JP2017196656A - Welding device and welding method - Google Patents

Welding device and welding method Download PDF

Info

Publication number
JP2017196656A
JP2017196656A JP2016092172A JP2016092172A JP2017196656A JP 2017196656 A JP2017196656 A JP 2017196656A JP 2016092172 A JP2016092172 A JP 2016092172A JP 2016092172 A JP2016092172 A JP 2016092172A JP 2017196656 A JP2017196656 A JP 2017196656A
Authority
JP
Japan
Prior art keywords
electrode
welding
negative
positive
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016092172A
Other languages
Japanese (ja)
Other versions
JP6421947B2 (en
JP2017196656A5 (en
Inventor
和裕 橋爪
Kazuhiro Hashizume
和裕 橋爪
甲斐 美利
Yoshitoshi Kai
美利 甲斐
甲斐 孝治
Koji Kai
孝治 甲斐
幸徳 小野田
Yukinori Onoda
幸徳 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Giken KK
Original Assignee
Koyo Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Giken KK filed Critical Koyo Giken KK
Priority to JP2016092172A priority Critical patent/JP6421947B2/en
Publication of JP2017196656A publication Critical patent/JP2017196656A/en
Publication of JP2017196656A5 publication Critical patent/JP2017196656A5/ja
Application granted granted Critical
Publication of JP6421947B2 publication Critical patent/JP6421947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Resistance Welding (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a welding device and a welding method, enabling control for passing a large current for a short time, having no generation of scorch or distortion due to impression or heat on the rear face of a workpiece when welding, and capable of efficiently controlling power to achieve power saving.SOLUTION: An objective welding device comprises: a welding transformer 10 converting a current generated on a secondary coil by supply of high frequency AC to a primary coil into a direct current to enable supply of a large current for a short time; and a welding gun 6 which is retained on a flat table placing a workpiece in a lateral posture parallel to the table, and to which a one-side electrode 200 enabling welding from one direction is loaded without needing a lower side electrode and the current generated to the secondary coil of the welding transformer 10 and converted into a direct current is supplied.SELECTED DRAWING: Figure 1

Description

本発明は、被溶接物(例えば、鋼板等の金属板を2枚重ねたもの)を平坦なテーブルに載置し、該テーブルと並行となる横向き姿勢に保持された溶接ガンで該被溶接物に対してスポット溶接を行う溶接装置及び溶接方法に係り、特に片側電極を用いた溶接装置及び溶接方法に関する。   The present invention relates to an object to be welded by a welding gun (for example, a stack of two metal plates such as steel plates) placed on a flat table and held in a lateral orientation parallel to the table. In particular, the present invention relates to a welding apparatus and a welding method using a one-side electrode.

スポット溶接を効率良く実施できる溶接装置として、本願の発明者等は被溶接物を載置するテーブルを備えた溶接装置を提供してきた(特許文献1、特許文献2を参照)。
スポット溶接は、一般的には、対向配置した上下2つの電極で被溶接物を挟持し、上下電極間に溶接電流を供給することで被溶接物を溶接するものである。
一方、近年、上下両方向から電極を被溶接物に押し付けて溶接するのではなく、一方向(主に上方向)から電極を被溶接物に押し付けて溶接を行う所謂片側溶接の発明が多く見られるようになってきた(例えば、特許文献3〜特許文献6参照)。
As a welding apparatus capable of efficiently performing spot welding, the inventors of the present application have provided a welding apparatus including a table on which an object to be welded is placed (see Patent Document 1 and Patent Document 2).
In spot welding, generally, an object to be welded is sandwiched between two upper and lower electrodes arranged opposite to each other, and a welding current is supplied between the upper and lower electrodes to weld the object to be welded.
On the other hand, in recent years, there are many so-called one-side welding inventions in which welding is performed by pressing an electrode against a workpiece from one direction (mainly upward) rather than pressing the electrode against the workpiece from both the upper and lower directions. (For example, see Patent Documents 3 to 6).

特開平06−328265号公報Japanese Patent Laid-Open No. 06-328265 特開2011−183421号公報JP 2011-183421 A 特開2011−031269号公報JP 2011-031269 A 特開2012−071311号公報JP 2012-071311 A 特開2012−096249号公報JP2012-096249A 特開2013−052427号公報JP 2013-052427 A

しかしながら、片側溶接は技術的にかなり難しく、以下に示すような課題がある。
即ち、大電流を短時間通電するための制御が確立されていないことから、被溶接物を溶接した際に、被溶接物の裏面(例えば、重ねた2枚の鋼板のうち、片側電極から遠い方の裏面)に圧痕や熱による焼け、歪が多く生じて美観が損なわれてしまう。特に、裏面に保護シートが貼られた鋼板を溶接した場合に当該シートが焼けたり、熱変色したりする。また、裏面に塗装が施された鋼板においては塗装が熱変色したりする。
However, one-side welding is technically difficult and has the following problems.
That is, since control for energizing a large current for a short time has not been established, when welding the workpiece, the back surface of the workpiece (for example, of two stacked steel plates, far from one electrode) On the other side), there are many indentations, heat burns and distortions, and the aesthetics are impaired. In particular, when a steel sheet having a protective sheet pasted on the back surface is welded, the sheet is burnt or thermally discolored. Moreover, in the steel plate with the coating on the back surface, the coating is thermally discolored.

また、大電流を短時間通電するための制御が確立されていないことで、効率の良い電力制御が難しく消費電力が大きくなる。   In addition, since control for energizing a large current for a short time has not been established, efficient power control is difficult and power consumption increases.

本発明は係る事情に鑑みてなされたものであり、大電流を短時間通電するための制御を可能とし、被溶接物を溶接したときに、該被溶接物の裏面に圧痕や熱による焼け、歪が生じることがなく、また効率の良い電力制御を行えて省電力化が図れる溶接装置及び溶接方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and enables control for energizing a large current for a short time, and when welding the workpiece, the back surface of the workpiece is burned by indentation or heat, An object of the present invention is to provide a welding apparatus and a welding method that do not cause distortion and that can perform efficient power control to save power.

本発明の溶接装置は、1次コイルに高周波交流が供給されることで2次コイルに生起する電流を直流化する溶接トランスと、被溶接物を載置する平坦なテーブル上で、かつ該テーブルと並行となる横向き姿勢で保持され、前記溶接トランスの2次コイルに生起し直流化された電流が供給される溶接ガンと、前記溶接トランスの1次コイルに高周波交流を供給するインバータ回路と、前記インバータ回路の動作を制御する溶接制御回路と、を備える溶接装置であって、前記溶接トランスは、平行部と両端のU字状の湾曲部により構成される環状磁心と、前記環状磁心の前記平行部に、複数の部分に分けて間隙を空けて分割巻きされる1次コイルと、前記1次コイルと共に前記環状磁心の前記平行部に巻回され、前記1次コイルに設けられた前記各間隙に1個ずつ挟み込むように、複数の正側コイルと複数の負側コイルとを交互に配列した2次コイルと、前記複数の正側コイルは全て並列接続されるかもしくは全部または一部が直列接続され、前記複数の負側コイルは全て並列接続されるかもしくは全部または一部が直列接続され、前記接続された複数の正側コイルと前記複数の負側コイルとが互いに直列接続されるように、前記正側コイルと負側コイルの端子間を電気接続する導体群を有し、かつ、前記導体群により、前記全ての正側コイルと負側コイルとを一方の面上に支持固定する接続基板を備え、前記複数の正側コイルの一方の端子は、前記接続基板の他方の面上で、前記環状磁心の前記平行部に平行な方向に伸びた第1連結極板に電気接続され、前記複数の負側コイルの一方の端子は、前記接続基板の他方の面側で、前記環状磁心の前記平行部に平行な方向に伸びた第2連結極板に電気接続され、前記正側コイルの他方の端子と負側コイルの他方の端子は、共に、前記接続基板の他方の面側で、前記環状磁心の前記平行部に平行な方向に伸びた第3連結極板に電気接続され、前記第1連結極板には、正側導体が連結され、前記第2連結極板には、負側導体が連結され、前記正側導体と前記負側導体は、前記接続基板の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層を介して重ね合わされた一対の導体板であり、前記正側導体とプラス電極が接続された第1極板との間に挟まれ、前記正側導体に正極が接触し、前記第1極板に負極が接触する第1整流素子と、前記負側導体とマイナス電極が接続された第2極板との間に挟まれ、前記負側導体に正極が接触し前記第2極板に負極が接触する第2整流素子と、前記第1極板と前記第2極板を支持し、両者を電気接続する第3極板と、を備え、前記溶接ガンは、両端が開口した円筒形状を成す外側電極と、前記外側電極に内挿自在であり、前記外側電極に内挿させた際に先端部分が前記外側電極の先端面より露出する円柱形状を成す内側電極と、前記外側電極と前記内側電極との間を絶縁する第1の絶縁部材と、前記内側電極の先端部分の表面を覆う第2の絶縁部材と、を備えた片側電極と、先端部分で前記片側電極を保持し、該先端部分が本体部分に対して略直角方向に曲がったL字形状を成し、前記溶接トランスの前記プラス電極を前記片側電極の前記内側電極及び前記外側電極のいずれか一方と接続するためのシャンクホルダと、前記溶接トランスの前記マイナス電極を前記片側電極の前記内側電極及び前記外側電極のうち、前記シャンクホルダに接続されていない方と接続するためのブスバー導電体と、を備え、前記溶接制御回路は、前記片側電極に供給する溶接電流が、供給開始時刻から15ミリ秒以内で最大値となり、かつ50ミリ秒以下の通電時間で溶接が完了するように前記インバータ回路の動作を制御する。   A welding apparatus according to the present invention includes a welding transformer that converts a current generated in a secondary coil into a direct current when high-frequency alternating current is supplied to the primary coil, a flat table on which a workpiece is placed, and the table. A welding gun that is held in a lateral orientation parallel to the welding gun and is supplied with a direct current generated in the secondary coil of the welding transformer, an inverter circuit that supplies high-frequency alternating current to the primary coil of the welding transformer, A welding control circuit for controlling the operation of the inverter circuit, wherein the welding transformer includes an annular magnetic core constituted by a parallel part and U-shaped curved parts at both ends, and the annular magnetic core A primary coil that is divided into a plurality of portions and is dividedly wound around a parallel portion, and the primary coil is wound around the parallel portion of the annular magnetic core together with the primary coil, and the primary coil is provided on the primary coil. A secondary coil in which a plurality of positive side coils and a plurality of negative side coils are alternately arranged so as to be sandwiched one by one in the gap, and the plurality of positive side coils are all connected in parallel, or all or part of them are The plurality of negative coils are all connected in parallel or all or part of them are connected in series, and the plurality of connected positive coils and the plurality of negative coils are connected in series with each other. As described above, a conductor group that electrically connects the terminals of the positive side coil and the negative side coil is provided, and the positive side coil and the negative side coil are supported and fixed on one surface by the conductor group. One terminal of the plurality of positive side coils is electrically connected to a first connecting plate extending in a direction parallel to the parallel portion of the annular magnetic core on the other surface of the connection board. One of the plurality of negative coils The terminal is electrically connected to a second connecting plate extending in a direction parallel to the parallel portion of the annular magnetic core on the other surface side of the connection board, and the other terminal of the positive coil and the negative coil are connected to each other. Both of the other terminals are electrically connected to a third connection plate extending in a direction parallel to the parallel portion of the annular magnetic core on the other surface side of the connection board, and the first connection plate includes: A positive-side conductor is connected, a negative-side conductor is connected to the second connecting electrode plate, and the positive-side conductor and the negative-side conductor are perpendicular to the other surface on the other surface side of the connection board. A pair of conductor plates stacked via an insulating layer disposed on a boundary surface extending in a direction away from the positive electrode, sandwiched between the positive side conductor and a first electrode plate to which a positive electrode is connected. A first rectifier element in which a positive electrode contacts a side conductor and a negative electrode contacts the first electrode plate; and the negative conductor A second rectifier element sandwiched between a negative electrode and a second electrode plate connected to the negative electrode, a positive electrode in contact with the negative conductor, and a negative electrode in contact with the second electrode plate, the first electrode plate, A third electrode plate that supports the second electrode plate and electrically connects the two electrode plates, and the welding gun is formed in a cylindrical shape with both ends open, and can be inserted into the outer electrode, A cylindrical inner electrode whose tip portion is exposed from the tip surface of the outer electrode when inserted into the outer electrode; a first insulating member that insulates between the outer electrode and the inner electrode; A L-shaped electrode having a second insulating member that covers the surface of the tip portion of the inner electrode; and the one-side electrode held by the tip portion, the tip portion being bent in a substantially right angle direction with respect to the main body portion. The positive electrode of the welding transformer is connected to the inner electrode and the one-side electrode. The shank holder for connecting to either one of the outer electrodes and the minus electrode of the welding transformer are connected to one of the inner electrode and the outer electrode of the one-side electrode that is not connected to the shank holder. The welding control circuit, wherein the welding current supplied to the one-side electrode reaches a maximum value within 15 milliseconds from the supply start time, and welding is performed with an energization time of 50 milliseconds or less. The operation of the inverter circuit is controlled to complete.

上記構成によれば、短時間に大電流の供給を可能とする溶接トランスを有するとともに、水平方向への移動が可能であって、下側電極を必要とせず一方向からの溶接を可能とした片側電極が装着された溶接ガンを有するので、片面に保護シートが貼られた被溶接物を溶接する場合に、該被溶接物の裏面に圧痕や熱による焼けや歪が殆ど発生することなく溶接を行うことができ、また片面塗装された被溶接物を溶接する場合には、焼けや熱変色が殆ど発生することなく溶接を行うことができる。即ち、被溶接物の裏面の美観を損なうことなく溶接を行うことができる。また、短時間で溶接が完了することから省電力化も図れる。   According to the above configuration, it has a welding transformer that can supply a large current in a short time, can be moved in the horizontal direction, and can be welded from one direction without requiring a lower electrode. Since it has a welding gun with a single-side electrode attached, when welding a work piece with a protective sheet on one side, welding is hardly caused on the back side of the work piece by indentation or heat. In addition, when welding an object to be welded that has been coated on one side, the welding can be performed with almost no burning or thermal discoloration. That is, welding can be performed without impairing the appearance of the back surface of the workpiece. Further, since welding is completed in a short time, power saving can be achieved.

上記構成において、前記片側電極の前記外側電極は、前記内側電極を保持する固定部と、一端面が前記固定部の先端面と密着し、前記固定部と接触する一端面の中心を支点とする軸線回りに円弧運動可能な可動部と、を有する。   In the above configuration, the outer electrode of the one-side electrode has a fixed portion that holds the inner electrode and a center of one end surface that is in close contact with the distal end surface of the fixed portion and is in contact with the fixed portion as a fulcrum. And a movable part capable of moving in an arc around the axis.

上記構成によれば、外側電極の可動部が軸線回りに円弧運動可能となっているので、片側電極を被溶接物に当てた際に、予め被溶接物に形成された複数個のプロジェクション(突起)に対する外側電極の加圧力の差を低減でき、接合不良を起こすことなく確実な接合が可能となる。   According to the above configuration, since the movable portion of the outer electrode can move in an arc around the axis, a plurality of projections (projections) previously formed on the workpiece when the one-side electrode is applied to the workpiece. ) Can be reduced, and a reliable joining can be achieved without causing a joining failure.

本発明の溶接方法は、上記溶接装置を用いて被溶接物をスポット溶接する溶接方法であって、前記被溶接物が複数枚の金属板であり、前記複数枚の金属板の1枚を除く残りの金属板のそれぞれに対し、前記内側電極が通過可能な大きさの逃がし孔を形成するとともに、それぞれの一方の面の前記逃がし孔の外側周囲に同心円に沿って複数個のプロジェクションを形成し、その後、前記逃がし孔及び前記プロジェクションを形成していない前記金属板を最下位にし、その面上に前記逃がし孔及び前記プロジェクションを形成した全ての前記金属板を、それぞれの前記プロジェクションの形成面を下に向けるとともに、それぞれの前記逃し孔の中心同士が一致するように順次積み重ねて行き、全ての金属板を積層した後、前記逃がし孔を形成した全ての前記金属板の前記逃がし孔に前記内側電極の先端部分を挿入加圧するとともに、前記外側電極から前記内側電極へ流れる方向で溶接電流の供給を開始し、供給開始時刻から15ミリ秒以内で最大値となり、かつ50ミリ秒以下の通電時間で溶接が完了するように前記溶接電流を制御する。   The welding method of the present invention is a welding method in which a workpiece is spot-welded using the above-described welding apparatus, and the workpiece is a plurality of metal plates, excluding one of the plurality of metal plates. For each of the remaining metal plates, an escape hole of a size that allows the inner electrode to pass therethrough is formed, and a plurality of projections are formed along the concentric circles around the outer side of the escape hole on each one surface. Thereafter, the release plate and the metal plate on which the projection is not formed are placed at the bottom, and all the metal plates on which the release hole and the projection are formed are provided on the respective formation surfaces of the projections. Directed downward and stacked sequentially so that the centers of the respective escape holes coincide with each other, and after stacking all the metal plates, the escape holes were formed. Insert and press the tip of the inner electrode into the escape hole of each metal plate, and start supplying welding current in the direction of flow from the outer electrode to the inner electrode, within 15 milliseconds from the supply start time. The welding current is controlled so that the welding is completed with the maximum value and the energization time of 50 milliseconds or less.

上記方法によれば、片面に保護シートが貼られた被溶接物を溶接する場合に、該被溶接物の裏面に圧痕や熱による焼けや歪が殆ど発生することなく溶接を行うことができ、また片面塗装された被溶接物を溶接する場合には、焼けや熱変色が殆ど発生することなく溶接を行うことができる。即ち、被溶接物の裏面の美観を損なうことなく溶接を行うことができる。   According to the above method, when welding an object to be welded with a protective sheet on one side, welding can be performed with almost no indentation or heat burning or distortion on the back surface of the object to be welded. In addition, when welding an object to be welded on which one side is coated, welding can be performed with almost no burning or thermal discoloration. That is, welding can be performed without impairing the appearance of the back surface of the workpiece.

本発明によれば、大電流を短時間通電するための制御を可能とし、被溶接物を溶接した場合に、該被溶接物の裏面に圧痕や熱による焼け、歪が生じることなく溶接を行うことができ、また短時間で溶接を行えることから省電力化も図れる。   According to the present invention, it is possible to control for energizing a large current for a short time, and when welding an object to be welded, welding is performed on the back surface of the object to be welded without causing indentation or heat burning or distortion. In addition, power can be saved because welding can be performed in a short time.

本実施形態に係る溶接装置の外観を示す側面図Side view showing the appearance of the welding apparatus according to the present embodiment 本実施形態に係る溶接装置の外観を示す平面図The top view which shows the external appearance of the welding apparatus which concerns on this embodiment 本実施形態に係る溶接装置の溶接ガンの一部破断面を含む外観を示す側面図The side view which shows the external appearance including the partial fracture surface of the welding gun of the welding apparatus which concerns on this embodiment 本実施形態に係る溶接装置の溶接ガンの先端部の構造と片側電極の構造を示す断面図Sectional drawing which shows the structure of the front-end | tip part of the welding gun of the welding apparatus which concerns on this embodiment, and the structure of one side electrode 本実施形態に係る溶接装置の電源ユニットの概略構成を示す図The figure which shows schematic structure of the power supply unit of the welding apparatus which concerns on this embodiment. 本実施形態に係る溶接装置の溶接トランスと溶接ガンとの結線を示す図The figure which shows the connection with the welding transformer and welding gun of the welding apparatus which concerns on this embodiment. 本実施形態に係る溶接装置の溶接トランスの動作を説明するための結線図Connection diagram for explaining the operation of the welding transformer of the welding apparatus according to the present embodiment 本実施形態に係る溶接装置の溶接トランスの動作を説明するための結線図Connection diagram for explaining the operation of the welding transformer of the welding apparatus according to the present embodiment 本実施形態に係る溶接装置の溶接トランスの1次側に供給される電流を制御するための制御パルス、1次電流及び整流後の溶接電流を示す図The figure which shows the control pulse for controlling the electric current supplied to the primary side of the welding transformer of the welding apparatus which concerns on this embodiment, the primary current, and the welding current after rectification | straightening. 本実施形態に係る溶接装置の溶接トランスの外観を示す斜視図The perspective view which shows the external appearance of the welding transformer of the welding apparatus which concerns on this embodiment. 本実施形態に係る溶接装置の溶接トランスの組み立て状態を示す斜視図The perspective view which shows the assembly state of the welding transformer of the welding apparatus which concerns on this embodiment. 本実施形態に係る溶接装置において、溶接トランスから溶接ガンに供給される溶接電流を示す波形図In the welding apparatus which concerns on this embodiment, the wave form diagram which shows the welding current supplied to a welding gun from a welding transformer 本実施形態に係る溶接装置で用いられる被溶接物の一例を示す断面図及び平面図Sectional drawing and top view which show an example of the to-be-welded object used with the welding apparatus which concerns on this embodiment 本実施形態に係る溶接装置の溶接ガンに装着された片側電極と被溶接物との間の溶接電流の流れを説明するための断面図Sectional drawing for demonstrating the flow of the welding current between the one side electrode with which the welding gun of the welding apparatus which concerns on this embodiment was equipped, and a to-be-welded object

以下、本発明を実施するための好適な実施形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態に係る溶接装置1の外観を示す側面図である。また、図2は、本実施形態に係る溶接装置1の外観を示す平面図である。また、図3は、本実施形態に係る溶接装置1の溶接ガン6の一部破断面を含む外観を示す側面図である。図1及び図2において、本実施形態に係る溶接装置1は、冷却ユニット2と、電源ユニット3と、支持ポスト4と、支持アーム5と、溶接ガン6と、導電ケーブル7と、テーブル8と、溶接条件設定器9と、溶接トランス10と、テーブル駆動部100と、を備える。   FIG. 1 is a side view showing an appearance of a welding apparatus 1 according to an embodiment of the present invention. FIG. 2 is a plan view showing an appearance of the welding apparatus 1 according to the present embodiment. Moreover, FIG. 3 is a side view which shows the external appearance including the partial fracture surface of the welding gun 6 of the welding apparatus 1 which concerns on this embodiment. 1 and 2, a welding apparatus 1 according to this embodiment includes a cooling unit 2, a power supply unit 3, a support post 4, a support arm 5, a welding gun 6, a conductive cable 7, and a table 8. , A welding condition setting unit 9, a welding transformer 10, and a table driving unit 100.

冷却ユニット2は、溶接時に溶接ガン6にて発生する熱を冷却するための冷却水を供給する。冷却ユニット2は、電源が投入されている間は常時動作し、溶接ガン6との間で冷却水を循環させる。電源ユニット3は、受電設備450(図5参照)から供給される三相の交流電力を整流素子にて直流に変換し、更に変換後の直流から高周波交流に変換して出力する。電源ユニット3の詳細については後述する。導電ケーブル7は、2本のケーブルで構成され、一端がテーブル駆動部100の前面部に内蔵された溶接トランス10の2次側出力端に接続され、他端が溶接ガン6に接続される。溶接トランス10は、本願発明者等が先に特開2012−210654号、特開2013−179205号で提案した抵抗溶接用の溶接トランスである。溶接トランス10の詳細については後述する。   The cooling unit 2 supplies cooling water for cooling the heat generated by the welding gun 6 during welding. The cooling unit 2 always operates while the power is on, and circulates the cooling water between the cooling gun 2 and the welding gun 6. The power supply unit 3 converts the three-phase alternating current power supplied from the power receiving facility 450 (see FIG. 5) into direct current with a rectifier, and further converts the converted direct current into a high frequency alternating current and outputs it. Details of the power supply unit 3 will be described later. The conductive cable 7 is composed of two cables, one end is connected to the secondary output end of the welding transformer 10 built in the front portion of the table driving unit 100, and the other end is connected to the welding gun 6. The welding transformer 10 is a resistance transformer for resistance welding previously proposed by the inventors of the present application in JP2012-210654A and JP2013-179205A. Details of the welding transformer 10 will be described later.

支持ポスト4は、冷却ユニット2と電源ユニット3の近傍にて垂直方向に立設され、支持アーム5を水平方向に回動可能に支持する。支持アーム5は、溶接ガン6を保持するものであり、支持ポスト4に対して水平方向に延びた水平アーム部5Aと、水平アーム部5Aの先端部分から垂直方向下向きに延設された垂直アーム部5Bとを備えた略L字形状を成している。支持アーム5の水平アーム部5Aの基端部5aと中間部5bには、それぞれ回動軸5Aaが設けられており、これらの回動軸5Aaによって溶接ガン6の水平方向への移動が可能になっている。   The support post 4 is erected in the vertical direction in the vicinity of the cooling unit 2 and the power supply unit 3, and supports the support arm 5 so as to be rotatable in the horizontal direction. The support arm 5 holds the welding gun 6, and includes a horizontal arm portion 5A extending in the horizontal direction with respect to the support post 4, and a vertical arm extending vertically downward from the tip portion of the horizontal arm portion 5A. It is substantially L-shaped with the part 5B. Rotating shafts 5Aa are respectively provided at the base end portion 5a and the intermediate portion 5b of the horizontal arm portion 5A of the support arm 5, and the welding gun 6 can be moved in the horizontal direction by these rotating shafts 5Aa. It has become.

テーブル8は、略正方形の平坦な板状に形成されており、被溶接物を載置する。被溶接物は鋼板等の金属板である。テーブル8は、テーブル駆動部100によって上下動する。テーブル8は、溶接ガン6と被溶接物との間の距離調整を行うときなどで使用される。テーブル8の上下動操作は作業者により行われる。溶接条件設定器9は、被溶接物の材料や板厚等の溶接条件の設定を行う。溶接条件設定器9にて設定された溶接条件に見合った溶接電流が決定される。   The table 8 is formed in a substantially square flat plate shape, and places an object to be welded thereon. The work piece is a metal plate such as a steel plate. The table 8 is moved up and down by the table driving unit 100. The table 8 is used when adjusting the distance between the welding gun 6 and the workpiece. The operator moves the table 8 up and down. The welding condition setting unit 9 sets welding conditions such as the material of the workpiece and the plate thickness. A welding current corresponding to the welding conditions set by the welding condition setting unit 9 is determined.

図3において、溶接ガン6は、基端部側にレバー式の起動スイッチ6Aを備えたハンドル6Bを有している。ハンドル6Bの起動スイッチ6Aは溶接指令を出すためのものであり、ハンドル6Bが握られることでスイッチオンとなって溶接指定が出力される。溶接指令が出力されると、この溶接指令が電源ユニット3に取り込まれ、これにより電源ユニット3が動作して高周波交流を出力する。電源ユニット3から出力された高周波交流は、溶接トランス10の1次コイル12(図6参照)に供給される。   In FIG. 3, the welding gun 6 has a handle 6B having a lever-type start switch 6A on the base end side. The start switch 6A of the handle 6B is for issuing a welding command. When the handle 6B is gripped, the switch is turned on and a welding designation is output. When the welding command is output, the welding command is taken into the power supply unit 3, and the power supply unit 3 operates thereby to output high-frequency alternating current. The high-frequency alternating current output from the power supply unit 3 is supplied to the primary coil 12 (see FIG. 6) of the welding transformer 10.

次に、溶接ガン6について詳細に説明する。
図4は、シャンクホルダ300の先端部301の構造と片側電極200の構造を示す断面図である。同図において、溶接ガン6は、片側電極200と、先端部301に片側電極200を装着するシャンクホルダ300と、シャンクホルダ300に添送されたブスバー導電体400とを備える。片側電極200は、下側電極を必要とせず一方向からの溶接を可能としたものであり、外側電極201と、内側電極202とを有する。片側電極200の詳細については後述する。
Next, the welding gun 6 will be described in detail.
FIG. 4 is a cross-sectional view showing the structure of the tip 301 of the shank holder 300 and the structure of the one-side electrode 200. In the figure, the welding gun 6 includes a one-sided electrode 200, a shank holder 300 that attaches the one-sided electrode 200 to the tip portion 301, and a bus bar conductor 400 that is fed to the shank holder 300. The one-side electrode 200 does not require a lower electrode and enables welding from one direction, and includes an outer electrode 201 and an inner electrode 202. Details of the one-side electrode 200 will be described later.

シャンクホルダ300は、先端部301が本体部302(図3参照)に対して略直角方向に折れ曲がった略L字状に形成されている。シャンクホルダ300には、銅等の導電性に優れた金属材が用いられ。シャンクホルダ300は、片側電極200の外側電極201と導通する。シャンクホルダ300の内部には、冷却水を通流させるための流路303が形成されており、この流路303内に冷却水を送るためのチューブ350が挿入される。チューブ350は、シャンクホルダ300の流路303の径よりも小径の可撓性を有し、例えばフッ素樹脂チューブからなる。チューブ350の先端はシャンクホルダ300の先端部301に至り、チューブ350の後端は上述した冷却ユニット2に至る。   The shank holder 300 is formed in a substantially L shape in which the tip portion 301 is bent in a substantially right angle direction with respect to the main body portion 302 (see FIG. 3). The shank holder 300 is made of a metal material having excellent conductivity such as copper. The shank holder 300 is electrically connected to the outer electrode 201 of the one-side electrode 200. A flow path 303 for allowing cooling water to flow therethrough is formed inside the shank holder 300, and a tube 350 for sending the cooling water is inserted into the flow path 303. The tube 350 has flexibility with a diameter smaller than the diameter of the flow path 303 of the shank holder 300, and is made of, for example, a fluororesin tube. The distal end of the tube 350 reaches the distal end portion 301 of the shank holder 300 and the rear end of the tube 350 reaches the cooling unit 2 described above.

チューブ350の先端部分には短尺のチューブ351が接続されて、外側電極201内に挿入される。チューブ351は、チューブ350と同様に可撓性を有し、例えばフッ素樹脂チューブからなる。チューブ350を通して冷却ユニット2から送られてくる冷却水は、チューブ351から外側電極201内に注入される。外側電極201内に注入されることで溢れ出た冷却水は、シャンクホルダ300内の流路303に入り、流路303及び不図示のチューブを経て冷却ユニット2に戻る。冷却水は、冷却ユニット2と片側電極200の間を循環し、溶接ガン6に装着された片側電極200を冷却する。   A short tube 351 is connected to the distal end portion of the tube 350 and is inserted into the outer electrode 201. The tube 351 is flexible like the tube 350, and is made of, for example, a fluororesin tube. Cooling water sent from the cooling unit 2 through the tube 350 is injected into the outer electrode 201 from the tube 351. The cooling water overflowed by being injected into the outer electrode 201 enters the flow path 303 in the shank holder 300 and returns to the cooling unit 2 through the flow path 303 and a tube (not shown). The cooling water circulates between the cooling unit 2 and the one-side electrode 200 to cool the one-side electrode 200 attached to the welding gun 6.

ブスバー導電体400には、銅等の導電性に優れた金属材が用いられる。ブスバー導電体400は、片側電極200の内側電極202と導通する。シャンクホルダ300は、溶接トランス10のプラス電極22(図6参照)に接続され、ブスバー導電体400は、溶接トランス10のマイナス電極24(図6参照)に接続される。これにより、片側電極200に供給される溶接電流は、外側電極201から内側電極202に向かう方向に流れる。なお、本実施形態では、溶接トランス10のプラス電極22を片側電極200の外側電極201に接続し、溶接トランス10のマイナス電極24を片側電極200の内側電極202に接続するようにして、溶接電流が、外側電極201から内側電極202に向かう方向に流れるようにしたが、逆になるようにしても構わない。即ち、溶接トランス10のプラス電極22を片側電極200の内側電極202に接続し、溶接トランス10のマイナス電極24を片側電極200の外側電極201に接続するようにしてもよい。   For the bus bar conductor 400, a metal material having excellent conductivity such as copper is used. The bus bar conductor 400 is electrically connected to the inner electrode 202 of the one-side electrode 200. The shank holder 300 is connected to the plus electrode 22 (see FIG. 6) of the welding transformer 10, and the bus bar conductor 400 is connected to the minus electrode 24 (see FIG. 6) of the welding transformer 10. As a result, the welding current supplied to the one-side electrode 200 flows in a direction from the outer electrode 201 toward the inner electrode 202. In the present embodiment, the welding electrode 10 has a positive electrode 22 connected to the outer electrode 201 of the one-side electrode 200, and a negative electrode 24 of the welding transformer 10 is connected to the inner electrode 202 of the one-side electrode 200. However, the flow may be reversed in the direction from the outer electrode 201 toward the inner electrode 202. That is, the plus electrode 22 of the welding transformer 10 may be connected to the inner electrode 202 of the one-side electrode 200, and the minus electrode 24 of the welding transformer 10 may be connected to the outer electrode 201 of the one-side electrode 200.

片側電極200は、上述した外側電極201及び内側電極202の他に、内側電極固定部203と、内側電極固定部203と外側電極201との間に介挿される樹脂製のガイドブッシュ500及び樹脂製の平ワッシャ501と、外側電極201と内側電極202との間に介挿される樹脂製のガイドブッシュ502及び樹脂製の平ワッシャ504と、内側電極固定部203を介して内側電極202を被溶接物側へ付勢するための複数の皿ばねを積層してなる付勢部505と、付勢部505の両端に対して設けられる樹脂製の平ワッシャ506,507と、シャンクホルダ300の先端と平ワッシャ507との間に介挿される樹脂製のキャップ508と、を備える。   In addition to the outer electrode 201 and the inner electrode 202 described above, the one-side electrode 200 includes an inner electrode fixing portion 203, a resin guide bush 500 inserted between the inner electrode fixing portion 203 and the outer electrode 201, and a resin The flat washer 501, the resin guide bushing 502 and the resin flat washer 504 inserted between the outer electrode 201 and the inner electrode 202, and the inner electrode 202 are welded via the inner electrode fixing portion 203. A biasing portion 505 formed by laminating a plurality of disc springs for biasing to the side, flat washers 506 and 507 made of resin provided at both ends of the biasing portion 505, and the tip and flat of the shank holder 300 A resin cap 508 interposed between the washer 507 and the washer 507.

ガイドブッシュ500,502は、共に両端が開口した円筒状に形成されている。キャップ508は、断面略コ字状に形成されており、また軸方向に対して直角となる平坦面を有する底部には外側電極201の上端部が連通する貫通する孔(符号略)が形成されている。   Both guide bushes 500 and 502 are formed in a cylindrical shape with both ends opened. The cap 508 is formed in a substantially U-shaped cross section, and a hole (reference numeral omitted) through which the upper end of the outer electrode 201 communicates is formed at the bottom having a flat surface perpendicular to the axial direction. ing.

外側電極201は、略クランク状に形成され、内側電極202を保持する固定部201aと、一端面が固定部201aの先端面と密着し、固定部201aと接触する一端面の中心を支点とする軸線回りに円弧運動可能な可動部201bと、を備える。外側電極201は、基端部分(即ち、シャンクホルダ300の先端部分と接合する部分)に、略その長さに相当する深さの穴201cが中心軸方向に形成されている。この穴201cには上述したチューブ351が挿入される。外側電極201の固定部201aの内側電極202を保持する部分は、両端が開口した円筒状に形成されている。外側電極201の可動部201bは、両端が開口した円筒状に形成されている。外側電極201の固定部201aの内側電極保持部と可動部201b内に内側電極202が挿通される。外側電極201の固定部201aの内側電極保持部の上端部分には上述したガイドブッシュ502が内装される。   The outer electrode 201 is formed in a substantially crank shape, and has a fixed portion 201a that holds the inner electrode 202 and a center of one end surface that comes into close contact with the tip surface of the fixed portion 201a and contacts the fixed portion 201a as a fulcrum. And a movable portion 201b that can move in an arc around the axis. In the outer electrode 201, a hole 201c having a depth substantially corresponding to its length is formed in the central axis direction at a base end portion (that is, a portion joined to the tip portion of the shank holder 300). The tube 351 described above is inserted into the hole 201c. A portion for holding the inner electrode 202 of the fixing portion 201a of the outer electrode 201 is formed in a cylindrical shape having both ends opened. The movable part 201b of the outer electrode 201 is formed in a cylindrical shape with both ends opened. The inner electrode 202 is inserted into the inner electrode holding portion and the movable portion 201b of the fixed portion 201a of the outer electrode 201. The above-described guide bush 502 is housed in the upper end portion of the inner electrode holding portion of the fixing portion 201a of the outer electrode 201.

ここで、外側電極201の固定部201aの内側電極保持部の上端部分の内径は、ガイドブッシュ502の肉厚分だけ他の部分よりも大きくなっている。また、外側電極201の固定部201aの内側電極保持部の内径(ガイドブッシュ502を内装する部分の内径を除く)が内側電極202の径よりも僅かに大きく形成されていて、内側電極202のスムーズな移動を可能にしている。但し、内側電極202の移動に伴って内側電極202が外側電極201に接触しないように(即ち、内側電極202が横方向に振れて外側電極201に接触しないように)、ガイドブッシュ502にて内側電極202の移動方向を規制している。なお、内側電極202が外側電極201に接触しないように、内側電極202と外側電極201との間に絶縁材(例えば、樹脂製のフィルム)を設けるようにしてもよい。   Here, the inner diameter of the upper end portion of the inner electrode holding portion of the fixing portion 201 a of the outer electrode 201 is larger than the other portions by the thickness of the guide bush 502. Further, the inner electrode holding portion of the fixing portion 201 a of the outer electrode 201 has an inner diameter (excluding the inner diameter of the portion in which the guide bushing 502 is housed) slightly larger than the inner electrode 202, and the inner electrode 202 is smooth. Movement is possible. However, the inner side of the guide bushing 502 prevents the inner electrode 202 from coming into contact with the outer electrode 201 as the inner electrode 202 moves (ie, the inner electrode 202 does not touch the outer electrode 201 due to lateral movement). The moving direction of the electrode 202 is regulated. Note that an insulating material (for example, a resin film) may be provided between the inner electrode 202 and the outer electrode 201 so that the inner electrode 202 does not contact the outer electrode 201.

外側電極201の可動部201bは、弾性を有する接続部材550によって外側電極201の固定部201aに密着するように連結される。接続部材550は、両端が開口するとともに、軸心方向に切欠を有する横断面C字状に形成されている。また、接続部材550には、その上端側の内面と下端側の内面のそれぞれに断面三角形状の突起(符号略)が円周方向に沿って形成されている。外側電極201の固定部201aの先端部分の外周面と、外側電極201の可動部201bの外周面のそれぞれには、接続部材550に形成された前記突起と嵌合するV字状の溝(符略)が円周方向に形成されている。外側電極201の可動部201bを、外側電極201の固定部201aに接触させた状態で、接続部材550を外側電極201の固定部201aと可動部201bに亘るようにして装着し、接続部材550の内側の上下両端側に形成された断面三角形状の突起が、外側電極201の固定部201aと可動部201bのそれぞれの外周面に形成されたV字状の溝に嵌合するように、接続部材550の上下位置を調整することで、外側電極201の可動部201bが外側電極201の固定部201aに回動自在に連結される。   The movable portion 201b of the outer electrode 201 is connected so as to be in close contact with the fixed portion 201a of the outer electrode 201 by an elastic connecting member 550. The connection member 550 is formed in a C-shaped cross section that is open at both ends and has a notch in the axial direction. Further, the connection member 550 is provided with protrusions (not shown) having a triangular cross section along the circumferential direction on the inner surface on the upper end side and the inner surface on the lower end side. Each of the outer peripheral surface of the distal end portion of the fixed portion 201a of the outer electrode 201 and the outer peripheral surface of the movable portion 201b of the outer electrode 201 has a V-shaped groove (notation mark) that fits the protrusion formed on the connection member 550. Abbreviation) is formed in the circumferential direction. In a state where the movable portion 201b of the outer electrode 201 is in contact with the fixed portion 201a of the outer electrode 201, the connecting member 550 is mounted so as to span the fixed portion 201a and the movable portion 201b of the outer electrode 201. A connecting member so that protrusions having a triangular cross-section formed on both the upper and lower ends on the inner side are fitted into V-shaped grooves formed on the outer peripheral surfaces of the fixed portion 201a and the movable portion 201b of the outer electrode 201, respectively. By adjusting the vertical position of 550, the movable part 201b of the outer electrode 201 is rotatably connected to the fixed part 201a of the outer electrode 201.

外側電極201の固定部201aと可動部201bの連結部分の双方の面のうち、固定部側の面が極僅かに凸状の球面に形成されており、可動部側の面が極僅かに凹状の球面に形成されている。このような構造を採ったことで、外側電極201の可動部201bが、外側電極201の固定部201aと接触する一端面の中心を支点とする軸線回りに円弧運動できるようになる。即ち、可動部201bを、首を振るように回動させることができるようになる。外側電極201の可動部201bを首振り自在としたことで、溶接時に、片側電極200を被溶接物に対して加圧した際に、被溶接物に形成された複数個(主に3個)のプロジェクションに対する外側電極201の加圧力の差を低減できる。即ち、片側電極200を使用する場合、被溶接物に予め複数個のプロジェクションを形成するが、溶接時に、各プロジェクションに対して外側電極201が均等に加圧しないと、各プロジェクションにおける溶融状態に差が出て均一な溶接が行われなくなる。このようなことから、外側電極201による各プロジェクションへの加圧力が均等になるように、外側電極201の可動部201bを首振り自在とした。但し、外側電極201の可動部201bの外側への振れ量は、可動部201bが内側電極202に接触しない程度となるように、外側電極201の固定部201aと可動部201bの連結部分の対向面の形状を規制する必要があることは言うまでもない。   Of the surfaces of both the fixed portion 201a and the movable portion 201b of the outer electrode 201, the surface on the fixed portion side is formed into a slightly convex spherical surface, and the surface on the movable portion side is extremely slightly concave. It is formed on the spherical surface. By adopting such a structure, the movable portion 201b of the outer electrode 201 can move in an arc around an axis with the center of one end surface in contact with the fixed portion 201a of the outer electrode 201 as a fulcrum. That is, the movable part 201b can be rotated so as to swing the head. By making the movable portion 201b of the outer electrode 201 swingable, a plurality of (mainly three) formed on the workpiece when the one-side electrode 200 is pressed against the workpiece during welding. The difference in the applied pressure of the outer electrode 201 with respect to the projection can be reduced. That is, when the single-side electrode 200 is used, a plurality of projections are formed in advance on the workpiece, but if the outer electrode 201 is not evenly pressed against each projection during welding, there is a difference in the molten state in each projection. Will occur and uniform welding will not be performed. For this reason, the movable portion 201b of the outer electrode 201 can be swung freely so that the pressure applied to each projection by the outer electrode 201 is uniform. However, the amount of deflection of the outer electrode 201 to the outside of the movable portion 201b is such that the movable portion 201b does not come into contact with the inner electrode 202, and the opposing surface of the connecting portion of the fixed portion 201a of the outer electrode 201 and the movable portion 201b. Needless to say, it is necessary to regulate the shape of the.

なお、外側電極201の固定部201aと可動部201bの連結部分の対向面の形状を逆にしても構わない。即ち、外側電極201の固定部側の面を極僅かに凹状の球面とし、可動部側の面を極僅かに凸状の球面としても構わない。   Note that the shape of the opposing surface of the connecting portion of the fixed portion 201a and the movable portion 201b of the outer electrode 201 may be reversed. That is, the surface on the fixed portion side of the outer electrode 201 may be a slightly concave spherical surface, and the surface on the movable portion side may be a very slightly convex spherical surface.

内側電極202は、基端部側にねじ部202aとフランジ202bを有する断面略十字状に形成されている。内側電極202のフランジ202bより先端側の部分(図面に向かった下側の部分)が、内側電極部202cとなっている。内側電極202は、内側電極固定部203に固定されるため、内側電極固定部203には内側電極202を固定するためのねじ孔(符号略)が形成されている。このねじ孔に内側電極202のねじ部202aを螺合させることで、内側電極202が内側電極固定部203に固定される。但し、内側電極202の内側電極固定部203へのねじ込み量は、内側電極202のフランジ202bによって規制される。   The inner electrode 202 has a substantially cross-shaped cross section having a threaded portion 202a and a flange 202b on the proximal end side. A portion on the tip side of the flange 202b of the inner electrode 202 (a lower portion facing the drawing) is an inner electrode portion 202c. Since the inner electrode 202 is fixed to the inner electrode fixing portion 203, the inner electrode fixing portion 203 is formed with a screw hole (not shown) for fixing the inner electrode 202. The inner electrode 202 is fixed to the inner electrode fixing portion 203 by screwing the screw portion 202a of the inner electrode 202 into the screw hole. However, the screwing amount of the inner electrode 202 into the inner electrode fixing portion 203 is regulated by the flange 202b of the inner electrode 202.

内側電極部202cの先端部分は、他の部分よりも小径に形成されており、この小径部分にステンレス製のリング503が嵌装される。リング503の表面には絶縁性を持たせるための表面被膜処理が施されており、溶接時に、内側電極部202cの先端部分が被溶接物に接触しないように絶縁する。   The distal end portion of the inner electrode portion 202c is formed with a smaller diameter than the other portions, and a stainless steel ring 503 is fitted into the smaller diameter portion. The surface of the ring 503 is subjected to a surface coating treatment for imparting insulating properties, and insulates so that the tip of the inner electrode portion 202c does not come into contact with the workpiece during welding.

内側電極固定部203は、略長方形の立体状に形成されている。内側電極固定部203には、外側電極201の固定部201aを通すための貫通孔(符号略)と、内側電極202を固定するためのねじが切られた貫通孔(符号略)がそれぞれ形成されている。内側電極固定部203には、ブスバー導電体400の先端部分がボルト203aによって固定される。外側電極201の固定部201aを通すための貫通孔には上述したガイドブッシュ500が内装される。   The inner electrode fixing portion 203 is formed in a substantially rectangular solid shape. The inner electrode fixing portion 203 is formed with a through hole (not shown) for passing the fixing portion 201a of the outer electrode 201 and a threaded through hole (not shown) for fixing the inner electrode 202. ing. A front end portion of the bus bar conductor 400 is fixed to the inner electrode fixing portion 203 by a bolt 203a. The above-described guide bush 500 is housed in the through hole through which the fixing portion 201a of the outer electrode 201 is passed.

このような構造を成す溶接ガン6において、被溶接物を溶接するときには、図4に示すように、内側電極202の内側電極部202cが、溶接しようとする2枚の被溶接物600A,600Bの一方の被溶接物600Aに設けられた逃がし孔601(図13参照)の内側で他方の被溶接物600Bを押圧し、同時に外側電極201が一方の被溶接物600Aを押圧する。内側電極202が他方の被溶接物600Bを押圧し、外側電極201が一方の被溶接物600Aを押圧した直後に溶接電流が給電される。一方の被溶接物600Aには、他方の被溶接物600Bとの接合部(逃がし孔の外側周囲)に複数個のプロジェクション602が形成されており、これらのプロジェクション602が外側電極201の押圧給電によって溶融して、被溶接物600A,600Bが接合する。外側電極201の可動部201bが首振り自在となっているので、外側電極201が被溶接物600Aを押圧したときに各プロジェクション602が均等に加圧されることから、接合不良が発生することなく確実に接合される。   When welding the workpiece in the welding gun 6 having such a structure, as shown in FIG. 4, the inner electrode portion 202c of the inner electrode 202 has two workpieces 600A and 600B to be welded. The other workpiece 600B is pressed inside the escape hole 601 (see FIG. 13) provided in one workpiece 600A, and at the same time, the outer electrode 201 presses one workpiece 600A. The welding current is supplied immediately after the inner electrode 202 presses the other workpiece 600B and the outer electrode 201 presses the first workpiece 600A. One workpiece 600A is formed with a plurality of projections 602 at the joint with the other workpiece 600B (the outer periphery of the escape hole), and these projections 602 are pressed and fed by the outer electrode 201. The objects to be welded 600A and 600B are joined by melting. Since the movable portion 201b of the outer electrode 201 can swing freely, the projections 602 are evenly pressed when the outer electrode 201 presses the workpiece 600A, so that no bonding failure occurs. Securely joined.

次に、電源ユニット3について説明する。
図5は、電源ユニット3の概略構成を示す図である。同図において、電源ユニット3は、整流器80と、平滑用コンデンサ81と、溶接制御回路82と、インバータ回路83と、を備える。整流器80は、単相全波整流式を採用したものであり、受電設備450からの三相の交流を整流して直流に変換する。溶接制御回路82は、溶接電流の大きさと通電時間を制御する。溶接制御回路82は、例えばマイコンを用いて構成される。マイコンは溶接制御用のプログラムを保持し、該プログラムに従って動作する。溶接制御回路82は、溶接ガン6に備えられた起動スイッチ6Aからの溶接指令を検知することで、溶接条件設定器9にて設定された被溶接物の材質と厚さに応じたタイミング信号を生成し、インバータ回路83へ出力する。この場合、溶接制御回路82は、溶接電流が通電開始時から15ミリ秒以内で最大値となり、かつ50ミリ秒以下の通電時間で溶接を完了するように、タイミング信号を生成する。
Next, the power supply unit 3 will be described.
FIG. 5 is a diagram showing a schematic configuration of the power supply unit 3. In the figure, the power supply unit 3 includes a rectifier 80, a smoothing capacitor 81, a welding control circuit 82, and an inverter circuit 83. The rectifier 80 employs a single-phase full-wave rectification type, and rectifies and converts three-phase alternating current from the power receiving facility 450 into direct current. The welding control circuit 82 controls the magnitude of the welding current and the energization time. The welding control circuit 82 is configured using a microcomputer, for example. The microcomputer holds a welding control program and operates according to the program. The welding control circuit 82 detects a welding command from the start switch 6A provided in the welding gun 6, and thereby generates a timing signal corresponding to the material and thickness of the workpiece set by the welding condition setting unit 9. It is generated and output to the inverter circuit 83. In this case, the welding control circuit 82 generates a timing signal so that the welding current becomes a maximum value within 15 milliseconds from the start of energization and the welding is completed within an energization time of 50 milliseconds or less.

インバータ回路83は、インバータ制御部831と、例えばIGBT(Insulated Gate Bipolar Transistor)を使用した4つのスイッチS1〜S4と、例えばCT(Current Transformer)を使用した電流センサ832とを備える。インバータ制御部831は、溶接制御回路82で生成されたタイミング信号と電流センサ832で検出された1次電流とに基づいてスイッチS1〜S4のそれぞれをオン・オフ制御し、高周波交流を発生する。インバータ制御部831が発生する高周波交流の大きさは、スイッチS1〜S4それぞれのオン・オフのデューティによって変化する。スイッチS1〜S4それぞれのオン・オフのデューティを変化させることで、後述する図9の(a)に示すようにスイッチング波形のWの幅が変化する。   The inverter circuit 83 includes an inverter control unit 831, four switches S <b> 1 to S <b> 4 using, for example, an IGBT (Insulated Gate Bipolar Transistor), and a current sensor 832 using, for example, a CT (Current Transformer). The inverter control unit 831 performs on / off control of each of the switches S1 to S4 based on the timing signal generated by the welding control circuit 82 and the primary current detected by the current sensor 832 to generate high-frequency alternating current. The magnitude of the high-frequency alternating current generated by the inverter control unit 831 varies depending on the on / off duty of each of the switches S1 to S4. By changing the on / off duty of each of the switches S1 to S4, the width of W of the switching waveform changes as shown in FIG.

図6は、溶接トランス10と溶接ガン6の結線を示す図である。同図において、溶接トランス10の1次コイル12は、電源ユニット3のインバータ回路83の出力端に接続される。インバータ回路83から高周波交流が出力されることで、溶接トランス10の1次コイル12に1次電流が流れる。溶接トランス10の2次コイル15は、それ自体に極性を考慮する必要はないが、便宜上、溶接トランス10の2次コイル15を、正側コイル14と負側コイル16とを直列接続したものと呼ぶことにする。正側コイル14の一端には第1整流素子18のアノード(正極)が接続され、負側コイル16の一端には第2整流素子20のアノード(正極)が接続される。第1整流素子18のカソード(負極)と第2整流素子20のカソード(負極)がプラス電極22に共通接続される。正側コイル14の他端と負側コイル16の他端とがマイナス電極24に共通接続される。プラス電極22とマイナス電極24には、導電ケーブル7を介して溶接ガン6が接続される。この場合、溶接ガン6の片側電極200では、外側電極201が溶接トランス10のプラス電極22に接続され、内側電極202が溶接トランス10のマイナス電極24に接続される。なお、外側電極201を溶接トランス10のマイナス電極24に接続し、内側電極202を溶接トランス10のプラス電極22に接続するようにしても構わない。   FIG. 6 is a diagram showing the connection between the welding transformer 10 and the welding gun 6. In the figure, the primary coil 12 of the welding transformer 10 is connected to the output terminal of the inverter circuit 83 of the power supply unit 3. By outputting high-frequency alternating current from the inverter circuit 83, a primary current flows through the primary coil 12 of the welding transformer 10. The secondary coil 15 of the welding transformer 10 does not need to consider the polarity itself, but for the sake of convenience, the secondary coil 15 of the welding transformer 10 has a positive coil 14 and a negative coil 16 connected in series. I will call it. The anode (positive electrode) of the first rectifying element 18 is connected to one end of the positive side coil 14, and the anode (positive electrode) of the second rectifying element 20 is connected to one end of the negative side coil 16. The cathode (negative electrode) of the first rectifying element 18 and the cathode (negative electrode) of the second rectifying element 20 are commonly connected to the plus electrode 22. The other end of the positive side coil 14 and the other end of the negative side coil 16 are commonly connected to the negative electrode 24. The welding gun 6 is connected to the plus electrode 22 and the minus electrode 24 via the conductive cable 7. In this case, in the one-side electrode 200 of the welding gun 6, the outer electrode 201 is connected to the plus electrode 22 of the welding transformer 10, and the inner electrode 202 is connected to the minus electrode 24 of the welding transformer 10. The outer electrode 201 may be connected to the minus electrode 24 of the welding transformer 10 and the inner electrode 202 may be connected to the plus electrode 22 of the welding transformer 10.

図7は、第1整流素子18に順方向電流が流れたときの回路動作を示す図である。また、図8は、第2整流素子20に順方向電流が流れたときの回路動作を示す図である。図7及び図8では、図6に示す回路に、回路動作上問題になる等価的なインダクタンス成分を書き加えている。即ち、正側コイル14と第1整流素子18を接続する正側導体30のインダクタンスと、負側コイル16と第2整流素子20を接続する負側導体32のインダクタンスと、導電ケーブル7等を含む溶接ガン6における導体のインダクタンスとが、溶接装置1の性能に影響を及ぼすと考えられる。   FIG. 7 is a diagram illustrating a circuit operation when a forward current flows through the first rectifying element 18. FIG. 8 is a diagram showing a circuit operation when a forward current flows through the second rectifier element 20. 7 and 8, an equivalent inductance component that causes a problem in circuit operation is added to the circuit shown in FIG. That is, it includes the inductance of the positive conductor 30 connecting the positive coil 14 and the first rectifier 18, the inductance of the negative conductor 32 connecting the negative coil 16 and the second rectifier 20, and the conductive cable 7. It is considered that the inductance of the conductor in the welding gun 6 affects the performance of the welding apparatus 1.

溶接トランス10や導電ケーブル7等を含む溶接ガン6のそれぞれで発生する大量の熱を抑制することができれば、溶接装置1の省エネルギー化が図れ、大きな節電効果が期待できる。これは、従来よりも大きな電流を短時間だけ溶接ガン6に供給するように制御できれば実現可能である。一方、溶接される材料や構造等に最適な溶接電流を供給するためには、溶接電流の供給時間を極めて高精度に制御する必要がある。これは、溶接電流を供給する溶接トランス10の1次側にインバータ回路83を接続して、PWM制御により溶接電流の大きさと供給時間とを制御することで実現可能である。   If a large amount of heat generated in each of the welding guns 6 including the welding transformer 10 and the conductive cable 7 can be suppressed, energy saving of the welding apparatus 1 can be achieved, and a large power saving effect can be expected. This can be realized if it can be controlled so that a larger current than in the prior art is supplied to the welding gun 6 for a short time. On the other hand, in order to supply the optimum welding current for the material or structure to be welded, it is necessary to control the welding current supply time with extremely high accuracy. This can be realized by connecting the inverter circuit 83 to the primary side of the welding transformer 10 for supplying the welding current, and controlling the magnitude of the welding current and the supply time by PWM control.

図9は、溶接トランス10の1次側に供給される電流を制御するための制御パルス、1次電流及び整流後の溶接電流を示す図である。同図において、インバータ回路83により制御された幅Wのパルス(スイッチングパルス)が、一定時間H内に一定回数、ここでは正方向のパルスと負方向のパルスとで合計10回、溶接トランス10の1次コイル12に供給される。これにより、溶接トランス10の1次コイル12には、図9の(b)に示すような1次電流が流れる。溶接トランス10の1次コイル12に1次電流が流れることで溶接トランス10の2次側に発生した2次電流が整流素子18,20で全波整流されて、図9の(c)に示すような溶接電流となって溶接ガン6へ流れる。   FIG. 9 is a diagram illustrating a control pulse for controlling a current supplied to the primary side of the welding transformer 10, a primary current, and a welding current after rectification. In the figure, the pulse (switching pulse) having a width W controlled by the inverter circuit 83 is repeated a certain number of times within a certain time H, in this case, a total of 10 times including a positive pulse and a negative pulse. It is supplied to the primary coil 12. As a result, a primary current as shown in FIG. 9B flows through the primary coil 12 of the welding transformer 10. When the primary current flows through the primary coil 12 of the welding transformer 10, the secondary current generated on the secondary side of the welding transformer 10 is full-wave rectified by the rectifying elements 18 and 20, and is shown in FIG. Such a welding current flows to the welding gun 6.

図9の(a)に示すパルスの幅Wを増減することで溶接電流の大きさを調整することができる。また、パルスの供給回数を増減すれば溶接時間を調整することができる。即ち、パルスの繰り返し周波数を高くすると溶接時間をより細かく微調整できる。また、溶接トランス10の1次コイル12に供給する電力を増やせば、2次コイル15からより大きな溶接電流を取り出すことができる。   The magnitude of the welding current can be adjusted by increasing or decreasing the pulse width W shown in FIG. In addition, the welding time can be adjusted by increasing or decreasing the number of times of pulse supply. That is, when the pulse repetition frequency is increased, the welding time can be finely adjusted. Further, if the power supplied to the primary coil 12 of the welding transformer 10 is increased, a larger welding current can be taken out from the secondary coil 15.

ここで、従来の溶接装置は、例えば1万アンペアで200m秒〜700m秒の溶接電流を供給するようにしているが、溶接電流をその2倍の2万アンペアにしてみると、溶接ガン6以外の場所で熱エネルギーになって消費される電力損失が極めて大きくなり、実用上問題となる。そこで、溶接電流を2倍にしても溶接時間を10分の1に短縮すれば、消費電力を5分の1にすることができ、実用上問題とはならない。   Here, for example, the conventional welding apparatus is configured to supply a welding current of 200 milliseconds to 700 milliseconds at 10,000 amperes, but when the welding current is doubled to 20,000 amperes, other than the welding gun 6 In this place, the power loss consumed as thermal energy becomes extremely large, which is a practical problem. Therefore, even if the welding current is doubled, if the welding time is reduced to 1/10, the power consumption can be reduced to 1/5, which is not a problem in practice.

一方、溶接電流を供給するためのインバータ回路の制御パルスは、従来、繰り返し周波数が1kHz程度のものを使用していたが、大電流を短時間供給するには、もっと分解能の高い制御パルスが必要になる。本実施形態の溶接装置1のインバータ回路83では、繰り返し周波数が5kHz〜50kHz程度のパルスを出力するようにしている。従来の数倍から数十倍の高い繰り返し周波数のパルスを従来の溶接トランスに供給した場合、予定した溶接電流が得られないが、本実施形態の溶接装置1で使用する溶接トランス10は、従来の数倍から数十倍の高い繰り返し周波数のパルスでも予定した溶接電流を得ることができる構造を有している。以下、本実施形態の溶接装置1で使用する溶接トランス10の構造を説明する。   On the other hand, the control pulse of the inverter circuit for supplying the welding current has conventionally used a repetition frequency of about 1 kHz. However, in order to supply a large current for a short time, a control pulse with higher resolution is required. become. In the inverter circuit 83 of the welding apparatus 1 of the present embodiment, pulses with a repetition frequency of about 5 kHz to 50 kHz are output. When a pulse having a repetition frequency as high as several times to several tens of times is supplied to a conventional welding transformer, a predetermined welding current cannot be obtained. However, the welding transformer 10 used in the welding apparatus 1 of this embodiment is a conventional one. It has a structure capable of obtaining a predetermined welding current even with a pulse having a repetition frequency as high as several times to several tens of times. Hereinafter, the structure of the welding transformer 10 used in the welding apparatus 1 of the present embodiment will be described.

図10は、本実施形態の溶接装置1の溶接トランス10の外観を示す斜視図である。また、図11は、溶接トランス10の組み立て状態を示す斜視図である。図10及び図11において、溶接トランス10は、平行部25aと両端のU字状の湾曲部25bにより構成される環状磁心25と、環状磁心25の平行部25aに、複数の部分に分けて間隙12aを空けて分割巻きされる1次コイル12と、1次コイル12と共に環状磁心25の平行部25aに巻回され、1次コイル12に設けられた各間隙12aに1個ずつ挟み込むように、複数の正側コイル14と複数の負側コイル16とを交互に配列した2次コイル15と、複数の正側コイル14は全て並列接続されるかもしくは全部または一部が直列接続され、複数の負側コイル16は全て並列接続されるかもしくは全部または一部が直列接続され、接続された複数の正側コイル14と複数の負側コイル16とが互いに直列接続されるように、正側コイル14と負側コイル16の端子間を電気接続する導体群を有し、かつ、該導体群により、全ての正側コイル14と負側コイル16とを一方の面上に支持固定する接続基板62を備え、複数の正側コイル14の一方の端子は、接続基板62の他方の面上で、環状磁心25の平行部25aに平行な方向に伸びた第1連結極板44に電気接続され、複数の負側コイル16の一方の端子は、接続基板62の他方の面側で、環状磁心25の平行部25aに平行な方向に伸びた第2連結極板46に電気接続され、正側コイル14の他方の端子と負側コイル16の他方の端子は、共に、接続基板62の他方の面側で、環状磁心25の平行部25aに平行な方向に伸びた第3連結極板48に電気接続され、第1連結極板44には、正側導体30が連結され、第2連結極板46には、負側導体32が連結され、正側導体30と負側導体32は、接続基板62の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層31を介して重ね合わされた一対の導体板であり、正側導体30とプラス電極22(図6参照)が接続された第1極板34との間に挟まれ、正側導体30にアノード(正極)が接触し、第1極板34にカソード(負極)が接触する第1整流素子18と、負側導体32とマイナス電極24が接続された第2極板36との間に挟まれ、負側導体32にアノード(正極)が接触し第2極板36にカソード(負極)が接触する第2整流素子20と、第1極板34と第2極板36を支持し、両者を電気接続する第3極板38と、を備える。   FIG. 10 is a perspective view showing an appearance of the welding transformer 10 of the welding apparatus 1 of the present embodiment. FIG. 11 is a perspective view showing an assembled state of the welding transformer 10. 10 and 11, the welding transformer 10 is divided into a plurality of portions, an annular magnetic core 25 constituted by a parallel portion 25a and U-shaped curved portions 25b at both ends, and a parallel portion 25a of the annular magnetic core 25. The primary coil 12 that is divided and wound with a gap 12a, and the primary coil 12 are wound around the parallel portion 25a of the annular magnetic core 25 so as to be sandwiched one by one in each gap 12a provided in the primary coil 12. The secondary coil 15 in which a plurality of positive side coils 14 and a plurality of negative side coils 16 are alternately arranged, and the plurality of positive side coils 14 are all connected in parallel or all or part of them are connected in series, The negative side coils 16 are all connected in parallel or all or part of them are connected in series, and the positive side coils 16 and the negative side coils 16 are connected in series so that the connected positive side coils 14 and the negative side coils 16 are connected in series. Connection board having a conductor group electrically connecting the terminals of the cable 14 and the negative side coil 16 and supporting and fixing all the positive side coil 14 and the negative side coil 16 on one surface by the conductor group. 62, and one terminal of each of the plurality of positive side coils 14 is electrically connected to the first connecting pole plate 44 extending in the direction parallel to the parallel portion 25a of the annular magnetic core 25 on the other surface of the connection substrate 62. One terminal of the plurality of negative side coils 16 is electrically connected to the second connecting electrode plate 46 extending in the direction parallel to the parallel part 25a of the annular magnetic core 25 on the other surface side of the connection substrate 62, and is connected to the positive side. The other terminal of the coil 14 and the other terminal of the negative coil 16 are both connected to the third connecting pole plate 48 extending in the direction parallel to the parallel portion 25 a of the annular magnetic core 25 on the other surface side of the connection substrate 62. The first conductor plate 44 is electrically connected to the positive conductor 30, The negative electrode conductor 32 is connected to the two-connection electrode plate 46, and the positive electrode conductor 30 and the negative electrode conductor 32 extend on the other surface side of the connection board 62 in a direction perpendicular to the other surface. A pair of conductor plates stacked via an insulating layer 31 disposed between the positive electrode 30 and the first electrode plate 34 to which the positive electrode 22 (see FIG. 6) is connected. A first rectifying element 18 having an anode (positive electrode) in contact with the side conductor 30 and a cathode (negative electrode) in contact with the first electrode plate 34; a second electrode plate 36 to which the negative conductor 32 and the negative electrode 24 are connected; The second rectifying element 20 having the anode (positive electrode) in contact with the negative conductor 32 and the cathode (negative electrode) in contact with the second electrode plate 36, the first electrode plate 34, and the second electrode plate 36 are And a third electrode plate 38 that supports and electrically connects the both.

溶接トランス10は、このような構造を有したことで、インバータ回路83からの高い周波数(5kHz〜50kHz程度)のパルスでも、予定した溶接電流を得ることができる。   Since the welding transformer 10 has such a structure, a predetermined welding current can be obtained even with a pulse having a high frequency (about 5 kHz to 50 kHz) from the inverter circuit 83.

ところで、図6に示すような2個の整流素子18、20を使用した全波整流型の2次回路は、ブリッジを使用した回路に比べて整流素子数が少なく、小型化できて電力損失も少ないため、溶接装置に適することが知られている。しかしながら、この2次回路では、1次コイル12に流れる電流の極性反転によって、2次コイル15に誘起される電圧が極性反転したときに、一方の整流素子を通じて供給されていた負荷電流が他方の整流素子側に流れを変える転流が生じる。   By the way, a full-wave rectification type secondary circuit using two rectifying elements 18 and 20 as shown in FIG. 6 has a smaller number of rectifying elements than a circuit using a bridge, and can be reduced in size and power loss. Since it is small, it is known that it is suitable for a welding apparatus. However, in this secondary circuit, when the voltage induced in the secondary coil 15 is reversed due to the polarity reversal of the current flowing through the primary coil 12, the load current supplied through one rectifier element is A commutation that changes the flow occurs on the rectifying element side.

溶接電流が大電流になると、回路各部のインダクタンスに蓄積された電流エネルギーは非常に大きくなる。この電流エネルギーが一方の整流素子から他方の整流素子の側に移る転流時間は、図7や図8に示す2次コイル15の各部のインダクタンスが大きいほど長くなる。図9に示す1次コイル12の電流の立ち下がり開始から反対極性の電流の立ち上がり終了までの時間Mの間に2次回路の転流が完了しないと、2次電流の立ち上がりが遅れて、図9の破線に示すように、予定した溶接電流が得られなくなる。   When the welding current becomes large, the current energy accumulated in the inductance of each part of the circuit becomes very large. The commutation time during which this current energy moves from one rectifying element to the other rectifying element becomes longer as the inductance of each part of the secondary coil 15 shown in FIGS. If the commutation of the secondary circuit is not completed during the time M from the start of the fall of the current of the primary coil 12 shown in FIG. 9 to the end of the rise of the current of the opposite polarity, the rise of the secondary current is delayed. As indicated by the broken line 9, the planned welding current cannot be obtained.

図10、図11に示す溶接トランス10は、前述したように、特開2013−179205号公報に記載された溶接トランスと同等のものであり、高速で精密な大電流の溶接制御に追随できるものである。また、図12は、溶接トランス10から溶接ガン6に供給される溶接電流を示す波形図である。同図において、溶接電流供給開始時刻t0からその後の時刻t1までの、電流増加率が最大の部分を立ち上げ制御期間T1と呼び、これに続く時刻t1から時刻t2までの、ピーク電流値C1に近い所定レベルの電流を維持する期間をピークレベル制御期間T2と呼び、その後の時刻t2から電流遮断時刻t3に至るまでの期間を温度維持制御期間T3と呼ぶとき、溶接電流iwは、立ち上げ制御期間T1が10ミリ秒以下、立ち上げ制御期間T1とピークレベル制御期間T2の和の(T1+T2)時間が15ミリ秒以下、立ち上げ制御期間T1とピークレベル制御期間T2と温度維持制御期間T3の和の(T1+T2+T3)時間が50ミリ秒以下となるように制御される。このように、溶接電流iwの通電時間は50m秒以下に抑えられる。これは従来の通電時間の5分の1程度である。なお、図12中において符号C2は、溶接電流iwの終了値を示す。   As described above, the welding transformer 10 shown in FIGS. 10 and 11 is equivalent to the welding transformer described in Japanese Patent Laid-Open No. 2013-179205, and can follow high-speed and precise large-current welding control. It is. FIG. 12 is a waveform diagram showing a welding current supplied from the welding transformer 10 to the welding gun 6. In the figure, the portion where the current increase rate is the maximum from the welding current supply start time t0 to the subsequent time t1 is called the start-up control period T1, and the peak current value C1 from the subsequent time t1 to the time t2 is shown. A period during which a current of a predetermined level is maintained is referred to as a peak level control period T2, and a period from time t2 to the current cutoff time t3 is referred to as a temperature maintenance control period T3. The period T1 is 10 milliseconds or less, the sum (T1 + T2) of the start-up control period T1 and the peak level control period T2 is 15 milliseconds or less, the start-up control period T1, the peak level control period T2, and the temperature maintenance control period T3. The sum (T1 + T2 + T3) time is controlled to be 50 milliseconds or less. Thus, the energization time of the welding current iw is suppressed to 50 milliseconds or less. This is about one fifth of the conventional energization time. In FIG. 12, symbol C2 indicates the end value of the welding current iw.

本実施形態の溶接装置1で使用している溶接トランス10は、正側導体30と負側導体32が絶縁層31を介して密着し、また2次コイル15の正側コイル14と負側コイル16の間に1次コイル12が挟まるようにこれらのコイルを配置しているので、溶接トランス10の2次側回路の転流時におけるインダクタンスが低減し、該2次側回路における転流時間が短くなる。したがって、溶接トランス10を使用することで、より高い周波数のインバータ制御が可能となる。   In the welding transformer 10 used in the welding apparatus 1 of the present embodiment, the positive side conductor 30 and the negative side conductor 32 are in close contact with each other through the insulating layer 31, and the positive side coil 14 and the negative side coil of the secondary coil 15. Since these coils are arranged so that the primary coil 12 is sandwiched between 16, the inductance at the time of commutation of the secondary circuit of the welding transformer 10 is reduced, and the commutation time in the secondary circuit is reduced. Shorter. Therefore, by using the welding transformer 10, higher frequency inverter control is possible.

また、溶接トランス10は、1次コイル12と2次コイル15の配置によって、溶接トランス全体の熱分布を均一化できる。   Moreover, the welding transformer 10 can make the heat distribution of the whole welding transformer uniform by the arrangement of the primary coil 12 and the secondary coil 15.

また、溶接トランス10は、1次コイル12と2次コイル15の正側コイル14及び負側コイル16をそれぞれ分割巻きして1次コイル12と2次コイル15の結合を図っているので、1次コイル12と2次コイル15における結合を強くでき、2次側の大電流による磁気飽和を防止できる。   Further, since the welding transformer 10 divides and winds the positive coil 14 and the negative coil 16 of the primary coil 12 and the secondary coil 15, respectively, the primary coil 12 and the secondary coil 15 are coupled to each other. The coupling between the secondary coil 12 and the secondary coil 15 can be strengthened, and magnetic saturation due to a large secondary current can be prevented.

また、溶接トランス10は、1次コイル12と2次コイル15の正側コイル14と負側コイル16との関係がどの場所でも均等になるようにしていので、互いに密着した配置が可能となり、溶接トランス10の小型化が図れる。   In addition, since the relationship between the positive coil 14 and the negative coil 16 of the primary coil 12 and the secondary coil 15 is uniform everywhere, the welding transformer 10 can be disposed in close contact with each other and welded. The transformer 10 can be miniaturized.

次に、本実施形態に係る溶接装置1を使用した溶接方法について説明する。溶接装置1を使用した溶接方法については先に簡単に説明したが、ここでは図13及び図14を参照しながら詳しく説明することとする。被溶接物として銅板を使用し、2枚の鋼板を溶接する手順について説明する。図13の(a)は、銅板600Aを示す断面図、図13の(b)は、銅板600Aを示す平面図である。図14は、片側電極200の先端部分での溶接電流iwの流れを示す図である。   Next, a welding method using the welding apparatus 1 according to this embodiment will be described. Although the welding method using the welding apparatus 1 has been briefly described above, it will be described in detail here with reference to FIGS. 13 and 14. A procedure for welding two steel plates using a copper plate as an object to be welded will be described. 13A is a cross-sectional view showing the copper plate 600A, and FIG. 13B is a plan view showing the copper plate 600A. FIG. 14 is a diagram illustrating the flow of the welding current iw at the tip portion of the one-side electrode 200.

図13に示すように、銅板600Aに、片側電極200の内側電極202の先端部分が通過可能な大きさの逃がし孔601を形成するとともに、逃がし孔601の外側で同一円周上に3個のプロジェクション602を形成する。なお、3個のプロジェクション602の間隔は等間隔(120度間隔)が好ましい。プロジェクション602は、銅板600Aにのみ形成し、銅板600Bには形成しない。銅板600Bの片面には保護シートが貼られているか、もしくは塗装が施されているものとする。   As shown in FIG. 13, the copper plate 600 </ b> A is formed with an escape hole 601 having a size that allows the tip of the inner electrode 202 of the one-side electrode 200 to pass therethrough, and three pieces on the same circumference outside the escape hole 601. A projection 602 is formed. Note that the interval between the three projections 602 is preferably equal (120 degree intervals). The projection 602 is formed only on the copper plate 600A and not on the copper plate 600B. It is assumed that a protective sheet is pasted or painted on one side of the copper plate 600B.

銅板600Aに逃がし孔601及びプロジェクション602を形成した後、作業者は銅板600A,600Bをテーブル8上に載置する。この際、銅板600Bを下にして、その上に銅板600Aを積み上げる。テーブル8上に銅板600A,600Bを載置した後、作業者は溶接ガン6を銅板600A,600Bの直上に移動させる。次いで、作業者は溶接ガン6を回転させて、溶接ガン6の先端に装備した片側電極200の内側電極202を銅板600Aの逃がし孔601に挿入し、銅板600Bに押し当てる。このとき、内側電極202の内側電極部202cに装着された絶縁性を有するリング503により、内側電極部202cの先端部分が銅板600Aの板厚面に接触することがない。   After the relief hole 601 and the projection 602 are formed in the copper plate 600A, the operator places the copper plates 600A and 600B on the table 8. At this time, the copper plate 600A is placed on the copper plate 600B and the copper plate 600A is stacked thereon. After placing the copper plates 600A and 600B on the table 8, the operator moves the welding gun 6 directly above the copper plates 600A and 600B. Next, the operator rotates the welding gun 6 to insert the inner electrode 202 of the one-side electrode 200 provided at the tip of the welding gun 6 into the escape hole 601 of the copper plate 600A and press it against the copper plate 600B. At this time, due to the insulating ring 503 attached to the inner electrode portion 202c of the inner electrode 202, the tip portion of the inner electrode portion 202c does not contact the plate thickness surface of the copper plate 600A.

テーブル8上に銅板600A,600Bを重ねて載置し、溶接ガン6を所定位置まで持ってきた後、作業者は溶接ガン6のハンドル6Bを握ってスイッチオンして溶接指令を出す。溶接ガン6から溶接指令が出力されると、溶接ガン6の上のエアシリンダ(図示略)が作動し、溶接ガン6の基端部側が上方へ引き上げられて、外側電極201が銅板600Aを押圧し、内側電極202が銅板600Bを押圧する。このとき、内側電極202が銅板600Bに当たることによって銅板600Bから抗力を受けるが、付勢部505にて付勢されるので、銅板600Bに堅固に接触することになる。   After placing the copper plates 600A and 600B on the table 8 and bringing the welding gun 6 to a predetermined position, the operator holds the handle 6B of the welding gun 6 and switches it on to give a welding command. When a welding command is output from the welding gun 6, an air cylinder (not shown) on the welding gun 6 is activated, the proximal end side of the welding gun 6 is pulled upward, and the outer electrode 201 presses the copper plate 600A. Then, the inner electrode 202 presses the copper plate 600B. At this time, the inner electrode 202 receives a drag force from the copper plate 600B when it hits the copper plate 600B, but is urged by the urging portion 505, so that it firmly contacts the copper plate 600B.

外側電極201が銅板600Aを押圧すると共に内側電極202が銅板600Bを押圧した直後に溶接電流iwの供給が開始される。溶接電流iwは、図14に示すように、外側電極201→銅板600Aの各プロジェクション602→銅板600B→内側電極202の経路で流れる。溶接電流iwが流れることで接触抵抗が最も高くなっている各プロジェクション602の部分で銅板600A及び600Bが溶融し、銅板600Aと銅板600Bが接合する。   Immediately after the outer electrode 201 presses the copper plate 600A and the inner electrode 202 presses the copper plate 600B, supply of the welding current iw is started. As shown in FIG. 14, the welding current iw flows through the path of the outer electrode 201 → the projections 602 of the copper plate 600 </ b> A → the copper plate 600 </ b> B → the inner electrode 202. The copper plates 600A and 600B are melted at the portions of the projections 602 where the contact resistance is the highest due to the welding current iw flowing, and the copper plates 600A and the copper plates 600B are joined.

外側電極201の可動部201bは、首を振るようにして円弧運動することから、可動部201bが銅板600Aを押圧したときに3個のプロジェクション602が均等に加圧される。これにより、プロジェクション間の溶融状態の差が小さくなり、ばらつきの少ない溶接が可能となる。   Since the movable portion 201b of the outer electrode 201 moves in a circular arc as if it swings its head, the three projections 602 are evenly pressurized when the movable portion 201b presses the copper plate 600A. Thereby, the difference of the molten state between projections becomes small, and welding with little dispersion | variation is attained.

なお、銅板600Aに形成するプロジェクション602は、3個に限定されるものではなく、任意である。   Note that the number of projections 602 formed on the copper plate 600A is not limited to three, but is arbitrary.

また、プロジェクション602の形状は製品の用途により、溶接裏面の外観品質を保つためには、小さなプロジェクションとし、溶接強度を優先するときは大きなプロジェクションとすればよい。   The shape of the projection 602 may be a small projection in order to maintain the appearance quality of the back surface of the weld depending on the application of the product, and may be a large projection when priority is given to the welding strength.

また、溶接する枚数は、2枚に限定されるものではなく、3枚以上の場合も有り得る。3枚の銅板を溶接する場合を例に挙げると、以下のようになる。
3枚の銅板の1枚を除く残りの銅板のそれぞれに対し、内側電極202が通過可能な大きさの逃がし孔601を形成するとともに、それぞれの一方の面の逃がし孔601の外側周囲に同心円に沿って3個のプロジェクション602を形成し、その後、逃がし孔601及びプロジェクション602を形成していない銅板を最下位にし、その面上に逃がし孔601及びプロジェクション602を形成した全ての銅板を、それぞれのプロジェクション601の形成面を下に向けるとともに、それぞれの逃し孔601の中心同士が一致するように順次積み重ねて行き、全ての銅板を積層した後、逃がし孔601を形成した全ての銅板の逃がし孔601に内側電極202の先端部分を挿入加圧するとともに、外側電極201から内側電極202へ流れる方向で溶接電流の供給を開始し、15ミリ秒以内で最大値となり、かつ50ミリ秒以下の通電時間で溶接が完了するように制御する。
Moreover, the number of sheets to be welded is not limited to two and may be three or more. An example of welding three copper plates is as follows.
For each of the remaining copper plates except for one of the three copper plates, an escape hole 601 having a size through which the inner electrode 202 can pass is formed, and concentrically around the outer side of the escape hole 601 on one surface of each. Three projections 602 are formed along the copper plate, and then the copper plate on which the relief holes 601 and the projections 602 are not formed is placed at the bottom, and all the copper plates on which the relief holes 601 and the projections 602 are formed, The formation surface of the projection 601 is directed downward, and the stacking holes 601 are sequentially stacked so that the centers of the respective relief holes 601 coincide with each other. The distal end portion of the inner electrode 202 is inserted and pressurized to flow into the inner electrode 202 from the outer electrode 201 And starting the supply of welding current in countercurrent, the maximum value within 15 ms, and is controlled so as to weld is completed in 50 milliseconds or less conduction time.

このように、本実施形態に係る溶接装置1によれば、短時間に大電流の供給を可能とする溶接トランス10を有するとともに、水平方向への移動が可能であって、下側電極を必要とせず一方向からの溶接を可能とした片側電極200が装着された溶接ガン6を有するので、片面に保護シートが貼られた被溶接物を溶接する場合に、該被溶接物の裏面に圧痕や熱による焼けや歪が殆ど発生することなく溶接を行うことができ、また片面塗装された被溶接物を溶接する場合には、焼けや熱変色が殆ど発生することなく溶接を行うことができる。即ち、被溶接物の裏面の美観を損なうことなく溶接を行うことができる。また、短時間で溶接が完了することから省電力化も図れる。   Thus, according to the welding apparatus 1 which concerns on this embodiment, while having the welding transformer 10 which can supply a large current in a short time, the movement to a horizontal direction is possible, and a lower electrode is required Since the welding gun 6 having the one-side electrode 200 that can be welded in one direction without being attached is provided, an indentation is formed on the back surface of the workpiece when welding the workpiece having a protective sheet on one side. Welding can be performed with almost no burning or distortion due to heat, and when welding an object to be welded on one side, welding can be performed with almost no burning or thermal discoloration. . That is, welding can be performed without impairing the appearance of the back surface of the workpiece. Further, since welding is completed in a short time, power saving can be achieved.

また、水平方向への移動を可能とする溶接ガン6は、上面に開口部を有し、該開口部の周縁から内側に延びる延設部を有する箱体の該延設部の直下部分で溶接を行うような場合、前記延設部があっても容易に溶接を行うことができる。   In addition, the welding gun 6 that can move in the horizontal direction has an opening on the upper surface, and welds at a portion directly below the extension of the box having an extension extending inward from the periphery of the opening. In such a case, welding can be easily performed even if the extended portion is present.

なお、本発明を特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。   Although the present invention has been described with reference to particular embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.

本発明は、大電流を短時間通電するための制御を可能とし、被溶接物を溶接したときに、該被溶接物の裏面に圧痕や熱による焼け、歪が生じることがなく、また効率の良い電力制御を行えて省電力化が図れるといった効果を有し、スポット溶接への適用が可能である。   The present invention enables control for energizing a large current for a short time, so that when the workpiece is welded, the back surface of the workpiece is not indented, burned by heat, or distorted, and more efficient. It has the effect that good power control can be performed to save power and can be applied to spot welding.

1 溶接装置
2 冷却ユニット
3 電源ユニット
4 支持ポスト
5 支持アーム
5A 水平アーム部
5a 基端部
5b 中間部
5Aa 駆動軸
5B 垂直アーム部
6 溶接ガン
7 導電ケーブル
8 テーブル
9 溶接条件設定器
10 溶接トランス
12 溶接トランスの1次コイル
14 溶接トランスの2次コイルの正側コイル
15 溶接トランスの2次コイル
16 溶接トランスの2次コイルの負側コイル
18 第1整流素子
20 第2整流素子
22 溶接トランスのプラス電極
24 溶接トランスのマイナス電極
82 溶接制御回路
83 インバータ回路
100 テーブル駆動部
200 片側電極
201 外側電極
201a 固定部
201b 可動部
202 内側電極
202a ねじ部
202b フランジ
202c 内側電極部
203 内側電極固定部
300 シャンクホルダ
400 ブスバー導電体
450 受電設備
600A,600A 被溶接物
601 逃がし孔
602 プロジェクション
DESCRIPTION OF SYMBOLS 1 Welding device 2 Cooling unit 3 Power supply unit 4 Support post 5 Support arm 5A Horizontal arm part 5a Base end part 5b Intermediate part 5Aa Drive shaft 5B Vertical arm part 6 Welding gun 7 Conductive cable 8 Table 9 Welding condition setting device 10 Welding transformer 12 Primary coil of welding transformer 14 Positive coil of secondary coil of welding transformer 15 Secondary coil of welding transformer 16 Negative coil of secondary coil of welding transformer 18 First rectifying element 20 Second rectifying element 22 Plus of welding transformer Electrode 24 Negative electrode of welding transformer 82 Welding control circuit 83 Inverter circuit 100 Table drive part 200 One side electrode 201 Outer electrode 201a Fixed part 201b Movable part 202 Inner electrode 202a Screw part 202b Flange 202c Inner electrode part 203 Inner electrode fixed part 300 Nkuhoruda 400 bus bar conductor 450 power receiving equipment 600A, 600A weld object 601 escape hole 602 Projection

Claims (3)

1次コイルに高周波交流が供給されることで2次コイルに生起する電流を直流化する溶接トランスと、
被溶接物を載置する平坦なテーブル上で、かつ該テーブルと並行となる横向き姿勢で保持され、前記溶接トランスの2次コイルに生起し直流化された電流が供給される溶接ガンと、
前記溶接トランスの1次コイルに高周波交流を供給するインバータ回路と、
前記インバータ回路の動作を制御する溶接制御回路と、
を備える溶接装置であって、
前記溶接トランスは、平行部と両端のU字状の湾曲部により構成される環状磁心と、前記環状磁心の前記平行部に、複数の部分に分けて間隙を空けて分割巻きされる1次コイルと、前記1次コイルと共に前記環状磁心の前記平行部に巻回され、前記1次コイルに設けられた前記各間隙に1個ずつ挟み込むように、複数の正側コイルと複数の負側コイルとを交互に配列した2次コイルと、前記複数の正側コイルは全て並列接続されるかもしくは全部または一部が直列接続され、前記複数の負側コイルは全て並列接続されるかもしくは全部または一部が直列接続され、前記接続された複数の正側コイルと前記複数の負側コイルとが互いに直列接続されるように、前記正側コイルと負側コイルの端子間を電気接続する導体群を有し、かつ、前記導体群により、前記全ての正側コイルと負側コイルとを一方の面上に支持固定する接続基板を備え、前記複数の正側コイルの一方の端子は、前記接続基板の他方の面上で、前記環状磁心の前記平行部に平行な方向に伸びた第1連結極板に電気接続され、前記複数の負側コイルの一方の端子は、前記接続基板の他方の面側で、前記環状磁心の前記平行部に平行な方向に伸びた第2連結極板に電気接続され、前記正側コイルの他方の端子と負側コイルの他方の端子は、共に、前記接続基板の他方の面側で、前記環状磁心の前記平行部に平行な方向に伸びた第3連結極板に電気接続され、前記第1連結極板には、正側導体が連結され、前記第2連結極板には、負側導体が連結され、前記正側導体と前記負側導体は、前記接続基板の他方の面側において、当該他方の面から垂直に離れる方向に伸びる境界面に配置された絶縁層を介して重ね合わされた一対の導体板であり、前記正側導体とプラス電極が接続された第1極板との間に挟まれ、前記正側導体に正極が接触し、前記第1極板に負極が接触する第1整流素子と、前記負側導体とマイナス電極が接続された第2極板との間に挟まれ、前記負側導体に正極が接触し前記第2極板に負極が接触する第2整流素子と、前記第1極板と前記第2極板を支持し、両者を電気接続する第3極板と、を備え、前記溶接ガンは、両端が開口した円筒形状を成す外側電極と、前記外側電極に内挿自在であり、前記外側電極に内挿させた際に先端部分が前記外側電極の先端面より露出する円柱形状を成す内側電極と、前記外側電極と前記内側電極との間を絶縁する第1の絶縁部材と、前記内側電極の先端部分の表面を覆う第2の絶縁部材とを備えた片側電極と、先端部分で前記片側電極を保持し、該先端部分が本体部分に対して略直角方向に曲がったL字形状を成し、前記溶接トランスの前記プラス電極を前記片側電極の前記内側電極及び前記外側電極のいずれか一方と接続するためのシャンクホルダと、前記溶接トランスの前記マイナス電極を前記片側電極の前記内側電極及び前記外側電極のうち、前記シャンクホルダに接続されていない方と接続するためのブスバー導電体と、を備え、前記溶接制御回路は、前記片側電極に供給する溶接電流が、供給開始時刻から15ミリ秒以内で最大値となり、かつ50ミリ秒以下の通電時間で溶接が完了するように前記インバータ回路の動作を制御する溶接装置。
A welding transformer that converts the current generated in the secondary coil into direct current by supplying high-frequency alternating current to the primary coil;
A welding gun which is held on a flat table on which a workpiece is placed and is held in a horizontal posture parallel to the table, and which is supplied with a direct current generated in a secondary coil of the welding transformer;
An inverter circuit for supplying high-frequency alternating current to a primary coil of the welding transformer;
A welding control circuit for controlling the operation of the inverter circuit;
A welding apparatus comprising:
The welding transformer includes an annular magnetic core composed of a parallel portion and U-shaped curved portions at both ends, and a primary coil that is dividedly wound around the parallel portion of the annular magnetic core with a plurality of portions with a gap therebetween. And a plurality of positive side coils and a plurality of negative side coils wound around the parallel part of the annular magnetic core together with the primary coil, and sandwiched one by one in the gaps provided in the primary coil, And the plurality of positive side coils are all connected in parallel or all or part of them are connected in series, and the plurality of negative side coils are all connected in parallel or all or one. A group of conductors that are electrically connected between the terminals of the positive side coil and the negative side coil so that the plurality of positive side coils and the plurality of negative side coils connected in series are connected in series. And having the conductor To provide a connection board that supports and fixes all the positive and negative coils on one surface, and one terminal of each of the plurality of positive coils is on the other surface of the connection board, The first connecting pole plate extending in a direction parallel to the parallel part of the annular magnetic core is electrically connected, and one terminal of the plurality of negative coils is on the other surface side of the connection substrate, The second connecting electrode plate extending in a direction parallel to the parallel portion is electrically connected, and the other terminal of the positive coil and the other terminal of the negative coil are both on the other surface side of the connection board, It is electrically connected to a third connecting plate extending in a direction parallel to the parallel part of the annular magnetic core, a positive conductor is connected to the first connecting plate, and a negative side is connected to the second connecting plate. Conductor is connected, the positive side conductor and the negative side conductor on the other surface side of the connection board, A pair of conductor plates stacked via an insulating layer disposed on a boundary surface extending in a direction perpendicular to the other surface, and between the positive electrode and the first electrode plate to which the positive electrode is connected Sandwiched between a first rectifier element in which a positive electrode is in contact with the positive conductor and a negative electrode is in contact with the first electrode plate, and a second electrode plate in which the negative conductor and the negative electrode are connected. A second rectifying element having a positive electrode in contact with the negative conductor and a negative electrode in contact with the second electrode plate, and a third electrode for supporting and electrically connecting the first electrode plate and the second electrode plate. The welding gun has a cylindrical outer electrode open at both ends, and is freely insertable into the outer electrode, and a tip portion of the outer electrode is inserted into the outer electrode. A cylindrical inner electrode exposed from the tip surface is insulated from the outer electrode and the inner electrode. A one-sided electrode provided with a first insulating member and a second insulating member covering the surface of the tip portion of the inner electrode, and holding the one-side electrode at the tip portion, the tip portion being approximately the body portion A L-shape bent in a right angle direction, a shank holder for connecting the plus electrode of the welding transformer to either the inner electrode or the outer electrode of the one-side electrode, and the minus of the welding transformer A bus bar conductor for connecting an electrode to one of the inner electrode and the outer electrode of the one-side electrode not connected to the shank holder, and the welding control circuit supplies the one-side electrode to the one-side electrode A welding apparatus that controls the operation of the inverter circuit so that the welding current becomes a maximum value within 15 milliseconds from the supply start time and the welding is completed within a current supply time of 50 milliseconds or less.
前記片側電極の前記外側電極は、前記内側電極を保持する固定部と、一端面が前記固定部の先端面と密着し、前記固定部と接触する一端面の中心を支点とする軸線回りに円弧運動可能な可動部と、を有する請求項1に記載の溶接装置。   The outer electrode of the one-side electrode has a fixed portion that holds the inner electrode, and an arc around an axis that has a first end surface in close contact with the distal end surface of the fixed portion and a center of one end surface that contacts the fixed portion. The welding apparatus according to claim 1, further comprising a movable part that is movable. 請求項1又は請求項2に記載の溶接装置を用いて被溶接物をスポット溶接する溶接方法であって、前記被溶接物が複数枚の金属板であり、前記複数枚の金属板の1枚を除く残りの金属板のそれぞれに対し、前記内側電極が通過可能な大きさの逃がし孔を形成するとともに、それぞれの一方の面の前記逃がし孔の外側周囲に同心円に沿って複数個のプロジェクションを形成し、その後、前記逃がし孔及び前記プロジェクションを形成していない前記金属板を最下位にし、その面上に前記逃がし孔及び前記プロジェクションを形成した全ての前記金属板を、それぞれの前記プロジェクションの形成面を下に向けるとともに、それぞれの前記逃し孔の中心同士が一致するように順次積み重ねて行き、全ての金属板を積層した後、前記逃がし孔を形成した全ての前記金属板の前記逃がし孔に前記内側電極の先端部分を挿入加圧するとともに、前記外側電極から前記内側電極へ流れる方向で溶接電流の供給を開始し、供給開始時刻から15ミリ秒以内で最大値となり、かつ50ミリ秒以下の通電時間で溶接が完了するように前記溶接電流を制御する溶接方法。   A welding method for spot welding a workpiece using the welding apparatus according to claim 1 or 2, wherein the workpiece is a plurality of metal plates, and one of the plurality of metal plates. For each of the remaining metal plates excluding, an escape hole having a size through which the inner electrode can pass is formed, and a plurality of projections are formed along the concentric circles around the outer side of the escape hole on each one surface. Forming the relief hole and the projection without forming the relief hole and the projection, and forming all the metal plates with the relief hole and the projection on the surface of the metal plate. With the surface facing down, stack the metal holes one after the other so that the centers of the escape holes coincide with each other. In addition, the tip portion of the inner electrode is inserted and pressed into the escape holes of all the metal plates, and the supply of welding current is started in the direction of flow from the outer electrode to the inner electrode, within 15 milliseconds from the supply start time. A welding method in which the welding current is controlled so that the welding is completed in a current value of 50 milliseconds or less at a maximum value.
JP2016092172A 2016-04-29 2016-04-29 Welding apparatus and welding method Active JP6421947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016092172A JP6421947B2 (en) 2016-04-29 2016-04-29 Welding apparatus and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016092172A JP6421947B2 (en) 2016-04-29 2016-04-29 Welding apparatus and welding method

Publications (3)

Publication Number Publication Date
JP2017196656A true JP2017196656A (en) 2017-11-02
JP2017196656A5 JP2017196656A5 (en) 2018-06-28
JP6421947B2 JP6421947B2 (en) 2018-11-14

Family

ID=60238647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016092172A Active JP6421947B2 (en) 2016-04-29 2016-04-29 Welding apparatus and welding method

Country Status (1)

Country Link
JP (1) JP6421947B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102488029B1 (en) * 2022-08-17 2023-01-12 비케이테크 주식회사 Projection welding apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062153A (en) * 1973-10-04 1975-05-28
JPS5874289A (en) * 1981-09-30 1983-05-04 Tanaka Kikinzoku Kogyo Kk Resistance welding method and electrode for resistance welding
JP2013179205A (en) * 2012-02-29 2013-09-09 Koyo Giken:Kk Welding transformer, welding transformer assembly, and welding device
JP2015039710A (en) * 2013-08-22 2015-03-02 株式会社向洋技研 Stud welding method and resistance welder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5062153A (en) * 1973-10-04 1975-05-28
JPS5874289A (en) * 1981-09-30 1983-05-04 Tanaka Kikinzoku Kogyo Kk Resistance welding method and electrode for resistance welding
JP2013179205A (en) * 2012-02-29 2013-09-09 Koyo Giken:Kk Welding transformer, welding transformer assembly, and welding device
JP2015039710A (en) * 2013-08-22 2015-03-02 株式会社向洋技研 Stud welding method and resistance welder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102488029B1 (en) * 2022-08-17 2023-01-12 비케이테크 주식회사 Projection welding apparatus

Also Published As

Publication number Publication date
JP6421947B2 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
US6320774B2 (en) AC waveform inverter power supply apparatus for metallic member joining or reflow soldering
JP2002321068A (en) Resistance welding device for covered wire
JP6421947B2 (en) Welding apparatus and welding method
JP5892390B2 (en) Stud welding method and resistance welding machine
JP2017196656A5 (en)
JP5717006B2 (en) Stud welding method
JP5514505B2 (en) Resistance welding power supply apparatus, resistance welding apparatus using the power supply, and power supply control method
US6410885B1 (en) MIG brazing power source
JP6447847B2 (en) Resistance welding equipment
US6486456B1 (en) Fusing processing method
KR20010061940A (en) soldering device for a repple
JP6497629B2 (en) Spot welding electrode
JP6331198B2 (en) Welding equipment
JP2018023984A5 (en)
WO2018192038A1 (en) Direct contact- and alternating current trapezoidal wave-based electric resistance welding process method of aluminum
JP2006187791A (en) Power source apparatus for inverter type resistance welding
CN103056250B (en) Welding method of copper-clad aluminum enameled wire
JP2017035707A5 (en)
JP2013166162A (en) Welding tip and resistance welding equipment
JP2002210566A (en) Metal member joining method, and ac waveform inverter type power source device
JP2017035706A (en) Stud welding method and resistance welding machine
KR101304694B1 (en) Tandem Electro Gas Arc Welding Device
JP3220453U (en) Anti-rotation structure for shank holder
JP2017035706A5 (en)
KR200225689Y1 (en) a wire feeder of Arc and carbon dioxide gas welding

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180521

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180521

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181002

R150 Certificate of patent or registration of utility model

Ref document number: 6421947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250