JP2017192930A - ヒーター内蔵型の水素分離モジュールとこれを用いた水素分離装置 - Google Patents

ヒーター内蔵型の水素分離モジュールとこれを用いた水素分離装置 Download PDF

Info

Publication number
JP2017192930A
JP2017192930A JP2016096488A JP2016096488A JP2017192930A JP 2017192930 A JP2017192930 A JP 2017192930A JP 2016096488 A JP2016096488 A JP 2016096488A JP 2016096488 A JP2016096488 A JP 2016096488A JP 2017192930 A JP2017192930 A JP 2017192930A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen separation
flow path
fluid
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016096488A
Other languages
English (en)
Other versions
JP6619289B2 (ja
Inventor
裕康 田賀
Hiroyasu Taga
裕康 田賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seisen Co Ltd
Original Assignee
Nippon Seisen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seisen Co Ltd filed Critical Nippon Seisen Co Ltd
Priority to JP2016096488A priority Critical patent/JP6619289B2/ja
Publication of JP2017192930A publication Critical patent/JP2017192930A/ja
Application granted granted Critical
Publication of JP6619289B2 publication Critical patent/JP6619289B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

【課題】 高純度の水素ガスを効率よく透過分離するとともに、加熱手段をその筒型モジュールの中心部に設けるという内部加熱方式を採用することで、使用性に優れたヒーター内蔵型の水素分離モジュール及び水素分離装置の提供を目的とする。【解決手段】 ハウジング容器2と、ハウジング容器2内に、系外から供給される被処理流体X中の水素のみを選択的に透過分離する筒状の水素分離部材3と、水素分離部材3の内周側に同心に配置された迂回部材5と、更に迂回部材5の内周側に被処理流体Xを所定温度に加熱する加熱部材用の加熱室4を備えるとともに、導入口7から流入する被処理流体Xは、加熱室4の外周面と迂回部材5の隙間内を流通する間に所定温度に加熱される第一流路6Aと、第一流路6Aの先端部において、その流動方向を反転する反転領域6Bと、迂回部材5の外周面側に設けられ、第一流路6Aとは同心でかつ逆向きに流通する間に水素の透過分離がなされる第二流路6Cを経て供給する。【選択図】図1

Description

本発明は、水素を含有する被処理流体から水素を効率的に透過分離する水素分離装置に関し、特に該被処理流体をその透過分離に先立って必要温度に加熱する加熱機能を内蔵し、加熱機能と水素透過分離機能を同時に備えるヒーター内蔵型の水素分離モジュール及び水素分離装置に関する。
水素は、これまでの火力発電や原子力発電に代わる次世代型のクリーンエネルギーとして重要視され、例えば水の電気分解による方法以外に、例えばメタン、プロパンガス、都市ガスなどの各種原料ガスから水蒸気改質によって水素ガスを分離抽出する方法、更には有機ハイドライドによる触媒技術を用いる方法など、さまざまな技術開発が取組みされている。
特に、前記水蒸気改質によって水素ガスを分離抽出する方法では、水素ガスのみを極めて高い純度で且つ効率よく生成できる利点があり、例えばPd合金やPd−Cu合金など水素ガスを選択的に透過分離できる金属製の薄膜材料を用いて構成した水素分離モジュールや水素製造装置に利用される。
その一例として、例えば図7はインライン型の水素分離膜モジュール20が示され、その構造は、例えば円筒形状のハウジング容器21と、その内部にほぼ同軸に組み込まれた水素分離膜部材22を備えるとともに、該分離膜部材22は、その上流側と下流側を実質的に隔離して内部に処理室22aを形成するように、天面に蓋部材23を設けたカップ形状のものが採用されている。
そして、原料用の被処理ガス流体Xは、系外から導入させる導入口XAから前記処理室22aに導入され、前記水素分離膜部材22での透過分離によって該被処理流体中に含まれる水素ガスのみを生成し、得られた水素ガスはその流出口24から次工程に送られる一方、前記処理室22a内に残留する残留ガスや未反応のまま残った前記被処理流体は、別途これを回収する回収口XBから取り出されるように構成されている。
ところで、このような水素分離技術では、その原料ガス流体から容易に水素ガスを分離抽出できるが、その反応は、予め該原料ガスを例えば400〜500℃程度の所定の反応温度に加熱することが必要である。加熱方法としては、例えばその前段階で別途加熱した上でインライン方式で供給する方法の他、例えば図6に示すように、円筒状に構成したモジュールの全体を包むようにその外周側に配した外部ヒーター25を設けることが行われている。(例えば、特許文献1〜3)
特開2015−171705号公報 特開2005−44709号公報 特開2004−75442号公報
しかしながら、これら各先行技術は、いずれも導入する原料ガスの被処理流体は、透過分離する分離膜材料に対して良好な供給状態が得られ難く、滞留や部分的な供給ムラを生じやすく、所定の分離膜材料の全体を通じて均一かつ効率的な供給が得られない他、その加熱処理についても、別途の加熱手段を設けたり、そのモジュールを包むように外側に配した外部加熱方式で行われるため、必要以上に大型の加熱手段を要するとともに、エネルギー効率的にも熱損失が高くなり、結果的に分離膜モジュール自体の大型化を招くなど、流通特性や加熱特性の面で改善が求められている。
本発明は、上記課題に鑑み、高純度の水素ガスを効率よく透過分離するとともに、加熱手段をその筒型モジュールの中心部に設けるという内部加熱方式を採用することで、熱損失の低減ならびに分離膜モジュール自体の大型化を抑制し、均一かつ効率的な水素供給を得ることが可能な使用性に優れたヒーター内蔵型の水素分離モジュール及び水素分離装置の提供を目的とする。
すなわち、本願発明の請求項1に係わる発明は、ハウジング容器と、その容器内に、系外から供給される被処理流体中の水素を選択的に透過分離する筒状の水素分離部材と、該分離部材の内周側に同心に配置された迂回部材と、更に該迂回部材の内周側に、前記被処理流体を所定温度に加熱する加熱部材用の加熱室を備えるとともに、導入口から流入する該被処理流体は、前記加熱室の外周面と前記迂回部材の隙間内を流通する間に所定温度に加熱される第一流路と、該第一流路の先端部において、その流動方向を反転する反転領域と、前記迂回部材の外周面側に設けられ、前記第一流路とは同心でかつ逆向きに流通する間に水素の透過分離がなされる第二流路を経て供給されるように構成したことを特徴とするヒーター内蔵型の水素分離モジュールである。
また、請求項2に係わる発明は、前記迂回部材の先端部は、その先端面を切欠きした複数の切欠孔を備えるもの、請求項3に係わる発明は、前記迂回部材は、その先端切欠部を介して、前記水素分離部材を区画保持する他方側のリング板に当接又は固着されてなるもの、請求項4に係わる発明は、前記第一流路と第二流路は、各々0.1〜10mmの隙間を持って構成され、請求項5に係わる発明は、前記水素分離部材は、水素透過分離機能を持つ水素透過膜と、その外表面を包み耐圧支持する金属製の緩衝シート及び金属多孔板との積層構造品で構成されたものであるヒーター内蔵型の水素分離モジュールである。
更に請求項6に係わる発明は、水素分離装置として、前記請求項1〜5のいずれかに記載のヒーター内蔵型の水素分離モジュールを、前記被処理流体から水素ガスを生成する所定の供給、排出用の配管に各々接続して構成し、かつ前記加熱室内に加熱手段を設けたことを特徴とするものである。
このように、本願発明はその内部に加熱室を設けるとともに、水素の透過分離の一次側において、その加熱室の壁面に沿って被処理流体を効果的に供給するように、迂回部材を介在させることで複雑な迂回流路を形成することで、被処理流体の滞留の問題解決と最適な加熱特性を同時に達成させる利点を有する。
すなわち、この構成によって、導入する被処理流体は、まず加熱室に近い第一流路で効果的な加熱処理がなされるとともに、その流路は迂回部材によって所定の開口隙間を持つ比較的幅狭に調整されることから、その被処理流体は流速を高めてその幅狭の第一流路内を流通して先端部まで送給でき、そのまま迂回させて第二流路に送給できるもので、このような複雑かつ幅狭の流路構造によって滞留が防止される。
しかも、その流路は迂回部材の介在によって、特に第一流路は加熱室により隣接することから、最適な加熱処理が行われ、加熱エネルギーを有効に利用できるとともに、その外側に形成される第二流路においても、その加熱状態をなお保持できる環境を備えるため、モジュール全体としてより少ない熱エネルギーでより安定した加熱状態が得られものとなる、したがって、本発明によれば被処理流体の供給流速のアップによる滞留現象を抑制しながら良好な加熱状態を得ることができる。
また、本願請求項2〜5の発明によれば、その効果は更に向上するとともに、請求項6の発明によってより効率的な水素製造装置が得られる。
本発明に係わる水素分離モジュールの一形態を示す断面図である。 迂回部材の要部拡大斜視図である。 反転領域の近傍を示す断面拡大図である。 透過分離部材の一例を示す断面の拡大図である。 図1の水素分離モジュールの左側面図である。 水素分離モジュールの他の形態として、複数のモジュールを組込みした複合タイプの概略図である。 図6Aの左側面概略図である。 水素分離モジュールの従来型の一例を示す断面図である。
図1に示すように、本発明の水素分離モジュール1(以下、単にモジュールとも言う)は、ハウジング容器2と、ハウジング容器2内に水素分離部材3、及びその中央部に軸芯方向に伸びた加熱室4と、更に被処理流体Xの供給状態を最適化する為の迂回部材5を備えるもので、被処理流体Xは、加熱室4と迂回部材5との第一流路6Aを流通する間に所定温度に加熱された後、被処理流体Xの供給方向を転換する反転領域6Bを経て、更にその外側を逆方向に流れる第二流路6Cの段階で水素ガスが透過分離するように構成されることを基本とする。
水素透過分離の基本原理は、従来から広く知られており(例えば、月刊誌「機能材料」(2003年No.4 P.76〜P.87))、例えば天然ガスやプロパンガス等の被処理流体中の水素分子が、前記分離部材に接触すると、その瞬間に水素原子に乖離してイオン化し、プロトンになってその分離膜内部を通過する。そして、裏面側に達した時点でエレクトロンと結合することで水素分子になるものと説明される。
本発明は、水素透過分離の上流側(水素分離膜への流入一次側/モジュールの中心側)に着目し、加熱内成型と被処理流入の通路形成を調整することで、利用性と熱効率に優れ、効率的な水素透過分離モジュールをもたらすものとし、更にこのモジュールに加熱手段を組込み、加熱処理を同時に行う水素分離装置を構成することができる。以下、実施例により本発明の内容を図面とともに説明する。
本形態では、ハウジング容器2、水素分離部材3、加熱室4及び迂回部材5を各々同心に配置した断面円形の筒状品を示し、例えばハウジング容器2は、実質的に水素分離部材3を被包しかつ外界と隔離するように密閉構造をなす。その形状や構造は必ずしもこれに限るものではなく、またその形状寸法も使用目的及び内蔵する各部材を考慮して任意に設定される。
すなわち、ハウジング容器2の断面形状については、円形以外に楕円や角型形状品などとして全体を一体に成形したもの、あるいはその胴部2Aと端部材2Bを各々別体にしたものを例えば溶接で一体的に構成することもでき、図1では、その端部材2Bはキャップ状にしたものが用いられている。
モジュール1は、ハウジング容器2の一方側の端部材2Bに、その処理に使用される被処理流体Xを導入する導入口7と、導管7Aを通じて内部の第一流路6Aを経て、更にその外方に設けた前記第二流路6C内で水素ガスを透過分離して次の工程に送給する送給口9を備えるとともに、流路内に残留する残留ガスや未処理状態の被処理流体Xを別途回収する回収口8を有する。またハウジング容器2の他方側の端部材2Bには、その中央部に前記加熱室4をなす比較的大径の開口4Aと、前記送給口9を持つ供給部材9Aが用いられ、配管及び継手を通じて次工程に送られる。
その構成で、被処理流体Xは、図1の矢印に示すように導入口7から導入され、一旦加熱室4の天板4Bによって放射状に分散した後、加熱室4と迂回部材5がなす長手方向に伸びた第一流路6A内を通り送給される。なお、天板4Bの中点近傍には、被処理流体Xの分散の円滑性を高める為に例えば半球状乃至円錐状の膨出部4B1を設けることも好ましい。
第一流路6Aは、迂回部材5によって比較的狭い流路を形成している。また第一流路6A内を通る被処理流体Xは、その使用時に加熱室4に組み込まれる加熱部材Hによって水素の透過分離反応に必要な温度(例えば350〜550℃程度)にまで加熱され、同時にその流速を高めて次工程に送り込まれる。第一流路6Aの離間距離の大小は、被処理流体Xの流速に影響し、第一流路6Aの離間距離を小さくすることで被処理流体Xの流速を高めることができ、その結果、流通段階における被処理流体Xの滞留を軽減することができる。その為、第一流路6A内の隙間間隔は、例えば0.1〜10mm、好ましくは0.5〜7mmに設定することが望ましい。
第一流路6Aの離間距離が例えば0.1mm未満の狭幅なものでは、十分な被処理流体Xの供給が得られ難く水素ガスの生成効率が低下することとなる。逆に10mmを超えるような広幅なものでは、加熱部材Hによって加熱される被処理流体の保持温度が部分毎にバラツキを持ち、水素分離のエネルギー効率面で好ましいものとはなり難く、また流速不足による滞留の改善も期待し難い。
また、加熱部材Hは例えば棒状の長尺品が用いられ、加熱室4内を前記所定温度に加熱可能な特性を備えるものが採用される。図1はその一例で、加熱部材H全体を1本の太径棒状品で構成しているが、これに限らず例えば細径の加熱部材H1、H2、・・・の複数本を束状に集めて配置することも、また各々を別々に設けた複数の小部屋内に挿入して用いることもできる。図5は、これらをその断面内の円周線上に任意間隔毎に設けている。
迂回部材5は、本形態では、導入口7を持つ導管7Aの先端に設けたリング板7Bの外周部に、その一端を取り付けられる筒体であって、その先端部分は図2のように、周面の一部を切欠きすることで構成した複数の切欠き部5Aを備えるものが用いられる。
この切欠き部5Aは、実質的に第一流路6Aの流れ方向を逆向きに反転する反転領域6Bを構成するものであり、図2のように被処理流体Xが所定の流速で流通する十分な開口面積を持つように、その大きさや形状、切欠き数などが適宜調整される。切欠き部5Aは、例えば半径1〜10mm程度の半円形状の大きさで、かつその点数は2〜20点程度を設けることで形成され、例えば、切欠き部5Aを連続的な山型形状にして、その周面全体に連続的に設けることもできる。
また迂回部材5の先端部は、例えば水素分離部材3を取り付ける一方の保持部材3Aに当接し又は固着することができ、被処理流体Xは、切欠き部5Aによって流通方向が反転し、次の第二流路6Cに送られ水素ガスの透過分離処理が行われる。反転領域6Bは、このような個別形成した切欠き部5Aに代えて、単に迂回部材6Aの長さを減じることで保持部材3Aとの間に所定隙間を設けるものでもよい。その場合は、迂回部材6Aの先端がフリー状態になる為、別途の保持手段を講じることが望まれる。
第二流路6Cは、水素分離部材3の長手方向に沿って、かつ第一流路6Aの外周側近傍に非処理流体Xが逆向きに流れる流路として形成される。その為、第一流路6Aの領域内で加熱された被処理流体Xは、その温度を維持したまま第二流路6Cに送られ、第二流路6C内でも温度が著しく低下することはない。従って、分離膜モジュール自体を大型化させることなく熱損失の低減が最小限の状態で熱エネルギーを有効活用することができ、保温効果を合わせ持つものとなる。
第二流路6Cは、迂回部材5の外周面と水素分離部材3との間に形成される隙間空間を意味する。第二流路6Cの隙間間隔は、第一流路6Aと同程度の離間距離を持つように設定されるが、本発明はこれに限定されず、第一流路6Aよりもやや広幅、例えば1.01〜3倍、より適したものとして1.2〜2倍程度になるように設定しても良い。第二流路6Cをこのようなやや広幅に形成することで、第二流路6C内を流れる被処理流体Xの流速は、第一流路6Aの流速よりも減じることとなる。従って、第二流路6C内での被処理流体Xの滞留時間を大きくすることができ、被処理流体Xと水素分離部材3との接触頻度も大きくなることから、水素分離がより効率的かつ十分に行われるようになる。その結果、被処理流体Xが未処理状態のまま回収口8から排出される、いわゆる水素生成が行われなかった未処理分の被処理流体Xの割合を減少することが可能となる。
図3に示すように、反転領域6B近傍の構造として第一流路6Aから反転領域6Bにかけての第一曲面R1と、反転領域6Bから第二流路6Cにかけての第二曲面R2の屈曲半径を比較した場合、第一曲面R1の方が第二曲面R2よりも屈曲半径を大きく構成しても良い。このような構成により、被処理流体Xは、反転領域6B近傍でも第一曲面R1により流通抵抗が減じることでスムーズに流れる。そして、反転領域6Bに達した被処理流体Xは、第一曲面R1よりも屈曲半径が小さい第二曲面R2により、被処理流体Xの滞留を抑制しつつ適度な流速まで減速する。
従って、被処理流体Xの流路への円滑な導入と未処理分の被処理流体Xの割合の減少を両立することができ、好適な水素分離が可能となる。
図4を参照して、水素分離部材3は、被処理流体Xに含有する水素原子を選択的に透過して水素ガスとして生成する機能を持つ、特定の金属材料で構成された薄膜状の水素分離膜Mが利用される。その透過機能を持つ水素分離膜Mは、従来から広く知られおり、例えば特開2007−90295号公報、特開2008−155118号公報などが開示するパラジウム金属、バナジウム金属等の他、それら金属の合金材料であるパラジウム−銅合金、パラジウム−銀合金、バナジウム−ニッケル合金などの種々合金製の薄膜材料が採用される。
水素分離膜Mの膜厚は、本発明では特に制限されず、前記従来技術等が開示するような例えば5〜50μmの膜厚さのものが特性的に好ましい。また、水素分離部材3の大きさや形状は、その使用目的や処理能力を考慮し、かつハウジング容器2内に収納可能な範囲で設定され、例えば断面円形の筒体品では、直径10〜300mmと長さ50〜1000mmを持つように成形される。
ところで、このような薄膜状の水素分離膜Mを用いる場合、被処理流体Xはその内周側から一定の負荷圧を加えた加圧状態で供給される為、水素分離膜Mはその負荷圧に耐え得る構造が必要となる。その方法として、本形態では図4のように水素分離膜Mの外周側に、これを被包してその供給圧力(内圧)を受け止める被包部材Cを配した積層化を採用している。
被包部材Cは、例えばパンチングプレート(穴開き多孔板)Pと、その開口縁部によって水素分離膜Mが部分的に押圧変形して破損することを予防する多孔質構造の緩衝シートSを介在するものとしている。緩衝シートSは、例えばステンレス鋼、ニッケル金属、ニッケル合金等の無機製の金属繊維材料でなる不織布焼結シートや粉末成形シート品が採用され、一定の柔軟性や弾力性とともに加工性や溶接性等を備えることが好ましい。
また、不織布焼結シート品にあっては、その単一の不織布層でなるものでも2以上の層を適宜積層したものでもよく、更にこれら不織布層と水素分離膜Mとの界面に、例えば同様金属製のスクリーンメッシュ等を配置した多層構造の複合積層材料で構成することもできる。このスクリーンメッシュにより、不織布層の構成フィラメントが水素分離膜Mに固着することを防止し、これにより及ぼされる悪影響を軽減することもできる。
パンチングプレートPは、例えば特開2008−246430号公報が開示するように、ほぼ等間隔に打ち抜きされた小孔を持つ金属多孔板が採用される。
水素分離部材3をこのような多層の積層構造にし、かつ被処理流体Xをその内方からin−out方向に供給する形態のものでは、その被処理流体Xの供給圧力によって水素分離膜Mを外方に押し広げることができ、水素分離膜Mに仮にシワや緩みが見られるものでも常に所定張力で張設されるとともに、その供給圧は被包部材Cによって十分な耐圧性で保護されることから、破損などが防止できる。その為、水素分離膜Mと、パンチングプレートP及び緩衝シートS等の被包部材Cは、各々を単に重ね合わせた積層状態で使用できる他、例えばその全体又は一部同士を予め結合した一体品として用いることもできる。
また水素分離部材3は、その両端縁部を各々別製の保持部材3Aと流入側に位置する第二保持部材3Bに各々リークなく固着され、更に第二保持部材3Bは、流入側の導管7Aの周面との間に、第二流路6C内に残留する残留ガスや水素分離し得なかった未処理状態の原料ガスを回収口8に送り出す回収路を持つように、その対面間に所定の隙間を備える。
こうして、モジュール1の加熱室4内に所定の加熱手段を付加することで水素製造装置を構成し、水素分離部材3を透過分離して得られた水素ガスは、順次送給口9から外部(次工程)に送給され、例えば燃料電池用のエネルギー源として使用される。この場合、前記加熱手段は、同図のような加熱部材Hを挿入する方法に代えて、例えば加熱室4の開口4A側からガスバーナーを吹き付けることで直接加熱する方式のものであってもよい。
本形態の水素分離モジュール1は、そのハウジング容器2内に単一の水素分離部材3を配置する他、例えば図6A、図6Bのように水素分離モジュール1からハウジング容器2と導入口7と回収口8と送給口9を除いた水素分離内部モジュール100(いわゆる内部が露出した状態。図6A、図6Bにおける破線で概略表示しているもの。)の複数を並列配置し組み合わせて内蔵させることで、より大容量の複合型モジュールZを構成することもできる。この場合の送給口9は、複合型モジュールZ側に設ける。またその処理条件としては、好ましくは下流側の水素分圧を上流側の水素分圧未満とし、例えば0〜2気圧程度の過負荷状態で行うことができる。各水素分離内部モジュール100で生成された水素ガスは、送給口9から送給される。図6A、図6Bの例では、複合型モジュールZの送給口9の流路を中心軸(図6A中の一点鎖線、図6Bの送給口9の中心)として、その中心軸の周囲に5つの水素分離内部モジュール100が複合型モジュールZに内蔵されている。図6Aおよび図6Bは共に概略図であることから水素分離内部モジュール100の詳細な記載を割愛しているが、複合型モジュールZ内の各水素分離内部モジュール100は、図1に示す水素分離モジュール1からハウジング容器2と導入口7と回収口8と送給口9を除いたものと同一構成のものに限らず、異なる構成のものを組み合わせて実施しても良い。また、水素分離内部モジュール100の配置や設置個数についても同様である。
こうして水素分離モジュール及びこれを用いた水素製造装置による本願発明者の評価試験によれば、原料ガスの滞留や供給ムラを低減して95%以上の水素回収率を達成した試験結果が得られ、また、水素分離モジュールの占有容積についても、従来方式である外部加熱のみによる場合と比して、約2/3以下にまで低減できたこと。さらに、その場合の加熱におけるエネルギー効率についても、1/2以下まで低減して熱損失を軽減できることが確認された。
また、複数の水素分離内部モジュール100を図6Aのような複合型モジュールZに内蔵する例で説明したが、本発明はこれに限定されず、図示しないが、単純に水素分離モジュール1をそのまま並列接続した状態で実施しても良い。この時、各水素分離モジュール1は、複合型モジュールZに内蔵した状態で実施しても良いし、複合型モジュールZを使用せず露出した状態で実施しても良い。
また、並列接続は、図示しない連結部材を用いて導入口7同士を接続しても良いし、回収口8同士を接続しても良いし、送給口9同士を接続しても良いし、これらを併用することで一元管理する方法を採用しても良い。導入口7、回収口8、送給口9それぞれの水素分離モジュール1毎に別途連結部材で並列接続することで、仮に不具合が発生した場合においても、該当する水素分離モジュール1のみを交換すれば良い。その場合は、例えば送給口9に図示しない水素濃度センサを設け、送給口9から送給される水素ガス濃度を水素濃度センサが規定値を下回った値を検出することを条件に外部報知を行い、使用者は、この外部報知を受けて水素分離モジュール1を交換することが好ましい。
更に、水素濃度センサを不純物濃度センサに置き換え、送給口9から送給される水素以外の不純物濃度を不純物濃度センサが規定値を上回った値を検出することを条件に外部報知を行うもので実施しても良い。
本発明は、以上説明のように加熱ヒーターを内蔵型とすることで小型化でき、その取扱い性を高めるとともに、熱エネルギー的にも優れることから、例えばこれを複数組み合わせることでその性能はより向上でき、例えばインライン型としての利用性を高めることができる。
1 水素分離モジュール
2 ハウジング容器
3 水素分離部材
4 加熱室
5 迂回部材
6A 第一流路
6B 反転領域
6C 第二流路
7 導入口
8 回収口
9 送給口
11 外装筒体
H 加熱部材

Claims (6)

  1. ハウジング容器と、
    その容器内に、系外から供給される被処理流体中の水素を選択的に透過分離する筒状の水素分離部材と、
    該水素分離部材の内周側に同心に配置された迂回部材と、
    更に該迂回部材の内周側に、前記被処理流体を所定温度に加熱する加熱部材用の加熱室を備えるとともに、
    導入口から流入する該被処理流体は、前記加熱室の外周面と前記迂回部材の隙間内を流通する間に所定温度に加熱される第一流路と、
    該第一流路の先端部において、その流動方向を反転する反転領域と、
    前記迂回部材の外周面側に設けられ、前記第一流路とは同心でかつ逆向きに流通する間に水素の透過分離がなされる第二流路を経て供給されるように構成したことを特徴とするヒーター内蔵型の水素分離モジュール。
  2. 前記迂回部材の先端部は、その先端面を切欠きした複数の切欠孔を備えるものである請求項1に記載のヒーター内蔵型の水素分離モジュール。
  3. 前記迂回部材は、その先端切欠部を介して、前記水素分離部材を区画保持する他方側のリング板に当接又は固着されてなる請求項2に記載のヒーター内蔵型の水素分離モジュール。
  4. 前記第一流路と第二流路は、各々0.1〜10mmの隙間を持って構成されている請求項1〜3のいずれかに記載のヒーター内蔵型の水素分離モジュール。
  5. 前記水素分離部材は、水素透過分離機能を持つ水素透過膜と、その外表面を包み耐圧支持する金属製の緩衝シート及び金属多孔板との積層構造品で構成されたものである請求項4に記載のヒーター内蔵型の水素分離モジュール。
  6. 前記請求項1〜5のいずれかに記載のヒーター内蔵型の水素分離モジュールを、前記被処理流体から水素ガスを生成する所定の供給、排出用の配管に各々接続して構成し、かつ前記加熱室内に加熱手段を設けたことを特徴とする水素分離装置。
JP2016096488A 2016-04-20 2016-04-20 水素分離モジュールとこれを用いた水素分離装置 Active JP6619289B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016096488A JP6619289B2 (ja) 2016-04-20 2016-04-20 水素分離モジュールとこれを用いた水素分離装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016096488A JP6619289B2 (ja) 2016-04-20 2016-04-20 水素分離モジュールとこれを用いた水素分離装置

Publications (2)

Publication Number Publication Date
JP2017192930A true JP2017192930A (ja) 2017-10-26
JP6619289B2 JP6619289B2 (ja) 2019-12-11

Family

ID=60154441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016096488A Active JP6619289B2 (ja) 2016-04-20 2016-04-20 水素分離モジュールとこれを用いた水素分離装置

Country Status (1)

Country Link
JP (1) JP6619289B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177602A (ja) * 1984-09-25 1986-04-21 Ulvac Corp 高純度水素精製装置
JP2004073999A (ja) * 2002-08-16 2004-03-11 Mitsubishi Materials Corp 水素透過膜ユニットおよびその製造方法
JP2005272252A (ja) * 2004-03-25 2005-10-06 Tokyo Gas Co Ltd 水素製造装置
JP2007007565A (ja) * 2005-06-30 2007-01-18 Tokyo Gas Co Ltd 水素透過膜補強構造体及びその作製方法
JP2009195873A (ja) * 2008-02-25 2009-09-03 Mitsubishi Heavy Ind Ltd 水素分離膜モジュールの製造方法
JP2014515693A (ja) * 2011-02-18 2014-07-03 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド 膜反応器及びこのような反応器によるガス状物体の製造の為のプロセス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6177602A (ja) * 1984-09-25 1986-04-21 Ulvac Corp 高純度水素精製装置
JP2004073999A (ja) * 2002-08-16 2004-03-11 Mitsubishi Materials Corp 水素透過膜ユニットおよびその製造方法
JP2005272252A (ja) * 2004-03-25 2005-10-06 Tokyo Gas Co Ltd 水素製造装置
JP2007007565A (ja) * 2005-06-30 2007-01-18 Tokyo Gas Co Ltd 水素透過膜補強構造体及びその作製方法
JP2009195873A (ja) * 2008-02-25 2009-09-03 Mitsubishi Heavy Ind Ltd 水素分離膜モジュールの製造方法
JP2014515693A (ja) * 2011-02-18 2014-07-03 シュティヒティン・エネルギーオンデルツォイク・セントラム・ネーデルランド 膜反応器及びこのような反応器によるガス状物体の製造の為のプロセス

Also Published As

Publication number Publication date
JP6619289B2 (ja) 2019-12-11

Similar Documents

Publication Publication Date Title
TWI635893B (zh) 用於氫氣分離之膜組件及包含其之燃料處理器與燃料電池系統
KR100929351B1 (ko) 콤팩트한 순수소 발생 장치
US7393388B2 (en) Spiral wound fuel stabilization unit for fuel de-oxygenation
TWI265818B (en) Hydrogen purification devices, components, and fuel processing systems containing the same
JP2004502622A (ja) 水素透過型金属膜モジュール及びそれを形成する方法
JP5588581B2 (ja) 水素製造装置
JP7311594B2 (ja) ガス分離デバイス
US6946020B2 (en) Hydrogen purification module
JP2018522710A (ja) 膜型水素精製器
JP7364834B2 (ja) 水素発生分離装置
US20110176970A1 (en) Staged system for producing purified hydrogen from a reaction gas mixture comprising a hydrocarbon compound
JP6619289B2 (ja) 水素分離モジュールとこれを用いた水素分離装置
US8002875B1 (en) System and method for separating hydrogen gas from a mixed gas source using composite structure tubes
JP6962782B2 (ja) 水素分離膜モジュール及び水素生成装置
WO2023026889A1 (ja) 発熱装置およびボイラー
JP2009291740A (ja) 水素分離部材および水素製造器
JP4853617B2 (ja) 水素精製モジュール
JP2011144088A (ja) 2段式水素分離型改質器
JP2014133696A (ja) 2段式水素分離型改質器
JP2011143375A (ja) 5a族金属系水素分離膜を用いた水素分離システム

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191114

R150 Certificate of patent or registration of utility model

Ref document number: 6619289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250