JP2017191023A - Profile measuring apparatus of blast furnace burden - Google Patents

Profile measuring apparatus of blast furnace burden Download PDF

Info

Publication number
JP2017191023A
JP2017191023A JP2016080946A JP2016080946A JP2017191023A JP 2017191023 A JP2017191023 A JP 2017191023A JP 2016080946 A JP2016080946 A JP 2016080946A JP 2016080946 A JP2016080946 A JP 2016080946A JP 2017191023 A JP2017191023 A JP 2017191023A
Authority
JP
Japan
Prior art keywords
blast furnace
profile
visible light
light illumination
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016080946A
Other languages
Japanese (ja)
Other versions
JP6672051B2 (en
Inventor
松本 俊司
Shunji Matsumoto
俊司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Texeng Co Ltd
Original Assignee
Nippon Steel and Sumikin Texeng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Texeng Co Ltd filed Critical Nippon Steel and Sumikin Texeng Co Ltd
Priority to JP2016080946A priority Critical patent/JP6672051B2/en
Publication of JP2017191023A publication Critical patent/JP2017191023A/en
Application granted granted Critical
Publication of JP6672051B2 publication Critical patent/JP6672051B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a profile measuring apparatus of a blast furnace burden that has a small size, is inexpensive, and can accurately measure the 3D profile of the blast furnace burden.SOLUTION: A profile measuring apparatus 1 includes: a pair of imaging apparatuses 12 and 12 that are disposed at mutually separate positions in a furnace top of a blast furnace 2 and can color-photograph the surface of a blast furnace burden 5; a visible light illumination device 11 that is disposed at a position separate from the pair of imaging apparatuses 12 and 12 in the furnace top of the blast furnace 2 and irradiates the blast furnace burden 5; and a control device 13 for applying 3D image measurement processing to an image photographed by the pair of imaging apparatuses 12 and 12.SELECTED DRAWING: Figure 1

Description

本発明は、高炉内装入物の表面形状(3Dプロフィル)の測定装置に関するものである。   The present invention relates to an apparatus for measuring a surface shape (3D profile) of a blast furnace interior.

一般に、銑鉄の製造における高炉には、炉頂から装入物として、粉鉄鉱石を焼き固めた焼結鉱や塊状鉄鉱石等、及びコークスが交互に装入されて堆積し、炉内に鉱石層およびコークス層が形成される。高炉下方にある羽口から吹き込まれる熱風とコークスとの反応によって生じるCOガスにより、鉄鉱石は加熱、還元され(間接還元)、また、一部はコークスにより直接的に還元されて、軟化融着帯を形成した後、溶滴となる。溶滴、すなわち溶銑は、コークス層の間を通過して炉底部に溜まる。炉内に形成された鉱石層およびコークス層は、炉内を徐々に降下する。   Generally, in the blast furnace in the production of pig iron, as the charge from the top of the furnace, sintered ore or lump iron ore baked and compacted with fine iron ore, and coke are alternately charged and deposited, and the ore is placed in the furnace. A layer and a coke layer are formed. The iron ore is heated and reduced (indirect reduction) by the CO gas generated by the reaction between the hot air blown from the tuyere below the blast furnace and coke, and part of the iron ore is reduced directly by the coke and softened and fused. After forming the band, it becomes a droplet. The droplets, that is, the molten iron, pass between the coke layers and accumulate at the bottom of the furnace. The ore layer and coke layer formed in the furnace gradually descend in the furnace.

以上の工程において、高炉に装入された鉄鉱石及びコークスによって形成される炉頂部の装入物分布を調整し、適正なガス分布を得ることは非常に重要である。高炉内炉頂部における装入物のプロフィル(表面形状)は、ベル式装入装置ではムーバブルアーマを、また、ベルレス式装入装置では分配シュートを介する装入物の落下軌跡により決定される。通常装入時は、炉頂部の装入物のプロフィルは、高炉の中心鉛直方向(軸心)を軸として中央部が低い略逆円錘形状をなしている。高炉内装入物のプロフィルは、高炉の操業にとって重要な情報であり、殊に近年、高炉では、低コークス比での操業安定化を目的に、装入物の分布制御が複雑化しており、十分な測定頻度と精度を実現するプロフィルの測定ニーズが高まっている。   In the above process, it is very important to adjust the charge distribution at the top of the furnace formed by the iron ore and coke charged in the blast furnace to obtain an appropriate gas distribution. The profile (surface shape) of the charge at the top of the furnace in the blast furnace is determined by the moving armor in the bell-type charging device and the fall trajectory of the charge through the distribution chute in the bell-less charging device. At the time of normal charging, the profile of the charge at the top of the furnace has a substantially inverted conical shape whose center is low with the center vertical direction (axial center) of the blast furnace as the axis. The profile of the blast furnace interior is important information for the operation of the blast furnace, and in recent years, the distribution control of the charge has been complicated in order to stabilize the operation at a low coke ratio. There is a growing need for measurement of profiles that achieves high measurement frequency and accuracy.

現在の高炉内装入物のプロフィル測定装置の主流は、高炉内に照射マイクロ波を走査して装入物プロフィルを2次元的に測定するマイクロ波方式である。さらに、近年は、高炉内装入物全面のプロフィルを、マイクロ波を用いて3次元的(3D)に測定する装置が公表されている。   The mainstream of the current blast furnace interior profile measuring apparatus is a microwave system in which the irradiation profile is measured two-dimensionally by scanning the irradiation microwave in the blast furnace. Furthermore, in recent years, an apparatus for measuring the profile of the entire surface of the blast furnace interior three-dimensionally (3D) using microwaves has been announced.

ところが、高炉内装入物の3Dプロフィル測定装置としてマイクロ波方式を用いる場合、国内で一般的なすり鉢状の高炉内装入物に対しては、マイクロ波方式固有の入射角問題が顕在化する。すなわち、マイクロ波の装入物への入射角度が小さくなると測定精度が低下し、場合によっては反射波が測定不能となる場合がある。また、高炉内装入物全面のプロフィルを3次元的に測定するためには、相当量の測定回数が必要となるが、高炉内装入物の降下速度は100mm/分程度であり、測定時間を長く要すると、その間に装入物が降下してプロフィルが変化するという問題が生じる。これらの問題を解決するには、極めて高価な3Dプロフィル装置を複数台設置する必要が生じ、コストの面や設置スペースを考慮すると現実的ではない。   However, when the microwave method is used as a 3D profile measuring device for blast furnace interior entrance, an incident angle problem peculiar to the microwave method becomes obvious for a mortar interior mortar interior commonly used in Japan. That is, when the incident angle of the microwave into the charge is reduced, the measurement accuracy is lowered, and in some cases, the reflected wave may not be measured. Moreover, in order to measure the profile of the entire surface of the blast furnace interior three-dimensionally, a considerable amount of measurement is required, but the descending speed of the blast furnace interior is about 100 mm / min, and the measurement time is lengthened. In short, the problem arises that the charge drops and the profile changes during that time. In order to solve these problems, it is necessary to install a plurality of extremely expensive 3D profile devices, which is not realistic in consideration of cost and installation space.

一方、特許文献1には、一対の赤外線カメラによる装入物表面の温度パターンから、3次元的に高炉内装入物の全面プロフィルを測定する方法が開示されている。ところが、高炉内装入物は、炉の中心部のみが数百℃の高温になるものの、中心部以外の範囲では、装入物の表面温度が通常100℃以下と言われている。したがって、中心部のみが白く写り、それ以外の範囲は温度差が小さいことからコントラストが得られず、所望する温度パターンを測定できない。そのため、赤外線カメラによる3Dプロフィル測定は実用には至っていない。   On the other hand, Patent Document 1 discloses a method of measuring the entire profile of a blast furnace interior entry three-dimensionally from a temperature pattern on the surface of the charge with a pair of infrared cameras. However, in the blast furnace interior, only the center of the furnace reaches a high temperature of several hundred degrees Celsius, but in the range other than the center, the surface temperature of the charge is usually said to be 100 ° C. or less. Therefore, only the center portion appears white, and since the temperature difference is small in the other ranges, contrast cannot be obtained, and a desired temperature pattern cannot be measured. Therefore, 3D profile measurement by an infrared camera has not been put into practical use.

特開2008−96298号公報JP 2008-96298 A

以上のように、高炉内装入物の3Dプロフィルを測定するには、マイクロ波方式や赤外線方式では問題があり、実用化が困難である。   As described above, there is a problem in the microwave method and the infrared method in measuring the 3D profile of the blast furnace interior, and it is difficult to put it into practical use.

そこで、本発明の目的は、小型かつ安価で、高炉内装入物の3Dプロフィルを精度よく測定できる高炉内装入物のプロフィル測定装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a blast furnace interior profile measuring apparatus that is small and inexpensive and can accurately measure the 3D profile of the blast furnace interior.

上記問題を解決するため、本発明は、高炉の炉頂部の互いに離れた位置に配置され、高炉内装入物の表面をカラー撮影可能な一対の撮像装置と、前記高炉の炉頂部において、一対の前記撮像装置から離れた位置に配置され、前記高炉内装入物に向けて照射する可視光照明装置と、一対の前記撮像装置で撮影された撮像を3D画像計測処理する制御装置と、を備えることを特徴とする、高炉内装入物のプロフィル測定装置を提供する。   In order to solve the above problem, the present invention provides a pair of imaging devices that are arranged at positions separated from each other at the top of the blast furnace and that can color-shoot the surface of the blast furnace interior, and a pair of the tops of the blast furnace. A visible light illumination device that is disposed at a position away from the imaging device and irradiates the blast furnace interior, and a control device that performs a 3D image measurement process on an image captured by the pair of the imaging devices; An apparatus for measuring a profile of an interior of a blast furnace is provided.

前記プロフィル測定装置において、前記撮像装置の視野方向と、前記可視光照明装置の照射方向とが概ね直角であることが好ましい。また、前記撮像装置は、前記可視光照明装置に対して概ね対称の位置に配置されていることが好ましい。   In the profile measuring device, it is preferable that the visual field direction of the imaging device and the irradiation direction of the visible light illumination device are substantially perpendicular. Moreover, it is preferable that the said imaging device is arrange | positioned in the substantially symmetrical position with respect to the said visible light illuminating device.

前記撮像装置は、暗視補正機能を備えた超高感度カメラでもよい。また、前記撮像装置はピンホールタイプのカメラであり、前記可視光照明装置はピンホールタイプの照明でもよい。   The imaging device may be a super-sensitive camera having a night vision correction function. The imaging device may be a pinhole type camera, and the visible light illumination device may be a pinhole type illumination.

前記撮像装置および前記可視光照明装置はいずれも、平面視において、前記高炉のアップテイク同士の間の中間位置に配置されていることが好ましい。   It is preferable that both the imaging device and the visible light illumination device are arranged at an intermediate position between the uptakes of the blast furnace in a plan view.

本発明によれば、小型かつ安価で、高炉内装入物の3Dプロフィルを精度よく測定できる。   According to the present invention, it is small and inexpensive, and can accurately measure the 3D profile of the blast furnace interior.

本発明の実施形態にかかるプロフィル測定装置を備えた高炉炉頂部の例を示す正面図である。It is a front view which shows the example of the blast furnace top part provided with the profile measuring apparatus concerning embodiment of this invention. 図2の高炉の炉頂部を上から見た平面図である。It is the top view which looked at the furnace top part of the blast furnace of FIG. 2 from the top. 可視光照明装置、撮像装置を収納する耐圧容器の例を示す断面図である。It is sectional drawing which shows the example of the pressure-resistant container which accommodates a visible light illuminating device and an imaging device.

以下、本発明の実施の形態を、図を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

図1に、本発明のプロフィル測定装置1を取り付けた高炉2の例を示す。高炉2の炉口部にはベルレス式装入装置3が設けられ、鉄鉱石やコークスが、分配シュート4を通って炉内に装入され、高炉内装入物5として堆積する。本実施形態にかかるプロフィル測定装置1を構成する可視光照明装置11および撮像装置12は、高炉2の炉頂部の、炉体よりも外側に設置されている。   In FIG. 1, the example of the blast furnace 2 which attached the profile measuring apparatus 1 of this invention is shown. A bell-less charging device 3 is provided at the furnace port of the blast furnace 2, and iron ore and coke are charged into the furnace through the distribution chute 4 and accumulated as a blast furnace interior charge 5. The visible light illumination device 11 and the imaging device 12 constituting the profile measuring device 1 according to the present embodiment are installed outside the furnace body at the top of the blast furnace 2.

可視光照明装置11は、可視光、例えば波長が300〜800nm程度の白色光を照射するLED照明等が用いられ、高炉内装入物5に向けて可視光を照射可能な向きに設置される。可視光照明装置11から照射される可視光の強度は、撮像装置12の性能に応じたものを選択すればよい。また、炉内を照射するための開口部に、粉塵による詰まりや汚れが生じることを考慮すると、開口部を小さくできるピンホールタイプの照明が好ましい。   The visible light illuminating device 11 uses LED illumination that irradiates visible light, for example, white light having a wavelength of about 300 to 800 nm, and is installed in a direction capable of irradiating visible light toward the blast furnace interior 5. What is necessary is just to select the intensity | strength of the visible light irradiated from the visible light illuminating device 11 according to the performance of the imaging device 12. Further, in consideration of clogging or dirt caused by dust in the opening for irradiating the inside of the furnace, pinhole type illumination that can make the opening small is preferable.

撮像装置12は、高炉内装入物5の表面全体を撮影可能な位置に設置され、可視光のカラー撮像が可能なカメラが用いられる。本発明で用いられる撮像装置は、暗視補正機能を備え、少ない光量でカラー撮影できる超高感度のカラー暗視カメラが好適であり、カメラの感度は、例えばISO感度換算で400万相当のものが用いられる。ただし、カメラ感度は照明照度との相関関係にあり、照明照度を高くできれば、超高感度カメラの性能は必要ない。しかし、カメラは高感度ほどシャッター速度を速くできることから、上昇する粉塵の影響を信号処理により除去する場合、超高感度カメラが有利に働くと考えられる。また、炉内を撮像するための開口部に、粉塵による詰まりや汚れが生じることを考慮すると、開口部を小さくできるピンホールタイプのカメラが好ましい。さらに、高炉2内の高温部から発生する赤外線が撮像装置12に入射し外乱となることから、撮像装置12に赤外線カットフィルターを設けることが好ましい。   The imaging device 12 is installed at a position where the entire surface of the blast furnace interior entrance 5 can be photographed, and a camera capable of color imaging of visible light is used. The imaging apparatus used in the present invention is preferably an ultra-high sensitivity color night vision camera that has a night vision correction function and can perform color photography with a small amount of light. The camera sensitivity is equivalent to, for example, 4 million in terms of ISO sensitivity. Is used. However, the camera sensitivity has a correlation with the illumination illuminance, and if the illumination illuminance can be increased, the performance of the ultra-sensitive camera is not necessary. However, the higher the sensitivity of the camera, the faster the shutter speed. Therefore, it is considered that the ultra-high sensitivity camera works favorably when the influence of rising dust is removed by signal processing. In consideration of clogging or dirt caused by dust in the opening for imaging the inside of the furnace, a pinhole type camera capable of reducing the opening is preferable. Furthermore, since the infrared rays generated from the high temperature part in the blast furnace 2 enter the imaging device 12 and cause disturbance, it is preferable to provide the imaging device 12 with an infrared cut filter.

図2に示すように、可視光照明装置11は、一対の撮像装置12、12に対して、平面視において高炉2の中心から見て互いに直角方向に配置されている。すなわち、一対の撮像装置12、12は、高炉2の径方向に対向して設けられ、可視光照明装置11は、いずれの撮像装置12、12からも離れた位置、且つ撮像装置12、12は可視光照明装置11に対して対称位置に配置されている。一対の撮像装置12、12は、距離が離れているほど精度の良い解析結果が得られるので、図2に示すように対向するように設置することが好ましい。また、可視光照明装置11を撮像装置12、12から離すのは、撮像装置12の直近にある粉塵からの反射光による外乱を防止するためであり、撮像装置12、12を可視光照明装置11に対して対称位置に配置するのは、陰影形状の見え方が2つの撮像装置12、12で同様となり、2つの画像のマッチング精度が上がるためである。また、撮像装置12、12の視野方向と、可視光照明装置11の照射方向とを直角にすることにより、照明の影で陰影が強調され、画像解析時のマッチング上有利になる。一方、可視光照明装置11と撮像装置12とを同一方向または逆方向とすると、コントラストの小さい画像となり、マッチングが困難になる。さらに、同一方向の場合には、粉塵の反射光が撮像装置12に直接入射して外乱になる。したがって、撮像装置12の視野方向と可視光照明装置11の照射方向とは、概ね直角であることが好ましく、一対の撮像装置12、12は、可視光照明装置11に対して概ね対称の位置に配置されていることが好ましい。   As shown in FIG. 2, the visible light illumination device 11 is disposed in a direction perpendicular to each other when viewed from the center of the blast furnace 2 in a plan view with respect to the pair of imaging devices 12 and 12. In other words, the pair of imaging devices 12 and 12 are provided to face each other in the radial direction of the blast furnace 2, the visible light illumination device 11 is located away from any of the imaging devices 12 and 12, and the imaging devices 12 and 12 are It arrange | positions in the symmetrical position with respect to the visible light illuminating device 11. FIG. The pair of imaging devices 12 and 12 are preferably installed so as to face each other as shown in FIG. 2 because a more accurate analysis result is obtained as the distance increases. The reason why the visible light illumination device 11 is separated from the imaging devices 12 and 12 is to prevent disturbance due to reflected light from dust in the immediate vicinity of the imaging device 12, and the imaging devices 12 and 12 are separated from the visible light illumination device 11. The reason why the shadow shape is seen is the same in the two imaging devices 12 and 12, and the matching accuracy of the two images is improved. Moreover, by making the visual field direction of the imaging devices 12 and 12 and the irradiation direction of the visible light illumination device 11 perpendicular to each other, the shadow is enhanced by the shadow of the illumination, which is advantageous in matching at the time of image analysis. On the other hand, when the visible light illumination device 11 and the imaging device 12 are set in the same direction or in the opposite direction, an image with a small contrast is obtained, and matching becomes difficult. Furthermore, in the case of the same direction, the reflected light of the dust is directly incident on the imaging device 12 and becomes a disturbance. Therefore, it is preferable that the visual field direction of the imaging device 12 and the irradiation direction of the visible light illumination device 11 are substantially perpendicular to each other, and the pair of imaging devices 12 and 12 are at positions substantially symmetrical with respect to the visible light illumination device 11. It is preferable that they are arranged.

可視光照明装置11と撮像装置12、12の理想的な配置位置は上述の通りであるが、現実的には、アップテイク6や片持ちゾンデ等のセンサ類、その他操業用装置類が干渉し、プロフィル測定装置1を理想位置に配置するのは極めて困難である。したがって、撮像装置12の視野方向と可視光照明装置11の照射方向とは、直角±30°の範囲内におさめることが望ましい。同様に、一対の撮像装置12、12は、可視光照明装置11に対して対称の位置±30°の範囲内におさめることが望ましい。   The ideal arrangement positions of the visible light illumination device 11 and the imaging devices 12 and 12 are as described above, but in reality, sensors such as the uptake 6 and the cantilevered sonde and other operation devices interfere with each other. It is extremely difficult to arrange the profile measuring device 1 at the ideal position. Therefore, it is desirable that the viewing direction of the imaging device 12 and the irradiation direction of the visible light illumination device 11 be within a range of a right angle of ± 30 °. Similarly, it is desirable that the pair of imaging devices 12, 12 be within a range of ± 30 ° symmetrical to the visible light illumination device 11.

また、可視光照明装置11および撮像装置12、12は、高炉2の上方から見た平面視において、図2に示すように、いずれも高炉2の排ガス流路であるアップテイク6同士の間の中間位置になるように配置されている。これは、アップテイク6に近いほど粉塵が多く舞っているためであり、厳密に中間点でなくても構わないが、なるべくアップテイク6から離れた位置に配置することが好ましい。さらに、高炉2内において、アップテイク6の入口よりも上方には、粉塵が多く舞い上がりやすいため、可視光照明装置11および撮像装置12、12は、アップテイク6の入口の高さ方向位置と同等かそれよりも低い位置に配置することが好ましい。このように、粉塵が多く舞い上がる位置を避けて可視光照明装置11および撮像装置12を設置することで、粉塵の影響をより低減してプロフィルを測定することができる。   Further, the visible light illuminating device 11 and the imaging devices 12 and 12 are arranged between the uptakes 6 that are exhaust gas flow paths of the blast furnace 2 as shown in FIG. It is arranged to be in the middle position. This is because the closer to the uptake 6, the more dust is scattered, and it does not have to be strictly an intermediate point, but it is preferable to dispose it as far as possible from the uptake 6. Furthermore, in the blast furnace 2, since a lot of dust is likely to rise above the entrance of the uptake 6, the visible light illumination device 11 and the imaging devices 12 and 12 are equivalent to the height direction position of the uptake 6 entrance. It is preferable to arrange at a position lower than that. In this way, by installing the visible light illumination device 11 and the imaging device 12 while avoiding the position where the dust soars a lot, the influence of the dust can be further reduced and the profile can be measured.

可視光照明装置11および撮像装置12は、高炉2からの熱および圧力に備えて耐圧容器に収納することが好ましい。図3は耐圧容器20の例を示す。耐圧容器20は、底面に、高炉2の炉内に向けた開口部21を有し、開口部21の炉外側には透明の耐熱ガラス22が取り付けられており、炉内側には仕切弁23が取り付けられる。仕切弁23は、図示しない仕切弁駆動部によって開閉され、プロフィル測定時には開き、非測定時には閉じられる。なお、プロフィル測定時には、高炉2の内部のガスが外部に漏洩しない構造にするとともに、粉塵による耐熱ガラス22の汚れや詰まりを防止する目的で、窒素ガスによるパージを行うとよい。   The visible light illumination device 11 and the imaging device 12 are preferably housed in a pressure resistant vessel in preparation for heat and pressure from the blast furnace 2. FIG. 3 shows an example of the pressure vessel 20. The pressure vessel 20 has, on the bottom surface, an opening 21 directed into the furnace of the blast furnace 2, a transparent heat-resistant glass 22 is attached to the outside of the opening 21, and a gate valve 23 is provided inside the furnace. It is attached. The gate valve 23 is opened and closed by a gate valve driving unit (not shown), and is opened when measuring the profile and closed when not measuring. At the time of measuring the profile, it is preferable to purge with nitrogen gas for the purpose of preventing the gas inside the blast furnace 2 from leaking to the outside and preventing the heat-resistant glass 22 from being stained or clogged with dust.

撮像装置12、12は、制御装置13に接続されている。制御装置13は、一対の撮像装置12、12が同時に撮影した2枚の画像データを取り入れ、これらのデータから、被写体である高炉内装入物5の三次元位置座標を解析し、三次元データ化する。この解析は、市販の三次元写真計測システム用ソフトウェアによって行われる。なお、基準点や基準長としては、撮像装置12、12により撮影される、例えば炉内構造物や片持ちゾンデ等のセンサ類の既知位置や既知長さを利用すればよい。   The imaging devices 12 and 12 are connected to the control device 13. The control device 13 takes in two pieces of image data taken simultaneously by the pair of imaging devices 12, 12, analyzes the three-dimensional position coordinates of the blast furnace interior entrance 5, which is the subject, and converts it into three-dimensional data To do. This analysis is performed by commercially available software for 3D photo measurement systems. As the reference point and the reference length, a known position and a known length of sensors such as a furnace structure and a cantilevered sonde, which are photographed by the imaging devices 12 and 12, may be used.

以上のように、本発明のプロフィル測定装置は、超高感度カラー撮像装置と可視光照明、および3D画像計測システムにより構成されている。可視光照明を利用して撮影することにより、温度に関係なく撮影できるので、中心の高温部のみがハレーションを起こすことがないうえ、温度差が無い部分でも撮影ができる。また、カラー撮影画像は、色相、彩度、明度と情報量が多いので、赤外線による明暗だけのパターンマッチングに比べて画像解析しやすく、正確な3Dプロフィルが求められる。さらに、画素数を大きくすることができ、精度が向上する。   As described above, the profile measuring device of the present invention is configured by the ultra-sensitive color imaging device, the visible light illumination, and the 3D image measurement system. By photographing using visible light illumination, photographing can be performed regardless of temperature, so that only the central high-temperature portion does not cause halation, and even a portion having no temperature difference can be photographed. Further, since a color photographed image has a large amount of information such as hue, saturation, and brightness, it is easier to analyze an image compared to pattern matching using only infrared light and darkness, and an accurate 3D profile is required. Furthermore, the number of pixels can be increased, and the accuracy is improved.

また、マイクロ波による測定のように送受信に時間をかけることがなく、高炉内装入物全面のプロフィル測定を極めて短時間で行えることから、炉内装入物の降下速度の影響を受けずに測定することが可能となる。例えば、原料装入待ちの間で、30秒から1分間程度の間隔をあけて2回測定すれば、炉内全面の装入物の降下速度が精度よく測定できることになり、操業管理に役立てることができる。   In addition, it does not take time to transmit and receive like the measurement by microwave, and the profile measurement of the entire surface of the blast furnace interior can be performed in a very short time, so measurement is not affected by the descending speed of the interior of the furnace interior. It becomes possible. For example, if the measurement is performed twice at an interval of about 30 seconds to 1 minute while waiting for the raw material to be charged, the rate of descending of the charge on the entire surface of the furnace can be accurately measured, which is useful for operational management. Can do.

しかも、本発明を構成する装置はいずれも汎用品であり、いずれも小型で、且つ可動するものではないため、装置を収納する耐圧容器や炉内との遮断構造などを小型化、簡素化することができる。したがって、設置工事を含めて低コストで実現できる。   In addition, since all of the devices constituting the present invention are general-purpose products and are neither small nor movable, the pressure vessel for storing the device, the structure for shutting off the inside of the furnace, and the like are reduced in size and simplified. be able to. Therefore, it can be realized at low cost including installation work.

なお、撮像装置12で動画撮影を行う場合には、ノイズキャンセリングを行うことにより、粉塵を除去した画像を得て、さらに精度よくプロフィルを求めることが可能である。   In addition, when moving image shooting is performed with the imaging device 12, it is possible to obtain an image from which dust is removed by performing noise canceling, and obtain a profile with higher accuracy.

大型高炉の場合や、可視光照明装置11と撮像装置12の性能の関係により、一箇所の可視光照明装置11だけでは撮像のための十分な光量が得られない場合は、可視光照明装置11を、高炉2の中心軸に対して対称位置に2個所設置してもよい。   In the case of a large blast furnace, or when the visible light illuminating device 11 and the imaging device 12 have a performance relationship, if the visible light illuminating device 11 alone does not provide a sufficient amount of light for imaging, the visible light illuminating device 11 May be installed at two positions symmetrically with respect to the central axis of the blast furnace 2.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to this example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

本発明は、装入物の堆積状態が刻々と変化する暗所内の装入物のプロフィル測定方法に適用できる。   The present invention can be applied to a method for measuring a profile of a charge in a dark place where the accumulation state of the charge changes every moment.

1 プロフィル測定装置
2 高炉
3 ベルレス式装入装置
4 分配シュート
5 高炉内装入物
6 アップテイク
11 可視光照明装置
12 撮像装置
13 制御装置
20 耐圧容器
21 開口部
22 耐熱ガラス
23 仕切弁
DESCRIPTION OF SYMBOLS 1 Profile measuring device 2 Blast furnace 3 Bellless type charging device 4 Distribution chute 5 Blast furnace interior entrance 6 Uptake 11 Visible light illumination device 12 Imaging device 13 Control device 20 Pressure-resistant container 21 Opening part 22 Heat-resistant glass 23 Gate valve

Claims (6)

高炉の炉頂部の互いに離れた位置に配置され、高炉内装入物の表面をカラー撮影可能な一対の撮像装置と、
前記高炉の炉頂部において、一対の前記撮像装置から離れた位置に配置され、前記高炉内装入物に向けて照射する可視光照明装置と、
一対の前記撮像装置で撮影された撮像を3D画像計測処理する制御装置と、
を備えることを特徴とする、高炉内装入物のプロフィル測定装置。
A pair of imaging devices that are arranged at positions away from each other at the top of the blast furnace and that can color-shoot the surface of the blast furnace interior,
At the top of the blast furnace, a visible light illumination device that is disposed at a position away from the pair of the imaging devices and irradiates the blast furnace interior entry,
A control device that performs 3D image measurement processing on an image captured by the pair of imaging devices;
An apparatus for measuring a profile of an interior of a blast furnace, characterized by comprising:
前記撮像装置の視野方向と、前記可視光照明装置の照射方向とが概ね直角であることを特徴とする、請求項1に記載の高炉内装入物のプロフィル測定装置。   The apparatus for measuring a profile of a blast furnace interior according to claim 1, wherein the visual field direction of the imaging device and the irradiation direction of the visible light illumination device are substantially perpendicular to each other. 前記撮像装置は、前記可視光照明装置に対して概ね対称の位置に配置されていることを特徴とする、請求項1または2のいずれか一項に記載の高炉内装入物のプロフィル測定装置。   The blast furnace interior entry profile measuring device according to claim 1, wherein the imaging device is disposed at a position substantially symmetrical with respect to the visible light illumination device. 前記撮像装置は、暗視補正機能を備えた超高感度カメラであることを特徴とする、請求項1〜3のいずれか一項に記載の高炉内装入物のプロフィル測定装置。   The apparatus for measuring a profile of a blast furnace interior according to any one of claims 1 to 3, wherein the imaging device is an ultra-sensitive camera having a night vision correction function. 前記撮像装置はピンホールタイプのカメラであり、前記可視光照明装置はピンホールタイプの照明であることを特徴とする、請求項1〜4のいずれか一項に記載の高炉内装入物のプロフィル測定装置。   The blast furnace interior entrance profile according to any one of claims 1 to 4, wherein the imaging device is a pinhole type camera, and the visible light illumination device is a pinhole type illumination. measuring device. 前記撮像装置および前記可視光照明装置はいずれも、平面視において、前記高炉のアップテイク同士の間の中間位置に配置されていることを特徴とする、請求項1〜5のいずれか一項に記載の高炉内装入物のプロフィル測定装置。   The imaging device and the visible light illumination device are both arranged at an intermediate position between the uptakes of the blast furnace in a plan view, according to any one of claims 1 to 5. The blast furnace interior entrance profile measurement device described.
JP2016080946A 2016-04-14 2016-04-14 Profile measurement equipment for blast furnace interior Active JP6672051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016080946A JP6672051B2 (en) 2016-04-14 2016-04-14 Profile measurement equipment for blast furnace interior

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016080946A JP6672051B2 (en) 2016-04-14 2016-04-14 Profile measurement equipment for blast furnace interior

Publications (2)

Publication Number Publication Date
JP2017191023A true JP2017191023A (en) 2017-10-19
JP6672051B2 JP6672051B2 (en) 2020-03-25

Family

ID=60085935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016080946A Active JP6672051B2 (en) 2016-04-14 2016-04-14 Profile measurement equipment for blast furnace interior

Country Status (1)

Country Link
JP (1) JP6672051B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220032707A (en) * 2020-09-08 2022-03-15 주식회사 포스코 Raw material metering system and metering method thereof
JP7149026B1 (en) * 2022-06-13 2022-10-06 株式会社Wadeco Apparatus and method for measuring surface profile of blast furnace insert, and method for operating blast furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930707A (en) * 1982-08-16 1984-02-18 Kawasaki Steel Corp Device for projecting and receiving light for shape measurement
JPH06343135A (en) * 1993-03-24 1994-12-13 Amano Kenkyusho:Kk Monitor camera
JP2008096298A (en) * 2006-10-12 2008-04-24 Midori Seimitsu:Kk Method and device for measuring blast furnace charging material profile
CN103667563A (en) * 2013-12-19 2014-03-26 中南大学 Blast furnace full charge level optical imaging system under parallel low-light-loss backlight high-temperature endoscope
US20140333752A1 (en) * 2011-10-11 2014-11-13 Zhengkai Gao System and method for on-line measuring a burden surface in a blast furnace
JP2015045587A (en) * 2013-08-28 2015-03-12 株式会社キーエンス Three-dimensional image processor, method of determining change in state of three-dimensional image processor, program for determining change in state of three-dimensional image processor, computer readable recording medium, and apparatus having the program recorded therein

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930707A (en) * 1982-08-16 1984-02-18 Kawasaki Steel Corp Device for projecting and receiving light for shape measurement
JPH06343135A (en) * 1993-03-24 1994-12-13 Amano Kenkyusho:Kk Monitor camera
JP2008096298A (en) * 2006-10-12 2008-04-24 Midori Seimitsu:Kk Method and device for measuring blast furnace charging material profile
US20140333752A1 (en) * 2011-10-11 2014-11-13 Zhengkai Gao System and method for on-line measuring a burden surface in a blast furnace
JP2015045587A (en) * 2013-08-28 2015-03-12 株式会社キーエンス Three-dimensional image processor, method of determining change in state of three-dimensional image processor, program for determining change in state of three-dimensional image processor, computer readable recording medium, and apparatus having the program recorded therein
CN103667563A (en) * 2013-12-19 2014-03-26 中南大学 Blast furnace full charge level optical imaging system under parallel low-light-loss backlight high-temperature endoscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220032707A (en) * 2020-09-08 2022-03-15 주식회사 포스코 Raw material metering system and metering method thereof
KR102463017B1 (en) * 2020-09-08 2022-11-03 주식회사 포스코 Raw material metering system and metering method thereof
JP7149026B1 (en) * 2022-06-13 2022-10-06 株式会社Wadeco Apparatus and method for measuring surface profile of blast furnace insert, and method for operating blast furnace

Also Published As

Publication number Publication date
JP6672051B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
CN105424558B (en) A kind of burning particles multiparameter measuring device and method using blue light back lighting
EP1070243B1 (en) Method for the automatic inspection of optically transmissive planar objects
US9638641B2 (en) Inspection system and inspection illumination device
US10418399B2 (en) Lens-free imaging system comprising a diode, a diaphragm, and a diffuser between the diode and the diaphragm
BR112012024633B1 (en) PARTICLE MEASUREMENT DEVICE AND PARTICLE MEASUREMENT METHOD
TW201616123A (en) System and method for defect detection
JP2009031294A (en) Method for optically inspecting progression of physical and/or chemical process proceeding on surface of member
JPH04252925A (en) Method and apparatus for measuring temperature
US10241057B2 (en) Optical inspecting apparatus with an optical screening device
UA118981C2 (en) Device and method for measuring distortion defects in a manufactured float glass strip
JP2017191023A (en) Profile measuring apparatus of blast furnace burden
CN106896113A (en) Defect detection system and method
JP6859628B2 (en) Visual inspection method and visual inspection equipment
US6927856B2 (en) Method for imaging measurement, imaging measurement device and use of measured information in process control
CN108871189A (en) A kind of the clinker position detecting device and its detection method of metal smelt deslagging
KR101198945B1 (en) An infrared thermal imaging camera for measuring realtime temperature and a method for the same
RU2090814C1 (en) Method of restoration of damaged refractory lining of furnace and device for realization of this method (versions)
CN108761436B (en) Flame vision distance measuring device and method
JP2005134362A (en) Inspection method and inspection device for surface irregularity
US7456859B2 (en) Image pickup device
JPH0778248B2 (en) Blast furnace raceway observation device
JP2016060943A (en) Profile measurement device for material charged in blast furnace
JP2011134687A (en) Lighting system
KR20100059550A (en) Apparatus and method for inspecting flat panel
JP2617831B2 (en) Blast furnace charge monitor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200304

R150 Certificate of patent or registration of utility model

Ref document number: 6672051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250