JP2017194233A - Cold Crucible Melting Furnace - Google Patents

Cold Crucible Melting Furnace Download PDF

Info

Publication number
JP2017194233A
JP2017194233A JP2016085078A JP2016085078A JP2017194233A JP 2017194233 A JP2017194233 A JP 2017194233A JP 2016085078 A JP2016085078 A JP 2016085078A JP 2016085078 A JP2016085078 A JP 2016085078A JP 2017194233 A JP2017194233 A JP 2017194233A
Authority
JP
Japan
Prior art keywords
peripheral wall
crucible
wall portion
segment
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016085078A
Other languages
Japanese (ja)
Other versions
JP6767652B2 (en
Inventor
中井 泰弘
Yasuhiro Nakai
泰弘 中井
津田 正徳
Masanori Tsuda
正徳 津田
悠 米虫
Hisashi Yonemushi
悠 米虫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2016085078A priority Critical patent/JP6767652B2/en
Publication of JP2017194233A publication Critical patent/JP2017194233A/en
Application granted granted Critical
Publication of JP6767652B2 publication Critical patent/JP6767652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cold crucible melting furnace enabling a state in which an induction current [eddy current] circulating around a tubular cooling water passage in each of the segments to be prevented*restricted, a loss of fed electrical power caused by the induction heating at a crucible to be reduced and a melting efficiency to be increased.SOLUTION: A barrel part 10 of a crucible 1 is constituted in such a way that several segments 2 having a tubular water-cooled passage C1 extending in a height direction formed therein are arranged in a peripheral direction through vertical slits 3 closed by insulation materials 4. As segments 2, at least one wall part of an outer peripheral wall part 22B and two side walls 22C, 22D is formed with a releasing part 24 connected from outsides of the segments 2 to the water-cooled passage C1, and the releasing part 24 is closed with a water-tight material 25 with a higher electric resistivity than that of an inner peripheral wall part 22A to make a cold crucible melting furnace X.SELECTED DRAWING: Figure 2

Description

本発明は、高融点金属や活性金属を溶解し、非金属を混入させないで、高純度化を図り、溶湯プール内において成分・温度が均一である金属を水冷銅ルツボ内で溶解することが可能なコールドクルーシブル溶解炉に関する。   The present invention dissolves refractory metals and active metals, does not mix non-metals, achieves high purity, and can dissolve metals with uniform components and temperature in a molten metal pool in a water-cooled copper crucible. Related to a cold-crucible melting furnace.

従来より、チタンを始めとする高融点で活性な金属の溶解炉として、コールドクルーシブル溶解炉が用いられている。コールドクルーシブル溶解炉のルツボは、平面視部分円弧状をなす複数のセグメントを周方向にスリットを介して隣接して配置した円筒状の胴体部と、底部とを備えており、各スリットには耐火性を有する絶縁材を配置している。このような構成により、隣接するセグメント同士を電気的に絶縁し、胴体部の外周に配置した誘導加熱コイルで発生した磁束をルツボ内に効率良く導入することができるとともに、スリットを通じた溶湯の浸入を防止している。   Conventionally, a cold crucible melting furnace has been used as a melting furnace for metals having a high melting point such as titanium. The crucible of a cold crucible melting furnace includes a cylindrical body portion having a plurality of segments that are partially arc-shaped in plan view and arranged adjacent to each other through slits in the circumferential direction, and a bottom portion. The insulating material which has property is arrange | positioned. With such a configuration, adjacent segments are electrically insulated from each other, and the magnetic flux generated by the induction heating coil disposed on the outer periphery of the body portion can be efficiently introduced into the crucible, and the molten metal can enter through the slit. Is preventing.

また、各セグメントには、冷却手段の一部を構成する水冷通路が内部に形成されている。水冷通路の一例として、セグメント内に当該セグメントの起立方向に沿って形成された断面円形の孔の内部に、当該孔の内周面との間に所定隙間が確保された状態で内パイプを配置し、孔の内周面と内パイプの外周面との隙間を、セグメントの起立方向に沿って噴き出す上昇水流の経路とし、閉塞されている孔の上端部近傍で上昇水流が上端部近傍で180°転換し、内パイプの内部空間をその下降水流の経路とした二重構造の通路を挙げることができる(例えば下記特許文献1)。   Each segment is formed with a water cooling passage that constitutes a part of the cooling means. As an example of a water-cooled passage, an inner pipe is arranged in a segment with a predetermined clearance between the inner peripheral surface of the hole inside a hole with a circular cross section formed along the standing direction of the segment. Then, the gap between the inner peripheral surface of the hole and the outer peripheral surface of the inner pipe is used as a path of the rising water flow to be ejected along the rising direction of the segment, and the rising water flow is 180 near the upper end portion in the vicinity of the upper end portion of the closed hole. There can be mentioned a double-structured passage where the inner space of the inner pipe is used as the path of the descending water flow (for example, Patent Document 1 below).

このようなコールドクルーシブル溶解炉のルツボ内に収容された被溶解金属を溶解する場合、誘導加熱コイルによって被溶解金属を誘導加熱するとともに、冷却水路に冷却水を通すことによってルツボを冷却する。これにより、ルツボに収容された被溶解金属は、外周側において抜熱されるため、この外周側で被溶解金属が冷却されて凝固したスカルが形成されて内部のみが溶融することとなる。このため、被溶解金属が溶解した溶湯は、スカルによってルツボと接することなく、溶湯が揺れるなどしてルツボに接しても、ルツボが十分に冷却されているので反応することなく汚染は起きない。   When melting the metal to be melted contained in the crucible of such a cold crucible melting furnace, the metal to be melted is induction-heated by an induction heating coil, and the crucible is cooled by passing cooling water through the cooling water channel. As a result, since the metal to be melted accommodated in the crucible is extracted at the outer peripheral side, the melted metal is cooled and solidified skull is formed on this outer peripheral side, and only the inside is melted. For this reason, the molten metal in which the metal to be melted is not brought into contact with the crucible by the skull, and even if the molten metal is brought into contact with the crucible by shaking, the crucible is sufficiently cooled and does not react and does not cause contamination.

特開2002−277169号公報JP 2002-277169 A

ところで、従来の構造では、投入電力のうち30%〜50%が溶解に寄与する一方、投入電力の数十%程度は、誘導加熱コイルで損失(コイル損失)したり、ルツボの誘導加熱による損失になる。特に、ルツボの誘導加熱による損失は投入電力の30%程度ある。これは、図6及び図7に示すように、スリット3を介して複数のセグメント2を周方向に接続したルツボ1の外周に誘導加熱コイルHが配置された構成において、この誘導加熱コイルHに高周波電流を通電すると、各セグメント2内において、管状の冷却水路C1を周回する誘導電流(図7において電流方向を矢印で示す渦電流)が発生し、損失を起こすことが主な原因である。投入電力の損失が大きいほど、溶解電力が低下し、非常に効率が悪いため、改善の余地がある。なお図6において符号4で示す部材は、縦スリット3に隙間無く配置した耐火性を有する絶縁材である。   By the way, in the conventional structure, 30% to 50% of the input electric power contributes to melting, while about several tens of% of the input electric power is lost by the induction heating coil (coil loss) or by the induction heating of the crucible. become. In particular, the loss due to induction heating of the crucible is about 30% of the input power. As shown in FIGS. 6 and 7, this is because the induction heating coil H is arranged on the outer periphery of the crucible 1 in which the plurality of segments 2 are connected in the circumferential direction via the slits 3. When a high-frequency current is applied, an induced current (an eddy current whose current direction is indicated by an arrow in FIG. 7) that circulates in the tubular cooling water channel C1 is generated in each segment 2, and this is the main cause. The greater the loss of input power, the lower the dissolved power and the very poor efficiency, so there is room for improvement. In FIG. 6, a member denoted by reference numeral 4 is an insulating material having fire resistance arranged in the vertical slit 3 without any gap.

そこで、セグメントの周方向及び径方向の厚みを薄く設定して、ルツボと誘導加熱コイルの間における相互インダクタンスを減少させる構成も考えられる。しかしながら、セグメントの周方向及び径方向の厚みを薄くするほど、セグメントの強度が低下し、溶解処理時の熱で変形するおそれがある。また、セグメントの周方向及び径方向の厚みを薄く設定すると、セグメント内に形成される冷却水路のサイズ(開口形状)も小さく設定せざるを得ない。冷却水路のサイズ(開口形状)が小さくなるほど、冷却水路を用いた冷却手段の冷却能力が低下し、ルツボ自体の変形・溶融を招来することになり得る。   Therefore, a configuration in which the mutual inductance between the crucible and the induction heating coil is reduced by setting the thickness in the circumferential direction and the radial direction of the segment to be thin is also conceivable. However, as the thickness in the circumferential direction and the radial direction of the segment is reduced, the strength of the segment is reduced, and there is a possibility that the segment is deformed by the heat during the melting process. In addition, if the thickness in the circumferential direction and the radial direction of the segment is set thin, the size (opening shape) of the cooling water channel formed in the segment must be set small. As the size (opening shape) of the cooling water channel is reduced, the cooling capacity of the cooling means using the cooling water channel is reduced, which may lead to deformation and melting of the crucible itself.

本発明は、このような点に着目してなされたものであって、主たる目的は、各セグメント内において管状の冷却水路を周回する誘導電流(渦電流)が発生する事態を防止・抑制して、ルツボの誘導加熱による投入電力の損失を低減し、溶解効率の上昇を図ることが可能なコールドクルーシブル溶解炉を提供することにある。   The present invention has been made paying attention to such points, and its main purpose is to prevent and suppress the occurrence of induced current (eddy current) that circulates in the tubular cooling water channel in each segment. An object of the present invention is to provide a cold crucible melting furnace capable of reducing the loss of input power due to induction heating of the crucible and increasing the melting efficiency.

すなわち本発明は、ルツボの胴体部の外周に配置された誘導加熱コイルによってルツボ内の被溶解金属を誘導加熱して溶解することが可能なコールドクルーシブル溶解炉に関するものである。   That is, the present invention relates to a cold crucible melting furnace capable of melting a metal to be melted in a crucible by induction heating with an induction heating coil disposed on the outer periphery of a body portion of the crucible.

そして、本発明に係るコールドクルーシブル溶解炉は、胴体部として、高さ方向に延伸する管状の水冷通路が内部に形成された複数のセグメントを、当該胴体部の径方向に沿って放射状に延伸し且つ所定の絶縁材で閉塞した縦スリットを介して円周方向に並ぶ状態で配置したものを適用し、セグメントが、水冷通路よりも径方向内側の領域を形成する内周壁部と、水冷通路よりも径方向外側の領域を形成する外周壁部と、内周壁部と外周壁部の間の領域を形成し且つ円周方向に水冷通路を跨いで対向する2つの側壁部とを有し、且つ外周壁部又は2つの側壁部のうち少なくとも1つの壁部に、当該セグメントの外部から水冷通路に連通する開放部が形成され、内周壁部よりも電気抵抗率が高い水密材によって開放部を閉塞したものであることを特徴としている。   In the cold crucible melting furnace according to the present invention, as the body portion, a plurality of segments in which tubular water-cooling passages extending in the height direction are formed are radially extended along the radial direction of the body portion. And applying what is arranged in a state of being arranged in the circumferential direction through a vertical slit closed with a predetermined insulating material, the segment is an inner peripheral wall part forming a region radially inward from the water cooling passage, and a water cooling passage An outer peripheral wall portion that forms a radially outer region, and two side wall portions that form a region between the inner peripheral wall portion and the outer peripheral wall portion and face each other across the water cooling passage in the circumferential direction, and At least one wall portion of the outer peripheral wall portion or the two side wall portions is formed with an open portion communicating with the water cooling passage from the outside of the segment, and the open portion is closed with a watertight material having a higher electrical resistivity than the inner peripheral wall portion. To be It is characterized.

このような本発明に係るコールドクルーシブル溶解炉によれば、円周方向に分割形成されたセグメント間を、絶縁材で閉塞した縦スリットを介して継ぎ合わせた集合体であるルツボの外周に配置した誘導加熱コイルを通電状態にして、縦スリットを介してルツボ内に誘導磁場が導入され、被溶解金属に浸透し、被溶解金属を誘導加熱することができるとともに、セグメントの外部から水冷通路に連通するように形成した開放部を、周壁部のうち水冷通路よりも径方向内側の領域を形成する内周壁部よりも電気抵抗率が高い水密材によって閉塞しているため、水冷通路から開放部に冷却水などの冷却媒体が漏れる事態を防止して、良好な水冷機能を確保することができるとともに、各セグメント内において水冷通路を周回する渦電流が流れる事態を大幅に防止・抑制することができる。その結果、ルツボの誘導加熱による投入電力の損失を大幅に低減することができ、溶解効率が向上する。   According to such a cold crucible melting furnace according to the present invention, the segments divided and formed in the circumferential direction are arranged on the outer periphery of a crucible that is an aggregate joined together through a vertical slit closed with an insulating material. The induction heating coil is energized, an induction magnetic field is introduced into the crucible through the vertical slit, penetrates into the metal to be melted, can be heated by induction, and communicates with the water cooling passage from the outside of the segment. Since the open part formed so as to be blocked by a watertight material having a higher electrical resistivity than the inner peripheral wall part that forms a radially inner region of the peripheral wall part than the water-cooled path, the water-cooled path is changed to the open part. Prevents the leakage of cooling medium such as cooling water and ensures a good water cooling function, and eddy currents that circulate in the water cooling passages flow in each segment. It is possible to significantly prevention and inhibition. As a result, the loss of input power due to induction heating of the crucible can be greatly reduced, and the melting efficiency is improved.

このように、本発明は、外周壁部又は2つの側壁部のうち少なくとも1つの壁部に、セグメントの外部から水冷通路に連通する開放部を形成し、この開放部を内周壁部よりも電気抵抗率が高い水密材によって閉塞する点に特徴を有するものであり、開放部を形成する部分は、外周壁部のみ、又は一方の側壁部のみ、或いは両側壁部のみの何れであってよいし、外周壁部及び両側壁部にそれぞれ開放部を形成してもよい。開放部の形状や数は適宜選択・変更することができ、開放部の形状に応じた水密材を適用することで、開放部を適切に閉塞することができる。   As described above, in the present invention, an open portion communicating with the water cooling passage from the outside of the segment is formed on at least one wall portion of the outer peripheral wall portion or the two side wall portions, and this open portion is more electrically connected than the inner peripheral wall portion. It is characterized in that it is blocked by a watertight material having a high resistivity, and the part forming the open part may be only the outer peripheral wall part, only one side wall part, or only both side wall parts. Moreover, you may form an opening part in an outer peripheral wall part and a both-sides wall part, respectively. The shape and number of the open portions can be appropriately selected and changed, and the open portions can be appropriately closed by applying a watertight material according to the shape of the open portions.

特に、本発明に係るコールドクルーシブル溶解炉において、セグメントのうち内周壁部及び外周壁部の径方向の厚みと、各側壁部の円周方向の厚みを、誘導加熱コイルによって作られる磁場の浸透深さ(電磁誘導の浸透深さ)未満の厚みに設定すれば、セグメント内に発生する渦電流を低減することができ、ルツボの誘導加熱による投入電力の損失の更なる低減化、及び溶解効率の更なる上昇を図ることができる。   In particular, in the cold crucible melting furnace according to the present invention, the radial thickness of the inner peripheral wall portion and the outer peripheral wall portion of the segment and the circumferential thickness of each side wall portion are determined by the penetration depth of the magnetic field created by the induction heating coil. If the thickness is set to be less than the penetration depth of electromagnetic induction, the eddy current generated in the segment can be reduced, the loss of input power due to induction heating of the crucible can be further reduced, and the melting efficiency can be reduced. A further rise can be achieved.

このように、本発明では、ルツボの胴体部を構成するセグメントのうち、周壁部又は2つの側壁部のうち少なくとも1つの壁部に、当該セグメントの外部から水冷通路に連通するように形成された開放部を、内周壁部よりも電気抵抗率が高い水密材によって閉塞しているため、各セグメントが管状の水冷通路周りにおいて開放部及び水密材で分断された構成になり、各セグメント内において管状の冷却水路を周回する誘導電流(渦電流)が発生しないか、極めて発生し難い構成となり、ルツボの誘導加熱による投入電力の損失を低減し、溶解効率の上昇を図ることが可能なコールドクルーシブル溶解炉を提供することができる。   Thus, in the present invention, among the segments constituting the crucible body, at least one wall portion of the peripheral wall portion or the two side wall portions is formed so as to communicate with the water cooling passage from the outside of the segment. Since the open portion is closed by a watertight material having a higher electrical resistivity than the inner peripheral wall portion, each segment is divided by the open portion and the watertight material around the tubular water-cooled passage, and each segment is tubular. Cold-crucible melting that does not generate induction current (eddy current) that circulates in the cooling water passage or is difficult to generate, reduces loss of input power due to induction heating of the crucible, and increases melting efficiency A furnace can be provided.

本発明の一実施形態に係るコールドクルーシブル溶解炉の模式的な部分断面図。The typical fragmentary sectional view of the cold crucible melting furnace which concerns on one Embodiment of this invention. 同実施形態に係るコールドクルーシブル溶解炉の要部を一部横断面にして模式的に示す図。The figure which shows typically the principal part of the cold crucible melting furnace which concerns on the same embodiment partially in cross section. 同実施形態に係るコールドクルーシブル溶解炉の要部を一部省略して模式的に示す平断面図。The plane sectional view which omits some principal parts of the cold crucible melting furnace concerning the embodiment, and shows typically. 同実施形態におけるセグメントを一部省略して模式的に示す平断面図。The plane sectional view which omits some segments in the embodiment and shows typically. 同実施形態に係るコールドクルーシブル溶解炉で適用可能なセグメントの変形例を図4に対応させて示す図。The figure which shows the modification of the segment applicable with the cold crucible melting furnace which concerns on the embodiment corresponding to FIG. 従来のコールドクルーシブル溶解炉を図3に対応させて示す図。The figure which shows the conventional cold crucible melting furnace corresponding to FIG. 従来のコールドクルーシブル溶解炉で適用されているセグメントを図5に対応させて示す図。The figure which shows the segment applied with the conventional cold crucible melting furnace corresponding to FIG.

以下、本発明の一実施形態を、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

本実施形態に係るコールドクルーシブル溶解炉Xは、図1に示すように、被溶解金属Wを収容する炉本体であるルツボ1と、ルツボ1の胴体部10の外周に配置された誘導加熱コイルHと、ルツボ1の下端に配置され当該ルツボ1を支持する架台Kと、ルツボ1を冷却する冷却手段Cとを備え、水冷のルツボ1内で被溶解金属Wを誘導加熱コイルHによる高周波誘導加熱で半浮遊状態に溶解可能なものである。本実施形態のコールドクルーシブル溶解炉Xは、図示しない気密容器の内部に設置し、減圧雰囲気(真空雰囲気を含む)中で被溶解金属Wの溶解処理を実行することが可能である。   As shown in FIG. 1, the cold crucible melting furnace X according to the present embodiment includes a crucible 1 that is a furnace body that accommodates a metal W to be melted, and an induction heating coil H that is disposed on the outer periphery of a body portion 10 of the crucible 1. And a frame K arranged at the lower end of the crucible 1 to support the crucible 1 and a cooling means C for cooling the crucible 1, and the metal W to be melted is induction-heated by the induction heating coil H in the water-cooled crucible 1. It can be dissolved in a semi-floating state. The cold crucible melting furnace X of the present embodiment is installed in an airtight container (not shown) and can perform the melting process of the metal W to be melted in a reduced pressure atmosphere (including a vacuum atmosphere).

ルツボ1は、複数の導電性セグメント2(以下「セグメント2」)を、縦スリット3を介して周方向に接続して構成されたものである。セグメント2は、図1に示すように、ルツボ1の底面壁を構成するように形成された底部21と、ルツボ1の側面壁を構成する周壁部22と、周壁部22の下端部からルツボ1の径方向外側に向かって突出し、架台Kの鍔部K2にボルトB及びナットNで締結される取付部23とを有している。   The crucible 1 is configured by connecting a plurality of conductive segments 2 (hereinafter “segment 2”) in the circumferential direction via vertical slits 3. As shown in FIG. 1, the segment 2 includes a bottom 21 formed so as to constitute a bottom wall of the crucible 1, a peripheral wall 22 constituting a side wall of the crucible 1, and a crucible 1 from a lower end of the peripheral wall 22. And a mounting portion 23 that is fastened to the flange portion K2 of the gantry K with a bolt B and a nut N.

ルツボ1の胴体部10は、図2(同図は、胴体部10を示す図であり、説明の便宜上、一部を横断面図として示している)に示すように、縦スリット3を介して周方向に並べた複数のセグメント2の周壁部22によって構成され、径方向に沿って放射状に延伸する各縦スリット3を所定の絶縁材4で閉塞している。図2では、セグメント2のうち底部21及び取付部23を省略している。本実施形態に係るコールドクルーシブル溶解炉Xは、複数のセグメント2によって、上部が開口して被溶解金属Wを収容するルツボ1を形成している。   The body portion 10 of the crucible 1 is shown in FIG. 2 (the figure shows the body portion 10 and a part thereof is shown as a cross-sectional view for convenience of explanation). The vertical slits 3 that are constituted by the peripheral wall portions 22 of the plurality of segments 2 arranged in the circumferential direction and extend radially along the radial direction are closed with a predetermined insulating material 4. In FIG. 2, the bottom portion 21 and the attachment portion 23 of the segment 2 are omitted. In the cold crucible melting furnace X according to the present embodiment, a crucible 1 is formed by a plurality of segments 2 to open the upper part and accommodate the metal W to be melted.

各セグメント2は、電気伝導率及び熱伝導率に優れ、熱衝撃に強く、必要な機械的強度を有するとともに、冷却手段Cによる冷却によってスカルWa(図1参照)を形成するために必要な高熱伝導率を有する材料、例えば、銅、または、クロム銅、ベリリウム銅、ジルコニウム銅、クロムジルコニウム銅、テルル銅等の金属材料により形成されたものである。また、溶湯の融点が比較的低くルツボとの反応を起こさない範囲で、ステンレス、ニッケル基合金ハステロイ、インコネルなどの材料も用いることができる。   Each segment 2 is excellent in electrical conductivity and thermal conductivity, resistant to thermal shock, has necessary mechanical strength, and high heat necessary for forming the skull Wa (see FIG. 1) by cooling by the cooling means C. A material having conductivity, for example, copper or a metal material such as chromium copper, beryllium copper, zirconium copper, chromium zirconium copper, tellurium copper or the like is used. In addition, materials such as stainless steel, nickel-base alloy hastelloy, and Inconel can be used as long as the melting point of the molten metal is relatively low and does not cause a reaction with the crucible.

各セグメント2の周壁部22には、高さ方向に延伸する水冷通路C1を内部に形成している。水冷通路C1は、冷却手段Cを構成するものである。本実施形態における水冷通路C1は、図1等に示すように、周壁部22の下端から上端より少し下方の位置に亘る領域に連続して形成された横断面が略円形状の空洞部C2と、空洞部C2内において空洞部C2の内周面から所定寸法の隙間を隔てて起立姿勢で配置した円筒状の内パイプC3とによって構成した二重構造のものである。なお、図1では、内パイプC3を単純な実線で模式的に示している。   A water-cooled passage C1 extending in the height direction is formed inside the peripheral wall portion 22 of each segment 2. The water cooling passage C1 constitutes the cooling means C. As shown in FIG. 1 and the like, the water-cooled passage C1 in the present embodiment has a hollow portion C2 having a substantially circular cross section continuously formed in a region extending from the lower end of the peripheral wall portion 22 to a position slightly below the upper end. In the hollow portion C2, a double structure is constituted by a cylindrical inner pipe C3 arranged in a standing posture with a gap of a predetermined dimension from the inner peripheral surface of the hollow portion C2. In FIG. 1, the inner pipe C3 is schematically shown by a simple solid line.

セグメント2内における水冷通路C1は、図1に示すように、空洞部C2の内周面と内パイプC3の外周面との隙間を利用した往水路(セグメント内往水路C4)と、内パイプC3の内部空間を利用した復水路(セグメント内復水路C5)とに区別することができる。なお、これらセグメント内往水路C4及びセグメント内復水路C5は、セグメント2の上端部分で相互に連続するように構成されている。図1では、水冷通路C1(セグメント内往水路C4、セグメント内復水路C5)を流通する冷却水の水流方向を矢印で模式的に示している。   As shown in FIG. 1, the water cooling passage C1 in the segment 2 includes an outward water passage (intra-segment internal water passage C4) using a gap between the inner peripheral surface of the cavity C2 and the outer peripheral surface of the inner pipe C3, and an inner pipe C3. And a condensate channel using the internal space (intra-segment condensate channel C5). The in-segment outbound water channel C4 and the in-segment condensate channel C5 are configured to be continuous with each other at the upper end portion of the segment 2. In FIG. 1, the flow direction of the cooling water flowing through the water cooling passage C1 (intra-segment forward water passage C4, intra-segment condensate passage C5) is schematically indicated by arrows.

本実施形態のコールドクルーシブル溶解炉Xは、後述する架台Kの柱状部K1の内部空間、及び架台Kの鍔部K2とセグメント2の間に形成される空間に、セグメント内往水路C4及びセグメント内復水路C5にそれぞれ連続する水路を有する。具体的には、セグメント2の下方に形成され且つセグメント内往水路C4に連続する上流側往水路C6と、セグメント2の下方に形成され且つセグメント内復水路C5に連続する下流側復水路C7とが形成されている。図1では、上流側往水路C6及び下流側復水路C7を流通する冷却水の水流方向を矢印で模式的に示している。   The cold crucible melting furnace X of the present embodiment includes an intra-segment water channel C4 and a segment in a space formed between a columnar portion K1 of a gantry K, which will be described later, and a space K2 of the gantry K and the segment 2. Each condensate channel C5 has a continuous water channel. Specifically, an upstream water discharge channel C6 that is formed below the segment 2 and continues to the intra-segment water discharge channel C4, and a downstream water supply channel C7 that is formed below the segment 2 and continues to the intra-segment condensate channel C5; Is formed. In FIG. 1, the flow direction of the cooling water flowing through the upstream outgoing channel C6 and the downstream condensate channel C7 is schematically indicated by arrows.

上流側往水路C6の上流端には、図示しない冷却水供給源が接続され、この冷却水供給源から供給された冷却水が、上流側往水路C6、セグメント内往水路C4、セグメント内復水路C5、及び下流側復水路C7をこの順で流通することによって、胴体部10を含むルツボ1全体を所定の温度(被溶解金属Wとの反応温度)よりも十分低くなるように冷却することが可能である。この冷却によって、ルツボ1の内面にスカルWaを形成することが可能となっている。なお、下流側復水路C7の下流端から排出された冷却水は、適宜の回収部に回収される。水以外の各種液体(ゲル状のものも含む)及び気体を冷却流体として用いても構わない。   A cooling water supply source (not shown) is connected to the upstream end of the upstream water supply channel C6, and the cooling water supplied from this cooling water supply source is connected to the upstream water supply channel C6, the intra-segment outgoing water channel C4, and the intra-segment condensate water channel. By circulating the C5 and the downstream condensate channel C7 in this order, the entire crucible 1 including the body portion 10 can be cooled to be sufficiently lower than a predetermined temperature (reaction temperature with the metal W to be dissolved). Is possible. By this cooling, it is possible to form the skull Wa on the inner surface of the crucible 1. In addition, the cooling water discharged | emitted from the downstream end of the downstream side condensate channel C7 is collect | recovered by the appropriate collection | recovery part. Various liquids (including gels) other than water and gas may be used as the cooling fluid.

各セグメント2のうちルツボ1の胴体部10を構成する周壁部22は、図3及び図4(図3は、周壁部22の所定高さ位置で水平面に沿って切断した図を模式的に示すものであり、図4は、セグメント2を所定の高さ位置で水平面に沿って切断した図を模試的に示すものであり、図3及び図4では周壁部22の切断面に付すべき平行斜線を省略している)に示すように、部分円弧状の内周面22a及び外周面22bと、外周面22b及び内周面22aの両端同士をそれぞれ結ぶ側面22c,22dとによって平面形状が規定されるものである。周壁部22の外周面22b及び内周面22aの円弧の角度は、ルツボ1の胴体部10をセグメント2によって円周方向に分割する数、つまりセグメント2の数で360(一周360°)を除した値から、縦スリット3の周方向の寸法分を引いた値に略等しい角度である。   3 and 4 (FIG. 3 schematically shows a view cut along a horizontal plane at a predetermined height position of the peripheral wall portion 22 of the peripheral wall portion 22 constituting the body portion 10 of the crucible 1 in each segment 2. FIG. 4 schematically shows a view of the segment 2 cut along a horizontal plane at a predetermined height position. In FIGS. 3 and 4, parallel diagonal lines to be attached to the cut surface of the peripheral wall portion 22. 2), the planar shape is defined by partial arc-shaped inner peripheral surface 22a and outer peripheral surface 22b, and side surfaces 22c and 22d that connect both ends of outer peripheral surface 22b and inner peripheral surface 22a, respectively. Is. The angle of the arc of the outer peripheral surface 22b and the inner peripheral surface 22a of the peripheral wall portion 22 is obtained by dividing 360 by the number of segments 2 in the circumferential direction of the body portion 10 of the crucible 1, that is, 360 (one round 360 °). The angle is approximately equal to a value obtained by subtracting the dimension in the circumferential direction of the vertical slit 3 from the obtained value.

本実施形態では、縦スリット3を閉塞する絶縁材4として、アルミナ、ジルコニア、イットリア等のセラミック耐火材を適用している。図1乃至図3では、縦スリット3を閉塞する絶縁材4を、所定のパターンを付して示している。縦スリット3を閉塞する絶縁材4は、絶縁性及び耐火性を有するものであればよく、縦スリット3に充填したモルタル等の非誘導性材料、または縦スリット3に配置した所定膜厚の絶縁性薄膜等を絶縁材として適用することが可能である。   In the present embodiment, a ceramic refractory material such as alumina, zirconia, or yttria is applied as the insulating material 4 that closes the vertical slit 3. In FIG. 1 thru | or FIG. 3, the insulating material 4 which obstruct | occludes the vertical slit 3 is attached | subjected and shown with the predetermined pattern. The insulating material 4 that closes the vertical slit 3 may be any insulating material and fire-resistant material. Non-inductive material such as mortar filled in the vertical slit 3 or insulation with a predetermined film thickness disposed in the vertical slit 3. It is possible to apply a conductive thin film or the like as an insulating material.

このような構成により、ルツボ1の胴体部10において隣接するセグメント2同士を電気的に絶縁し、誘導加熱コイルHで発生した磁束をルツボ1内に効率良く導入することができるとともに、縦スリット3を通じた溶湯Wbの浸入を防止している。   With such a configuration, the adjacent segments 2 in the body portion 10 of the crucible 1 can be electrically insulated, and the magnetic flux generated by the induction heating coil H can be efficiently introduced into the crucible 1, and the vertical slit 3 The intrusion of the molten metal Wb is prevented.

ここで、本実施形態におけるセグメント2うち縦長形状の周壁部22は、図3及び図4に示すように、水冷通路C1よりも径方向内側の領域を形成する内周壁部22Aと、水冷通路C1よりも径方向外側の領域を形成する外周壁部22Bと、内周壁部22Aと外周壁部22Bの間の領域を形成し且つ円周方向に水冷通路C1を跨いで対向する2つの側壁部22C,22Dとに区別して捉えることが可能である。そして、本実施形態に係るコールドクルーシブル溶解炉Xは、周壁部22のうち外周壁部22Bにのみセグメント2の外部から水冷通路C1に連通する開放部24を形成し、この開放部24を、周壁部22のうち開放部24以外の部分(内周壁部22Aの全部、両側壁部22C,22Dの全部、及び外周壁部22Bのうち開放部24を除く部分)よりも電気抵抗率が高い水密材25によって閉塞している。具体的には、外周壁部22Bのうち周方向中央部分に、セグメント2の外部から水冷通路C1に連通する開放部24を形成し、この開放部24に水密材25を隙間無く配置している。   Here, as shown in FIGS. 3 and 4, the vertically long peripheral wall portion 22 in the segment 2 in the present embodiment includes an inner peripheral wall portion 22A that forms a region radially inward of the water cooling passage C1, and a water cooling passage C1. The outer peripheral wall portion 22B that forms a radially outer region, and the two side wall portions 22C that form a region between the inner peripheral wall portion 22A and the outer peripheral wall portion 22B and face each other across the water cooling passage C1 in the circumferential direction. , 22D can be distinguished. And the cold crucible melting furnace X which concerns on this embodiment forms the open part 24 connected to the water-cooling channel | path C1 from the exterior of the segment 2 only to the outer peripheral wall part 22B among the peripheral wall parts 22, and this open part 24 is used as a peripheral wall. A water-tight material having an electrical resistivity higher than that of the portion 22 other than the open portion 24 (all of the inner peripheral wall portion 22A, all of the side wall portions 22C and 22D, and the outer peripheral wall portion 22B excluding the open portion 24). 25. Specifically, an open portion 24 that communicates with the water cooling passage C1 from the outside of the segment 2 is formed in the central portion in the circumferential direction of the outer peripheral wall portion 22B, and the watertight material 25 is disposed in the open portion 24 without a gap. .

開放部24及び水密材25は、少なくとも周壁部22の胴体部10の外周に配置した誘導加熱コイルHと対向する高さ寸法に設定されている。電気的に絶縁で水密な材料としては、ゴム、合成樹脂、セラミック、非磁性ステンレス等を挙げることができ、これらの材料のうち適宜選択した材料から水密材25を形成している。本実施形態において、セグメント2のうちルツボ1の胴体部10を構成する周壁部22は、内周壁部22Aの全部、両側壁部22C,22Dの全部、及び外周壁部22Bのうち開放部24を除く部分を同じ素材から一体に形成したものである。したがって、周壁部22は、水冷通路Cを周回する方向において所定部分のみが開放部24によって分断されたものであると捉えることができる。なお、図1乃至図4では、水密材25を、前述の絶縁材4とは異なる所定のパターンを付して示している。   The open part 24 and the watertight member 25 are set to a height dimension facing at least the induction heating coil H disposed on the outer periphery of the body part 10 of the peripheral wall part 22. Examples of the electrically insulating and watertight material include rubber, synthetic resin, ceramic, nonmagnetic stainless steel, and the like, and the watertight material 25 is formed from a material appropriately selected from these materials. In this embodiment, the peripheral wall part 22 which comprises the trunk | drum 10 of the crucible 1 among the segments 2 has all the inner peripheral wall parts 22A, all the side wall parts 22C and 22D, and the open part 24 among the outer peripheral wall parts 22B. The part to be removed is integrally formed from the same material. Therefore, it can be understood that the peripheral wall portion 22 is a portion in which only a predetermined portion is divided by the opening portion 24 in the direction of circling the water cooling passage C. In FIG. 1 to FIG. 4, the watertight material 25 is shown with a predetermined pattern different from that of the insulating material 4 described above.

また、本実施形態では、内周壁部22A及び外周壁部22Bの径方向の厚みと、各側壁部22C,22Dの円周方向の厚みを、誘導加熱コイルHによって作られる磁場の浸透深さ(電磁誘導の浸透深さ)未満の厚みに設定している。誘導加熱コイルHによってセグメント2に発生し得る渦電流は、誘導加熱コイルHによって作られる磁場によって誘導されてセグメント2内部に流れる電流である。誘導加熱コイルHによって作られる磁場の浸透深さδは、セグメント2を構成する材料(内周壁部22Aの全部、両側壁部22C,22Dの全部、及び外周壁部22Bのうち開放部24を除く部分を構成する材料)の抵抗率ρと、誘導加熱コイルHに印加する電流の周波数(誘導加熱コイルHの周波数)fと、セグメント2を構成する材料(内周壁部22Aの全部、両側壁部22C,22Dの全部、及び外周壁部22Bのうち開放部24を除く部分を構成する材料)の透磁率μとの関係において、以下の式1の関係を有することから、当該関係に基づいて、内周壁部22A及び外周壁部22Bの径方向の厚みと、両側壁部22C,22Dの円周方向の厚みを適宜の値に設定すればよい。
δ=√{2・ρ/(ω・μ)} なお、ω=2πf …式1
In the present embodiment, the penetration depth of the magnetic field created by the induction heating coil H (the thickness in the radial direction of the inner peripheral wall portion 22A and the outer peripheral wall portion 22B and the thickness in the circumferential direction of the side wall portions 22C and 22D ( The thickness is set to less than the penetration depth of electromagnetic induction. The eddy current that can be generated in the segment 2 by the induction heating coil H is a current that is induced by the magnetic field generated by the induction heating coil H and flows inside the segment 2. The penetration depth δ of the magnetic field created by the induction heating coil H is the material constituting the segment 2 (all of the inner peripheral wall portion 22A, all of the side wall portions 22C, 22D, and the outer peripheral wall portion 22B, excluding the open portion 24). Resistivity ρ of the material constituting the portion), the frequency of the current applied to the induction heating coil H (frequency of the induction heating coil H) f, and the material constituting the segment 2 (all of the inner peripheral wall portion 22A, both side wall portions) In relation to the magnetic permeability μ of all of 22C and 22D and the material of the outer peripheral wall portion 22B excluding the open portion 24), based on the relationship, What is necessary is just to set the radial thickness of 22 A of inner peripheral wall parts and 22 A of outer peripheral wall parts, and the thickness of the circumferential direction of both side wall parts 22C and 22D to an appropriate value.
δ = √ {2 · ρ / (ω · μ)} where ω = 2πf Equation 1

架台Kは、図1に示すように、軸中心をルツボ1の軸中心に一致させた円筒形の柱状部K1と、柱状部K1の上端部からルツボ1の径方向外側に向かって突出する状態に設けられた鍔部K2とを備えている。鍔部K2の上面にルツボ1(セグメント2の取付部23)を載置した状態で、ボルトB及びナットNを用いてルツボ1を架台Kに固定している。この固定状態において、柱状部K1の内部空間、及び鍔部K2とセグメント2の底部21との間にそれぞれセグメント2の水冷通路C1に連通する空間が形成され、これらの空間に、セグメント2の空洞部C2内に配置した内パイプC3の下端に連続し且つ相互に連通する水平姿勢のパイプC8及び起立姿勢のパイプC9を配置している。   As shown in FIG. 1, the gantry K has a cylindrical columnar portion K1 whose axial center coincides with the axial center of the crucible 1, and a state in which the pedestal K protrudes radially outward from the upper end of the columnar portion K1. And a collar portion K2 provided on the head. The crucible 1 is fixed to the gantry K using bolts B and nuts N in a state where the crucible 1 (attachment portion 23 of the segment 2) is placed on the upper surface of the flange portion K2. In this fixed state, spaces that communicate with the water cooling passage C1 of the segment 2 are formed between the inner space of the columnar portion K1 and the flange portion K2 and the bottom portion 21 of the segment 2, and the space of the segment 2 is formed in these spaces. A horizontal posture pipe C8 and a standing posture pipe C9 which are continuous with and communicated with each other at the lower end of the inner pipe C3 disposed in the portion C2 are disposed.

誘導加熱コイルHは、胴体部10の外周面22bから所定距離離れた位置において胴体部10を取り巻くように螺旋状に配置され、任意の周波数の交流電力を出力可能な図示しない電源装置に接続されている。電源装置から誘導加熱コイルHに対して交流電力を供給する通電状態では、コイルHの周囲に交番磁場を発生させ、この交番磁場をルツボ1に収容された被溶解金属Wに浸透させて誘導加熱する。   The induction heating coil H is arranged in a spiral shape so as to surround the body portion 10 at a position away from the outer peripheral surface 22b of the body portion 10, and is connected to a power supply device (not shown) that can output AC power of an arbitrary frequency. ing. In an energized state in which AC power is supplied from the power supply device to the induction heating coil H, an alternating magnetic field is generated around the coil H, and this alternating magnetic field is infiltrated into the melted metal W accommodated in the crucible 1 to perform induction heating. To do.

被溶解金属Wとしては、純銅や銅合金の他、金、銀、アルミニウム、これら各金属の合金等の大きな熱伝導率を有した金属を挙げることができ、鉄やコバルト、チタン、ニッケル、ジルコニウム、ハフニウム、クロム、ニオブ、タンタル、モリブデン、ウラン、希土類金属、トリウム、これらの合金等を挙げることもできる。   Examples of the metal W to be melted include metals having a large thermal conductivity such as gold, silver, aluminum, and alloys of these metals in addition to pure copper and copper alloys, such as iron, cobalt, titanium, nickel, and zirconium. , Hafnium, chromium, niobium, tantalum, molybdenum, uranium, rare earth metals, thorium, and alloys thereof.

このような本実施形態に係るコールドクルーシブル溶解炉Xによれば、塊状や粉状の被溶解金属Wをルツボ1内に投入し、各セグメント2の水冷通路C1に冷却水を供給した状態で、誘導加熱コイルHに電源装置から交流電力を供給することによって、誘導加熱コイルHの周囲に交番磁場が生成され、その磁束が縦スリット3を通過してルツボ1の内側に透過することによって、被溶解金属Wに浸透し、被溶解金属Wを誘導加熱することができる。これにより、被溶解金属Wは、図1に示すように、溶融温度に昇温した表面側から溶解して溶湯Wbとなり、ルツボ1の底面壁に向かって流れ落ちる。そして、ルツボ1の底面壁に到達した溶湯Wbは、冷却手段Cによって適切な冷却状態に維持されているルツボ1により冷却されて凝固し、皿状に冷却固化したスカルWaを形成する。   According to such a cold crucible melting furnace X according to this embodiment, the molten metal W in a lump or powder form is charged into the crucible 1 and the cooling water is supplied to the water cooling passage C1 of each segment 2, By supplying AC power from the power supply device to the induction heating coil H, an alternating magnetic field is generated around the induction heating coil H, and the magnetic flux passes through the longitudinal slit 3 and passes inside the crucible 1, thereby It penetrates into the molten metal W, and the molten metal W can be induction heated. Thereby, as shown in FIG. 1, the melted metal W is melted from the surface side heated to the melting temperature to become the molten metal Wb and flows down toward the bottom wall of the crucible 1. Then, the molten metal Wb that has reached the bottom wall of the crucible 1 is cooled and solidified by the crucible 1 maintained in an appropriate cooling state by the cooling means C to form a skull Wa that has been cooled and solidified in a dish shape.

ここで、スカルWaが所定以上の厚みとなって冷却手段Cによるルツボ1の冷却能力よりも誘導加熱による加熱能力が上回ると、スカルWa上に溶湯Wbが滞留していくことになる。そして、滞留する溶湯Wbの量が増加すると、溶湯Wbが交番磁場と誘導電流との相互作用および重力の作用を受けることによって、周辺部から中央部にかけて盛り上がったドーム形状の外形を呈しながら撹拌されることになる。このような事象により、被溶解金属Wは、図1に示すように、ルツボ1の底面や内周面22aに沿って深皿状に形成されたスカルWaと、その上に滞留した状態の溶湯Wbとに分離した状態になり、ルツボ1を傾動させる等の適宜の方法で溶湯Wbをルツボ1から取り出すことができる。なお、スカルWa上に多量の溶湯Wbを形成して維持するためには、ルツボ1の溶湯Wbに対する抜熱量よりも大きな熱量で溶湯Wbが加熱されるように、誘導加熱コイルHへの電力供給を継続する必要がある。   Here, when the thickness of the skull Wa becomes greater than a predetermined value and the heating capability by induction heating exceeds the cooling capability of the crucible 1 by the cooling means C, the molten metal Wb stays on the skull Wa. When the amount of the molten metal Wb staying increases, the molten metal Wb is stirred while exhibiting a dome-shaped outer shape that rises from the peripheral part to the central part due to the interaction between the alternating magnetic field and the induced current and the action of gravity. Will be. Due to such an event, as shown in FIG. 1, the melted metal W includes a skull Wa formed in a deep dish shape along the bottom surface and the inner peripheral surface 22 a of the crucible 1, and the molten metal staying on the skull Wa. The molten metal Wb can be taken out of the crucible 1 by an appropriate method such as tilting the crucible 1. In order to form and maintain a large amount of molten metal Wb on the skull Wa, electric power is supplied to the induction heating coil H so that the molten metal Wb is heated with a heat amount larger than the amount of heat removed from the molten metal Wb of the crucible 1. Need to continue.

ところで、従来のコールドクルーシブル溶解炉Xであれば、投入電力のうち30%程度が、ルツボ1の誘導加熱による損失となる。これは、誘導加熱コイルHに高周波電流を通電すると、各セグメント2内において、図6及び図7に示すように、平面視において水冷通路C1を周回するような誘導電流(図6及び図7で電流方向を矢印で示す渦電流)が発生し、損失を起こすことが主な原因である。そして、投入電力の損失が大きいほど、溶解電力が低下し、ルツボ1内の被溶解金属Wへの電力投入割合(溶解効率)が悪くなる。   By the way, in the case of the conventional cold crucible melting furnace X, about 30% of the input power is lost due to induction heating of the crucible 1. This is because when an induction heating coil H is energized with a high frequency current, an induction current that circulates in the water-cooled passage C1 in a plan view in each segment 2 (in FIGS. 6 and 7). The main cause is that an eddy current (current direction indicated by an arrow) is generated and a loss occurs. Then, the larger the loss of input power, the lower the melting power and the worse the power input ratio (melting efficiency) to the metal W to be melted in the crucible 1.

一方、本実施形態に係るコールドクルーシブル溶解炉Xでは、各セグメント2のうちルツボ1の胴体部10を構成する周壁部22として、ルツボ1の外部から水冷通路C1に連通する開放部24を周壁部22の一部(外周壁部22B)に形成し、この開放部24を、内周壁部22Aよりも電気抵抗率が高い水密材25によって閉塞したものを適用している。このような本実施形態に係るコールドクルーシブル溶解炉Xによれば、ルツボ1の外部から水冷通路C1に連通するように形成した開放部24を、周壁部22のうち水冷通路C1よりも径方向内側の領域を形成する内周壁部22Aよりも電気抵抗率が高い水密材25によって閉塞しているため、各セグメント2内において水冷通路C1を周回する渦電流が流れる事態を防止・抑制することができる。その結果、ルツボ1の誘導加熱による投入電力の損失を大幅に低減することができ、溶解効率が向上する。   On the other hand, in the cold crucible melting furnace X according to the present embodiment, as the peripheral wall portion 22 that constitutes the body portion 10 of the crucible 1 among the segments 2, the open portion 24 that communicates with the water cooling passage C1 from the outside of the crucible 1 is a peripheral wall portion. A portion 22 (outer peripheral wall portion 22B) is formed, and the open portion 24 is closed by a watertight material 25 having a higher electrical resistivity than the inner peripheral wall portion 22A. According to such a cold crucible melting furnace X according to this embodiment, the open portion 24 formed so as to communicate with the water cooling passage C1 from the outside of the crucible 1 is radially inward of the peripheral wall portion 22 from the water cooling passage C1. Since the water-tight material 25 having a higher electrical resistivity than the inner peripheral wall portion 22A that forms the region is closed, it is possible to prevent or suppress a situation in which an eddy current circulating around the water-cooled passage C1 flows in each segment 2. . As a result, the loss of input power due to induction heating of the crucible 1 can be greatly reduced, and the melting efficiency is improved.

特に、本実施形態に係るコールドクルーシブル溶解炉Xでは、内周壁部22A及び外周壁部22Bの径方向の厚みと、各側壁部22C,22Dの円周方向の厚みを、誘導加熱コイルHによって作られる磁場の浸透深さ(電磁誘導の浸透深さ)未満の厚みに設定しているため、セグメント2内に発生する渦電流を低減することができ、ルツボ1の誘導加熱による投入電力の損失の更なる低減化、及び溶解効率の更なる上昇を図ることができる。   In particular, in the cold crucible melting furnace X according to the present embodiment, the radial thickness of the inner peripheral wall portion 22A and the outer peripheral wall portion 22B and the circumferential thickness of the side wall portions 22C and 22D are made by the induction heating coil H. Since the thickness is set to be less than the penetration depth of the magnetic field (electromagnetic induction penetration depth), the eddy current generated in the segment 2 can be reduced, and the loss of input power due to induction heating of the crucible 1 can be reduced. Further reduction and further increase in dissolution efficiency can be achieved.

また、本実施形態に係るコールドクルーシブル溶解炉Xによれば、開放部24を内周壁22Aよりも電気抵抗率が高い水密材25で閉塞することによって、水冷通路C1から開放部24に冷却水などの冷却媒体が漏れる事態を防止して、良好な水冷機能を確保することができ、セグメント2の周壁部22が異常に加熱される事態も防止・抑制することができ、ルツボ1に対する冷却手段Cの良好な冷却性能を発揮させることができ、ルツボ1の熱変形防止も同時に実現することができる。   Further, according to the cold crucible melting furnace X according to the present embodiment, the open portion 24 is closed with the watertight material 25 having a higher electrical resistivity than the inner peripheral wall 22A, thereby cooling water or the like from the water cooling passage C1 to the open portion 24. It is possible to prevent the cooling medium from leaking, to ensure a good water cooling function, to prevent / suppress the situation in which the peripheral wall portion 22 of the segment 2 is abnormally heated, and the cooling means C for the crucible 1 The good cooling performance can be exhibited, and thermal deformation prevention of the crucible 1 can be realized at the same time.

なお、本発明は上述した実施形態に限定されるものではない。例えば、上述の実施形態では、ルツボ1の外部から水冷通路C1に連通する開放部24を周壁部22の外周壁部22Bにのみ形成し、この開放部24を、内周壁部22Aよりも電気抵抗率が高い水密材25によって閉塞した態様を例示したが、図5(a)に示すように、ルツボ1の外部から水冷通路C1に連通する開放部24を、周壁部22の外周壁部22B、両側壁部22C,22Dにそれぞれ形成し、各開放部24を、内周壁部22Aよりも電気抵抗率が高い水密材25によって閉塞した構成を採用することもできる。   In addition, this invention is not limited to embodiment mentioned above. For example, in the above-described embodiment, the open part 24 communicating with the water cooling passage C1 from the outside of the crucible 1 is formed only in the outer peripheral wall part 22B of the peripheral wall part 22, and this open part 24 is more electrically resistant than the inner peripheral wall part 22A. Although the aspect which was obstruct | occluded with the watertight material 25 with a high rate was illustrated, as shown to Fig.5 (a), the open part 24 connected to the water cooling channel | path C1 from the exterior of the crucible 1 is made into outer peripheral wall part 22B of the peripheral wall part 22, It is also possible to adopt a configuration in which the opening portions 24 are formed on the side wall portions 22C and 22D, respectively, and the open portions 24 are closed by a watertight material 25 having a higher electrical resistivity than the inner peripheral wall portion 22A.

また、本発明では、図5(b)に示すように、両側壁部22C,22Dにのみ開放部24を形成し、各開放部24を、内周壁部22Aよりも電気抵抗率が高い水密材25によって閉塞した構成であっても構わない。なお、水冷通路の平面形状は、図4及び図5(a)に示す円形以外の形状、例えば図5(b)に示す四角形状であってもよい。   Moreover, in this invention, as shown in FIG.5 (b), the open part 24 is formed only in both wall part 22C, 22D, and each open part 24 is a watertight material whose electrical resistivity is higher than inner peripheral wall part 22A. A configuration closed by 25 may be used. The planar shape of the water cooling passage may be a shape other than the circular shape shown in FIGS. 4 and 5A, for example, a rectangular shape shown in FIG. 5B.

さらにはまた、セグメントの周壁部のうち内周壁部を除く他の壁部、つまり、外周壁部及び両側壁部に相当する部分全体を連続する1つの開放部に設定し、この開放部を内周壁部よりも電気抵抗率が高い水密材によって閉塞した構成を採用することもできる。この場合、内周壁部と、水密材とによって囲まれる領域に水冷通路が確保されることになる。   Furthermore, the other wall portions excluding the inner peripheral wall portion of the peripheral wall portion of the segment, that is, the entire portion corresponding to the outer peripheral wall portion and the both side wall portions are set as one continuous open portion, and this open portion is A configuration closed by a watertight material having an electric resistivity higher than that of the peripheral wall portion can also be adopted. In this case, a water cooling passage is secured in a region surrounded by the inner peripheral wall portion and the watertight material.

本発明において、開放部の形状や数は適宜選択・変更することができ、開放部の形状に応じた水密材を適用することで、開放部を適切に閉塞することが可能である。例えば、外周壁部や両側壁部の少なくとも1つの壁部に2つ以上の開放部を形成し(例えば外周壁部において周方向に離間した複数位置にそれぞれ開放部を形成し)、各開放部を水密材で閉塞する構成を採用してもよい。   In the present invention, the shape and number of the open portions can be appropriately selected and changed, and the open portions can be appropriately closed by applying a watertight material according to the shape of the open portions. For example, two or more open portions are formed in at least one wall portion of the outer peripheral wall portion or both side wall portions (for example, open portions are formed at a plurality of positions spaced apart in the circumferential direction on the outer peripheral wall portion), and each open portion You may employ | adopt the structure which obstruct | occludes with a watertight material.

また、内周壁部及び外周壁部の径方向の厚みや、各側壁部の円周方向の厚みよりも薄い浸透深さで誘導加熱が行われるように、高周波電力の周波数を設定してもよい。   Further, the frequency of the high-frequency power may be set so that induction heating is performed with a penetration depth thinner than the radial thickness of the inner peripheral wall portion and the outer peripheral wall portion and the circumferential thickness of each side wall portion. .

また、セグメントとして、ルツボの底面壁を構成する底部を備えていないものを適用することも可能であり、この場合、ルツボの胴体部の内径より僅かに小さい直径に設定された底板を、ルツボの胴体部に対して上下動可能に配置すればよい。   It is also possible to apply a segment that does not have a bottom part that constitutes the bottom wall of the crucible. In this case, a bottom plate that is set to a diameter slightly smaller than the inner diameter of the crucible body part is used. What is necessary is just to arrange | position so that it can move up and down with respect to a trunk | drum.

その他、各部の具体的構成についても上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each part is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

1…ルツボ
10…胴体部
2…セグメント
22A…内周壁部
22B…外周壁部
22C,22D…側壁部
24…開放部
25…水密材
3…縦スリット
4…絶縁材
C1…水冷通路
H…誘導加熱コイル
X…コールドクルーシブル溶解炉
DESCRIPTION OF SYMBOLS 1 ... Crucible 10 ... Body part 2 ... Segment 22A ... Inner peripheral wall part 22B ... Outer peripheral wall part 22C, 22D ... Side wall part 24 ... Opening part 25 ... Watertight material 3 ... Vertical slit 4 ... Insulating material C1 ... Water cooling passage H ... Induction heating Coil X ... Cold Crucible Melting Furnace

Claims (2)

ルツボの胴体部の外周に配置された誘導加熱コイルによって前記ルツボ内の被溶解金属を誘導加熱して溶解することが可能なコールドクルーシブル溶解炉であり、
前記胴体部は、高さ方向に延伸する管状の水冷通路が内部に形成された複数のセグメントを、当該胴体部の径方向に沿って放射状に延伸し且つ所定の絶縁材で閉塞した縦スリットを介して円周方向に並ぶ状態で配置したものであり、
前記セグメントは、前記水冷通路よりも前記径方向内側の領域を形成する内周壁部と、前記水冷通路よりも前記径方向外側の領域を形成する外周壁部と、前記内周壁部と前記外周壁部の間の領域を形成し且つ前記円周方向に前記水冷通路を跨いで対向する2つの側壁部とを備え、前記外周壁部又は前記2つの側壁部のうち少なくとも1つの壁部に、当該セグメントの外部から前記水冷通路に連通する開放部が形成され、前記内周壁部よりも電気抵抗率が高い水密材によって前記開放部を閉塞していることを特徴とするコールドクルーシブル溶解炉。
A cold crucible melting furnace capable of inductively heating and melting a metal to be melted in the crucible by an induction heating coil arranged on the outer periphery of the body part of the crucible;
The body portion includes a vertical slit in which a plurality of segments formed in a tubular water-cooled passage extending in a height direction are radially extended along the radial direction of the body portion and closed with a predetermined insulating material. Are arranged in a line in the circumferential direction through
The segment includes an inner peripheral wall portion that forms a radially inner region from the water cooling passage, an outer peripheral wall portion that forms a radially outer region from the water cooling passage, the inner peripheral wall portion, and the outer peripheral wall. Two sidewall portions that form a region between the portions and face each other across the water cooling passage in the circumferential direction, and at least one wall portion of the outer circumferential wall portion or the two sidewall portions, A cold crucible melting furnace characterized in that an open portion communicating with the water cooling passage from the outside of the segment is formed, and the open portion is closed with a watertight material having a higher electrical resistivity than the inner peripheral wall portion.
前記内周壁部、前記外周壁部、及び前記側壁部の前記径方向または前記円周方向の厚みを、前記誘導加熱コイルで発生する磁束の浸透深さ未満の厚みに設定している請求項1に記載のコールドクルーシブル溶解炉。 The thickness in the radial direction or the circumferential direction of the inner peripheral wall portion, the outer peripheral wall portion, and the side wall portion is set to a thickness less than a penetration depth of magnetic flux generated in the induction heating coil. The cold crucible melting furnace described in 1.
JP2016085078A 2016-04-21 2016-04-21 Cold Crucible Melting Pot Active JP6767652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016085078A JP6767652B2 (en) 2016-04-21 2016-04-21 Cold Crucible Melting Pot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016085078A JP6767652B2 (en) 2016-04-21 2016-04-21 Cold Crucible Melting Pot

Publications (2)

Publication Number Publication Date
JP2017194233A true JP2017194233A (en) 2017-10-26
JP6767652B2 JP6767652B2 (en) 2020-10-14

Family

ID=60154685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016085078A Active JP6767652B2 (en) 2016-04-21 2016-04-21 Cold Crucible Melting Pot

Country Status (1)

Country Link
JP (1) JP6767652B2 (en)

Also Published As

Publication number Publication date
JP6767652B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
US5109389A (en) Apparatus for generating an inductive heating field which interacts with metallic stock in a crucible
JP6438007B2 (en) Electromagnetic induction furnace for melting a mixture of metal and oxide, a typical example being corium, and its use
KR101956914B1 (en) Open bottom electric induction cold crucible for use in electromagnetic casting of ingots
JPH10103875A (en) Cold crucible induction melting furnace
JP2017194233A (en) Cold Crucible Melting Furnace
US3628948A (en) Electric arc vacuum melting processes
JP6842030B2 (en) Bottom hot water nozzle, bottom hot water nozzle type melting furnace
JP4774590B2 (en) Induction heating melting furnace
JP2007163057A (en) Cold crucible induction melting furnace
JP5000149B2 (en) Cold Crucible Induction Dissolver
JP4378818B2 (en) Induction heating melting furnace
JP2006153362A (en) Metal melting and tapping device, and its casting device
PL71698B1 (en)
JP2019186132A (en) Induction heating dissolution device
JP2008180471A (en) Tapping electromagnetic nozzle device for cold crucible melting furnace and tapping method
JP2008051376A (en) Induction fusing apparatus
JP2001241858A (en) Guide tube structure for electromagnetic flux concentration
JP2015021691A (en) Cold crucible fusion furnace and manufacturing method thereof
JP5621839B2 (en) Electromagnetic nozzle device for hot water of cold crucible melting furnace
US3505460A (en) Electric arc vacuum furnace employing nonconsumable electrode
JP4496791B2 (en) Electromagnetic hot water nozzle and metal melting / hot water device using the same
JPH08155591A (en) Continuous casting apparatus by induction heating having magnetic flux shielding device and melting furnace
RU2619458C1 (en) Cold tigel
JP2008049358A (en) Induction smelting apparatus
US3686420A (en) Furnace and electrode apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6767652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150