JP2017192200A - Motor control device - Google Patents

Motor control device Download PDF

Info

Publication number
JP2017192200A
JP2017192200A JP2016079589A JP2016079589A JP2017192200A JP 2017192200 A JP2017192200 A JP 2017192200A JP 2016079589 A JP2016079589 A JP 2016079589A JP 2016079589 A JP2016079589 A JP 2016079589A JP 2017192200 A JP2017192200 A JP 2017192200A
Authority
JP
Japan
Prior art keywords
motors
motor
phase
control unit
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016079589A
Other languages
Japanese (ja)
Other versions
JP6710565B2 (en
Inventor
佐理 前川
Sari Maekawa
佐理 前川
圭一 石田
Keiichi Ishida
圭一 石田
平山 卓也
Takuya Hirayama
卓也 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Carrier Corp
Original Assignee
Toshiba Corp
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Carrier Corp filed Critical Toshiba Corp
Priority to JP2016079589A priority Critical patent/JP6710565B2/en
Priority to PCT/JP2016/084463 priority patent/WO2017179236A1/en
Priority to CN201680078500.4A priority patent/CN108575113B/en
Publication of JP2017192200A publication Critical patent/JP2017192200A/en
Application granted granted Critical
Publication of JP6710565B2 publication Critical patent/JP6710565B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • H02P5/46Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
    • H02P5/52Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another additionally providing control of relative angular displacement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Multiple Motors (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motor control device capable of driving a plurality of motors by a position sensorless system, and operating the plurality of motors by synchronizing rotation phases of the respective motors with one another.SOLUTION: A motor control device according to one embodiment comprises: a plurality of magnetic pole position estimation units that individually estimate magnetic pole positions of a plurality of motors; a vector controllers that individually performs vector control of the plurality of motors on the basis of the magnetic pole positions; and a phase synchronization controller that outputs a phase adjustment signal for correcting an input signal or an output signal of a speed controller included in the vector controllers corresponding to the other motors so that rotation phases of the other motors are synchronized with a rotation phase of one motor that becomes a reference among the plurality of motors.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、複数のモータの回転位相を同期させる制御装置に関する。   Embodiments described herein relate generally to a control device that synchronizes rotational phases of a plurality of motors.

従来、複数のインバータを用いて永久磁石同期電動機を駆動する方法としては、例えば特許文献1に開示されている同期電動機の位置センサレス制御装置がある。この従来技術では、多重巻線を持つ同期電動機を制御対象としている。多重巻線においては各巻線の通電位相を揃える必要があり、接続される複数のインバータが通電位相を揃えて制御を行っている。   Conventionally, as a method of driving a permanent magnet synchronous motor using a plurality of inverters, for example, there is a position sensorless control device for a synchronous motor disclosed in Patent Document 1. In this prior art, a synchronous motor having multiple windings is a control target. In the multiplex winding, it is necessary to align the energization phases of the respective windings, and a plurality of connected inverters perform control with the energization phases aligned.

特許第5527025号公報Japanese Patent No. 5527025

しかしながら、特許文献1の構成では、完全に個別の永久磁石同期電動機を位置センサレス制御で駆動し、各電動機の回転位相を同期運転することはできない。
そこで、複数のモータを位置センサレス方式で駆動し、且つ各モータの回転位相を同期させて運転できるモータ制御装置を提供する。
However, in the configuration of Patent Document 1, it is not possible to drive completely individual permanent magnet synchronous motors by position sensorless control and synchronously operate the rotational phases of the respective motors.
Therefore, a motor control device is provided that can drive a plurality of motors by a position sensorless method and can operate by synchronizing the rotation phases of the motors.

実施形態のモータ制御装置によれば、複数のモータの磁極位置をそれぞれ推定する複数の磁極位置推定部と、前記磁極位置に基づいて、前記複数のモータをそれぞれベクトル制御するベクトル制御部と、前記複数の内で基準となる1つのモータの回転位相にその他モータの回転位相を同期させるように、前記その他モータに対応するベクトル制御部が備える速度制御部の入力信号又は出力信号を補正するための位相調整信号を出力する位相同期制御部とを備える。   According to the motor control device of the embodiment, a plurality of magnetic pole position estimation units that respectively estimate the magnetic pole positions of a plurality of motors, a vector control unit that performs vector control of each of the plurality of motors based on the magnetic pole positions, For correcting an input signal or an output signal of a speed control unit included in a vector control unit corresponding to the other motor so that the rotation phase of the other motor is synchronized with the rotation phase of one of the plurality of motors serving as a reference. A phase synchronization control unit that outputs a phase adjustment signal.

第1実施形態であり、モータ制御装置の構成を示す機能ブロック図Functional block diagram showing the configuration of the motor control device according to the first embodiment ベクトル制御部の構成を示す機能ブロック図Functional block diagram showing the configuration of the vector controller 位置推定部の構成を示す機能ブロック図Functional block diagram showing the configuration of the position estimation unit 位相同期制御部の構成を示す機能ブロック図Functional block diagram showing the configuration of the phase synchronization controller 2つのモータを等速回転させる際に位相同期制御を行った場合の、各モータの回転電気角及びその差分値並びにスレーブ側モータ電流の各波形を示す図The figure which shows each waveform of the rotation electric angle of each motor, its difference value, and a slave side motor current at the time of performing phase synchronous control when rotating two motors at constant speed 第2実施形態であり、位相同期制御部の構成を示す機能ブロック図Functional block diagram showing the configuration of the phase synchronization control unit according to the second embodiment 第3実施形態であり、位相同期制御部の構成を示す機能ブロック図Functional block diagram showing the configuration of the phase synchronization control unit according to the third embodiment MTPA制御を説明する図The figure explaining MTPA control

(第1実施形態)
以下、第1実施形態について図1から図5を参照して説明する。図1は、モータ制御装置の構成を示す機能ブロック図である。本実施形態では2つのモータの回転位相を制御する構成について説明するが、3つ以上のモータを制御する構成にも適用可能である。本実施形態では、複数のモータの回転位相を制御する際に、基準となる回転位相で駆動されるモータをマスタ側モータとし、それを基準に任意の位相差(完全同期であれば位相差ゼロ)で駆動されるモータをスレーブ側モータと定義する。そして、上述のように、このスレーブ側モータは幾つあっても良い。
(First embodiment)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 5. FIG. 1 is a functional block diagram showing the configuration of the motor control device. In the present embodiment, a configuration for controlling the rotational phases of two motors will be described, but the present invention can also be applied to a configuration for controlling three or more motors. In the present embodiment, when controlling the rotational phases of a plurality of motors, the motor driven with the reference rotational phase is the master side motor, and any phase difference (zero phase difference if perfect synchronization) is used as a reference. ) Is defined as the slave side motor. As described above, there can be any number of slave side motors.

速度指令値ωRefは、モータを駆動する上位のシステム,例えば空調機等のシステムより指令されて制御部1に入力される。制御部1は、マスタ側ベクトル制御部2M及びスレーブ側ベクトル制御部2Sを備えており、マスタ側ベクトル制御部2Mには、速度指令値速度指令値ωRefがωRef1としてそのまま入力される。一方、スレーブ側ベクトル制御部2Sには、速度指令値速度指令値ωRefが同期角度指令θRefと共に位相同期制御部3に入力されて制御された結果、新たな速度指令値ωRef2が生成されて入力される。 The speed command value ω Ref is commanded from a host system that drives the motor, for example, a system such as an air conditioner, and is input to the control unit 1. The control unit 1 includes a master side vector control unit 2M and a slave side vector control unit 2S, and the speed command value speed command value ω Ref is directly input to the master side vector control unit 2M as ω Ref1 . On the other hand, as a result of the speed command value speed command value ω Ref being input to the phase synchronization control unit 3 together with the synchronization angle command θ Ref and controlled, the slave side vector control unit 2S generates a new speed command value ω Ref2. Is input.

それぞれのベクトル制御部2M,2Sでは、それぞれに対応するモータにつき検出された速度・電流に基づいて、それぞれマスタ側インバータ4M,スレーブ側インバータ4Sに対するPWM信号が生成されて出力される。これらのインバータ4M,4Sは、入力されるPWM信号によりそれぞれマスタ側モータ5M,スレーブ側モータ5Sに交流電圧を印加して駆動する。モータ5は永久磁石同期モータである。   In each of the vector control units 2M and 2S, PWM signals for the master side inverter 4M and the slave side inverter 4S are generated and output based on the speed and current detected for the corresponding motor. These inverters 4M and 4S are driven by applying an AC voltage to the master side motor 5M and the slave side motor 5S, respectively, according to the input PWM signal. The motor 5 is a permanent magnet synchronous motor.

図2は、ベクトル制御部2の構成を示している。この構成は、マスタ側,スレーブ側で共通である。3相/2相変換部11は、モータ5について図示しない電流センサやインバータ4に配置される電流検出用抵抗等を介して検出された3相電流を、ベクトル制御に用いるd−q軸座標の電流Id, Iqに変換する。速度制御部12は、入力された速度指令ωRef(1、2)と位置推定部13より出力される推定速度ωからq軸電流指令Iq_Refを生成し出力する。弱め界磁制御部14は、インバータ出力電圧Vd,Vqが直流電圧VDCを超えないように、弱め界磁電流であるd軸電流指令Id_Refを生成し出力する。 FIG. 2 shows the configuration of the vector control unit 2. This configuration is common to the master side and the slave side. The three-phase / two-phase conversion unit 11 uses a three-phase current detected for the motor 5 via a current sensor (not shown) or a current detection resistor arranged in the inverter 4 in the dq axis coordinates used for vector control. The current is converted to Id and Iq. Speed control unit 12 generates the q-axis current command Iq_ Ref from the estimated velocity omega c output from the position estimator 13 and the input speed command ω Ref (1,2) output. Field control unit 14 weakening the inverter output voltage Vd, so Vq does not exceed the DC voltage V DC, generates and outputs a field weakening current d-axis current command id_ Ref.

電流制御部15は、入力されたd軸,q軸の電流指令Id_Ref,Iq_Ref及び電流Id,Iqからd,q軸電圧指令Vd,Vqを生成して出力する。2相/3相変換部16は、dq軸電圧指令Vq,Vdを3相のモータ電圧Vu,Vv,Vwに変換する。変調制御部17は、3相のモータ電圧Vu,Vv,Vwと直流電圧VDCから、インバータ4に通電する6素子分のPWM信号U±,V±,W±を生成する。 Current controller 15, d-axis input current command id_ Ref q-axis, Iq_ Ref and current Id, d from Iq, the q-axis voltage command Vd, and generates and outputs Vq. The two-phase / three-phase converter 16 converts the dq axis voltage commands Vq, Vd into three-phase motor voltages Vu, Vv, Vw. The modulation control unit 17 generates PWM signals U ±, V ±, W ± for six elements energized to the inverter 4 from the three-phase motor voltages Vu, Vv, Vw and the DC voltage VDC .

位置推定部13は、d軸,q軸電流Id,Iqとd軸電圧Vdとから、モータ5の推定速度ωと推定回転位置θ及び位置推定誤差Δθを求める。図3は、位置推定部13の構成を示す。誘起電圧演算部18は、電流Id,Iqとd軸電圧Vdとからd軸誘起電圧Edを演算し、PI(Product-Integral)演算器19は、d軸誘起電圧EdをPI演算して減算器20に入力する。減算器20は、速度指令値ωRefより上記のPI演算結果を減算してモータ5の推定速度ωを求めている。また、推定速度ωを積分器21により積分することで推定回転位置θを求めている。更に、d軸誘起電圧Edを、除算器22により推定速度ωと電機子鎖交磁束φとの積で除して位置推定誤差Δθを求めている。 The position estimation unit 13 obtains an estimated speed ω c , an estimated rotational position θ c and a position estimation error Δθ of the motor 5 from the d-axis and q-axis currents Id and Iq and the d-axis voltage Vd. FIG. 3 shows the configuration of the position estimation unit 13. The induced voltage calculator 18 calculates a d-axis induced voltage Ed from the currents Id and Iq and the d-axis voltage Vd, and a PI (Product-Integral) calculator 19 performs a PI calculation on the d-axis induced voltage Ed and performs a subtractor. 20 The subtractor 20 obtains the estimated speed ω c of the motor 5 by subtracting the PI calculation result from the speed command value ω Ref . Further, the estimated rotational position θ c is obtained by integrating the estimated speed ω c by the integrator 21. Further, the d-axis induced voltage Ed is divided by the product of the estimated speed ω c and the armature flux linkage φ by the divider 22 to obtain the position estimation error Δθ.

次に、位相同期制御部3の構成について図4を参照して説明する。位相同期制御部3には、2つのモータ5M,5Sの回転位相差指令である同期角度指令θRefが入力される。減算器23は、同期角度指令θRefより2つのモータ5M,5Sの位相差θdev2を減じた偏差sinθdevを制御器24に入力する。制御器24は、ここでは比例器を用いており、偏差sinθdevに比例係数C(s)=Kp_APRを乗じて出力する。この制御器24の出力信号は位相調整信号に相当し、その位相調整信号とマスタ側の速度指令値ωRef1とを加算器25で加算することで、スレーブ側の速度指令値ωRef2を求めている。 Next, the configuration of the phase synchronization control unit 3 will be described with reference to FIG. The phase synchronization control unit 3 receives a synchronization angle command θ Ref that is a rotation phase difference command between the two motors 5M and 5S. The subtracter 23 inputs a deviation sin θ dev obtained by subtracting the phase difference θ dev2 between the two motors 5M and 5S from the synchronization angle command θ Ref to the controller 24. Here, the controller 24 uses a proportional device and multiplies the deviation sin θ dev by a proportional coefficient C (s) = K p_APR and outputs the result. The output signal of the controller 24 corresponds to a phase adjustment signal, and the adder 25 adds the phase adjustment signal and the master side speed command value ω Ref1 to obtain the slave side speed command value ω Ref2. Yes.

それぞれの速度指令値ωRef1Ref2は、前述のようにそれぞれのベクトル制御部2M,2Sに入力されて速度制御され、インバータ4M,4Sは、それぞれモータ5M,5SにPWM信号を印加する。この結果、モータ5M,5Sはそれぞれ速度ω,ωで回転し、それぞれの回転位置はθ,θとなる。なお図4では、ベクトル制御部2を、速度制御部12と、その他の機能ブロックを示すベクトル制御部2’とに分けて示している。 The respective speed command values ω Ref1 and ω Ref2 are input to the respective vector control units 2M and 2S to be speed controlled as described above, and the inverters 4M and 4S apply PWM signals to the motors 5M and 5S, respectively. As a result, the motors 5M and 5S rotate at the speeds ω 1 and ω 2 , respectively, and their rotational positions become θ 1 and θ 2 . In FIG. 4, the vector control unit 2 is divided into a speed control unit 12 and a vector control unit 2 ′ indicating other functional blocks.

実際の回転位置θ,θは直接検出できないため、減算器26により推定回転位置θc1より推定回転位置θc2を減算して両者間の回転位相差θdev1を求めている。さらに、位置推定部13で演算した位置推定誤差Δθ,Δθの差を減算器27により演算し、これを減算器28により回転位相差θdev1より減じることで、推定誤差を考慮した回転位相差θdev2を求めて減算器23にフィードバックする。 Since the actual rotational position theta 1, theta 2 can not be detected directly, seeking rotational phase difference theta dev1 therebetween by subtracting the estimated rotational position theta c2 than the estimated rotational position theta c1 by the subtracter 26. Further, the difference between the position estimation errors Δθ 1 and Δθ 2 calculated by the position estimation unit 13 is calculated by the subtractor 27 and is subtracted from the rotation phase difference θ dev1 by the subtractor 28, so that the rotational position considering the estimation error is obtained. The phase difference θ dev2 is obtained and fed back to the subtracter 23.

次に本実施形態の作用について説明する。ここでは、同期角度指令θRefがゼロである場合を例示する。例えばマスタ側モータ5Mに対しスレーブ側モータ5Sが遅れ位相で回転している場合、2つのモータ5M,5Sの推定回転位置θc1,θc2の差分値を求めてフィードバックすると、モータ5Sの速度指令値ωRef2は、制御器24の出力信号が加算される分だけモータ5Mの速度指令値ωRef1よりも大きくなる。その結果、モータ5Sの速度もモータ5Mより速くなり、その積分値である回転位置θ,推定回転位置θc2も進むため位相誤差が低減される。 Next, the operation of this embodiment will be described. Here, a case where the synchronization angle command θ Ref is zero is illustrated. For example, when the slave-side motor 5S rotates with a delay phase with respect to the master-side motor 5M, if the difference between the estimated rotational positions θ c1 and θ c2 of the two motors 5M and 5S is obtained and fed back, the speed command of the motor 5S The value ω Ref2 becomes larger than the speed command value ω Ref1 of the motor 5M by the amount to which the output signal of the controller 24 is added. As a result, the speed of the motor 5S becomes faster than that of the motor 5M, and the rotation position θ 2 and the estimated rotation position θ c2 that are integral values thereof also advance, so that the phase error is reduced.

このままでもある程度、2つのモータ5M,5S間の位相同期駆動は達成される。しかし、モータ5の実際の回転位置θに対して推定回転位置θに誤差があると、同期位相差が発生してしまう。そこで上述したように、2つのモータ5M,5Sの位置推定誤差Δθ,Δθをそれぞれの位置推定部13で演算してそれらの差を求めて位相差θdev1に加算し、位置推定誤差を考慮した同期位相差θdev2を演算することで高精度な位相同期制御を行っている。 Even in this state, the phase synchronous drive between the two motors 5M and 5S is achieved to some extent. However, if the estimated rotational position theta c with respect to the actual rotational position theta of the motor 5 has an error, the synchronization phase difference occurs. Therefore, as described above, the position estimation errors Δθ 1 and Δθ 2 of the two motors 5M and 5S are calculated by the respective position estimation units 13, and the difference between them is calculated and added to the phase difference θ dev1 to obtain the position estimation error. High-accuracy phase synchronization control is performed by calculating the synchronous phase difference θ dev2 in consideration.

図5は、2つのモータ5M,5Sを同じ速度で回転させる際に位相同期制御を行った場合の、モータ5M,5Sの回転電気角,その差分値(位相誤差)及びスレーブ側のモータ5Sの電流を示している。位相同期制御を開始した後に、モータ5M,5Sの回転角度が同期され、位相誤差がゼロに収束していることが分かる。   FIG. 5 shows the rotational electrical angles of the motors 5M and 5S, the difference value (phase error), and the slave motor 5S when the phase synchronization control is performed when the two motors 5M and 5S are rotated at the same speed. Current is shown. It can be seen that after the phase synchronization control is started, the rotation angles of the motors 5M and 5S are synchronized, and the phase error converges to zero.

以上のように本実施形態によれば、モータ5M,5Sの磁極位置θc1,θc2を磁極位置推定部13M,13Sにより推定し、位相同期制御部3は、基準となるモータ5Mの回転位置θc1にモータ5Sの回転位置θc2を同期させるための位相調整信号を出力し、回転速度指令ωRef1を補正する。これにより、2つのモータ5M,5Sの運転に伴う振動等が低減されるので、例えば空調機などの製品として問題となる騒音・振動等を低減できる。 As described above, according to the present embodiment, the magnetic pole positions θ c1 and θ c2 of the motors 5M and 5S are estimated by the magnetic pole position estimation units 13M and 13S, and the phase synchronization control unit 3 rotates the rotational position of the motor 5M serving as a reference. A phase adjustment signal for synchronizing the rotational position θ c2 of the motor 5S with θ c1 is output, and the rotational speed command ω Ref1 is corrected. As a result, vibrations and the like associated with the operation of the two motors 5M and 5S are reduced, so that noise, vibrations and the like that are problematic as a product such as an air conditioner can be reduced.

そして、位相同期制御部3は、磁極位置推定部13で検出された各モータM,5Sの磁極位置θc1,θc2の差分値θdev1及び磁極位置推定誤差Δθ,Δθに基づいて位相同期制御する。これにより、推定した回転位置θが誤差Δθを含む場合でも、高精度な位相同期制御を行うことができる。 Then, the phase synchronization control unit 3 performs phase based on the difference value θ dev1 between the magnetic pole positions θ c1 and θ c2 of the motors M and 5S detected by the magnetic pole position estimation unit 13 and the magnetic pole position estimation errors Δθ 1 and Δθ 2. Synchronous control. Thus, the estimated rotational position theta c even if it contains errors [Delta] [theta], it is possible to perform highly accurate phase synchronization control.

(第2実施形態)
図6は第2実施形態であり、第1実施形態と同一部分には同一符号を付して説明を省略し、異なる部分について説明する。第1実施形態の制御部3では、加算器25が速度制御部12Sの入力側にあり、演算器24の出力信号をマスタ側の速度指令値ωRef1に加算していた。これに対して、第2実施形態の制御部31では、加算器25が速度制御部12Sの出力側にあり、演算器24の出力信号を速度制御部12Sの出力であるIq_Ref2に加算する。そして、第1実施形態のベクトル制御部2Sに加算器25を加えたものが、第2実施形態のベクトル制御部32Sを構成している。
(Second Embodiment)
FIG. 6 shows a second embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Different parts will be described. In the control unit 3 of the first embodiment, the adder 25 is on the input side of the speed control unit 12S, and the output signal of the computing unit 24 is added to the speed command value ω Ref1 on the master side. In contrast, the control unit 31 of the second embodiment, the adder 25 is on the output side of the speed control unit 12S, adds the output signal of the arithmetic unit 24 is the output of the speed control unit 12S to Iq_ Ref2. And what added the adder 25 to the vector control part 2S of 1st Embodiment comprises the vector control part 32S of 2nd Embodiment.

図6に示す構成は、制御対象のモータ5が表面磁石形同期モータ(SPMSM)であることを前提としている。この場合、モータ5の出力トルクをq軸電流のみで制御するので、ベクトル制御部2Sの出力はq軸電流であり、位相同期制御部31の出力もq軸電流に加算される。   The configuration shown in FIG. 6 is based on the assumption that the motor 5 to be controlled is a surface magnet type synchronous motor (SPMSM). In this case, since the output torque of the motor 5 is controlled only by the q-axis current, the output of the vector control unit 2S is the q-axis current, and the output of the phase synchronization control unit 31 is also added to the q-axis current.

以上のように構成される第2実施形態によれば、演算器24の出力信号により速度制御部12Sの出力信号を補正するので、モータ5M,5Sが表面磁石型同期モータである場合に対応して、最適な位相同期制御を行うことができる。   According to the second embodiment configured as described above, since the output signal of the speed control unit 12S is corrected by the output signal of the computing unit 24, this corresponds to the case where the motors 5M and 5S are surface magnet type synchronous motors. Thus, optimal phase synchronization control can be performed.

(第3実施形態)
また、図7に示す第3実施形態の構成は、制御対象のモータ5が埋め込み磁石形永久磁石同期モータ(IPMSM)であることを前提としており、この場合、モータ5の出力トルクをd軸電流及びq軸電流で制御する。そこで、第3実施形態の制御部33は、ベクトル制御部34M,34Sを備えている。
(Third embodiment)
The configuration of the third embodiment shown in FIG. 7 is based on the premise that the motor 5 to be controlled is an embedded permanent magnet synchronous motor (IPMSM). In this case, the output torque of the motor 5 is converted to the d-axis current. And q-axis current. Therefore, the control unit 33 of the third embodiment includes vector control units 34M and 34S.

ベクトル制御部34では、第2実施形態の構成に加えて、速度制御部12の次段にMTPA(Max Torque Per Ampere:最大トルク制御)制御部35が配置されている。そして、前記制御部35で実行されるMTPAアルゴリズムによって、電流指令値IRefが最適なd軸,q軸それぞれの電流指令Id_Ref,Iq_Refに割り振られる。また、同図中に示す機能ブロック34M’は、ベクトル制御部34Mにおける速度制御部12M及びMTPA制御部35Mを除く残りの機能ブロックに対応する。機能ブロック34S’は、ベクトル制御部34Sにおける速度制御部12S,加算器25及びMTPA制御部3Mを除く残りの機能ブロックに対応する。 In the vector control unit 34, in addition to the configuration of the second embodiment, an MTPA (Max Torque Per Ampere) control unit 35 is disposed in the next stage of the speed control unit 12. Then, the current command value I Ref is allocated to the optimum current commands Id_ Ref and Iq_ Ref for the respective d-axis and q-axis by the MTPA algorithm executed by the control unit 35. Further, the functional block 34M ′ shown in the figure corresponds to the remaining functional blocks excluding the speed controller 12M and the MTPA controller 35M in the vector controller 34M. The functional block 34S ′ corresponds to the remaining functional blocks excluding the speed control unit 12S, the adder 25, and the MTPA control unit 3M in the vector control unit 34S.

図8はMTPA制御に関するもので、横軸はd軸電流Id,縦軸はq軸電流Iqを示している。図中に示す3つの定トルク曲線は、モータ5が出力する3種類のトルクT1, T2,T3に対してd軸,q軸電流Id,Iqが取り得るペアを繋いだものである。例えば、トルクT2を与える場合の電流ペアとして破線で示す3種類を考えると、電流が最も小さいもの、すなわち原点からの距離が短い電流ペアはIq=4.5A,Id=−4.3Aである。これらをトルク毎に繋いでいくと、図中に示すMTPA制御ライン上に示す動きとなる。つまり、あるトルクを出力する際に電流が最も小さくなる組み合わせを選ぶアルゴリズムがMTPAである。   FIG. 8 relates to the MTPA control. The horizontal axis represents the d-axis current Id, and the vertical axis represents the q-axis current Iq. The three constant torque curves shown in the figure are obtained by connecting pairs of possible d-axis and q-axis currents Id and Iq to the three types of torques T1, T2 and T3 output from the motor 5. For example, when considering three types shown by broken lines as current pairs when torque T2 is applied, the current pair with the smallest current, that is, the current pair with the short distance from the origin is Iq = 4.5A, Id = -4.3A. . When these are connected for each torque, the movement shown on the MTPA control line shown in the figure is obtained. In other words, MTPA is an algorithm for selecting a combination that minimizes current when outputting a certain torque.

MTPA制御部35は、図8のようなマップを例えばメモリにテーブルデータとして保持しており、モータ5の所望の出力トルクに対応して電流が最小となるd軸,q軸電流Id,Iqの組み合わせを選択する。
以上のように構成される第3実施形態によれば、演算器24の出力信号によりモータ5の電流指令IRefを制御するので、モータ5M,5Sが埋め込み磁石型同期モータである場合に対応して、最適な位相同期制御を行うことができる。
The MTPA control unit 35 holds a map as shown in FIG. 8 as table data in, for example, a memory, and the d-axis and q-axis currents Id and Iq that minimize the current corresponding to the desired output torque of the motor 5 are stored. Select a combination.
According to the third embodiment configured as described above, since the current command I Ref of the motor 5 is controlled by the output signal of the computing unit 24, this corresponds to the case where the motors 5M and 5S are embedded magnet type synchronous motors. Thus, optimal phase synchronization control can be performed.

(その他の実施形態)
同期角度指令θRefはゼロに限ることなく、個別の仕様に応じて適切な角度に設定すれば良い。
空調機に限ることなく、複数のモータの回転位相を同期制御するシステムであれば適用が可能である。
本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
(Other embodiments)
The synchronization angle command θ Ref is not limited to zero, but may be set to an appropriate angle according to individual specifications.
The present invention is not limited to an air conditioner and can be applied to any system that synchronously controls the rotation phases of a plurality of motors.
Although several embodiments of the present invention have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、1は制御部、2はベクトル制御部、3は位相調整部、4はインバータ、5はモータ、31は位相調整部、33はMTPA制御部を示す。   In the drawings, 1 is a control unit, 2 is a vector control unit, 3 is a phase adjustment unit, 4 is an inverter, 5 is a motor, 31 is a phase adjustment unit, and 33 is an MTPA control unit.

Claims (4)

複数のモータの磁極位置をそれぞれ推定する複数の磁極位置推定部と、
前記磁極位置に基づいて、前記複数のモータをそれぞれベクトル制御するベクトル制御部と、
前記複数の内で基準となる1つのモータの回転位相にその他モータの回転位相を同期させるように、前記その他モータに対応するベクトル制御部が備える速度制御部の入力信号又は出力信号を補正するための位相調整信号を出力する位相同期制御部とを備えるモータ制御装置。
A plurality of magnetic pole position estimators for respectively estimating the magnetic pole positions of the plurality of motors;
Based on the magnetic pole position, a vector control unit that performs vector control on each of the plurality of motors,
In order to correct an input signal or an output signal of a speed control unit included in a vector control unit corresponding to the other motor so that the rotation phase of the other motor is synchronized with the rotation phase of one of the plurality of motors serving as a reference. And a phase synchronization control unit that outputs the phase adjustment signal.
前記位相調整信号によって、前記入力信号である回転速度指令を補正する請求項1記載のモータ制御装置。   The motor control device according to claim 1, wherein a rotation speed command that is the input signal is corrected by the phase adjustment signal. 前記位相調整信号によって、前記出力信号である電流指令を補正する請求項1記載のモータ制御装置。   The motor control device according to claim 1, wherein the current command that is the output signal is corrected by the phase adjustment signal. 前記位相同期制御部は、前記磁極位置推定部で検出された各モータの磁極位置の差分値及び磁極位置推定誤差に基づいて位相調整信号を出力する請求項1から3の何れか一項に記載のモータ制御装置。   The said phase-synchronization control part outputs a phase adjustment signal based on the difference value and magnetic pole position estimation error of the magnetic pole position of each motor detected by the said magnetic pole position estimation part. Motor control device.
JP2016079589A 2016-04-12 2016-04-12 Motor controller Active JP6710565B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016079589A JP6710565B2 (en) 2016-04-12 2016-04-12 Motor controller
PCT/JP2016/084463 WO2017179236A1 (en) 2016-04-12 2016-11-21 Motor control device
CN201680078500.4A CN108575113B (en) 2016-04-12 2016-11-21 Motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016079589A JP6710565B2 (en) 2016-04-12 2016-04-12 Motor controller

Publications (2)

Publication Number Publication Date
JP2017192200A true JP2017192200A (en) 2017-10-19
JP6710565B2 JP6710565B2 (en) 2020-06-17

Family

ID=60041583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016079589A Active JP6710565B2 (en) 2016-04-12 2016-04-12 Motor controller

Country Status (3)

Country Link
JP (1) JP6710565B2 (en)
CN (1) CN108575113B (en)
WO (1) WO2017179236A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210019345A (en) * 2019-08-12 2021-02-22 엘지전자 주식회사 Motor control apparatus and controlling method thereof
KR20210019346A (en) * 2019-08-12 2021-02-22 엘지전자 주식회사 Motor control apparatus and controlling method thereof
KR20220022008A (en) * 2020-08-14 2022-02-23 세메스 주식회사 Air pressure control device and air pressure control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146989B (en) * 2019-12-26 2021-11-05 兰州空间技术物理研究所 Main motor rotation angle acquisition method in main and standby double-step motors
CN111541413A (en) * 2020-04-08 2020-08-14 青岛海尔空调电子有限公司 Compressor control method and device and air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290187A (en) * 1989-04-27 1990-11-30 Okuma Mach Works Ltd Synchronous control and device therefor
JPH11305839A (en) * 1998-04-21 1999-11-05 Fanuc Ltd Method for controlling plural servo motors
JP2011206552A (en) * 2011-05-30 2011-10-20 Toshiba Corp Heat pump drying machine
JP2015133819A (en) * 2014-01-10 2015-07-23 ダイキン工業株式会社 Motor controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02290187A (en) * 1989-04-27 1990-11-30 Okuma Mach Works Ltd Synchronous control and device therefor
JPH11305839A (en) * 1998-04-21 1999-11-05 Fanuc Ltd Method for controlling plural servo motors
JP2011206552A (en) * 2011-05-30 2011-10-20 Toshiba Corp Heat pump drying machine
JP2015133819A (en) * 2014-01-10 2015-07-23 ダイキン工業株式会社 Motor controller

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210019345A (en) * 2019-08-12 2021-02-22 엘지전자 주식회사 Motor control apparatus and controlling method thereof
KR20210019346A (en) * 2019-08-12 2021-02-22 엘지전자 주식회사 Motor control apparatus and controlling method thereof
KR20210158370A (en) * 2019-08-12 2021-12-30 엘지전자 주식회사 Motor control apparatus and controlling method thereof
KR102366757B1 (en) * 2019-08-12 2022-02-23 엘지전자 주식회사 Motor control apparatus and controlling method thereof
KR102366761B1 (en) * 2019-08-12 2022-02-23 엘지전자 주식회사 Motor control apparatus and controlling method thereof
KR102515057B1 (en) * 2019-08-12 2023-03-27 엘지전자 주식회사 Motor control apparatus and controlling method thereof
KR20220022008A (en) * 2020-08-14 2022-02-23 세메스 주식회사 Air pressure control device and air pressure control method
US11543838B2 (en) 2020-08-14 2023-01-03 Semes Co., Ltd. Air pressure control device
KR102622442B1 (en) * 2020-08-14 2024-01-10 세메스 주식회사 Air pressure control device and air pressure control method

Also Published As

Publication number Publication date
CN108575113B (en) 2021-07-20
JP6710565B2 (en) 2020-06-17
WO2017179236A1 (en) 2017-10-19
CN108575113A (en) 2018-09-25

Similar Documents

Publication Publication Date Title
JP6710565B2 (en) Motor controller
JP6367332B2 (en) Inverter control device and motor drive system
US9590552B2 (en) Motor drive device and electric compressor
TWI587622B (en) Drive system and inverter device
JP2019533409A (en) System and method for starting a synchronous motor
US9929683B2 (en) Motor drive device and brushless motor
JP2008086129A (en) Ac motor controller and constant measurement apparatus
JP2001251889A (en) Conjecturing method for position of rotor in synchronous motor, and method and apparatus for sensorless control of position
JP6400209B2 (en) Synchronous motor control device, compressor drive device, air conditioner, and synchronous motor control method
JP5527025B2 (en) Position sensorless control device for synchronous machine
JP6637185B2 (en) Inverter control device and drive system
JP2008187797A (en) Controller for alternating-current rotary machines, and measuring method for electric constant of alternating-current rotary machine using this controller
JP7086214B2 (en) Motor control device
JP2010200430A (en) Drive controller for motors
JP2018007473A (en) Control device for permanent magnet type synchronous motor
JP5648310B2 (en) Synchronous motor control device and synchronous motor control method
JP5500189B2 (en) Motor inverter control method and control device
JP2016220364A (en) Control device for permanent magnet synchronous motor
JP2019062661A (en) Control apparatus of synchronous motor
JP6417881B2 (en) Induction motor controller
JP6951945B2 (en) Motor control device and motor control method
JP2010268663A (en) Rotor-angle estimating device
JP2017225233A (en) Rotary machine control device and rotary machine control method
JP2016036195A (en) Motor controller and refrigerator
JP2001309698A (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200527

R150 Certificate of patent or registration of utility model

Ref document number: 6710565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150