはめて平均コーク付着速度を算出する。

Figure 2017197459
[Dehydration reaction]
The reaction examples are shown below. From the graph of the conversion rate and the reaction time of the raw material allyl-type unsaturated alcohol (the sum of the formulas (1) and (2)), the conversion rate decreased from about 100% to 98.5%. The time to be read was taken as the value. The average coke adhesion rate is calculated as follows using the catalyst extracted after the reaction. Using TG-DTA, the mass reduction of the extracted catalyst after the reaction in the section from room temperature to 650 ° C. is measured while increasing the temperature at a rate of 10 ° C./min under a flow of dry air. When the mass decrease from room temperature to 300 ° C. is x% and the mass decrease from 300 ° C. to 650 ° C. is y%, the average coke adhesion rate is calculated by applying the following equation.
Figure 2017197459

(反応実施例1)
触媒Aに対して3−ブテン−2−オール/2−ブテン−1−オール混合溶液を基質とし、窒素ガス及び水蒸気を希釈剤として反応を行った。触媒は5mL使用した。基質の3−ブテン−2−オール及び2−ブテン−1−オールのモル比率は6:4であり、合計導入量は触媒1mLあたり毎時1.35gであった。水蒸気の導入量は触媒1mLあたり毎時0.84L、窒素ガス導入量は触媒1mLあたり毎時0.42Lで反応温度は300℃に設定した(SV=1680[/h])。結果を表1に示す。
(Reaction Example 1)
The catalyst A was reacted with a mixed solution of 3-buten-2-ol / 2-buten-1-ol as a substrate and nitrogen gas and water vapor as diluents. 5 mL of catalyst was used. The molar ratio of the substrates 3-buten-2-ol and 2-buten-1-ol was 6: 4, and the total amount introduced was 1.35 g per hour per mL of catalyst. The amount of steam introduced was 0.84 L / hr of catalyst, the amount of nitrogen gas introduced was 0.42 L / hr of catalyst, and the reaction temperature was 300 ° C. (SV = 1680 [/ h]). The results are shown in Table 1.

(反応実施例2〜4、反応比較例1)
表1に示す触媒を使用し、反応実施例1と同様にして脱水反応を行った。結果を表1に示す。
(Reaction Examples 2 to 4, Reaction Comparative Example 1)
A dehydration reaction was carried out in the same manner as in Reaction Example 1 using the catalysts shown in Table 1. The results are shown in Table 1.

反応実施例1〜4と反応比較例1のマクロ孔容積に対する触媒寿命を図1に、1,3−ブタジエンの選択率を図2に示す。これらの図から理解できるように、マクロ孔容積が0.05〜1.50mL/gの触媒を用いると、非常に高選択的かつ長寿命で1,3−ブタジエンを得ることができる。

Figure 2017197459
The catalyst lifetime with respect to the macropore volume of Reaction Examples 1 to 4 and Reaction Comparative Example 1 is shown in FIG. 1, and the selectivity for 1,3-butadiene is shown in FIG. As can be understood from these figures, when a catalyst having a macropore volume of 0.05 to 1.50 mL / g is used, 1,3-butadiene can be obtained with very high selectivity and long life.
Figure 2017197459

Claims (12)

脱水触媒の存在下、一般式(1)又は一般式(2)で示されるアリル型不飽和アルコールの少なくとも一種を原料とし、脱水反応によって一般式(3)で示される共役ジエン化合物を製造する方法であって、前記脱水触媒が、第2族金属及び第13族金属からなる群より選択される少なくとも1種の金属Mの酸化物並びにケイ素の酸化物を含み、水銀圧入法により測定されたマクロ孔容積が0.05〜1.50mL/gであることを特徴とする共役ジエン化合物の製造方法。
Figure 2017197459
(式中、R〜Rはそれぞれ独立に水素原子、炭素数1〜5のアルキル基、又は炭素数6〜12のアリール基を示す。)
Figure 2017197459
(式中、R〜Rは一般式(1)と同一のものを示す。)
Figure 2017197459
(式中、R〜Rは一般式(1)と同一のものを示す。)
A method for producing a conjugated diene compound represented by general formula (3) by dehydration reaction using at least one of allyl unsaturated alcohol represented by general formula (1) or general formula (2) as a raw material in the presence of a dehydration catalyst The dehydration catalyst includes at least one metal M oxide selected from the group consisting of Group 2 metals and Group 13 metals and silicon oxide, and is measured by a mercury intrusion method. A method for producing a conjugated diene compound, wherein the pore volume is 0.05 to 1.50 mL / g.
Figure 2017197459
(In the formula, each of R 1 to R 6 independently represent a hydrogen atom, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 12 carbon atoms.)
Figure 2017197459
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
Figure 2017197459
(In the formula, R 1 to R 6 are the same as those in the general formula (1).)
前記脱水触媒の水銀圧入法により測定されたマクロ孔容積が0.16〜1.30mL/gである請求項1に記載の共役ジエン化合物の製造方法。   The method for producing a conjugated diene compound according to claim 1, wherein a macropore volume of the dehydration catalyst measured by a mercury intrusion method is 0.16 to 1.30 mL / g. 前記脱水触媒の水銀圧入法により測定されたマクロ孔容積が0.40〜1.10mL/gである請求項2に記載の共役ジエン化合物の製造方法。   The method for producing a conjugated diene compound according to claim 2, wherein a macropore volume of the dehydration catalyst measured by mercury porosimetry is 0.40 to 1.10 mL / g. 前記脱水触媒の窒素ガス吸着法により測定された平均細孔径が6.0〜70.0nmであり、前記脱水触媒がマクロ孔とメソ孔の両方を有する多元細孔構造を有する請求項1〜3のいずれか一項に記載の共役ジエン化合物の製造方法。   The average pore diameter measured by the nitrogen gas adsorption method of the dehydration catalyst is 6.0 to 70.0 nm, and the dehydration catalyst has a multi-element pore structure having both macropores and mesopores. The manufacturing method of the conjugated diene compound as described in any one of these. 前記脱水触媒の窒素ガス吸着法により測定された平均細孔径が12.0〜40.0nmである請求項4に記載の共役ジエン化合物の製造方法。   The method for producing a conjugated diene compound according to claim 4, wherein an average pore diameter of the dehydration catalyst measured by a nitrogen gas adsorption method is 12.0 to 40.0 nm. 前記脱水触媒の金属Mとケイ素の原子比(M/Si)が0.001〜0.250である請求項1〜5のいずれか一項に記載の共役ジエン化合物の製造方法。   The method for producing a conjugated diene compound according to any one of claims 1 to 5, wherein the dehydration catalyst has an atomic ratio (M / Si) of metal M to silicon of 0.001 to 0.250. 前記脱水触媒の金属Mとケイ素の原子比(M/Si)が0.010〜0.050である請求項6に記載の共役ジエン化合物の製造方法。   The method for producing a conjugated diene compound according to claim 6, wherein the dehydration catalyst has an atomic ratio (M / Si) of metal M to silicon of 0.010 to 0.050. 前記金属Mの少なくとも一種がAlである請求項1〜7のいずれか一項に記載の共役ジエン化合物の製造方法。   The method for producing a conjugated diene compound according to any one of claims 1 to 7, wherein at least one of the metals M is Al. 前記脱水触媒がシリカアルミナである請求項1〜8のいずれか一項に記載の共役ジエン化合物の製造方法。   The method for producing a conjugated diene compound according to any one of claims 1 to 8, wherein the dehydration catalyst is silica alumina. 一般式(1)及び一般式(2)のR〜Rがすべて水素原子である請求項1〜9のいずれか一項に記載の共役ジエン化合物の製造方法。 R < 1 > -R < 6 > of General formula (1) and General formula (2) is all hydrogen atoms, The manufacturing method of the conjugated diene compound as described in any one of Claims 1-9. 一般式(1)で示されるアリル型不飽和アルコール及び一般式(2)で示されるアリル型不飽和アルコールの両方を原料とし、同時に脱水反応に供することを含む請求項1〜10のいずれか一項に記載の共役ジエン化合物の製造方法。   11. The method according to claim 1, comprising using both an allylic unsaturated alcohol represented by the general formula (1) and an allylic unsaturated alcohol represented by the general formula (2) as raw materials and simultaneously subjecting to a dehydration reaction. The manufacturing method of the conjugated diene compound as described in claim | item. 第2族金属及び第13族金属からなる群より選択される少なくとも1種の金属Mの酸化物並びにケイ素の酸化物を含み、水銀圧入法により測定されたマクロ孔容積が0.05〜1.50mL/gであることを特徴とする、アリル型不飽和アルコールの脱水触媒。   A macropore volume measured by mercury porosimetry is at least 0.05 to 1. including at least one oxide of metal M selected from the group consisting of Group 2 metals and Group 13 metals and oxides of silicon. An allyl unsaturated alcohol dehydration catalyst, wherein the catalyst is 50 mL / g.
JP2016088602A 2016-04-26 2016-04-26 Method for producing conjugated diene compound and dehydration catalyst for allylic unsaturated alcohol Active JP6684641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088602A JP6684641B2 (en) 2016-04-26 2016-04-26 Method for producing conjugated diene compound and dehydration catalyst for allylic unsaturated alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088602A JP6684641B2 (en) 2016-04-26 2016-04-26 Method for producing conjugated diene compound and dehydration catalyst for allylic unsaturated alcohol

Publications (2)

Publication Number Publication Date
JP2017197459A true JP2017197459A (en) 2017-11-02
JP6684641B2 JP6684641B2 (en) 2020-04-22

Family

ID=60237374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088602A Active JP6684641B2 (en) 2016-04-26 2016-04-26 Method for producing conjugated diene compound and dehydration catalyst for allylic unsaturated alcohol

Country Status (1)

Country Link
JP (1) JP6684641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754509A (en) * 2021-09-10 2021-12-07 中山大学 Method for preparing conjugated diene with single stereo configuration from allyl alcohol compound

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535268A (en) * 2001-01-15 2004-11-25 アンスティテュ フランセ デュ ペトロール Catalyst containing silica and alumina and use of this catalyst in hydrocracking of hydrocarbon feedstocks
JP2006291181A (en) * 2005-03-09 2006-10-26 Inst Fr Petrole Hydrocracking process with recycle including adsorption of polynuclear aromatic compound from fraction to be recycled on adsorbent based on silica-alumina having controlled macropore content
WO2013125389A1 (en) * 2012-02-20 2013-08-29 株式会社ダイセル Method for producing 1,3-butadiene
JP2015048336A (en) * 2013-09-03 2015-03-16 東レ株式会社 Method for producing butadiene and/or 3-butene-2-ol
JP2015054818A (en) * 2013-09-10 2015-03-23 東レ株式会社 Method for producing 1,3-butadiene and/or 3-butene-2-ol
JP2015160763A (en) * 2014-02-26 2015-09-07 国立研究開発法人産業技術総合研究所 Alumina particle
WO2015146789A1 (en) * 2014-03-25 2015-10-01 Jx日鉱日石エネルギー株式会社 Dehydration catalyst and method for producing conjugated diene
WO2015173780A1 (en) * 2014-05-16 2015-11-19 Versalis S.P.A. Process for the production of alkenols and use thereof for the production of 1,3-butadiene

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004535268A (en) * 2001-01-15 2004-11-25 アンスティテュ フランセ デュ ペトロール Catalyst containing silica and alumina and use of this catalyst in hydrocracking of hydrocarbon feedstocks
JP2006291181A (en) * 2005-03-09 2006-10-26 Inst Fr Petrole Hydrocracking process with recycle including adsorption of polynuclear aromatic compound from fraction to be recycled on adsorbent based on silica-alumina having controlled macropore content
WO2013125389A1 (en) * 2012-02-20 2013-08-29 株式会社ダイセル Method for producing 1,3-butadiene
JP2015048336A (en) * 2013-09-03 2015-03-16 東レ株式会社 Method for producing butadiene and/or 3-butene-2-ol
JP2015054818A (en) * 2013-09-10 2015-03-23 東レ株式会社 Method for producing 1,3-butadiene and/or 3-butene-2-ol
JP2015160763A (en) * 2014-02-26 2015-09-07 国立研究開発法人産業技術総合研究所 Alumina particle
WO2015146789A1 (en) * 2014-03-25 2015-10-01 Jx日鉱日石エネルギー株式会社 Dehydration catalyst and method for producing conjugated diene
WO2015173780A1 (en) * 2014-05-16 2015-11-19 Versalis S.P.A. Process for the production of alkenols and use thereof for the production of 1,3-butadiene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113754509A (en) * 2021-09-10 2021-12-07 中山大学 Method for preparing conjugated diene with single stereo configuration from allyl alcohol compound

Also Published As

Publication number Publication date
JP6684641B2 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
US7977523B2 (en) Catalyst and process for preparing isoolefins
JP5591325B2 (en) Production of 3-methylbut-1-ene by dehydration of 3-methylbutan-1-ol
JP6629388B2 (en) Copper-based catalyst precursor, method for producing the same, and hydrogenation method
EP3233765B1 (en) Process for dehydration of oxygenates with heteropolyacid catalysts having mixed oxide supports and use of the same
JP6803729B2 (en) Manufacturing method of p-xylene
EP3233767B1 (en) Process for producing alkenes from oxygenates by using supported partially neutralised heteropolyacid catalysts
US20220161235A1 (en) Catalyst, and method for producing 1,3-butadiene using same
JP6091310B2 (en) Method for producing butadiene
JP6678429B2 (en) Method for producing conjugated diene compound and catalyst for dehydrating allylic unsaturated alcohol
JP7174947B2 (en) Solid catalyst and method for producing butadiene
JP6684641B2 (en) Method for producing conjugated diene compound and dehydration catalyst for allylic unsaturated alcohol
JP6656074B2 (en) Method for producing conjugated diene compound by dehydration of allylic unsaturated alcohol
EP3126312B1 (en) Process for preparing ethene
KR102489387B1 (en) Process for preparing ethene
KR102306324B1 (en) Alcohol dehydration catalyst, preparation method the same and method for preparing alpha-olefins using the same
JP6869020B2 (en) Method for producing conjugated diene compound
JP2017186272A (en) Manufacturing method of diene compound
JP6462498B2 (en) Process for producing unsaturated alcohol and catalyst
WO2022196717A1 (en) Catalyst, methhod for producing catalyst, method for producing diene compound, method for producing polymer, method for producing polymer molded article, method for measuring catalyst performance, and method for prolonging service life
WO2020262486A1 (en) Catalyst and method for producing diene compound
WO2019065924A1 (en) Catalyst, device for manufacturing conjugated diene, and method for manufacturing conjugated diene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6684641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350