JP2017195102A - Lithium ion battery and negative electrode active material for lithium ion capacitor - Google Patents

Lithium ion battery and negative electrode active material for lithium ion capacitor Download PDF

Info

Publication number
JP2017195102A
JP2017195102A JP2016084945A JP2016084945A JP2017195102A JP 2017195102 A JP2017195102 A JP 2017195102A JP 2016084945 A JP2016084945 A JP 2016084945A JP 2016084945 A JP2016084945 A JP 2016084945A JP 2017195102 A JP2017195102 A JP 2017195102A
Authority
JP
Japan
Prior art keywords
active material
lithium ion
negative electrode
lithium
silicic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016084945A
Other languages
Japanese (ja)
Other versions
JP6867574B2 (en
Inventor
誠治 熊谷
Seiji Kumagai
誠治 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2016084945A priority Critical patent/JP6867574B2/en
Publication of JP2017195102A publication Critical patent/JP2017195102A/en
Application granted granted Critical
Publication of JP6867574B2 publication Critical patent/JP6867574B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an excellent lithium ion battery and a negative electrode active material for a lithium ion capacitor.SOLUTION: The negative electrode active material is a mixed system composed of amorphous carbon and amorphous silicic acid, and has a specific amorphous silicic acid content, BET specific surface area, meso/macropore specific surface area, meso/macropore volume. In particular, those produced from rice husk, which is a plant-based organic matter containing naturally occurring silicic acid, by primary carbonization, partial removal of silicic acid, and secondary carbonization, show large lithium ion occluding and releasing capacity, and has excellent rate characteristics and cycle characteristics.SELECTED DRAWING: None

Description

本発明は、リチウムイオン電池およびリチウムイオンキャパシタ用負極活物質に関する。   The present invention relates to a lithium ion battery and a negative electrode active material for a lithium ion capacitor.

小型で大きなエネルギーを入出力できる蓄電デバイスへの社会的需要が近年急激に高まっている。電気自動車やハイブリッド自動車、産業機械やロボット、スマートフォンやタブレットなどの携帯端末など、外部電源から独立して動作が求められる製品は、エネルギー密度および入出力(電力)密度が高く、かつ、寿命の長い高性能な電気化学系蓄電デバイスを要求する。
電気化学系蓄電デバイスには、高いエネルギー密度を実現できるリチウムイオン電池などの二次電池と、高い入出力密度を実現できる電気二重層キャパシタなどのキャパシタがある。また、二次電池とキャパシタの中間的な性能を有するリチウムイオンキャパシタがある。特に、リチウムイオン電池およびリチウムイオンキャパシタは、リチウムイオンを負極に吸蔵させ、負極の電極電位をリチウムの標準電極電位(−3.045V)近くまで低下させることで、正極と負極間の電位差(セル電圧)を拡大し、高いエネルギー密度を実現する。
In recent years, there has been a rapid increase in social demand for power storage devices that are small and can input and output large amounts of energy. Products that require operation independently from an external power supply, such as electric vehicles, hybrid vehicles, industrial machines, robots, mobile terminals such as smartphones and tablets, have high energy density and input / output (power) density, and have a long service life. A high-performance electrochemical storage device is required.
Electrochemical power storage devices include secondary batteries such as lithium ion batteries that can achieve high energy density and capacitors such as electric double layer capacitors that can achieve high input / output density. In addition, there is a lithium ion capacitor having intermediate performance between a secondary battery and a capacitor. In particular, in lithium ion batteries and lithium ion capacitors, lithium ions are occluded in the negative electrode, and the electrode potential of the negative electrode is lowered to near the standard electrode potential (−3.045 V) of lithium, whereby the potential difference between the positive electrode and the negative electrode (cell Voltage) and high energy density.

二次電池およびキャパシタとも、それらの基本構成要素は、正極、負極、電解液、セパレータである。負極および正極は、電荷の直接的授受を担う活物質が集電体としての金属箔上に塗工されたものがよく利用される。活物質は通常粒状であり、活物質粒子間および活物質粒子と集電体の電気的接触を保持する導電助剤、さらに、それらの機械的接着を保持するバインダが一般的に添加される。また、セパレータは正負極の電気的接触を避けつつ、正負極間のイオン移動を実現するために正負極間に挟まれて使用される。紙や微細孔を有する樹脂が一般にセパレータとして用いられる。
現在の一般的なリチウムイオン電池は、負極活物質にグラファイトやハードカーボンなどの炭素系材料、正極活物質にコバルト酸リチウムやマンガン酸リチウムなどのリチウム遷移金属酸化物が用いられる。また、電解質にはヘキサフルオロリン酸リチウム(LiPF)といったリチウム塩を、溶媒には炭酸エチレンや炭酸ジエチルなどの混合有機溶媒を用いた系が電解液として広く用いられている。
The basic constituent elements of the secondary battery and the capacitor are a positive electrode, a negative electrode, an electrolytic solution, and a separator. As the negative electrode and the positive electrode, a material in which an active material responsible for direct charge transfer is coated on a metal foil as a current collector is often used. The active material is usually granular, and a conductive auxiliary agent that maintains electrical contact between the active material particles and between the active material particles and the current collector, and a binder that maintains their mechanical adhesion are generally added. In addition, the separator is used while being sandwiched between the positive and negative electrodes in order to realize ion movement between the positive and negative electrodes while avoiding electrical contact between the positive and negative electrodes. Paper or resin having fine holes is generally used as a separator.
In a current general lithium ion battery, a carbon-based material such as graphite or hard carbon is used as a negative electrode active material, and a lithium transition metal oxide such as lithium cobaltate or lithium manganate is used as a positive electrode active material. Further, a system using a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) as an electrolyte and a mixed organic solvent such as ethylene carbonate or diethyl carbonate as a solvent is widely used as an electrolyte.

炭素系負極活物質に着目すると、結晶構造を有するグラファイトは、グラフェン層間にリチウムイオンが挿入されることで、リチウムイオンを吸蔵することができる。その最大吸蔵理論容量は、LiCの形態において、372mAh/gである。グラファイトの場合、リチウムの標準電極電位近くの電位で、リチウムイオンの大部分の吸蔵放出が行われるため、放電が進行しても、電池セル電圧が維持されやすいこと、また、リチウムイオンの吸蔵放出にともなうエネルギー損失が小さいことが挙げられる。一方で、リチウムイオンの吸蔵放出に伴う結晶構造の膨張収縮に起因して、活物質のゆがみ、亀裂、変形が生じやすい。従って、充放電サイクル数の増加に従い、活物質そのものの構造変化、活物質粒子間および活物質粒子と集電体との隔離が進行し、電極としてのリチウムイオン吸蔵容量が低下しやすいため、サイクル特性には劣る。さらに、結晶性の高い活物質内をリチウムイオンが移動する必要があるため、充放電電流密度が高い場合などは、リチウムイオンは律速移動となりやすい。それゆえ、充放電電流密度の増加に従い、リチウムイオンの吸蔵放出容量は低下していく。すなわち、レート特性には一般に優れない。 Focusing on the carbon-based negative electrode active material, graphite having a crystal structure can occlude lithium ions by inserting lithium ions between graphene layers. The maximum storage capacity is 372 mAh / g in the form of LiC 6 . In the case of graphite, since most of the lithium ions are stored and released at a potential close to the standard electrode potential of lithium, the battery cell voltage is easily maintained even when the discharge proceeds, and the lithium ions are stored and released. It is mentioned that the energy loss accompanying this is small. On the other hand, the active material is likely to be distorted, cracked or deformed due to the expansion and contraction of the crystal structure accompanying the insertion and extraction of lithium ions. Therefore, as the number of charge / discharge cycles increases, the structural change of the active material itself, the separation between the active material particles and the separation between the active material particles and the current collector progresses, and the lithium ion storage capacity as an electrode tends to decrease. The characteristics are inferior. Furthermore, since lithium ions need to move in an active material with high crystallinity, lithium ions are likely to be rate-controlled when the charge / discharge current density is high. Therefore, as the charge / discharge current density increases, the lithium ion storage / release capacity decreases. That is, the rate characteristic is generally not excellent.

一方、難黒鉛化炭素とも呼ばれるハードカーボンは、微細な結晶性グラフェン層が規則性なく配置されている構造を有する。ハードカーボンのリチウムイオン吸蔵はグラフェン層への挿入とグラフェン層間に形成された空間へのリチウム凝集(リチウム金属化)による。結晶性グラフェン層におけるリチウムイオンの吸蔵脱離の比率が小さいため、充放電の繰り返しおよび充放電電流密度の増加に起因する容量低下は小さく、ハードカーボンのサイクル特性およびレート特性は一般にグラファイトのそれらより優れている   On the other hand, hard carbon, also called non-graphitizable carbon, has a structure in which fine crystalline graphene layers are arranged without regularity. Lithium ion occlusion of hard carbon is due to insertion into the graphene layer and lithium aggregation (lithium metallization) into the space formed between the graphene layers. Since the ratio of occlusion and desorption of lithium ions in the crystalline graphene layer is small, the capacity decrease due to repeated charge / discharge and increase in charge / discharge current density is small, and the cycle characteristics and rate characteristics of hard carbon are generally higher than those of graphite Are better

リチウムイオンキャパシタは、負極活物質に主として炭素系材料、正極活物質に活性炭を用いる。正極では電解液中イオンの吸脱着という非ファラデー反応が進行し、負極ではリチウムイオンの吸蔵放出というファラデー反応が進行する。リチウムイオンキャパシタは、リチウムイオン電池ほどの高エネルギー密度は要求されないが、数万サイクル以上の寿命と大きな充放電電流密度での効率的なエネルギーの入出力が要求される。一般的なリチウムイオン電池のサイクル寿命が数千サイクルを想定しているのに対して、数万サイクル以上に渡って高入出力密度を維持されることがリチウムイオンキャパシタの電極材料には要求される。負極活物質に用いられる炭素系材料にはハードカーボンや、グラファイトとハードカーボンの混合物が用いられることが多い。   A lithium ion capacitor mainly uses a carbon-based material as a negative electrode active material and activated carbon as a positive electrode active material. A non-Faraday reaction called adsorption / desorption of ions in the electrolytic solution proceeds at the positive electrode, and a Faraday reaction called storage / release of lithium ions proceeds at the negative electrode. Lithium ion capacitors are not required to have as high energy density as lithium ion batteries, but are required to input and output energy efficiently with a lifetime of tens of thousands of cycles and a large charge / discharge current density. While the cycle life of a typical lithium ion battery is assumed to be several thousand cycles, it is required for the electrode material of a lithium ion capacitor to maintain a high input / output density over tens of thousands of cycles. The Hard carbon or a mixture of graphite and hard carbon is often used as the carbon-based material used for the negative electrode active material.

電池およびキャパシタの仕様は、使用条件に適合するように設定される。例えば、リチウムイオンが負極活物質の最大容量まで吸蔵され、かつ、完全に放出されるまで充放電が繰り返されるディープサイクル仕様や、最大容量の80%±10%で充放電が繰り返される仕様、最大容量の60%±20%で充放電が繰り返される仕様などが想定され、その仕様に最適な負極活物質の種類や物性が選択される。特に、大きな需要が期待される車載用途向けリチウムイオン電池やリチウムイオンキャパシタは、負極活物質に対して優れた時間的応答性(レート特性)と繰り返し充放電に対する耐性(サイクル特性)を要求する。
現状、その用途に対応する負極活物質としてハードカーボン系が広く用いられている。しかし、ハードカーボン系活物質はリチウムの放出に伴い、徐々にその電位を増加させていく。その結果、正極との電位差は縮小し、電池セルまたはキャパシタセルの起電力は徐々に低下していく。同じ充放電電流レベルであれば、電池セルおよびキャパシタセルから貯蔵放出できるエネルギーは、高い起電力の状態において大きい。従って、ハードカーボンにリチウムが十分に吸蔵されている状態での充放電が、エネルギーを最も効率的に貯蔵放出する。一方で、最大吸蔵容量付近でのリチウムイオンの吸蔵放出は、負極におけるリチウム金属のプレーティング(析出)、さらには活物質、バインダおよび集電体の構造・化学変化を誘導しやすい。すなわち、セパレータによって隔てられた正負極の短絡や電極の構造的劣化および充放電容量の低下など、電池およびキャパシタの性能低下を加速させるデメリットもある。
The specifications of the battery and the capacitor are set so as to meet the use conditions. For example, a deep cycle specification in which lithium ions are occluded up to the maximum capacity of the negative electrode active material and charge / discharge is repeated until it is completely released, a specification in which charge / discharge is repeated at 80% ± 10% of the maximum capacity, A specification in which charging / discharging is repeated at 60% ± 20% of the capacity is assumed, and the type and physical properties of the negative electrode active material optimal for the specification are selected. In particular, lithium ion batteries and lithium ion capacitors for in-vehicle applications, for which great demand is expected, require excellent time response (rate characteristics) and resistance to repeated charge and discharge (cycle characteristics) with respect to the negative electrode active material.
At present, a hard carbon type is widely used as a negative electrode active material corresponding to the application. However, the hard carbon active material gradually increases its potential as lithium is released. As a result, the potential difference from the positive electrode is reduced, and the electromotive force of the battery cell or capacitor cell is gradually reduced. If the charge / discharge current level is the same, the energy that can be stored and released from the battery cell and the capacitor cell is large in a high electromotive force state. Therefore, charging and discharging in a state where lithium is sufficiently occluded in hard carbon stores and releases energy most efficiently. On the other hand, the insertion and extraction of lithium ions near the maximum storage capacity tends to induce lithium metal plating (precipitation) in the negative electrode, as well as structural and chemical changes in the active material, binder and current collector. That is, there is a demerit that accelerates the performance degradation of the battery and the capacitor, such as a short circuit between the positive and negative electrodes separated by the separator, a structural deterioration of the electrode, and a decrease in charge / discharge capacity.

ハードカーボン中では、リチウムイオンのグラフェン層への挿入とグラフェン層間に形成された空間でのリチウムの凝集が起きる。原材料の種類や炭化条件により、ハードカーボンのリチウムイオン吸蔵容量は大きく変化するが、一般に200〜400mAh/g程度である。また、グラフェン層間に形成された空間でのリチウムイオンの吸蔵放出においては、その容量が安定するまで不動化するリチウムが発生するため、初期の不可逆量はグラファイトと比較して大きい。その初期不可逆容量を打ち消すため、さらに、その容量安定化のため、あらかじめリチウムイオンを活物質に十分に吸蔵させるプレドープ処理が採用されることが多い。一般に炭素系負極活物質にリチウムイオンをプレドープする方法として、リチウムイオンを含有する電解液中において、リチウム金属と直接接触させるか、リチウム金属と電気的に接続する方法がある。リチウム金属と接触または電気的に接続する時間を変化させる、または、電気的に接続する際に抵抗を介在させるなどして、ドープされるリチウムイオン量を制御することが可能である。しかし、負極活物質に均等に所望量のリチウムイオンをドープすることは困難である。従って、十分な時間を確保して、リチウム金属と負極を直接接触させるか、リチウム金属と負極を電気的に短絡して、負極活物質のリチウムイオンの最大吸蔵容量までドープさせる手法が簡便である。この簡便な方法を採用するには、最大吸蔵容量までリチウムイオンがドープされても、リチウム金属のプレーティングおよび構造変化を発生させにくい特性を活物質は有する必要がある。しかし、ハードカーボン系活物質はそれら特性に優れておらず、最大吸蔵容量までの簡便なプレドープ処理後のリチウムイオンの吸蔵放出のサイクル特性は優れていない。実際に本発明者は、複数の市販ハードカーボン系の活物質およびグラファイト系活物質に対して最大吸蔵容量までリチウムイオンを吸蔵させるプレドープ処理を施した後、リチウムイオン電池およびリチウムイオンキャパシタの負極活物質として性能評価を行ったが、十分な性能は得られなかった。   In hard carbon, insertion of lithium ions into the graphene layer and aggregation of lithium in the space formed between the graphene layers occur. Although the lithium ion storage capacity of hard carbon varies greatly depending on the type of raw material and carbonization conditions, it is generally about 200 to 400 mAh / g. In addition, in the occlusion and release of lithium ions in the space formed between the graphene layers, lithium that is immobilized until the capacity is stabilized is generated, so the initial irreversible amount is larger than that of graphite. In order to cancel out the initial irreversible capacity, and in order to stabilize the capacity, a pre-doping process in which lithium ions are sufficiently occluded in advance in the active material is often employed. In general, as a method of pre-doping lithium ions into a carbon-based negative electrode active material, there is a method of directly contacting lithium metal or electrically connecting to lithium metal in an electrolyte containing lithium ions. It is possible to control the amount of lithium ions to be doped by changing the time of contact or electrical connection with lithium metal, or by interposing a resistor when electrically connected. However, it is difficult to uniformly dope a negative electrode active material with a desired amount of lithium ions. Therefore, it is simple to secure sufficient time and make the lithium metal and the negative electrode directly contact with each other or electrically short-circuit the lithium metal and the negative electrode to dope up to the maximum storage capacity of lithium ions of the negative electrode active material. . In order to adopt this simple method, the active material needs to have characteristics that hardly cause plating and structural change of lithium metal even when lithium ions are doped to the maximum storage capacity. However, hard carbon-based active materials are not excellent in these characteristics, and the cycle characteristics of lithium ion storage / release after simple pre-doping treatment up to the maximum storage capacity are not excellent. Actually, the present inventor performed a pre-doping treatment for occluding lithium ions up to a maximum occlusion capacity on a plurality of commercially available hard carbon-based active materials and graphite-based active materials, and then performed negative electrode actives for lithium ion batteries and lithium ion capacitors. Although performance evaluation was performed as a substance, sufficient performance was not obtained.

一方、リチウムイオン電池の負極活物質として、シリコンおよび酸化シリコンといったシリコン系の活物質がある。室温におけるシリコンのリチウム最大吸蔵理論容量は、シリコンとリチウムのLi15Siへのアロイ化を想定すると3590mAh/gであり、グラファイトの容量の約10倍である。酸化シリコンであるSiOおよびSiOのリチウム吸蔵理論容量は、リチウムイオンによるSiへの還元と酸化リチウムの生成を想定することで、それぞれ2287mAh/gと1678mAh/gと見積もられる。シリコンは大きなリチウム吸蔵放出容量を有するものの、同時に大きな膨張収縮を引き起こす。その結果、ゆがみ、亀裂や変形が発生し、活物質粒子間および活物質粒子と集電体との隔離が生じる。それゆえ、シリコン系活物質のサイクル特性は、炭素系活物質より極めて低い。しかしながら、シリコン自体の大きなリチウムイオンの吸蔵放出容量、さらには、部分的な酸化シリコンの存在は、リチウムイオンが負極活物質に過度にドープされた場合でも、酸化シリコンの還元によるシリコン生成と酸化リチウムの生成により、吸蔵放出容量の低下およびリチウム金属のプレーティングを大きく抑制できる。 On the other hand, as a negative electrode active material of a lithium ion battery, there are silicon-based active materials such as silicon and silicon oxide. The maximum lithium storage capacity of silicon at room temperature is 3590 mAh / g assuming the alloying of silicon and lithium into Li 15 Si 4 , which is about 10 times the capacity of graphite. Lithium occlusion theoretical capacity of SiO and SiO 2 is silicon oxide, by assuming the formation of oxidation and reduction of lithium to Si by a lithium ion, respectively estimated at 2287mAh / g and 1678mAh / g. Silicon has a large lithium storage / release capacity, but at the same time causes large expansion and contraction. As a result, distortion, cracking and deformation occur, and separation between the active material particles and separation between the active material particles and the current collector occur. Therefore, the cycle characteristic of the silicon-based active material is extremely lower than that of the carbon-based active material. However, the large lithium ion occlusion / release capacity of silicon itself, and the presence of partial silicon oxide, can cause silicon generation and lithium oxide reduction by reduction of silicon oxide even when lithium ions are excessively doped into the negative electrode active material. Generation of occlusion and release capacity and lithium metal plating can be greatly suppressed.

本発明者は、上記負極活物質の状況に鑑み、鋭意検討した結果、結晶性の低い炭素とケイ酸(酸化シリコン)の混合物が有望であること、さらに、それには最適なケイ酸含有率と細孔構造が存在すべきと想到した。そして、かかる負極活物質の材料としては、特に、天然に約20質量%の結晶性の低いケイ酸を含有し、残りはセルロース、ヘミセルロース、リグニンといった植物性有機物で構成されるもみ殻が、その混合物前駆体として使用可能であることを見出した。
もみ殻は農業廃棄物として国内で毎年約200万トン弱排出される。畜産や園芸資材として利用用途はあるものの、排出量の約4分の1に明確な利用用途がない。ケイ酸植物である稲は、土壌から水溶性ケイ酸を取り込み、もみ殻に非晶質の形態で集積させる。もみ殻のケイ酸含有率はおよそ20質量%である。もみ殻中のケイ酸は、その化学的および構造的な安定性のため、もみ殻を有機肥料源、燃料源および炭素源として扱いにくいものとする。一方で、もみ殻は集約的に収集されることが多く、その収集コストは低い。それゆえ、もみ殻を原料とすることで、低廉な価格の負極活物質を実現できる。
As a result of intensive studies in view of the situation of the negative electrode active material, the present inventor has shown that a mixture of carbon and silicic acid (silicon oxide) having low crystallinity is promising. I thought that there should be a pore structure. As a material for such a negative electrode active material, a rice husk that contains naturally about 20% by mass of low crystalline silicic acid, and the rest is composed of plant organic matter such as cellulose, hemicellulose, and lignin. It has been found that it can be used as a mixture precursor.
Rice husk is discharged about 2 million tons every year as agricultural waste in the country. Although there are uses for livestock and horticultural materials, there is no clear use for about one-fourth of the emissions. Rice, which is a silicic acid plant, takes water-soluble silicic acid from soil and accumulates it in rice husk in an amorphous form. Rice husk has a silicic acid content of approximately 20% by weight. Silicic acid in rice husk makes it difficult to treat rice husk as an organic fertilizer source, fuel source and carbon source due to its chemical and structural stability. On the other hand, rice husk is often collected intensively and its collection cost is low. Therefore, by using rice husk as a raw material, an inexpensive negative electrode active material can be realized.

炭化したもみ殻のリチウムイオン電池負極活物質の可能性については、かねてから検討されている(特許文献1、非特許文献1)。さらに、炭化したもみ殻から、酸またはアルカリを用いて、大部分のケイ酸を除去した二次電池電極用の非晶質炭素系活物質についても検討がなされている(特許文献2、3)。特にFeyらは、濃度の異なる水酸化ナトリウム水溶液を使用して、700℃で製造したもみ殻炭からケイ酸を部分的に除去した場合のリチウムイオンの吸蔵放出容量を報告した(非特許文献2)。炭化温度を変化させたもみ殻炭をベースに活物質を製造し、対極をリチウム金属として、セル電圧がそれぞれ3〜0Vおよび2〜0Vの範囲で、すなわち、負極活物質のリチウムイオン吸蔵放出容量の大部分が使用される条件での単位質量あたりの容量が計測された。しかしながら、Feyらは、ケイ酸の除去量の最適化について全く検討しておらず、ケイ酸の部分的除去による特性向上のメリットを見出せなかった。特に、プレドープ処理への耐性、さらにはレート特性およびサイクル特性への言及は全くなされていない。一方、10〜60質量%のシリカ成分を含有するもみ殻由来活性炭が電気二重層キャパシタ電極材料として有望であると主張された(特許文献4)。しかし、それは電極材料中に発達した細孔内部への電解液中イオンの吸脱着現象に起因する非ファラデー反応を経由して蓄電がなされるものであり、活物質中にリチウムイオンが吸蔵放出される蓄電機構と異なる。もみ殻など天然に炭素およびケイ酸を含有する植物系原料を利用しない、黒鉛とシリコン、または黒鉛と一酸化シリコンの混合系リチウムイオン電池およびリチウムイオンキャパシタの負極活物質について報告されている(特許文献5)。しかし、黒鉛に対するシリコンまたは一酸化シリコンの最適な含有率、さらには活物質中の最適な細孔構造については言及されていない。一方、リチウムイオンをプレドープする蓄電デバイスの負極材料について、メソ・マクロ孔比表面積を11〜35m/gの範囲に規定することで、エネルギー密度の向上が図れると報告されている(特許文献6)。一般にメソ孔は幅が2nmより大きく50nm以下の細孔であり、マクロ孔は幅が50nmを超える細孔である。従って、メソ・マクロ孔はメソ孔およびマクロ孔の両者、すなわち、幅が2nmより大きな細孔を指す。しかしながら、リチウムイオンを吸蔵放出できる炭素とケイ酸の混合系活物質についての検討はなされていない。以上のことから、非晶質炭素と非晶質ケイ酸の混合系リチウムイオン電池およびリチウムイオンキャパシタの負極活物質に関しては、最適な非晶質ケイ酸含有率が存在し、かつ、最適な細孔構造が存在することについては、これまでにおいて開示されていない。 The possibility of a carbonized rice husk lithium-ion battery negative electrode active material has been studied for some time (Patent Document 1, Non-Patent Document 1). Further, an amorphous carbon-based active material for a secondary battery electrode in which most of silicic acid is removed from carbonized rice husk using acid or alkali has been studied (Patent Documents 2 and 3). . In particular, Fey et al. Reported the lithium ion storage and release capacity when silicic acid was partially removed from rice husk charcoal produced at 700 ° C. using aqueous sodium hydroxide solutions having different concentrations (Non-patent Document 2). ). An active material is produced based on rice husk charcoal with varying carbonization temperature, the counter electrode is made of lithium metal, and the cell voltages are in the range of 3 to 0 V and 2 to 0 V, respectively, that is, the lithium ion storage and release capacity of the negative electrode active material The capacity per unit mass was measured under the condition that most of the was used. However, Fey et al. Have not studied optimization of the removal amount of silicic acid at all, and have not found a merit of improving characteristics by partial removal of silicic acid. In particular, no mention is made of resistance to pre-doping, as well as rate and cycle characteristics. On the other hand, rice husk-derived activated carbon containing 10-60 mass% silica component was claimed to be promising as an electric double layer capacitor electrode material (Patent Document 4). However, it stores electricity via a non-Faraday reaction caused by the adsorption / desorption phenomenon of ions in the electrolyte into the pores developed in the electrode material, and lithium ions are occluded and released in the active material. Different from the power storage mechanism. There are reports on negative active materials for lithium-ion batteries and lithium-ion capacitors using graphite and silicon, or graphite and silicon monoxide, which do not use plant-based raw materials that naturally contain carbon and silicic acid such as rice husks (patents) Reference 5). However, there is no mention of the optimum content of silicon or silicon monoxide with respect to graphite, and further the optimum pore structure in the active material. On the other hand, it has been reported that the energy density of the negative electrode material of the electricity storage device pre-doped with lithium ions can be improved by defining the mesopore / macropore specific surface area in the range of 11 to 35 m 2 / g (Patent Document 6). ). In general, mesopores are pores having a width of more than 2 nm and not more than 50 nm, and macropores are pores having a width of more than 50 nm. Thus, meso-macro pores refer to both meso-pores and macro-pores, ie pores with a width greater than 2 nm. However, studies have not been made on a mixed active material of carbon and silicic acid that can occlude and release lithium ions. Based on the above, there is an optimum amorphous silicic acid content and a finely divided negative active material for mixed lithium ion batteries and lithium ion capacitors of amorphous carbon and amorphous silicic acid. The presence of a pore structure has not been disclosed so far.

特開2008−124034JP2008-124034 特開2012−160456JP2012-160456 特開2014−35915JP 2014-35915 A 特開2013−165161JP2013-165161 特開2015−156293JP2015-156293A 特開2010−135648JP 2010-135648 A

中川宏樹、伏見公志、金野英隆、もみ殻を前駆体としたリチウムイオン二次電池負極用Si/C/O化合物の作製、第36回炭素材料学会年会要旨集、112〜113ページ、2009年11月30日Hiroki Nakagawa, Kimi Fushimi, Hidetaka Kanno, Preparation of Si / C / O compounds for negative electrodes of lithium ion secondary batteries using rice husk as a precursor, 36th Annual Meeting of the Carbon Materials Society, 112-113, 2009 November 30 George Ting―Kuo Fey、 Chung―Lai Chen、 High―capacity carbons for lithium―ion batteries prepared from ricer husk、 Journal of Power Sources、 Vol. 97―98 (2001) pp.47―51George Ting-Kuo Fey, Chung-Lai Chen, High-capacity carbons for lithium-ion batteries, pre-prepared from rice cooker Hus, Journal of Power Sour. 47-51

本発明の目的は、性能に優れたリチウムイオン電池およびリチウムイオンキャパシタ用負極活物質を提供することである。より具体的には、下記(A)〜(D)の特性を満足するリチウムイオン電池およびリチウムイオンキャパシタの負極活物質を提供することである。
(A)最大吸蔵容量までリチウムイオンを吸蔵させるプレドープ処理を行ったとしても、リチウム金属のプレーティング(析出)および特性変化を誘導しにくい。
(B)上記プレドープ処理を行った後、リチウムイオンの吸蔵放出容量が大きい。
(C)上記プレドープ処理を行った後、その最大吸蔵容量付近でのリチウムイオン吸蔵放出におけるレート特性に優れている。
(D)同様に、最大吸蔵容量付近でのリチウムイオン吸蔵放出におけるサイクル特性に優れている。
The objective of this invention is providing the negative electrode active material for lithium ion batteries and lithium ion capacitors excellent in the performance. More specifically, it is to provide a negative electrode active material for lithium ion batteries and lithium ion capacitors that satisfy the following characteristics (A) to (D).
(A) Even if a pre-doping process that occludes lithium ions up to the maximum occlusion capacity is performed, it is difficult to induce lithium metal plating (precipitation) and change in characteristics.
(B) After performing the said pre dope process, the occlusion discharge | release capacity of lithium ion is large.
(C) After performing the above-mentioned pre-doping treatment, the rate characteristics in the lithium ion storage / release near the maximum storage capacity are excellent.
(D) Similarly, it is excellent in cycle characteristics in the storage and release of lithium ions in the vicinity of the maximum storage capacity.

本発明者は、特に、もみ殻炭に存在する非晶質ケイ酸の部分的除去を行うことで、適切なメソ・マクロ孔の生み出し、優れた耐リチウム金属プレーティング性の実現、さらには、還元シリコンの膨張収縮に起因する負極活物質の構造変化の抑制が可能であることを見出し、本発明に到達した。
すなわち、上記本発明の目的は、下記により達成される
1.非晶質炭素と非晶質ケイ酸から構成される混合系であり、それぞれ非晶質炭素の含有率が60〜80質量%、非晶質ケイ酸の含有率が40〜20質量%、さらに、BET比表面積が70〜120m/g、メソ・マクロ孔比表面積が50〜100m/g、メソ・マクロ孔容積が0.10〜0.18cm/gであることを特徴とする負極活物質。
2.もみ殻由来である前記1の負極活物質。
3.リチウムイオンのプレドープ処理がなされた前記1又は2の負極活物質。
4.もみ殻を800℃以下で一次炭化し、その炭化物から非晶質ケイ酸の部分的除去を行い、その後、800〜1200℃において二次炭化を行うことを特徴とする前記2又は3の負極活物質の製造法。
5.リチウムイオン含有有機系電解液中において、前記1又は2の負極活物質とリチウム金属とを短絡することによる、リチウムイオンのプレドープ処理がなされた負極活物質の製造法。
6.負極が、前記1、2又は3の負極活物質を有してなり、リチウムイオンの吸蔵放出を行うことで繰り返し充放電を実現する電気化学系蓄電デバイス。
7.電気化学系蓄電デバイスが、リチウムイオン電池である前記6の電気化学系蓄電デバイス。
8.電気化学系蓄電デバイスが、リチウムイオンキャパシタである前記6の電気化学系蓄電デバイス。
In particular, the present inventor partially removes amorphous silicic acid present in rice husk charcoal, thereby generating appropriate meso macropores, realizing excellent lithium metal plating resistance, It has been found that the structural change of the negative electrode active material due to the expansion and contraction of the reduced silicon can be suppressed, and the present invention has been achieved.
That is, the object of the present invention is achieved by the following. It is a mixed system composed of amorphous carbon and amorphous silicic acid, each having an amorphous carbon content of 60 to 80% by mass, an amorphous silicic acid content of 40 to 20% by mass, A negative electrode having a BET specific surface area of 70 to 120 m 2 / g, a meso / macropore specific surface area of 50 to 100 m 2 / g, and a meso / macropore volume of 0.10 to 0.18 cm 3 / g. Active material.
2. Said 1 negative electrode active material derived from rice husk.
3. Said 1 or 2 negative electrode active material by which the pre dope process of lithium ion was made | formed.
4). 2. The negative electrode active according to 2 or 3 above, wherein the rice husk is primary carbonized at 800 ° C. or less, amorphous silicic acid is partially removed from the carbide, and then secondary carbonization is performed at 800 to 1200 ° C. Method of manufacturing the substance.
5. The manufacturing method of the negative electrode active material by which the lithium ion pre-dope process was made | formed by short-circuiting the said 1 or 2 negative electrode active material and lithium metal in a lithium ion containing organic electrolyte solution.
6). An electrochemical power storage device in which a negative electrode has the above-described negative electrode active material of 1, 2, or 3, and repeatedly performs charge / discharge by occluding and releasing lithium ions.
7). 6. The electrochemical storage device according to 6, wherein the electrochemical storage device is a lithium ion battery.
8). 6. The electrochemical storage device according to 6 above, wherein the electrochemical storage device is a lithium ion capacitor.

本発明のリチウムイオン電池およびリチウムイオンキャパシタ用負極活物質は、既存技術であるハードカーボン系活物質と比較して、最大吸蔵容量までリチウムイオンを吸蔵させるプレドープ処理に対する耐性が強く、リチウムイオンを十分に吸蔵した状態における吸蔵放出のレート特性およびサイクル特性に優れている。また、もみ殻という国内賦存量が極めて多いバイオマス系廃棄物から製造できることから、その製造コスト低減といったメリットもある。   The negative electrode active material for lithium ion batteries and lithium ion capacitors of the present invention is more resistant to pre-doping treatment that absorbs lithium ions up to the maximum storage capacity compared to existing hard carbon active materials, and has sufficient lithium ion It is excellent in the rate characteristics and cycle characteristics of occlusion and release in the state of occlusion. Moreover, since it can manufacture from biomass-type waste called rice husk which has a very large amount in Japan, there is also an advantage of reducing the manufacturing cost.

粉末状活物質のX線回折パターンを表した図である。It is a figure showing the X-ray-diffraction pattern of a powdery active material.

以下に本発明を詳細に説明する
本発明の負極活物質は、非晶質炭素と非晶質ケイ酸から構成される混合系である。非晶質炭素の含有率は60〜80質量%であり、非晶質ケイ素の含有率は40〜20質量%であり、好ましくは、それぞれ65〜75質量%と35〜25質量%であり、さらに好ましくは、それぞれ68〜72質量%と32〜28質量%である。非晶質炭素の含有率は80質量%を超え、非晶質ケイ酸の含有率が20質量%未満である場合、もしくは、非晶質炭素の含有率は60質量%未満であり、非晶質ケイ酸の含有率が40質量%を超える場合、活物質のリチウムイオン吸蔵放出容量、レート特性またはサイクル特性、もしくそれら複数の性能が低下する。また、負極活物質のBET比表面積は70〜120m/gであり、好ましくは80〜110m/g、さらに好ましくは90〜100m/gである。負極活物質のBET比表面積が70m/g未満もしくは120m/gを超える場合、活物質のリチウムイオン吸蔵放出容量、レート特性またはサイクル特性、もしくそれら複数の性能が低下する。また、メソ・マクロ孔比表面積は50〜100m/g、かつ、メソ・マクロ孔容積は0.10〜0.18cm/gであり、好ましくは、それぞれ60〜90m/g、かつ、0.13〜0.17cm/g、さらに好ましくは、それぞれ70〜80m/g、かつ、0.15〜0.16cm/gである。メソ・マクロ孔比表面積が50m/g未満、かつ、メソ・マクロ孔容積は0.10m/g未満の場合、もしくは、メソ・マクロ孔比表面積が100m/gを超え、かつ、メソ・マクロ孔容積は0.18m/gを超える場合、活物質のリチウムイオン吸蔵放出容量、レート特性またはサイクル特性、もしくそれら複数の性能が低下する。
The present invention will be described in detail below. The negative electrode active material of the present invention is a mixed system composed of amorphous carbon and amorphous silicic acid. The amorphous carbon content is 60-80% by mass, the amorphous silicon content is 40-20% by mass, preferably 65-75% by mass and 35-25% by mass, respectively. More preferably, they are 68-72 mass% and 32-28 mass%, respectively. When the amorphous carbon content is more than 80% by mass and the amorphous silicic acid content is less than 20% by mass, or the amorphous carbon content is less than 60% by mass, When the content of the silicic acid exceeds 40% by mass, the lithium ion occlusion / release capacity, rate characteristics or cycle characteristics of the active material, or a plurality of performances thereof are deteriorated. Moreover, the BET specific surface area of a negative electrode active material is 70-120 m < 2 > / g, Preferably it is 80-110 m < 2 > / g, More preferably, it is 90-100 m < 2 > / g. When the BET specific surface area of the negative electrode active material is less than 70 m 2 / g or more than 120 m 2 / g, the lithium ion occlusion / release capacity, rate characteristics or cycle characteristics of the active material, or a plurality of performances thereof are deteriorated. The mesopore / macropore specific surface area is 50 to 100 m 2 / g, and the mesopore / macropore volume is 0.10 to 0.18 cm 3 / g, preferably 60 to 90 m 2 / g, and It is 0.13-0.17 cm < 3 > / g, More preferably, it is respectively 70-80 m < 2 > / g and 0.15-0.16 cm < 3 > / g. Macropore specific surface area is less than 50 m 2 / g, and macropore volume of less than 0.10 m 2 / g, or macropore specific surface area exceeds 100 m 2 / g, and the meso When the macropore volume exceeds 0.18 m 2 / g, the lithium ion occlusion / release capacity, rate characteristics or cycle characteristics of the active material, or a plurality of performances thereof are deteriorated.

本発明の負極活物質は、以下のようにして製造することができる。
原料としては、もみ殻が好ましく用いられる。前述のように、もみ殻は天然に約20質量%の結晶性の低いケイ酸を含有し、残りはセルロース、ヘミセルロース、リグニンといった植物性有機物で構成され、本発明の非晶質炭素と非晶質ケイ素の混合物前駆体として好ましい。
はじめに、もみ殻を400〜800℃、好ましくは500〜700℃、さらに好ましくは550〜650℃で一次炭化をする。洗浄等の前処理は特に必要としない。一次炭化は目標温度に到達してから10分〜3時間、好ましくは30分から2時間、さらに好ましくは45分から1時間15分、目標温度を維持することで行う。炭化雰囲気はヘリウムガス中、窒素ガス中、またはアルゴンガス中など不活性ガス中であれば良いが、安価な窒素ガスの利用が望ましい。
一次炭化したもみ殻炭は冷却後、必要に応じて蒸留水で洗浄処理を施した後、ケイ酸溶脱の条件を調整することで、所望量の非晶質ケイ酸を一次炭化物中から除去する。なお、ケイ酸溶脱は水酸化ナトリウム水溶液のようなアルカリ性水溶液やふっ酸など酸性水溶液を用いて行う。
所望量のケイ酸が除去されたもみ殻一次炭化物は、続いて800〜1200℃、好ましくは900〜1100℃、さらに好ましくは950〜1050℃で二次炭化を行う。二次炭化は目標温度に到達してから10分〜3時間、好ましくは30分から2時間、さらに好ましくは45分から1時間15分、目標温度を維持することで行う。以上の工程を経ることで、本発明の負極活物質を得ることができる。
本発明においては、活物質にあらかじめリチウムイオンをプレドープしておくことが望ましい。リチウムイオンのプレドープは、主として、リチウムイオンを含有する電解液中において、活物質とリチウム金属と直接接触させるか、活物質が塗工された集電極とリチウム金属を電気的に接続する方法がある。後者の方法は、活物質が塗工された集電極(正極)、リチウム金属(負極)、リチウムイオン含有有機系電解液、セパレータを含む半電池セルを組み立てた後、プレドープ処理を容易に実施できる上、プレドープ量の制御および評価が容易であるため、好ましい。その際、十分なリチウムイオンを活物質にプレドープするため、半電池セルの正極と負極を6〜48時間、好ましくは12〜36時間、さらに好ましくは18〜30時間短絡させる。
The negative electrode active material of the present invention can be produced as follows.
Rice husk is preferably used as a raw material. As described above, rice husk naturally contains silicic acid with low crystallinity of about 20% by mass, and the rest is composed of plant organic substances such as cellulose, hemicellulose, and lignin, and the amorphous carbon and amorphous of the present invention. Preferred as a mixture precursor of porous silicon.
First, the rice husk is subjected to primary carbonization at 400 to 800 ° C, preferably 500 to 700 ° C, more preferably 550 to 650 ° C. No pretreatment such as washing is required. Primary carbonization is performed by maintaining the target temperature for 10 minutes to 3 hours, preferably 30 minutes to 2 hours, more preferably 45 minutes to 1 hour 15 minutes after reaching the target temperature. The carbonizing atmosphere may be in an inert gas such as helium gas, nitrogen gas, or argon gas, but it is desirable to use inexpensive nitrogen gas.
The primary carbonized rice husk charcoal is cooled, washed with distilled water as necessary, and then the desired amount of amorphous silicic acid is removed from the primary carbide by adjusting the leaching conditions of silicic acid. . Silicic acid leaching is performed using an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an acidic aqueous solution such as hydrofluoric acid.
The rice husk primary carbide from which the desired amount of silicic acid has been removed is subsequently subjected to secondary carbonization at 800-1200 ° C, preferably 900-1100 ° C, more preferably 950-1050 ° C. Secondary carbonization is carried out by maintaining the target temperature for 10 minutes to 3 hours, preferably 30 minutes to 2 hours, more preferably 45 minutes to 1 hour 15 minutes after reaching the target temperature. The negative electrode active material of the present invention can be obtained through the above steps.
In the present invention, it is desirable that the active material is pre-doped with lithium ions in advance. Lithium ion pre-doping mainly involves direct contact between an active material and lithium metal in an electrolyte containing lithium ions, or electrically connecting a collector electrode coated with an active material and lithium metal. . In the latter method, after assembling a half battery cell including a collector electrode (positive electrode), a lithium metal (negative electrode) coated with an active material, a lithium ion-containing organic electrolyte, and a separator, a pre-doping treatment can be easily performed. Moreover, it is preferable because the control and evaluation of the pre-doping amount are easy. In that case, in order to pre-dope sufficient lithium ions into the active material, the positive electrode and the negative electrode of the half battery cell are short-circuited for 6 to 48 hours, preferably 12 to 36 hours, more preferably 18 to 30 hours.

以下に、本発明を実施例で詳細に説明する。なお、各種評価や評価のためのセルの組み立て等は以下の方法により行った。
[活物質および電極の物性評価]
活物質のケイ酸含有率は、示差熱天秤(株式会社リガク、Thermo plus EVO TG8120)を用いて、約10mgの活物質を空気中で燃焼させることで求めた。100℃で3時間以上乾燥させた活物質を空気流動雰囲気中(500mL/分)で、室温から850℃まで速度10℃/分で昇温した。すべての活物質は600〜850℃の温度域では、ほぼ一定の質量を示していたこと、全炭素分の放出と活物質の灰化を確認した。140℃における活物質の質量を100%として、850℃における活物質の質量残存率から、ケイ酸含有率を算出した。
活物質の細孔特性は、ガス吸着量測定装置(Quantachrome Instruments社、Autosorb−3B)を用いて、窒素ガス吸着法により評価した。77Kにおける吸着平衡圧と飽和蒸気圧の比である相対圧と窒素ガス吸着量の関係を示す窒素吸脱着等温線を求め、BET(Brunauer・Emmett・Teller)比表面積を相対圧0.1から0.3の範囲から、全細孔容積を相対圧0.98において算出した。同時にt−plot法を用いて、マイクロ孔比表面積と容積およびメソ・マクロ孔比表面積を算出した。メソ・マクロ孔容積は全細孔容積からマイクロ孔容積を減じることで算出した。
X線回折装置(スペクトリス株式会社、X’pert Pro、CuKα)を使用して、活物質の結晶性を評価した。X線の出力は45kVおよび40mAとした。
Hereinafter, the present invention will be described in detail with reference to examples. Various evaluations and assembly of cells for evaluation were performed by the following methods.
[Evaluation of physical properties of active materials and electrodes]
The silicic acid content of the active material was determined by burning about 10 mg of the active material in air using a differential thermal balance (Rigaku Corporation, Thermo plus EVO TG8120). The active material dried at 100 ° C. for 3 hours or more was heated from room temperature to 850 ° C. at a rate of 10 ° C./min in an air flow atmosphere (500 mL / min). All the active materials showed a substantially constant mass in the temperature range of 600 to 850 ° C., and confirmed the release of the total carbon content and the ashing of the active material. The content of silicic acid was calculated from the mass residual ratio of the active material at 850 ° C., assuming that the mass of the active material at 140 ° C. was 100%.
The pore characteristics of the active material were evaluated by a nitrogen gas adsorption method using a gas adsorption amount measuring device (Quantachrome Instruments, Autosorb-3B). A nitrogen adsorption / desorption isotherm showing the relationship between the relative pressure, which is the ratio between the adsorption equilibrium pressure and the saturated vapor pressure at 77 K, and the nitrogen gas adsorption amount is obtained, and the BET (Brunauer / Emmett / Teller) specific surface area is changed from a relative pressure of 0.1 to 0. From the range of .3, the total pore volume was calculated at a relative pressure of 0.98. At the same time, the micropore specific surface area and volume and the meso / macropore specific surface area were calculated using the t-plot method. The meso / macropore volume was calculated by subtracting the micropore volume from the total pore volume.
X-ray diffractometer (Spectris Co., X'pert Pro, Cu K alpha) was used to assess the crystallinity of the active material. The X-ray output was 45 kV and 40 mA.

[活物質の電極化]
導電助剤として用いるアセチレンブラック(電気化学工業株式会社)と活物質と空気中120℃で5時間以上乾燥させた。活物質:アセチレンブラック:ポリフッ化ビニリデン(株式会社クレハ、KFポリマーW#9100)=8:1:1(質量比)で混合し、N−メチルピロリドン(東京化成工業株式会社)を適量加えて、自転・公転ミキサー(株式会社シンキー、あわとり錬太郎AR−100)を用いて10分間撹拌し、スラリーを調製した。なお、ポリフッ化ビニリデンは結着剤(バインダ)として機能する。このスラリーを厚さ20μmの銅箔にアプケータを用いて塗工し、空気中100℃で5時間以上乾燥させた後、直径15mmで打ち抜いた。そして、それを電極とした。直径15mmで打ち抜かれた電極に対して、140℃の脱気雰囲気下において、5時間以上乾燥処理を行った。その後、室温まで冷却した後、空気中において、電極の厚さをマイクロメータで、質量を電子天秤により測定した。直径15mmの電極の厚さおよび質量から銅箔自体の厚さおよび質量をそれぞれ減算することで、塗工厚および活物質質量を算出した。
製造した電極の表面部は、走査型電子顕微鏡(株式会社キーエンス、VE−8800)を用いて観察した。同時に電子顕微鏡に設置されたエネルギー分散型X線分析装置(Oxford社、INCA Energy250)を用いて、電極表面の組成分析を行った。電子顕微鏡倍率を500倍、焦点距離を30mmと一定の条件で、組成分析を行った。
[Electrode active material]
Acetylene black (Electrochemical Industry Co., Ltd.) used as a conductive aid, an active material, and air were dried at 120 ° C. for 5 hours or more. Active material: Acetylene black: Polyvinylidene fluoride (Kureha, KF Polymer W # 9100) = 8: 1: 1 (mass ratio), N-methylpyrrolidone (Tokyo Chemical Industry Co., Ltd.) was added in an appropriate amount, A slurry was prepared by stirring for 10 minutes using a rotation / revolution mixer (Sinky Co., Ltd., Ryotaro Awatori AR-100). Polyvinylidene fluoride functions as a binder. This slurry was applied to a copper foil having a thickness of 20 μm using an applicator, dried in air at 100 ° C. for 5 hours or more, and then punched out with a diameter of 15 mm. And it was used as an electrode. The electrode punched out with a diameter of 15 mm was subjected to a drying treatment for 5 hours or more in a degassing atmosphere at 140 ° C. Then, after cooling to room temperature, in the air, the thickness of the electrode was measured with the micrometer, and the mass was measured with the electronic balance. The coating thickness and the active material mass were calculated by subtracting the thickness and mass of the copper foil itself from the thickness and mass of the electrode having a diameter of 15 mm, respectively.
The surface part of the manufactured electrode was observed using a scanning electron microscope (Keyence Corporation, VE-8800). At the same time, the composition of the electrode surface was analyzed using an energy dispersive X-ray analyzer (Oxford, INCA Energy 250) installed in an electron microscope. The composition analysis was performed under the conditions of an electron microscope magnification of 500 times and a focal length of 30 mm.

〔セル組み立て〕
活物質のリチウムイオン吸蔵放出特性は、活物質を含む電極とリチウム金属から構成される半電池セル、または、正極に活性炭を含む電極、負極に活物質を含む電極、参照極にリチウム金属を用いた3極式のリチウムイオンキャパシタセルにより評価した。
半電池セルによる評価においては、活物質を含む電極が正極となり、リチウム金属が負極となる。リチウム金属には、本城金属株式会社製の直径が15mm、厚さが0.2mmのディスク状のものを用いた。2極式ステンレス製セル(宝泉株式会社、フラットセル)の底部にリチウム金属を設置し、次に、セパレータ、さらに再度140℃で5時間以上脱気処理を施した活物質を含む電極を配置した。なお、セパレータには直径23mmに切り抜いたポリプロピレン製多孔性セパレータ(Celgard社、#2500)を用いた。電解液として1:1の容積比で混合したエチレンカーボネートとジエチルカーボネートを溶媒に、ヘキサフルオロリン酸リチウム(LiPF)を1mol/Lで添加した溶液(キシダ化学株式会社)を1mL注いだ後、セルを封口した。なお、セル組み立ては、純アルゴンガスが封入されたグローブボックス(グローブボックスジャパン株式会社、GBJF080R)内で行った。なお、すべての構成部材は十分に乾燥させたものを使用した。なお、セル組み立て後の半電池のセル電圧は3Vをやや超える程度であった。その後、正極と負極を24時間短絡し、活物質に対する十分なリチウムイオンのプレドープ処理を行った。
[Cell assembly]
The lithium ion occlusion / release characteristics of the active material include a half battery cell composed of an electrode containing the active material and lithium metal, or an electrode containing activated carbon for the positive electrode, an electrode containing the active material for the negative electrode, and lithium metal for the reference electrode. This was evaluated by a tripolar lithium ion capacitor cell.
In the evaluation by the half battery cell, the electrode containing the active material is the positive electrode, and lithium metal is the negative electrode. As the lithium metal, a disk-shaped material having a diameter of 15 mm and a thickness of 0.2 mm manufactured by Honjo Metal Co., Ltd. was used. Lithium metal is placed at the bottom of a two-pole stainless steel cell (Hosen Co., Ltd., flat cell), and then a separator and an electrode containing an active material that has been degassed at 140 ° C. for 5 hours or more are placed. did. The separator used was a polypropylene porous separator (Celgard, # 2500) cut out to a diameter of 23 mm. After pouring 1 mL of a solution (Kishida Chemical Co., Ltd.) containing 1 mol / L of lithium hexafluorophosphate (LiPF 6 ) in a solvent of ethylene carbonate and diethyl carbonate mixed at a volume ratio of 1: 1 as an electrolytic solution, The cell was sealed. The cell assembly was performed in a glove box (Glove Box Japan Co., Ltd., GBJF080R) in which pure argon gas was enclosed. In addition, all the structural members used what was fully dried. In addition, the cell voltage of the half battery after cell assembly was a little over 3V. Thereafter, the positive electrode and the negative electrode were short-circuited for 24 hours, and a sufficient lithium ion pre-doping treatment for the active material was performed.

3極式のリチウムイオンキャパシタセルの組み立ては、(i)リチウムイオンキャパシタの正極の製造、(ii)もみ殻由来活物質を含む負極へのリチウムイオンのプレドープ処理、(iii)正極、負極およびリチウム金属を参照極とするセルの組み立ての順で行われた。
(i)リチウムイオンキャパシタの正極の製造
約2500m/gのBET比表面積を有する活性炭(クラレケミカルズ株式会社、RP25)の他、導電助剤としてアセチレンブラック(電気化学工業株式会社)、バインダとしてスチレン・ブタジエンゴム(JSR株式会社、TPD2001)、分散剤としてカルボキシメチルセルロースナトリム(セロゲン7A、第一工業製薬株式会社)を用いた。活性炭とアセチレンブラックを空気中120℃で5時間以上乾燥させた。活性炭:アセチレンブラック:スチレン・ブタジエンゴム:カルボキシメチルセルロースナトリウム=8:1:0.5:0.5(質量比)の割合で混合し、蒸留水を適量加えて、上述の自転・公転ミキサーを用いて10分間撹拌し、スラリーを調製した。アプリケータを用いて、このスラリーを厚さ20μmのアルミニウム箔上に塗工し、空気中100℃で5時間以上乾燥させた。その後、直径15mmで打ち抜き、140℃の脱気雰囲気下において、5時間以上乾燥処理を行った。その後、室温まで冷却した後、空気中において、電極の厚さをマイクロメータで、質量を電子天秤により測定した。直径15mmの電極の厚さおよび質量からアルミニウム箔自体の厚さおよび質量をそれぞれ減算することで、塗工厚および活性炭質量を算出した。
リチウムイオンキャパシタの正極では、電解液中イオンの吸脱着という非ファラデー反応により電荷の授受が行われる。従って、活性炭を含む正極自体の容量評価の必要がある。上述の半電池セルの組み立てと同じ方法で2極式セルを組み立て、活性炭を含む正極自体のイオン吸脱着特性を評価した。なお、正極にはプレドープ処理は行わない。
The assembly of the tripolar lithium ion capacitor cell consists of (i) production of the positive electrode of the lithium ion capacitor, (ii) pre-doping of lithium ions into the negative electrode containing rice husk-derived active material, and (iii) positive electrode, negative electrode and lithium The assembly was performed in the order of assembling the cell using metal as a reference electrode.
(I) Production of positive electrode of lithium ion capacitor In addition to activated carbon (Kuraray Chemicals Co., RP25) having a BET specific surface area of about 2500 m 2 / g, acetylene black (Electrochemical Industry Co., Ltd.) as a conductive auxiliary agent, and styrene as a binder -Butadiene rubber (JSR Corporation, TPD2001) and carboxymethyl cellulose sodium (Serogen 7A, Daiichi Kogyo Seiyaku Co., Ltd.) were used as a dispersant. Activated carbon and acetylene black were dried in air at 120 ° C. for 5 hours or more. Activated carbon: Acetylene black: Styrene / butadiene rubber: Sodium carboxymethyl cellulose = 8: 1: 0.5: 0.5 (mass ratio) Mix, add appropriate amount of distilled water, and use the above-mentioned rotation / revolution mixer And stirred for 10 minutes to prepare a slurry. Using an applicator, this slurry was applied onto an aluminum foil having a thickness of 20 μm and dried at 100 ° C. in air for 5 hours or more. Thereafter, punching was performed at a diameter of 15 mm, and a drying treatment was performed for 5 hours or more in a degassing atmosphere at 140 ° C. Then, after cooling to room temperature, in the air, the thickness of the electrode was measured with the micrometer, and the mass was measured with the electronic balance. The coating thickness and the activated carbon mass were calculated by subtracting the thickness and mass of the aluminum foil itself from the thickness and mass of the electrode having a diameter of 15 mm, respectively.
In the positive electrode of the lithium ion capacitor, charge is transferred by a non-Faraday reaction of adsorption / desorption of ions in the electrolytic solution. Therefore, it is necessary to evaluate the capacity of the positive electrode itself including activated carbon. A bipolar cell was assembled by the same method as the above-described half battery cell assembly, and the ion adsorption / desorption characteristics of the positive electrode itself including activated carbon were evaluated. Note that the positive electrode is not pre-doped.

(ii)活物質を含む負極へのリチウムイオンのプレドープ処理
上述の半電池セルの組み立ての方法とほぼ同じであるが、セル底部にもみ殻由来活物質を含む負極、次に直径23mmのポリプロピレン製多孔性セパレータ、そして、直径が15mm、厚さが0.2mmのディスク状リチウム金属と、配置の順を変えた。使用したセルは同じく、2極式のステンレス製のものである。その後、正極と負極を24時間短絡し、活物質に対する十分なリチウムイオンのプレドープ処理を行った。
(Ii) Pre-doping of lithium ions to the negative electrode containing the active material Same as the method for assembling the half battery cell described above, but the negative electrode containing the chaff-derived active material at the cell bottom and then made of polypropylene with a diameter of 23 mm The order of arrangement was changed to a porous separator and a disc-shaped lithium metal having a diameter of 15 mm and a thickness of 0.2 mm. The used cell is also made of a bipolar stainless steel. Thereafter, the positive electrode and the negative electrode were short-circuited for 24 hours, and a sufficient lithium ion pre-doping treatment for the active material was performed.

(iii)正極、負極およびリチウム金属を参照極とするリチウムイオンキャパシタセルの組み立て
短絡した正極と負極間を開放状態にした後、半電池セルを開口した。電解液中に浸漬されているリチウム金属のみを取り出し、セパレータおよびリチウムイオンがプレドープされた負極は、電解液中に絶えず浸漬させた。活性炭を含む正極を再度140℃で5時間以上脱気し、リチウム金属が配置された場所に配置した。また、上述のディスク状リチウム金属を半分に切断し、折り畳んだものを参照極として配置した。3極式ステンレス製セル(宝泉株式会社、3極式セル)のセルふた部を使用して、セルを封口した。なお、すべての構成部材は十分に乾燥させ、セル組み立ては純アルゴンガスが封入されたグローブボックス内で行った。
(Iii) Assembly of Lithium Ion Capacitor Cell Using Positive Electrode, Negative Electrode and Lithium Metal as Reference Electrode After opening the shorted positive electrode and negative electrode, the half battery cell was opened. Only the lithium metal immersed in the electrolytic solution was taken out, and the separator and the negative electrode pre-doped with lithium ions were continuously immersed in the electrolytic solution. The positive electrode containing activated carbon was degassed again at 140 ° C. for 5 hours or more and placed in a place where lithium metal was placed. Further, the above-described disc-shaped lithium metal was cut in half and folded so as to be arranged as a reference electrode. The cell was sealed using the cell lid of a 3-pole stainless steel cell (Hosen Co., Ltd., 3-pole cell). In addition, all the structural members were fully dried and the cell assembly was performed in a glove box in which pure argon gas was sealed.

〔半電池セルおよびリチウムイオンキャパシタセルの充放電試験〕
(ア)活物質を含む電極の半電池セルでの充放電試験
半電池セルの24時間のプレドープ処理の後、一定の電流密度0.1mA/cm(実電流:0.1767mA、電極断面積:1.767cm)において、リチウム金属に対する電極の電位を0.002から3Vvs.Li/Liまで変化させ、すなわちセル電圧を0.002から3Vに変化させ、プレドープ後のリチウムイオンの放出容量を求めた。さらに、同じ電流密度において、電極の電位を3から0.002Vvs.Li/Liに変化させ、リチウムイオンの吸蔵容量を、続いて、0.002から3Vvs.Li/Liに変化させ、リチウムイオンの放出容量を求めた。
その後、電極の電位範囲を0、002から1Vvs.Li/Liの範囲に定めて、一定の電流密度0.1mA/cmで5サイクル、リチウムイオンの吸蔵放出を行った。続いて0.2mA/cmで5サイクル、さらに0.5mA/cmで10サイクル、1mA/cmで10サイクル、2mA/cmで25サイクル、5mA/cmで50サイクル、10mA/cmで100サイクル、20mA/cmで100サイクル行い、電極のリチウムイオン吸蔵放出容量の電流密度依存性を評価した。
[Charge / discharge test of half battery cell and lithium ion capacitor cell]
(A) Charging / discharging test of electrode containing active material in half battery cell After 24 hours of pre-doping treatment of the half battery cell, a constant current density of 0.1 mA / cm 2 (actual current: 0.1767 mA, electrode cross-sectional area) : 1.767 cm 2 ), the electrode potential relative to the lithium metal is 0.002 to 3 Vvs. It was changed to Li / Li + , that is, the cell voltage was changed from 0.002 to 3 V, and the lithium ion release capacity after pre-doping was determined. Further, at the same current density, the electrode potential is changed from 3 to 0.002 Vvs. Li / Li + in changing the storage capacity of the lithium ion, followed by, 3Vvs 0.002. By changing to Li / Li + , the lithium ion release capacity was determined.
Thereafter, the potential range of the electrode is changed from 0,002 to 1 Vvs. Lithium ion was occluded and released for 5 cycles at a constant current density of 0.1 mA / cm 2 in the range of Li / Li + . Subsequently, 0.2 mA / cm 2 for 5 cycles, 0.5 mA / cm 2 for 10 cycles, 1 mA / cm 2 for 10 cycles, 2 mA / cm 2 for 25 cycles, 5 mA / cm 2 for 50 cycles, 10 mA / cm 100 cycles were performed at 2 and 100 cycles at 20 mA / cm 2 , and the current density dependence of the lithium ion storage / release capacity of the electrode was evaluated.

さらに、電流密度を一定の1mA/cmとして、電極電位を0.002Vvs.Li/Liまで低下させ、電極にリチウムイオンを十分に吸蔵させた後、130μAhの容量分のリチウムイオンの放出を行った。130μAhの容量は、後述するリチウムイオンキャパシタ正極の電流密度1mA/cmにおける容量である。その後、130μAhの容量分のリチウムイオンを吸蔵させ、さらに、同じ容量分のリチウムイオンの放出を49サイクル繰り返した。再度、0.002Vvs.Li/Liまで電極電位を低下させ、電極にリチウムイオンを十分に吸蔵させた後、130μAh分のリチウムイオンの放出を行った。そして、130μAh分のリチウムイオンの吸蔵放出を949サイクル行った。再度、電極電位が0.002Vvs.Li/Liに低下するまでリチウムイオンの吸蔵させた後、130μAh分のリチウムイオンの放出を行い、999サイクルの吸蔵放出を行った。130μAhの容量を消費せずに電極電位が0.002Vvs.Li/Liまで低下した場合、0.002Vvs.Li/Liを維持するように電流密度を低下させ、130μAhを消費した。容量を一定にした際のセル電圧の変化から、活物質のリチウムイオンの吸蔵放出特性を評価した。
(イ)リチウムイオンキャパシタ正極の半電池セルでの充放電試験
リチウムイオンキャパシタ正極とリチウム金属の半電池セルにおいて、正極の電位(リチウム金属に対する正極の電位)を2から4Vvs.Li/Liの範囲に定めて、すなわちセル電圧を2から4Vの範囲に定めて、一定の電流密度0.1mA/cmで5サイクル、続いて0.2mA/cmで5サイクル、さらに0.5mA/cmで10サイクル、1mA/cmで10サイクル、2mA/cmで25サイクル、5mA/cmで50サイクル、10mA/cmで100サイクル、20mA/cmで100サイクルの充放電を行った。外部からの電界印加がない状態では、正極電位は約3Vvs.Li/Liであるので、概ね、3から4Vvs.Li/LiにおいてPF の吸着が、4から3Vvs.Li/LiにおいてPF の脱着が、3から2Vvs.Li/LiにおいてLiの吸着が、2から3Vvs.Li/LiにおいてLiの脱着が生じる。
Furthermore, the current density is constant 1 mA / cm 2 and the electrode potential is 0.002 Vvs. After reducing to Li / Li + and allowing the electrode to sufficiently occlude lithium ions, lithium ions corresponding to a capacity of 130 μAh were released. The capacity of 130 μAh is a capacity at a current density of 1 mA / cm 2 of a lithium ion capacitor positive electrode described later. Thereafter, lithium ions corresponding to a capacity of 130 μAh were occluded, and the release of lithium ions corresponding to the same capacity was repeated 49 cycles. Again, 0.002 Vvs. After the electrode potential was lowered to Li / Li + and lithium ions were sufficiently occluded in the electrode, 130 μAh of lithium ions were released. Then, 949 cycles of lithium ion storage / release for 130 μAh were performed. Again, the electrode potential is 0.002 Vvs. After occlusion of lithium ions until it decreased to Li / Li + , 130 μAh of lithium ions were released, and 999 cycles of occlusion / release were performed. The electrode potential is 0.002 Vvs. Without consuming 130 μAh capacity. When lowered to Li / Li + , 0.002 Vvs. The current density was reduced to maintain Li / Li + and 130 μAh was consumed. From the change in cell voltage when the capacity was made constant, the lithium ion storage / release characteristics of the active material were evaluated.
(B) Lithium ion capacitor positive electrode half-cell charge / discharge test In a lithium ion capacitor positive electrode and a lithium metal half-cell, the potential of the positive electrode (the potential of the positive electrode with respect to lithium metal) was 2 to 4 Vvs. Set to Li / Li + range, ie, cell voltage to 2-4V range, 5 cycles at constant current density of 0.1 mA / cm 2 followed by 5 cycles at 0.2 mA / cm 2 , 0.5 mA / cm 2 at 10 cycles, with 1 mA / cm 2 10 cycles, 25 cycles at 2mA / cm 2, 5mA / cm 2 at 50 cycles, 10 mA / cm 2 at 100 cycles, 20 mA / cm 2 at 100 cycles Charging / discharging was performed. In the state where no electric field is applied from the outside, the positive electrode potential is about 3 Vvs. Since Li / Li + , approximately 3 to 4 Vvs. The adsorption of PF 6 in Li / Li + is 4 to 3 Vvs. Desorption of PF 6 in Li / Li + is 3 to 2 Vvs. Li + Li + adsorption of Li + is 2 to 3 Vvs. Li + desorption occurs in Li / Li + .

(ウ)リチウムイオンキャパシタセルの充放電試験
リチウムイオンキャパシタセルを組み立て後、1時間程度放置し、セル電圧(正負極間の電位差)、正極電位および負極電位を計測した。そして、セル電圧を2から4Vの範囲で、掃引速度100、10、1mV/sでそれぞれ3サイクルずつ充放電を行った。そして、同じセル電圧範囲において、一定の電流密度0.1mA/cmで5サイクル、続いて0.2mA/cmで5サイクル、さらに0.5mA/cmで10サイクル、1mA/cmで10サイクル、2mA/cmで25サイクル、5mA/cmで50サイクル、10mA/cmで100サイクル、20mA/cmで100サイクルの充放電を行った。正極自体はすべて共通のものを使用しているため、リチウムイオンキャパシタの負極のレート特性が評価できる。その後、同じセル電圧範囲において、電流密度を一定の1mA/cmとして、20000サイクルの充放電試験を行った。このサイクル試験は、特定の期間においては、セル電圧、正極−参照極間電圧、負極−参照極間電圧の波形計測を行いつつ、実施した。その波形計測期間の前後は、一度充放電を停止させた。
(C) Charge / Discharge Test of Lithium Ion Capacitor Cell After assembling the lithium ion capacitor cell, it was allowed to stand for about 1 hour, and the cell voltage (potential difference between positive and negative electrodes), positive electrode potential and negative electrode potential were measured. And charging / discharging was performed 3 cycles at a sweep rate of 100, 10, and 1 mV / s in a cell voltage range of 2 to 4V, respectively. Then, in the same cell voltage range, 5 cycles at a constant current density 0.1 mA / cm 2, followed by 5 cycles at 0.2 mA / cm 2, further 0.5 mA / cm 2 at 10 cycles, with 1 mA / cm 2 10 cycles were carried out 25 cycles at 2 mA / cm 2, 50 cycles at 5 mA / cm 2, 100 cycles at 10 mA / cm 2, at 20 mA / cm 2 for 100 cycles charging and discharging. Since all the positive electrodes themselves are the same, the rate characteristics of the negative electrode of the lithium ion capacitor can be evaluated. Thereafter, in the same cell voltage range, a current density was set to a constant 1 mA / cm 2 and a charge / discharge test of 20000 cycles was performed. This cycle test was performed while measuring the waveform of the cell voltage, the positive electrode-reference electrode voltage, and the negative electrode-reference electrode voltage during a specific period. Before and after the waveform measurement period, charging / discharging was once stopped.

実施例1
[活物質の製造]
秋田県仙北市内で収穫されたあきたこまち米のもみ殻を原料とした。取得したもみ殻に対して洗浄などの特別な処理を行わずに、1L/分の窒素ガス流動雰囲気中において、600℃で1時間熱処理を行い、一次炭化を行った。なお、室温から600℃までの昇温は1時間かけて行い、1時間の熱処理後は室温まで自然冷却した。一次炭化により得たもみ殻炭に対して、蒸留水での洗浄または水酸化ナトリウム水溶液によるケイ酸溶脱処理を行った。
蒸留水での洗浄では、プラスチック製漏斗に工業用紙ウェス(日本製紙クレシア株式会社、キムタオル)を取り付け、600℃の一次炭化で得たもみ殻炭に対して、蒸留水をかけ流した。そして、洗浄中、適宜かけ流された蒸留水を50mL程度収集し、そのpHが約9になるまで洗浄処理を行った。洗浄処理の後、空気中120℃において十分に乾燥させたもみ殻炭をRHW600とした。
Example 1
[Manufacture of active materials]
The rice husks of Akitakomachi rice harvested in Senboku City, Akita Prefecture are used as raw materials. The obtained rice husk was subjected to a heat treatment at 600 ° C. for 1 hour in a nitrogen gas flowing atmosphere at 1 L / min without performing a special treatment such as washing, thereby performing primary carbonization. The temperature was raised from room temperature to 600 ° C. over 1 hour, and naturally cooled to room temperature after the heat treatment for 1 hour. Rice husk charcoal obtained by primary carbonization was washed with distilled water or silicate leaching treatment with an aqueous sodium hydroxide solution.
In washing with distilled water, industrial paper waste (Nippon Paper Crecia Co., Ltd., Kim Towel) was attached to a plastic funnel, and distilled water was poured over rice husk charcoal obtained by primary carbonization at 600 ° C. During the washing, about 50 mL of distilled water appropriately poured was collected and washed until its pH reached about 9. After the washing treatment, rice husk charcoal sufficiently dried in air at 120 ° C. was designated as RHW600.

600℃で得たもみ殻炭に対するケイ酸溶脱処理は、ポリエチレン容器中でもみ殻炭を1mol/Lの水酸化ナトリウム水溶液に浸漬することで行った。もみ殻炭中のケイ酸溶脱程度は、もみ殻炭と水酸化ナトリウム水溶液の固液比(g/L)、浸漬時間、浸漬温度(25または80℃)により制御した。はじめに、もみ殻炭と水酸化ナトリウム水溶液の固液比を50g/Lとして、25℃で10時間浸漬した。浸漬後、上述の方法と同じ方法で、蒸留水により洗浄し、乾燥させた。このもみ殻炭をRH600Aとした。一方で、25℃で19時間の水酸化ナトリウム水溶液への浸漬後、同様に洗浄、乾燥処理を行うことで得たもみ殻炭をRH600Bとした。また、600℃で得たもみ殻炭に対して、固液比を25g/L、浸漬温度を25℃、浸漬時間を30時間として、ケイ酸の溶脱を行った。上記と同様に洗浄と乾燥を行い、それにより得たもみ殻炭をRH600Cとした。さらに、600℃で得たもみ殻炭に対して、固液比を25g/L、浸漬温度を80℃、浸漬時間を16時間として、ケイ酸の溶脱を行った。洗浄および乾燥を行い、それにより得たもみ殻炭をRH600Dとした。
その後、RHW600、RHW600A、RHW600B、RHW600C、RHW600Dを1L/分の窒素ガス流動雰囲気中において、1000℃で1時間熱処理を行い、二次炭化を行った。なお、室温から1000℃までの昇温は1時間かけて行い、1時間の熱処理後は室温まで自然冷却した。二次炭化を経たもみ殻炭をそれぞれRHW1000、RHW1000A、RHW1000B、RHW1000C、RHW1000Dとした。さらに、RHW600を1L/分の窒素ガス流動雰囲気中において、1400℃で1時間の熱処理を行ったもみ殻炭も製造した。それをRHW1400とする。その際、室温から1000℃までの昇温は1時間かけて行い、さらに1400℃まで1時間かけて昇温した。また、1時間の熱処理後は室温まで自然冷却した。
Silicic acid leaching treatment for rice husk charcoal obtained at 600 ° C. was performed by immersing rice husk charcoal in a 1 mol / L sodium hydroxide aqueous solution in a polyethylene container. The degree of silicic acid leaching in rice husk charcoal was controlled by the solid-liquid ratio (g / L) of rice husk charcoal and sodium hydroxide aqueous solution, the immersion time, and the immersion temperature (25 or 80 ° C.). First, the solid-liquid ratio of the rice husk charcoal and the sodium hydroxide aqueous solution was set to 50 g / L, and immersed at 25 ° C. for 10 hours. After soaking, it was washed with distilled water and dried in the same manner as described above. This rice husk charcoal was RH600A. On the other hand, after immersion in an aqueous sodium hydroxide solution at 25 ° C. for 19 hours, rice husk charcoal obtained by performing washing and drying treatment in the same manner was designated as RH600B. Silica was leached with respect to rice husk charcoal obtained at 600 ° C. with a solid-liquid ratio of 25 g / L, an immersion temperature of 25 ° C., and an immersion time of 30 hours. Washing and drying were performed in the same manner as described above, and the resulting rice husk charcoal was designated as RH600C. Further, silica leaching was performed on rice husk charcoal obtained at 600 ° C. with a solid-liquid ratio of 25 g / L, an immersion temperature of 80 ° C., and an immersion time of 16 hours. Washing and drying were carried out, and the resulting rice husk charcoal was designated as RH600D.
Thereafter, RHW600, RHW600A, RHW600B, RHW600C, and RHW600D were heat-treated at 1000 ° C. for 1 hour in a nitrogen gas flow atmosphere at 1 L / min to perform secondary carbonization. The temperature was raised from room temperature to 1000 ° C. over 1 hour, and naturally cooled to room temperature after the heat treatment for 1 hour. Rice husk charcoal that has undergone secondary carbonization was designated RHW1000, RHW1000A, RHW1000B, RHW1000C, and RHW1000D, respectively. Furthermore, rice husk charcoal was also produced in which RHW600 was heat-treated at 1400 ° C. for 1 hour in a nitrogen gas flow atmosphere at 1 L / min. Let it be RHW1400. At that time, the temperature was raised from room temperature to 1000 ° C. over 1 hour, and further raised to 1400 ° C. over 1 hour. Moreover, after the heat treatment for 1 hour, it naturally cooled to room temperature.

RHW600、RHW600A、RHW1000、RHW1000A、RHW1000B、RHW1000C、RHW1000D、RHW1400のもみ殻炭を、遊星型ボールミル(フリッチュ・ジャパン株式会社、P6)を用いて、粉末化した。すべてのもみ殻炭に対してSUS304製のステンレスボールと容器を用いて、400rpmの回転速度で、5分間の粉砕を行った。粒子径分布測定装置(株式会社島津製作所、SALD−200V)を用いて、粉末化されたもみ殻炭の粒径を計測したところ、すべてメディアン径および平均粒径とも2〜5μmであった。以下、粉末化した上記もみ殻炭を活物質として扱う。なお、製造活物質の比較対象として、市販のフェノール樹脂由来のハードカーボン(AT−エレクトロード株式会社、LN−0100)を選択し、製造活物質と同様の分析および試験を行った。   Rice husk charcoal of RHW600, RHW600A, RHW1000, RHW1000A, RHW1000B, RHW1000C, RHW1000D, and RHW1400 was pulverized using a planetary ball mill (Fritsch Japan KK, P6). All rice husk charcoal was pulverized for 5 minutes at a rotational speed of 400 rpm using SUS304 stainless steel balls and containers. When the particle size of the powdered rice husk charcoal was measured using a particle size distribution measuring apparatus (Shimadzu Corporation, SALD-200V), all median diameters and average particle diameters were 2 to 5 μm. Hereinafter, the powdered rice husk charcoal is treated as an active material. In addition, the hard carbon (AT-Electrode Co., Ltd., LN-0100) derived from a commercially available phenol resin was selected as a comparison object of a manufacturing active material, and the same analysis and test as the manufacturing active material were performed.

実施例2
〔活物質と電極化およびそれらの分析〕
実施例1で製造した粉末状活物質及び市販ハードカーボン(AT−エレクトロード株式会社、LN−0100)のケイ酸含有率を前記方法により測定した。結果を表1に示す。RHW600、RHW1000、RHW1400を比較すると、熱処理温度が増加するに従い、もみ殻由来活物質のケイ酸含有率が上昇したことが分かる。RHW600とRHW600A、さらに、RHW1000、RHW1000A、RHW1000B、RHW1000C、RHW1000Dを比較すると、水酸化ナトリウム水溶液浸漬の時間および温度を増加することで、活物質中のケイ酸含有率が減少したことが分かる。
Example 2
[Active materials and electrodes and their analysis]
The silicic acid content of the powdered active material produced in Example 1 and commercially available hard carbon (AT-Electrode Co., Ltd., LN-0100) was measured by the above method. The results are shown in Table 1. Comparing RHW600, RHW1000, and RHW1400, it can be seen that the silicic acid content of the rice husk-derived active material increased as the heat treatment temperature increased. Comparing RHW600 and RHW600A, and further RHW1000, RHW1000A, RHW1000B, RHW1000C, and RHW1000D, it can be seen that the content of silicic acid in the active material was decreased by increasing the time and temperature of the sodium hydroxide aqueous solution immersion.

粉末状活物質のX線回折パターンを図1に示す。RHW1400を除いて、炭素およびケイ酸に関係する結晶構造に起因する明確なピークは確認されなかった。2θが43〜45°において二つの微弱なピークが確認されたが、それらは活物質粉砕の際に使用されたSUS304製のステンレスボールと容器の摩耗粉の混入による。RHW1400のX線回折パターンにおいて、クリストバライトSiO、石英SiO、α―Si、SiOに起因する弱いピークが検出され、1400℃からの活物質の結晶化が確認できる。それ以外のもみ殻由来活物質において、クリストバライトSiOへの結晶化前の非晶質ケイ酸に起因するX線回折パターンの膨らみが22°付近で見られた。また、市販ハードカーボンのX線回折パターンとの比較から分かるように、非晶質炭素に起因する膨らみも23°付近で見られた。RHW1000CおよびRHW1000Dのように、活物質中のケイ酸含有率が低くなり、非晶質炭素含有率が高くなると、非晶質ケイ酸に起因する22°付近の膨らみは弱まり、非晶質炭素に起因する23°付近の膨らみが強くなった。 The X-ray diffraction pattern of the powdery active material is shown in FIG. Except for RHW1400, no clear peak due to the crystal structure related to carbon and silicic acid was observed. Two weak peaks were observed at 2θ of 43 to 45 °, which were due to the mixing of stainless steel balls made of SUS304 used in the active material pulverization and wear powder of the container. In the X-ray diffraction pattern of RHW1400, weak peaks caused by cristobalite SiO 2 , quartz SiO 2 , α-Si 3 N 4 , and Si 2 N 2 O are detected, and crystallization of the active material from 1400 ° C. can be confirmed. In other rice husk-derived active materials, the swelling of the X-ray diffraction pattern due to amorphous silicic acid before crystallization into cristobalite SiO 2 was observed at around 22 °. Further, as can be seen from the comparison with the X-ray diffraction pattern of commercially available hard carbon, a bulge caused by amorphous carbon was also observed at around 23 °. Like RHW1000C and RHW1000D, when the silicic acid content in the active material is low and the amorphous carbon content is high, the swelling around 22 ° due to the amorphous silicic acid is weakened, and the amorphous carbon The resulting swelling around 23 ° became stronger.

粉末状活物質の細孔特性を表2に示す。RHW600、RHW1000、RHW1400を比較すると、最も低い温度で製造したRHW600において、BET比表面積および全細孔容積が最も大きく、細孔が最も発達していた。一方、1000℃で製造したRHW1000では、細孔が発達せず、最も小さいBET比表面積および全細孔容積を示した。RHW600とRHW600Aを比較すると、ケイ酸が溶脱されたRHW600Aにおいて、より大きなBET比表面積および全細孔容積が計測され、それはマイクロ孔よりメソ・マクロ孔の発達に起因していた。また、RHW1000に発達した細孔は、ほぼメソ・マクロ孔から構成され、マイクロ孔はほとんど発達しなかった。RHW1000A、RHW1000B、RHW1000C、RHW1000Dの順でケイ酸含有率が低下するに従い、BET比表面積と全細孔容積は徐々に増加した。ケイ酸溶脱程度の小さいRHW1000Aでは、マイクロ孔およびメソ・マクロ孔の両方が発達した。しかし、それ以上にケイ酸溶脱程度が大きくなっても、マイクロ孔の発達は弱く、メソ・マクロ孔が主として発達した。   Table 2 shows the pore characteristics of the powdered active material. When RHW600, RHW1000, and RHW1400 were compared, the RHW600 produced at the lowest temperature had the largest BET specific surface area and total pore volume, and the most developed pores. On the other hand, in RHW1000 manufactured at 1000 ° C., pores did not develop, and the smallest BET specific surface area and total pore volume were shown. When RHW600 and RHW600A were compared, a larger BET specific surface area and total pore volume were measured in RHW600A from which silicic acid had been leached, which was due to the development of meso / macropores rather than micropores. Further, the pores developed in RHW1000 were almost composed of meso / macropores, and the micropores were hardly developed. As the silicic acid content decreased in the order of RHW1000A, RHW1000B, RHW1000C, and RHW1000D, the BET specific surface area and the total pore volume gradually increased. In the RHW1000A with a low silicic acid leaching degree, both micropores and meso / macropores developed. However, even if the silicic acid leaching degree was further increased, the development of micropores was weak and meso / macropores were mainly developed.

集電体の銅箔に各活物質を導電助剤のアセチレンブラックおよびバインダのポリフッ化ビニリデンとともに塗工し、電極化した。直径15mmの円状に打ち抜き、それを電極として使用した。各活物質を含む電極を再度十分に乾燥させた後、電子顕微鏡を用いて、その表面部を観察した。すべての電極において、導電助剤およびバインダが活物質粒に十分に分散し、活物質が均一に銅箔上に接着されていることを確認した。また、エネルギー分散型X線分析装置を用いて求めた電極表面の組成を表3に示す。主としてC、O、F、Siが検出され、活物質中の非晶質ケイ酸、非晶質炭素、ポリフッ化ビニリデンに由来するものであった。市販ハードカーボン電極を除くすべての電極において、微量のFeが検出されたが、それは粉砕過程で混入したステンレスボールおよび容器の摩耗粉による。また、RHW1000A、RHW1000B、RHW1000C、RHW1000Dの電極でNaが検出され、ケイ酸溶脱程度が大きくなるに従い、Na含有量は増加した。ケイ酸溶脱量の増加に従い、水酸化ナトリウム水溶液への浸漬時間および温度が増加したため、Naが除去されにくくなったことに起因する。   Each active material was applied to a copper foil of a current collector together with acetylene black as a conductive additive and polyvinylidene fluoride as a binder to form an electrode. It was punched into a circle with a diameter of 15 mm and used as an electrode. After the electrode containing each active material was sufficiently dried again, the surface portion was observed using an electron microscope. In all the electrodes, it was confirmed that the conductive auxiliary agent and the binder were sufficiently dispersed in the active material grains, and the active material was uniformly adhered on the copper foil. Table 3 shows the composition of the electrode surface determined using an energy dispersive X-ray analyzer. C, O, F, and Si were mainly detected, and these were derived from amorphous silicic acid, amorphous carbon, and polyvinylidene fluoride in the active material. A trace amount of Fe was detected in all the electrodes except the commercially available hard carbon electrode, which was due to the stainless balls mixed in the pulverization process and the abrasion powder of the container. Further, Na was detected at the electrodes of RHW1000A, RHW1000B, RHW1000C, and RHW1000D, and the Na content increased as the degree of silicic acid leaching increased. As the amount of silicic acid leaching increased, the immersion time and temperature in the aqueous sodium hydroxide solution increased, which resulted in Na being difficult to remove.

ケイ酸含有率の評価、X線回折による結晶性の分析、細孔特性の評価、電極表面の微視的観察および組成分析の結果は、非晶質ケイ酸と非晶質炭素の混合系であり、非晶質ケイ酸と非晶質炭素の比率および細孔特性の異なる活物質を、もみ殻を原料に製造し、リチウムイオンの吸蔵放出特性の評価が可能な電極に加工できたことを証明している。   Evaluation of silicic acid content, analysis of crystallinity by X-ray diffraction, evaluation of pore characteristics, microscopic observation of electrode surface, and compositional analysis result in a mixed system of amorphous silicic acid and amorphous carbon Yes, active materials with different ratios of amorphous silicic acid and amorphous carbon and different pore characteristics were produced from rice husks as raw materials, and processed into electrodes capable of evaluating the storage and release characteristics of lithium ions. Prove that.

実施例3
[活物質を含む電極の半電池セルでの充放電試験]
活物質が塗工された電極を直径15mmで打ち抜き、それとリチウム金属から構成される半電池セルを組み立てた。電極における活物質質量および塗工厚を表4に示す。活物質の質量はRHW1400を除いて3.96mg±5%であった。RHW1400の質量のみが2.84mgと小さかったため、そのリチウムイオンの吸蔵放出特性は別途考慮する。すべての活物質の塗工厚は30〜50μmであった。
Example 3
[Charge / discharge test of active material-containing electrode half-cell]
The electrode coated with the active material was punched out with a diameter of 15 mm, and a half battery cell composed of it and lithium metal was assembled. Table 4 shows the active material mass and coating thickness of the electrode. The mass of the active material was 3.96 mg ± 5% excluding RHW1400. Since only the mass of RHW1400 was as small as 2.84 mg, the occlusion / release characteristics of lithium ions are considered separately. The coating thickness of all active materials was 30-50 μm.

活物質を含む半電池セルに対して24時間の短絡を行い、リチウムイオンのプレドープ処理を実施した。プレドープ後の活物質のリチウムイオン吸蔵放出容量を表5に示す。プレドープ後の各活物質のリチウムイオンの放出容量は、RHW600Aが大きく、続いてRHW1000が大きかった。そして、RHW1000A、RHW1000B、RHW1000C、RHW1000Dの順に放出容量は低下し、それはケイ酸含有量の減少とほぼ一致した。また、もみ殻から製造した活物質すべてが、プレドープ後のリチウムイオンの放出において、市販ハードカーボンより大きな容量を示した。一方で、RHW1400のリチウムイオンの放出容量は90mAh/gと非常に小さかった。再度、リチウムイオンを電極電位が0.002Vvs.Li/Liまで低下するまで活物質に吸蔵させ、その後、電極電位が3Vvs.Li/Liに上昇するまでリチウムイオンを放出させると、RHW600Aが最大吸蔵放出容量を示した。RHW1400を除くもみ殻由来活物質すべてが、市販ハードカーボンを上回る吸蔵放出容量を示した。特に、RHW600、RHW600A、RHW1000、RHW1000A、RHW1000Bの放出容量は450mAh/gを超えており、大きな吸蔵放出容量を有していた。 The half battery cell containing the active material was short-circuited for 24 hours and subjected to a lithium ion pre-doping treatment. Table 5 shows the lithium ion storage / release capacity of the active material after pre-doping. The release capacity of lithium ions of each active material after pre-doping was large for RHW600A and subsequently for RHW1000. The release capacity decreased in the order of RHW1000A, RHW1000B, RHW1000C, and RHW1000D, which almost coincided with the decrease in silicic acid content. In addition, all the active materials produced from rice husk showed larger capacity than commercial hard carbon in releasing lithium ions after pre-doping. On the other hand, the lithium ion release capacity of RHW1400 was as extremely low as 90 mAh / g. Again, the lithium ion was charged with an electrode potential of 0.002 Vvs. The active material was occluded until it decreased to Li / Li + , and then the electrode potential was 3 V vs. When lithium ions were released until it increased to Li / Li + , RHW600A exhibited the maximum storage and release capacity. All of the rice husk-derived active materials except RHW1400 exhibited an occlusion / release capacity that exceeded that of commercially available hard carbon. In particular, the release capacities of RHW600, RHW600A, RHW1000, RHW1000A, and RHW1000B exceeded 450 mAh / g, and had a large storage / release capacity.

続いて、電極電位が0.002〜1Vvs.Li/Liという活物質内にリチウムイオンが十分に吸蔵されている状態において、各活物質に対して異なる電流密度でのリチウムイオンの吸蔵放出を行った。各活物質の吸蔵放出容量を表6に示す。電流密度が0.1mA/cmとリチウムイオンの吸蔵脱離が緩やかな場合、RHW600とRHW1400を除くもみ殻由来活物質に240mAh/gを超える吸蔵放出容量が計測された。これは市販ハードカーボンの200mAh/gの吸蔵放出容量を超えるものである。電流密度が1mA/cmに、さらに10mA/cmに増加すると、RHW600Aは大きな吸蔵放出容量を維持できなくなった。1000℃での二次炭化を実施したRHW1000およびRHW1000A〜Dは、電流密度が増加しても、吸蔵放出容量が維持され、市販ハードカーボンより十分に大きな吸蔵放出容量を示した。 Subsequently, the electrode potential is 0.002 to 1 Vvs. In a state where lithium ions are sufficiently occluded in the active material of Li / Li + , occlusion / release of lithium ions at different current densities was performed for each active material. Table 6 shows the occlusion / release capacity of each active material. When the current density was 0.1 mA / cm 2 and the lithium ion occlusion / desorption was slow, occlusion / release capacities exceeding 240 mAh / g were measured for the rice husk-derived active materials excluding RHW600 and RHW1400. This exceeds the absorption / release capacity of commercially available hard carbon of 200 mAh / g. When the current density was increased to 1 mA / cm 2 and further to 10 mA / cm 2 , RHW600A could not maintain a large storage / release capacity. RHW1000 and RHW1000A-D which performed the secondary carbonization at 1000 degreeC maintained the occlusion discharge capacity even if the current density increased, and showed the occlusion release capacity sufficiently larger than commercial hard carbon.

さらに続いて、リチウムイオンの吸蔵および放出容量を130μAhに固定し、電流密度を1mA/cmの一定に保って、リチウムイオンの吸蔵放出を繰り返した。第1サイクル、第51サイクル、第1001サイクルにおいて、活物質にリチウムイオンは電極電位が0.002Vvs.Li/Liになるまで吸蔵させた。一度リチウムイオンが活物質に吸蔵された後、一定の電気量でのリチウムイオンの吸蔵放出が繰り返し行われた場合、繰り返し吸蔵後の電極電位は一定に維持されることが望まれる。一般に繰り返しの吸蔵放出後にリチウムイオン電池およびリチウムイオンキャパシタの負極電位が上昇すると、同じ電池およびキャパシタの起電力を得るには、正極電位も上昇する必要がある。正極電位が高まると、正極近傍での電解液の分解および正極自体の構造変化が誘導されやすく、電池およびキャパシタの容量低下および構造劣化が起こりうる。同様に、リチウムイオン放出後の電極電位は、負極でのリチウム金属のプレーティングが生じない程度に低く維持されることが望まれる。さらに、繰り返しのリチウムイオンの吸蔵放出により活物質の容量低下が進行すると、吸蔵時の電極電位と放出時の電極電位の差は増大する。従って、その電位差も小さいことが望まれる。 Subsequently, the lithium ion storage / release capacity was fixed at 130 μAh, the current density was kept constant at 1 mA / cm 2 , and lithium ion storage / release was repeated. In the first cycle, the 51st cycle, and the 1001st cycle, the lithium ion in the active material has an electrode potential of 0.002 Vvs. Occlusion was performed until Li / Li + was obtained. Once lithium ions are occluded in the active material, when lithium ions are occluded and released repeatedly with a certain amount of electricity, it is desirable that the electrode potential after repeated occlusion be maintained constant. In general, when the negative electrode potential of a lithium ion battery and a lithium ion capacitor increases after repeated occlusion and release, the positive electrode potential must also increase to obtain the same battery and capacitor electromotive force. When the positive electrode potential is increased, decomposition of the electrolyte solution in the vicinity of the positive electrode and a structural change of the positive electrode itself are easily induced, and the capacity and structural deterioration of the battery and the capacitor may occur. Similarly, it is desirable that the electrode potential after the release of lithium ions be kept low enough that lithium metal plating does not occur at the negative electrode. Furthermore, when the capacity reduction of the active material proceeds due to repeated occlusion and release of lithium ions, the difference between the electrode potential during occlusion and the electrode potential during release increases. Therefore, it is desired that the potential difference is small.

130μAhのリチウムイオン吸蔵時および放出時における活物質の電極電位を表7に示す。第50サイクル目におけるリチウムイオン吸蔵後の電極電位は、RHW1400が低く、また、RHW600は高かった。RHW1400の場合、電極電位が連続的に、緩やかに低下したものでなく、不連続に急激に低下することで、0.002Vvs.Li/Liという低い電極電位が計測された。これは、リチウム金属のプレーティングに起因するものと予測される。また、リチウムイオンの放出後のRHW600とRHW1400の電極電位は0.5Vvs.Li/Liを超過しており、他の活物質と比較して大きかった。RHW1400においては、リチウムイオンの吸蔵放出がさらに繰り返されると、電極電位の不連続かつ急激な変化が多発し、さらに、電極電位自体も他の活物質と比較して高く推移した。1000サイクルを超えたところで、活物質質量が他の活物質と比較して小さいことを勘案しても、RHW1400は活物質として十分な性能を有していないと判断し、試験を中断した。また、RHW600のリチウムイオン放出後の電極電位は、第50サイクル時以上には高くならなかったが、他の活物質と比べて、高い値であった。リチウムイオン吸蔵後の電極電位に着目すると、ケイ酸含有率の最も低いRHW1000Dの値が吸蔵放出サイクル数に従い増加し、第2000サイクル後には最も高い0.157Vvs.Li/Liとなった。吸蔵後の高い電極電位は、電池およびキャパシタの充電時に高い正極電位を必要とし、容量低下および構造劣化の原因となるため、非常に好ましくない。RHW1000Dはケイ酸含有率が最も低く、その大部分は非晶質炭素から構成されている上、メソ・マクロ孔も発達している。リチウムイオン吸蔵後の電極電位の上昇は、最初に0.002Vvs.Li/Liまで吸蔵させたリチウムイオンが、繰り返し吸蔵脱離により、活物質内において電極電位の低下に寄与しない不動化の状態に徐々に移行することを意味する。すなわち、炭素領域に過度に発達したメソ・マクロ孔は、リチウムイオンをトラップすることで、その不動化を促進すると予測される。さらに、RHW600A、RHW1000A、RHW1000Bは、リチウムイオンの吸蔵放出が繰り返し行われても、吸蔵および放出後の電極電位は低く維持されていた。すなわち、リチウムイオンが十分に吸蔵されている状態における吸蔵放出においても、電極電位が低く維持された上、容量減少も小さく抑えられていた。 Table 7 shows the electrode potentials of the active material during occlusion and release of 130 μAh of lithium ions. In the 50th cycle, the electrode potential after occlusion of lithium ions was low for RHW1400 and high for RHW600. In the case of RHW1400, the electrode potential does not decrease gradually and continuously, but decreases rapidly and discontinuously, so that 0.002 Vvs. A low electrode potential of Li / Li + was measured. This is expected to result from the plating of lithium metal. Further, the electrode potential of RHW600 and RHW1400 after the release of lithium ions is 0.5 Vvs. Li / Li + was exceeded and was large compared to other active materials. In RHW1400, when the occlusion and release of lithium ions was further repeated, discontinuous and rapid changes in the electrode potential occurred frequently, and the electrode potential itself was higher than that of other active materials. Considering that the mass of the active material was smaller than that of other active materials after exceeding 1000 cycles, it was determined that RHW1400 did not have sufficient performance as an active material, and the test was interrupted. Moreover, the electrode potential after lithium ion release of RHW600 was not higher than that in the 50th cycle, but was higher than that of other active materials. Focusing on the electrode potential after occlusion of lithium ions, the value of RHW1000D having the lowest silicic acid content increases according to the number of occlusion / release cycles, and after the 2000th cycle, the highest value of 0.157 Vvs. Li / Li + was obtained. A high electrode potential after occlusion is very undesirable because it requires a high positive electrode potential during charging of the battery and capacitor, causing a reduction in capacity and structural deterioration. RHW1000D has the lowest silicic acid content, most of which is composed of amorphous carbon and has developed meso-macropores. The increase in the electrode potential after occlusion of lithium ions is initially 0.002 Vvs. It means that lithium ions occluded to Li / Li + gradually shift to an immobilization state that does not contribute to a decrease in electrode potential in the active material by repeated occlusion and desorption. That is, it is predicted that the meso / macropores excessively developed in the carbon region promote the immobilization by trapping lithium ions. Furthermore, even when RHW600A, RHW1000A, and RHW1000B were repeatedly subjected to occlusion / release of lithium ions, the electrode potential after occlusion and release was kept low. That is, even in the case of occlusion and release in a state where lithium ions are sufficiently occluded, the electrode potential is kept low and the decrease in capacity is kept small.

活物質を含む電極の半電池セルでの充放電試験におけるプレドープ後の容量、電極電位範囲を0.002〜1Vvs.Li/Liに限定した場合の容量の電流密度依存特性、さらに、リチウムイオンの吸蔵および放出容量を130μAhに固定した場合の電極電位の安定性の評価から、RHW1000、RHW1000A、RHW1000B、RHW1000Cが、特には、RHW1000AとRHW1000Bが、リチウムイオン電池の負極活物質として市販ハードカーボンより優れた性能を示し、さらに要求条件(A)〜(D)を十分に満たす材料と判断できる。従って、RHW1000、RHW1000A、RHW1000B、RHW1000Cに対して、リチウムイオンキャパシタの負極活物質としての性能評価を行った。 The capacity and electrode potential range after pre-doping in the charge / discharge test in the half battery cell of the electrode containing the active material is 0.002 to 1 Vvs. From the evaluation of the current density dependence characteristics of the capacity when limited to Li / Li + and the stability of the electrode potential when the lithium ion storage and release capacity is fixed at 130 μAh, RHW1000, RHW1000A, RHW1000B, and RHW1000C are: In particular, it can be determined that RHW1000A and RHW1000B exhibit performance superior to that of commercially available hard carbon as a negative electrode active material of a lithium ion battery and further satisfy the requirements (A) to (D). Therefore, performance evaluation as a negative electrode active material of a lithium ion capacitor was performed on RHW1000, RHW1000A, RHW1000B, and RHW1000C.

実施例4
[活物質を含む電極のリチウムイオンキャパシタセルでの充放電試験]
半電池セルでの充放電試験と同様に、活物質が塗工された電極を直径15mmで打ち抜き、それを3極式リチウムイオンキャパシタセルの負極に用いた。また、そのセルの正極には、BET比表面積が約2500m/gの活性炭をアルムニウム箔に塗工し、それを直径15mmで打ち抜いたものを用いた。負極活物質にRHW1000、RHW1000A、RHW1000B、RHW1000Cおよび市販ハードカーボンを用いた4種類のリチウムイオンキャパシタセルを組み立てた。なお、参照極はリチウム金属であり、負極活物質は24時間のリチウムイオンのプレドープ処理がなされた。一方で、それら活物質と比較して十分なリチウムイオンの吸蔵放出容量を有するリチウム金属を負極に用いたセルも組み立てた。この場合、3極式セルではなく、2極式の半電池セルとした。組み立てたリチウムイオンキャパシタセルとそれに使用された活物質の詳細を表8に示す。負極活物質の質量は4.00mg±4%であり、正極活性炭の質量も2.34mg±3%とほぼ一定にした。塗工厚は負極および正極とも40μm前後であった。負極として用いたリチウム金属の理論容量3861mAh/gであり、使用されたもみ殻由来負極活物質より十分に大きな容量を有した。
Example 4
[Charge / discharge test of lithium ion capacitor cell with electrode containing active material]
Similarly to the charge / discharge test in the half battery cell, the electrode coated with the active material was punched out with a diameter of 15 mm and used as the negative electrode of the tripolar lithium ion capacitor cell. In addition, as the positive electrode of the cell, activated carbon having a BET specific surface area of about 2500 m 2 / g was coated on an aluminum foil and punched out with a diameter of 15 mm. Four types of lithium ion capacitor cells were assembled using RHW1000, RHW1000A, RHW1000B, RHW1000C and commercially available hard carbon as the negative electrode active material. The reference electrode was lithium metal, and the negative electrode active material was pre-doped with lithium ions for 24 hours. On the other hand, a cell using a lithium metal having a sufficient capacity for occlusion and release of lithium ions as compared with these active materials was also assembled. In this case, not a tripolar cell but a bipolar half battery cell. Table 8 shows the details of the assembled lithium ion capacitor cell and the active material used therefor. The mass of the negative electrode active material was 4.00 mg ± 4%, and the mass of the positive electrode activated carbon was also substantially constant at 2.34 mg ± 3%. The coating thickness was about 40 μm for both the negative electrode and the positive electrode. The theoretical capacity of lithium metal used as the negative electrode was 3861 mAh / g, and the capacity was sufficiently larger than the used rice husk-derived negative electrode active material.

セル電圧範囲を2〜4Vに設定して、異なる電流密度におけるリチウムイオンキャパシタセルの充放電容量を評価した。その結果を表9に示す。電流密度が0.1mA/cmと小さい時、いずれのセルも最も高い充放電容量を示した。負極がリチウム金属の場合、セルの放電容量は141μAhであり、LIC W1000、LIC W1000A、LIC W1000Bセルの放電容量とほぼ近い値になった。LIC W1000CとLIC HCの放電容量は若干低かった。電流密度が1mA/cmに、さらには10mA/cmに増加すると、すべてのセルの充放電容量は低下したものの、LIC W1000セルの容量低下は最も小さく、レート特性に優れていた。LIC W1000AとLIC W1000Bセルの10mA/cmにおける充放電容量は、LIC HCセルと比較して、やや低い値となったが、負極がリチウム金属の場合よりは高い値となった。LIC W1000Cセルは、すべての電流密度において、最小の充放電容量を示した。 The cell voltage range was set to 2-4V, and the charge / discharge capacity of the lithium ion capacitor cell at different current densities was evaluated. The results are shown in Table 9. When the current density was as small as 0.1 mA / cm 2 , all the cells showed the highest charge / discharge capacity. When the negative electrode was lithium metal, the discharge capacity of the cell was 141 μAh, which was almost the same as the discharge capacity of the LIC W1000, LIC W1000A, and LIC W1000B cells. The discharge capacities of LIC W1000C and LIC HC were slightly lower. When the current density was increased to 1 mA / cm 2 and further to 10 mA / cm 2 , the charge / discharge capacity of all cells decreased, but the capacity decrease of the LIC W1000 cell was the smallest and the rate characteristics were excellent. The charge / discharge capacity at 10 mA / cm 2 of the LIC W1000A and LIC W1000B cells was slightly lower than that of the LIC HC cell, but was higher than that when the negative electrode was lithium metal. The LIC W1000C cell showed the lowest charge / discharge capacity at all current densities.

続いて、セル電圧範囲を同じく2〜4Vに設定し、電流密度を1mA/cmの一定値に保って、リチウムイオンキャパシタセルの充放電サイクル試験を実施した。充放電サイクル数とリチウムイオンキャパシタセルの充放電容量の関係を表10に示す。繰り返しのリチウムイオンの吸蔵放出により、表面にデンドライトを形成させうるリチウム金属を負極に使用したLIC LiMetalセルに対してサイクル試験は実施しなかった。第10サイクルと充放電サイクルが少ない場合、LIC W1000Cセルを除くリチウムイオンキャパシタセルは130μAh付近の充放電容量を示した。LIC W1000AとLIC W1000Bは、20000サイクルの充放電を経ても、その充放電容量を120μAh程度に維持し、優れたサイクル特性を示した。一方、LIC HCの容量は3000サイクルの充放電でほぼ失われていた。LIC W1000セルは、第3000サイクル付近から徐々に容量低下を許し、20000サイクル後には、100μAhを下回った。LIC W1000Cの充放電容量は、第1000サイクル付近で一度他のセルと同程度の容量を示したが、その後、容量低下を示した。20000サイクル後には55μAh程度まで低下した。 Subsequently, the cell voltage range was similarly set to 2 to 4 V, the current density was maintained at a constant value of 1 mA / cm 2 , and a charge / discharge cycle test of the lithium ion capacitor cell was performed. Table 10 shows the relationship between the number of charge / discharge cycles and the charge / discharge capacity of the lithium ion capacitor cell. A cycle test was not performed on a LIC LiMetal cell using lithium metal as a negative electrode, which can form dendrites on the surface due to repeated occlusion and release of lithium ions. When there were few 10th cycles and charging / discharging cycles, the lithium ion capacitor cell except LIC W1000C cell showed the charging / discharging capacity | capacitance of about 130 microamperes. LIC W1000A and LIC W1000B maintained excellent charge / discharge capacity of about 120 μAh even after 20000 cycles of charge / discharge, and exhibited excellent cycle characteristics. On the other hand, the capacity of LIC HC was almost lost after 3000 cycles of charge and discharge. The LIC W1000 cell allowed a gradual capacity drop from around 3000th cycle, and after 20000 cycle it was below 100 μAh. The charge / discharge capacity of LIC W1000C once showed the same level of capacity as other cells around the 1000th cycle, but thereafter showed a decrease in capacity. After 20000 cycles, it decreased to about 55 μAh.

リチウムイオンキャパシタセルのサイクル試験における負極電位を表11に示す。セル電圧4Vにおいて、負極活物質にはリチウムイオンが最も吸蔵され、セル電圧2Vにおいて、リチウムイオンが最も放出された状態になる。充放電サイクル初期においては、LIC HCの負極電位は非常に低く維持されていた。しかし、1000サイクルを超えると、リチウムイオンの放出時の負極電位は2Vvs.Li/Li付近まで増加していた。すなわち、市販ハードカーボンにリチウム金属との短絡によるリチウムイオンのプレドープ処理を行い、それをリチウムイオンキャパシタセルの負極活物質に使用しても、優れたサイクル特性は得られないことが確認された。LIC W1000とLIC W1000Cセルにおいて、セル電圧4Vにおけるリチウムイオン吸蔵時の負極電位は大きく増加しなかったが、10000サイクルを超えると、リチウムイオン放出時の負極電位は1.2Vvs.Li/Liを超過し、その負極の容量低下がセルの容量低下の原因となった。一方で、LIC W1000AとLIC W1000Bセルは、20000サイクル後において、リチウムイオン放出時の負極電位は1Vvs.Li/Li程度までに抑えられていた。この結果は、RHW1000AとRHW1000Bが充放電サイクルに対する安定性に優れ、リチウムイオンキャパシタセルの負極活物質と特に好ましい性能を有することを示している。 Table 11 shows the negative electrode potential in the cycle test of the lithium ion capacitor cell. At a cell voltage of 4V, lithium ions are most occluded in the negative electrode active material, and at a cell voltage of 2V, lithium ions are most released. In the early stage of the charge / discharge cycle, the negative electrode potential of LIC HC was kept very low. However, after exceeding 1000 cycles, the negative electrode potential during lithium ion release is 2 V vs. It increased to the vicinity of Li / Li + . That is, it was confirmed that excellent cycle characteristics could not be obtained even when a commercially available hard carbon was pre-doped with lithium ions by short-circuiting with lithium metal and used as a negative electrode active material of a lithium ion capacitor cell. In the LIC W1000 and LIC W1000C cells, the negative electrode potential at the time of occlusion of lithium ions at a cell voltage of 4 V did not increase greatly, but after 10,000 cycles, the negative electrode potential at the time of lithium ion release was 1.2 Vvs. Li / Li + was exceeded, and the capacity decrease of the negative electrode caused the capacity decrease of the cell. On the other hand, the LIC W1000A and LIC W1000B cells have a negative electrode potential of 1 Vvs. It was suppressed to about Li / Li + . This result shows that RHW1000A and RHW1000B are excellent in stability against charge / discharge cycles, and have particularly preferable performance with the negative electrode active material of the lithium ion capacitor cell.

実施例2における準備された負極活物質の物性分析の結果、さらに、実施例3と4におけるそれら負極活物質がリチウムイオン電池およびリチウムイオンキャパシタに使用された場合の性能から、以下の発明に想到できる。
適切な物性を有する非晶質炭素と非晶質ケイ酸の混合系活物質(RHW1000AとRHW1000B)を使用することで、既存技術であるハードカーボン系活物質と比較して、最大吸蔵容量までリチウムイオンを吸蔵させるプレドープ処理に対する耐性が強く、リチウムイオンを十分に吸蔵した状態における吸蔵放出のレート特性およびサイクル特性に優れたリチウムイオン電池およびリチウムイオンキャパシタ用負極を実現できる。ケイ酸の溶脱により、上記活物質中の非晶質ケイ酸の含有率を減少させると、リチウムイオンにより還元されて得られるシリコンの大きな吸蔵放出容量が減少することで、活物質自体の容量は減少する。しかし同時に、ケイ酸が溶脱された空間に主としてメソ・マクロ孔が形成される。シリコンはリチウムイオンの吸蔵脱離に伴い大きな膨張収縮を許すため、メソ・マクロ孔の存在は、シリコンの膨張収縮による活物質粒子間および活物質と集電体との隔離を抑制することができる。一方で、ケイ酸溶脱が過多な場合、シリコンに起因する容量の減少により、活物質全体の容量が減少する。さらに、同時にシリコンの膨張収縮の緩衝に要する以上に炭素領域に発達したメソ・マクロ孔は、リチウムイオンをトラップすることで、その不動化を促進する。従って、リチウムイオンの吸蔵脱離が繰り返されると、活物質内において電極電位の低下に寄与しないリチウムが増加し、リチウムイオン吸蔵時の負極電位を押し上げる。これは、正極電位を押し上げることで、電解液の分解および正極の構造分解を誘導する可能性を高めるため、好ましくない。メソ・マクロ孔が過多に発達しても、活物質中のケイ酸含有率が高い場合(RHW600とRHW600A)、還元されたシリコンに起因して、リチウムの不動化は軽減され、負極電位の上昇は抑制される。しかしながら、過多なメソ・マクロ孔の存在によるリチウムイオンの輸送性低下に起因して、電流密度増加に伴う吸蔵放出容量の低下が大きく、優れたレート特性は得られない。また、活物質製造時の炭化温度は、ケイ酸および炭素領域の構造変化に影響を与える。ケイ酸溶脱により活物質中のメソ・マクロ孔は発達しやすいので、1000℃の炭化温度は、ケイ酸および炭素領域の細孔をふさぐ効果があり、細孔の発達を抑制できる。1400℃の炭化温度は、非晶質であったケイ酸を結晶化および窒化させ、ケイ酸の還元によるリチウムイオン吸収効果を弱める、すなわち、活物質のリチウム金属のプレーティングの抑制効果を縮小する。
As a result of the physical property analysis of the prepared negative electrode active material in Example 2, and the performance when these negative electrode active materials in Examples 3 and 4 were used in lithium ion batteries and lithium ion capacitors, the following invention was conceived. it can.
By using a mixed active material of amorphous carbon and amorphous silicic acid (RHW1000A and RHW1000B) with appropriate physical properties, lithium can be stored up to the maximum storage capacity compared to hard carbon active materials that are existing technologies. It is possible to realize a lithium ion battery and a negative electrode for a lithium ion capacitor that have strong resistance to a pre-doping treatment that occludes ions and that are excellent in the rate characteristics and cycle characteristics of occlusion and release in a state where lithium ions are sufficiently occluded. When the content of amorphous silicic acid in the active material is reduced by leaching of silicic acid, the large capacity of occlusion and release of silicon obtained by reduction by lithium ions is reduced, so that the capacity of the active material itself is Decrease. At the same time, however, meso-macro pores are mainly formed in the space where the silicic acid is leached. Since silicon allows large expansion and contraction due to the insertion and extraction of lithium ions, the presence of meso / macropores can suppress the separation between active material particles and the separation of active material and current collector due to the expansion and contraction of silicon. . On the other hand, when silicic acid leaching is excessive, the capacity of the active material as a whole decreases due to the decrease in capacity caused by silicon. At the same time, the meso / macropores developed in the carbon region more than necessary for buffering the expansion and contraction of silicon promotes its immobilization by trapping lithium ions. Therefore, when the occlusion and desorption of lithium ions is repeated, lithium that does not contribute to the decrease in electrode potential in the active material increases, and the negative electrode potential during lithium ion occlusion is increased. This is not preferable because it increases the possibility of inducing the decomposition of the electrolytic solution and the structure decomposition of the positive electrode by raising the positive electrode potential. If the silicic acid content in the active material is high (RHW600 and RHW600A) even though the meso / macropores are excessively developed, the immobilization of lithium is reduced due to the reduced silicon, and the negative electrode potential is increased. Is suppressed. However, due to the decrease in lithium ion transportability due to the presence of excessive mesopores / macropores, the occlusion / release capacity is greatly decreased with the increase in current density, and excellent rate characteristics cannot be obtained. Moreover, the carbonization temperature at the time of active material manufacture influences the structural change of silicic acid and a carbon area | region. Since mesopores and macropores in the active material are easily developed by leaching of silicic acid, a carbonization temperature of 1000 ° C. has an effect of blocking pores in silicic acid and carbon regions, and can suppress the development of pores. The carbonization temperature of 1400 ° C. crystallizes and nitrides the amorphous silicic acid, weakens the lithium ion absorption effect due to the reduction of silicic acid, ie, reduces the suppression effect of the lithium metal plating of the active material .

リチウムイオンの吸蔵放出を行うことで、繰り返し充放電を実現するリチウムイオン電池およびリチウムイオンキャパシタの負極活物質としてRHW1000AとRHW1000Bは優れた性能は示した。それら活物質の組成および物性を考慮すると、非晶質炭素の含有率が60〜80質量%、非晶質ケイ酸の含有率が40〜20質量%、BET比表面積が70〜120m/g、メソ・マクロ孔比表面積が50〜100m/g、メソ・マクロ孔容積が0.10〜0.18cm/gであることを特徴とする非晶質ケイ酸と非晶質炭素の混合系活物質は、(A)最大吸蔵容量までリチウムイオンを吸蔵させるプレドープ処理を行ったとしても、リチウム金属のプレーティング(析出)および特性変化を誘導しにくい、(B)上記プレドープ処理を行った後、リチウムイオンの吸蔵容量が大きい、(C)上記プレドープ処理を行った後、その最大吸蔵容量付近でのリチウムイオン吸蔵放出におけるレート特性に優れている、(D)同様に、最大吸蔵容量付近でのリチウムイオン吸蔵放出におけるサイクル特性に優れているという発明に帰結する。また、その活物質はもみ殻という国内賦存量が極めて多いバイオマス系廃棄物から製造でき、もみ殻を800℃以下で一次炭化し、その炭化物から非晶質ケイ酸の部分的除去を行い、その後、800〜1200℃において二次炭化することで製造することができる。 RHW1000A and RHW1000B exhibited excellent performance as negative electrode active materials for lithium ion batteries and lithium ion capacitors that repeatedly charge and discharge by occluding and releasing lithium ions. Considering the composition and physical properties of these active materials, the content of amorphous carbon is 60 to 80% by mass, the content of amorphous silicic acid is 40 to 20% by mass, and the BET specific surface area is 70 to 120 m 2 / g. A mixture of amorphous silicic acid and amorphous carbon, having a mesopore / macropore specific surface area of 50 to 100 m 2 / g and a mesopore / macropore volume of 0.10 to 0.18 cm 3 / g The active material (A) hardly induces lithium metal plating (precipitation) and characteristic change even when pre-doping treatment is performed to occlude lithium ions up to the maximum storage capacity. (B) The pre-doping treatment is performed. After that, the lithium ion storage capacity is large. (C) After the pre-doping treatment, the lithium ion storage capacity is excellent in the lithium ion storage and release near the maximum storage capacity. Results in the invention of excellent cycle characteristics in a lithium ion occlusion and release in the vicinity of storage capacity. In addition, the active material can be produced from rice husk, a biomass-based waste with an extremely large amount of domestic presence, and the rice husk is first carbonized at 800 ° C. or lower, and the amorphous silicic acid is partially removed from the carbide. , And can be produced by secondary carbonization at 800 to 1200 ° C.

以上のように、本発明はリチウムイオン電池およびリチウムイオンキャパシタ用負極活物質として優れたものである。   As described above, the present invention is excellent as a negative electrode active material for lithium ion batteries and lithium ion capacitors.

Claims (8)

非晶質炭素と非晶質ケイ酸から構成される混合系であり、それぞれ非晶質炭素の含有率が60〜80質量%、非晶質ケイ酸の含有率が40〜20質量%、さらに、BET比表面積が70〜120m/g、メソ・マクロ孔比表面積が50〜100m/g、メソ・マクロ孔容積が0.10〜0.18cm/gであることを特徴とする負極活物質。 It is a mixed system composed of amorphous carbon and amorphous silicic acid, each having an amorphous carbon content of 60 to 80% by mass, an amorphous silicic acid content of 40 to 20% by mass, A negative electrode having a BET specific surface area of 70 to 120 m 2 / g, a meso / macropore specific surface area of 50 to 100 m 2 / g, and a meso / macropore volume of 0.10 to 0.18 cm 3 / g. Active material. もみ殻由来である請求項1の負極活物質。   The negative electrode active material according to claim 1, which is derived from rice husk. リチウムイオンのプレドープ処理がなされた請求項1又は2の負極活物質。   The negative electrode active material according to claim 1 or 2, which has been pre-doped with lithium ions. もみ殻を800℃以下で一次炭化し、その炭化物から非晶質ケイ酸の部分的除去を行い、その後、800〜1200℃において二次炭化を行うことを特徴とする請求項2又は3の負極活物質の製造法。   4. The negative electrode according to claim 2, wherein the rice husk is primary carbonized at 800 ° C. or lower, amorphous silicic acid is partially removed from the carbide, and then secondary carbonization is performed at 800 to 1200 ° C. Production method of active material. リチウムイオン含有有機系電解液中において、請求項1又は2の負極活物質とリチウム金属とを短絡することによる、リチウムイオンのプレドープ処理がなされた負極活物質の製造法。   The manufacturing method of the negative electrode active material by which the lithium ion pre-dope process was made | formed by short-circuiting the negative electrode active material and lithium metal of Claim 1 or 2 in the lithium ion containing organic electrolyte solution. 負極が、請求項1、2又は3の負極活物質を有してなり、リチウムイオンの吸蔵放出を行うことで繰り返し充放電を実現する電気化学系蓄電デバイス。   An electrochemical power storage device in which a negative electrode has the negative electrode active material according to claim 1, 2 or 3 and realizes repeated charge and discharge by performing occlusion and release of lithium ions. 電気化学系蓄電デバイスが、リチウムイオン電池である請求項6の電気化学系蓄電デバイス。   The electrochemical storage device according to claim 6, wherein the electrochemical storage device is a lithium ion battery. 電気化学系蓄電デバイスが、リチウムイオンキャパシタである請求項6の電気化学系蓄電デバイス。   The electrochemical storage device according to claim 6, wherein the electrochemical storage device is a lithium ion capacitor.
JP2016084945A 2016-04-21 2016-04-21 Negative electrode active material for lithium-ion batteries and lithium-ion capacitors Active JP6867574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016084945A JP6867574B2 (en) 2016-04-21 2016-04-21 Negative electrode active material for lithium-ion batteries and lithium-ion capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016084945A JP6867574B2 (en) 2016-04-21 2016-04-21 Negative electrode active material for lithium-ion batteries and lithium-ion capacitors

Publications (2)

Publication Number Publication Date
JP2017195102A true JP2017195102A (en) 2017-10-26
JP6867574B2 JP6867574B2 (en) 2021-04-28

Family

ID=60156402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016084945A Active JP6867574B2 (en) 2016-04-21 2016-04-21 Negative electrode active material for lithium-ion batteries and lithium-ion capacitors

Country Status (1)

Country Link
JP (1) JP6867574B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113178564A (en) * 2021-04-25 2021-07-27 陈庆 Silicon dioxide-carbon composite material and preparation method and application thereof
JP2022500822A (en) * 2018-09-14 2022-01-04 シラ ナノテクノロジーズ インク Battery electrode composition containing biomass-derived carbon
JP2022533387A (en) * 2019-05-20 2022-07-22 ネクシオン リミテッド Electroactive materials for metal ion batteries
CN114824274A (en) * 2022-04-13 2022-07-29 江西金糠新材料科技有限公司 Rice hull-based carbon material and preparation method thereof, lead-carbon battery negative lead paste, polar plate and battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273816A (en) * 2007-04-04 2008-11-13 Sony Corp Porous carbon material, its manufacturing process and adsorbent, mask, adsorption sheet, and supporting member
JP2010232469A (en) * 2009-03-27 2010-10-14 Fuji Heavy Ind Ltd Accumulator device and method of manufacturing the same
JP2012160456A (en) * 2007-04-04 2012-08-23 Sony Corp Electrode material for secondary battery and method for producing the same, and material for electric double layer capacitor and method for producing the same
WO2013099278A1 (en) * 2011-12-28 2013-07-04 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP2014165435A (en) * 2013-02-27 2014-09-08 Akita Univ Electrochemical capacitor
JP2015090748A (en) * 2013-11-05 2015-05-11 エム・ティー・カーボン株式会社 Silicon-containing amorphous carbon material, manufacturing method thereof, and lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008273816A (en) * 2007-04-04 2008-11-13 Sony Corp Porous carbon material, its manufacturing process and adsorbent, mask, adsorption sheet, and supporting member
JP2012160456A (en) * 2007-04-04 2012-08-23 Sony Corp Electrode material for secondary battery and method for producing the same, and material for electric double layer capacitor and method for producing the same
JP2010232469A (en) * 2009-03-27 2010-10-14 Fuji Heavy Ind Ltd Accumulator device and method of manufacturing the same
WO2013099278A1 (en) * 2011-12-28 2013-07-04 パナソニック株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same
JP2014165435A (en) * 2013-02-27 2014-09-08 Akita Univ Electrochemical capacitor
JP2015090748A (en) * 2013-11-05 2015-05-11 エム・ティー・カーボン株式会社 Silicon-containing amorphous carbon material, manufacturing method thereof, and lithium ion secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FEY G. T-K ET AL.: "Pyrolytic carbons from acid/base-treated rice husk as lithium-insertion anode materials", PURE AND APPLIED CHEMISTRY, vol. 82, no. 11, JPN6020031735, November 2010 (2010-11-01), DE, pages 2157 - 2165, ISSN: 0004334513 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022500822A (en) * 2018-09-14 2022-01-04 シラ ナノテクノロジーズ インク Battery electrode composition containing biomass-derived carbon
JP7451501B2 (en) 2018-09-14 2024-03-18 シラ ナノテクノロジーズ インク Battery electrode composition containing biomass-derived carbon
JP2022533387A (en) * 2019-05-20 2022-07-22 ネクシオン リミテッド Electroactive materials for metal ion batteries
JP7447150B2 (en) 2019-05-20 2024-03-11 ネクシオン リミテッド Electroactive materials for metal ion batteries
CN113178564A (en) * 2021-04-25 2021-07-27 陈庆 Silicon dioxide-carbon composite material and preparation method and application thereof
CN113178564B (en) * 2021-04-25 2023-01-03 陈庆 Silicon dioxide-carbon composite material and preparation method and application thereof
CN114824274A (en) * 2022-04-13 2022-07-29 江西金糠新材料科技有限公司 Rice hull-based carbon material and preparation method thereof, lead-carbon battery negative lead paste, polar plate and battery

Also Published As

Publication number Publication date
JP6867574B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
Li et al. Hard carbon microtubes made from renewable cotton as high‐performance anode material for sodium‐ion batteries
Qu et al. Nitrogen-doped porous “green carbon” derived from shrimp shell: Combined effects of pore sizes and nitrogen doping on the performance of lithium sulfur battery
Hu et al. Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high‐rate capability
WO2019187537A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
Salimi et al. Turning an environmental problem into an opportunity: potential use of biochar derived from a harmful marine biomass named Cladophora glomerata as anode electrode for Li-ion batteries
Wang et al. The synergy effect on Li storage of LiFePO 4 with activated carbon modifications
KR100769567B1 (en) Anode For Hybrid Capacitor, Manufacturing Method thereof and Hybrid Capacitor
JP6279713B2 (en) Carbonaceous molded body for electrode and method for producing the same
WO2006118120A1 (en) Negative electrode active material for charging device
JP2014232728A (en) Negative electrode active material for lithium secondary battery, process of manufacturing the same, and lithium secondary battery containing the same
JP6297746B2 (en) Carbonaceous molded body for battery electrode and method for producing the same
JP6867574B2 (en) Negative electrode active material for lithium-ion batteries and lithium-ion capacitors
TW201419641A (en) Material for negative electrode of non-aqueous electrolyte secondary battery
US20180261875A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery negative electrode and manufacturing method of same
CN111435732B (en) Negative electrode material of lithium ion battery, preparation method of negative electrode material and lithium ion battery
JP2011138680A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2006286923A (en) Lithium ion capacitor
Zhang et al. Encapsulating Sn (OH) 4 Nanoparticles in Micropores of Mesocarbon Microbeads: A New Anode Material for High‐Performance Lithium Ion Batteries
Sun et al. Hierarchical porous carbon obtained from frozen tofu for efficient energy storage
Fang et al. A comparative investigation on lithium storage performance of carbon microsphere originated from agriculture bio-waste materials: sunflower stalk and walnut shell
US20220246923A1 (en) Negative electrode active material for secondary batteries, and secondary battery
JP4996827B2 (en) Metal-graphite composite particles for negative electrode of lithium ion secondary battery and manufacturing method thereof, negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7197089B2 (en) GRAPHITE-BASED POROUS CARBON MATERIAL FOR ELECTROCHEMICAL CAPACITOR ELECTRODE, METHOD FOR MANUFACTURING SAME, ELECTROCHEMICAL CAPACITOR ELECTRODE, AND ELECTROCHEMICAL CAPACITOR
JP3807854B2 (en) Electric double layer capacitor
JP2016029641A (en) Power storage device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210312

R150 Certificate of patent or registration of utility model

Ref document number: 6867574

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150