JP2017190645A - Clay roof tile - Google Patents

Clay roof tile Download PDF

Info

Publication number
JP2017190645A
JP2017190645A JP2016082213A JP2016082213A JP2017190645A JP 2017190645 A JP2017190645 A JP 2017190645A JP 2016082213 A JP2016082213 A JP 2016082213A JP 2016082213 A JP2016082213 A JP 2016082213A JP 2017190645 A JP2017190645 A JP 2017190645A
Authority
JP
Japan
Prior art keywords
mol
glaze
clay
clay roof
roof tile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016082213A
Other languages
Japanese (ja)
Inventor
一史 井野
Kazufumi Ino
一史 井野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ino Kawara Kogyo Co Ltd
SANSYU FRIT KK
Original Assignee
Ino Kawara Kogyo Co Ltd
SANSYU FRIT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ino Kawara Kogyo Co Ltd, SANSYU FRIT KK filed Critical Ino Kawara Kogyo Co Ltd
Priority to JP2016082213A priority Critical patent/JP2017190645A/en
Publication of JP2017190645A publication Critical patent/JP2017190645A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a clay roof tile that has high bending fracture strength and low mass.SOLUTION: A clay roof tile 10 comprises: a basis material layer 20 formed of clay; a first glaze layer 30, which is disposed on a rear face of the basis material layer 20; and a second glaze layer 40, which is disposed on a front face of the basis material layer 20. The glaze constituting the first glaze layer 30 preferably contains one or two or more materials selected from a group formed of α-alumina (AlO), zircon (ZrOSiO), spodumene (LiOAlO4SiO), petalite (LiOAlO8SiO), and cordierite (2MgO2AlO5SiO).SELECTED DRAWING: Figure 1

Description

本発明は、粘土瓦に関する。   The present invention relates to a clay roof tile.

建築物の屋根瓦として用いられる粘土瓦は、所定の形状に成形された粘土を焼成して作製される。粘土瓦は、保形性や強度面から、その厚みは14mm前後あるいはそれ以上である。このため、粘土瓦は、重く、輸送や屋根葺き作業上の取扱いが容易でない。また、屋根に重い粘土瓦を配置すると、建築物の強度を大きくする必要があり、建築コストが高くなる原因にもなる。これらのことから、軽量な粘土瓦が求められている。   A clay tile used as a roof tile of a building is produced by firing clay molded into a predetermined shape. The clay roof has a thickness of about 14 mm or more in terms of shape retention and strength. For this reason, clay tiles are heavy and are not easy to handle during transportation and roofing work. In addition, if heavy clay tiles are arranged on the roof, it is necessary to increase the strength of the building, which also increases the construction cost. For these reasons, lightweight clay roof tiles are required.

瓦の軽量化を実現するために、各種の瓦が提案されている。特許文献1には、粘土素材におが屑を混合した瓦粘土により瓦を成形し、これを焼成して瓦粘土中のおが屑を焼却せしめて、微少な空洞を形成して多孔質とし、従来の鉱物質のみの瓦粘土で形成された瓦より軽量化した粘土瓦が開示されている。   Various tiles have been proposed to reduce the weight of the tiles. In Patent Document 1, a tile is formed from a clay clay mixed with sawdust in a clay material, and this is fired to burn the sawdust in the tile clay to form a microscopic cavity, making it a porous material. A clay roof tile is disclosed which is lighter than a roof tile made from quality tile clay.

特開2002−97747号公報JP 2002-97747 A

しかしながら、特許文献1の粘土瓦は、空洞を形成することで軽量化しているため、曲げ破壊強度が小さくなるという問題がある。粘土瓦の曲げ破壊強度が小さくなると、飛来物が当たった場合などに割れる虞がある。このため、粘土瓦が所定の曲げ破壊強度を有することも求められている。   However, since the clay roof tile of Patent Document 1 is lightened by forming a cavity, there is a problem that bending fracture strength is reduced. If the bending fracture strength of the clay roof becomes small, there is a risk of cracking when a flying object hits it. For this reason, it is also required that clay roof tiles have a predetermined bending fracture strength.

本発明は、このような実情に鑑みてなされたものであり、曲げ破壊強度が大きく、質量の小さい粘土瓦を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide a clay roof tile having a high bending fracture strength and a small mass.

上記目的を達成するため、本発明に係る粘土瓦は、
粘土から構成される素地層と、前記素地層の裏面に配置された第1の釉薬層と、前記素地層の表面に配置された第2の釉薬層と、
を備えることを特徴とする。
In order to achieve the above object, the clay roof according to the present invention is:
A base layer composed of clay, a first glaze layer disposed on the back surface of the base layer, a second glaze layer disposed on the surface of the base layer,
It is characterized by providing.

粘土瓦が上記構成を備えることで、釉薬層を備えない粘土瓦や表面のみに釉薬層を備える粘土瓦より大きい曲げ破壊強度を有する。上記構成を備える粘土瓦は大きい曲げ破壊強度を有するため、必要な曲げ破壊強度を保ちつつ、粘土瓦の厚みを小さくできる。これにより、粘土瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦の質量を小さくできる。   When the clay roof has the above-described configuration, it has a bending fracture strength higher than that of the clay roof without the glaze layer or the clay roof with the glaze layer only on the surface. Since the clay roof having the above configuration has a high bending fracture strength, the thickness of the clay roof can be reduced while maintaining the required bending fracture strength. Thereby, the mass of a clay roof tile can be made small, maintaining the bending fracture strength required for a clay roof tile.

前記第1の釉薬層を構成する釉薬は、α−アルミナ(Al)、ジルコン(ZrOSiO)、スポジューメン(LiOAl4SiO)、ペタライト(LiOAl8SiO)、コージライト(2MgO2Al5SiO)からなる群から選択される1または2以上の材料を含むとよい。
前記釉薬層を構成する釉薬が、α−アルミナ、ジルコンを含むことで、前記釉薬層の密度が大きくなり、粘土瓦の曲げ破壊強度を大きくすることに寄与すると考えられる。また、前記釉薬層を構成する釉薬が、スポジューメン、ペタライト、コージライトを含むことで、前記釉薬層の線熱膨張係数が、前記素地層の線熱膨張係数より小さくなり、粘土瓦を焼成した後冷却すると、釉薬層にコンプレッション(圧縮応力)が加わる。釉薬層にコンプレッションが加わることで粘土瓦の曲げ破壊強度を大きくすることに寄与すると考えられる。粘土瓦が大きい曲げ破壊強度を有することで、必要な曲げ破壊強度を保ちつつ、粘土瓦の厚みを小さくできる。これにより、粘土瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦の質量を小さくできる。
The glaze constituting the first glaze layer is α-alumina (Al 2 O 3 ), zircon (ZrO 2 SiO 2 ), spodumene (Li 2 OAl 2 O 3 4SiO 2 ), petalite (Li 2 OAl 2 O 3). 8SiO 2 ), cordierite (2MgO 2 Al 2 O 3 5SiO 2 ), or one or more materials selected from the group consisting of cordierite.
When the glaze which comprises the said glaze layer contains (alpha) -alumina and zircon, it is thought that the density of the said glaze layer becomes large and contributes to increasing the bending fracture strength of a clay roof tile. In addition, the glaze composing the glaze layer contains spodumene, petalite, cordierite, the linear thermal expansion coefficient of the glaze layer is smaller than the linear thermal expansion coefficient of the base layer, after the clay tile is fired When cooled, compression (compressive stress) is applied to the glaze layer. It is thought that the compression added to the glaze layer contributes to increasing the bending fracture strength of clay roof tiles. Since the clay roof has a high bending fracture strength, the thickness of the clay roof can be reduced while maintaining the required bending fracture strength. Thereby, the mass of a clay roof tile can be made small, maintaining the bending fracture strength required for a clay roof tile.

前記第1の釉薬層を構成する釉薬は、4質量%以上5質量%以下のコージライト、2質量%以上3質量%以下のα−アルミナ、または1質量%以上2質量%以下のジルコンを含み、
ゼーゲル式にて、
NaOが0.01モル、KOが0.01モル、MgOが0.05モル、CaOが0.18モル、MnOが0.76モル、
AlO3が0.16モル、Feが0.03モル、Bが0.08モル、
SiOが1.33モル、TiOが0.22モル、ZrOが0.31モル、
として表される組成であるとよい。
このようにすることで、粘土瓦の曲げ破壊強度をより大きくすることができ、粘土瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦の質量を小さくできる。また、前記第2の釉薬層に結晶系銀色釉薬を用いた場合、見付け部分(表面と裏面と釉薬層の重なり部分)の第2の釉薬層の色調と第1の釉薬層の色調との違いが目立たなくなる。
The glaze that constitutes the first glaze layer contains 4% by mass to 5% by mass cordierite, 2% by mass to 3% by mass α-alumina, or 1% by mass to 2% by mass zircon. ,
In the Segel formula,
Na 2 O 0.01 mol, K 2 O 0.01 mol, MgO 0.05 mol, CaO 0.18 mol, MnO 0.76 mol,
Al 2 O 3 is 0.16 mol, Fe 2 O 3 is 0.03 mol, B 2 O 3 is 0.08 mol,
SiO 2 is 1.33 mol, TiO 2 is 0.22 mol, ZrO 2 is 0.31 mol,
It is good that it is expressed as
By doing in this way, the bending fracture strength of the clay roof tile can be further increased, and the mass of the clay roof tile can be reduced while maintaining the bending fracture strength required for the clay roof tile. Further, when a crystalline silver glaze is used for the second glaze layer, the difference between the color tone of the second glaze layer and the color tone of the first glaze layer in the found portion (the overlapping portion of the front surface, back surface and glaze layer) Disappears.

前記第1の釉薬層を構成する釉薬は、2質量%以上6質量%以下のコージライト、または2質量%のペタライト、を含み、
ゼーゲル式にて、
NaOが0.01モル、KOが0.01モル、LiOが0.21モル、MgOが0.67モル、CaOが0.02モル、MnOが0.08モル、
Alが0.67モル、Feが0.05モル、
SiOが3.08モル、TiOが1.01モル、ZrOが0.63モル、
として表される組成であるとよい。
このようにすることで、粘土瓦の曲げ破壊強度をより大きくすることができ、粘土瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦の質量を小さくできる。また、前記第2の釉薬層にいぶし系銀色釉薬を用いた場合、見付け部分の第2の釉薬層の色調と第1の釉薬層の色調との違いが目立たなくなる。
The glaze constituting the first glaze layer contains 2% by mass to 6% by mass of cordierite, or 2% by mass of petalite,
In the Segel formula,
Na 2 O 0.01 mol, K 2 O 0.01 mol, LiO 2 0.21 mol, MgO 0.67 mol, CaO 0.02 mol, MnO 0.08 mol,
Al 2 O 3 is 0.67 mol, Fe 2 O 3 is 0.05 mol,
SiO 2 is 3.08 mol, TiO 2 is 1.01 mol, ZrO 2 is 0.63 moles,
It is good that it is expressed as
By doing in this way, the bending fracture strength of the clay roof tile can be further increased, and the mass of the clay roof tile can be reduced while maintaining the bending fracture strength required for the clay roof tile. In addition, when the silver glaze is used for the second glaze layer, the difference between the color tone of the second glaze layer and the color tone of the first glaze layer at the found portion is not noticeable.

前記第1の釉薬層を構成する釉薬は、4質量%以上6質量%以下のコージライトを含み、
ゼーゲル式にて、
NaOが0.01モル、KOが0.01モル、MgOが0.02モル、CaOが0.07モル、MnOが0.80モル、BaOが0.09モル、
Alが0.27モル、Feが0.02モル、
SiOが1.66モル、TiOが0.19モル、ZrOが0.13、Bが0.04モル、
として表される組成であるとよい。
このようにすることで、粘土瓦の曲げ破壊強度をより大きくすることができ、粘土瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦の質量を小さくできる。また、前記第2の釉薬層に半光沢黒色(ブラックマット)釉薬を用いた場合、見付け部分の第2の釉薬層の色調と第1の釉薬層の色調との違いが目立たなくなる。
The glaze constituting the first glaze layer contains 4% by mass or more and 6% by mass or less cordierite,
In the Segel formula,
Na 2 O 0.01 mol, K 2 O 0.01 mol, MgO 0.02 mol, CaO 0.07 mol, MnO 0.80 mol, BaO 0.09 mol,
Al 2 O 3 is 0.27 mol, Fe 2 O 3 is 0.02 mol,
SiO 2 is 1.66 mol, TiO 2 is 0.19 mol, ZrO 2 is 0.13, B 2 O 3 is 0.04 mol,
It is good that it is expressed as
By doing in this way, the bending fracture strength of the clay roof tile can be further increased, and the mass of the clay roof tile can be reduced while maintaining the bending fracture strength required for the clay roof tile. Further, when a semi-glossy black (black matte) glaze is used for the second glaze layer, the difference between the color tone of the second glaze layer in the found portion and the color tone of the first glaze layer becomes inconspicuous.

前記第1の釉薬層を構成する釉薬は、
ゼーゲル式にて、
NaOが0モル超0.03モル以下、KOが0モル超0.03モル以下、CaOが0.02モル、LiOが0.09モル以上0.99モル以下、
Alが1.00モル以上2.00モル以下、
SiOが6.31モル以上8.31モル以下、
として表される組成であるとよい。
また、前記第1の釉薬層を構成する釉薬は、
1質量%以上7質量%以下のα−アルミナ、1質量%以上2質量%以下のジルコン、1質量%以上100質量%未満のペタライト、または1質量%以上20質量%以下のスポジューメンを含むとよい。
このようにすることで、粘土瓦の曲げ破壊強度をより大きくすることができ、粘土瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦の質量を小さくできる。また、前記第2の釉薬層にハイシルバー釉薬を用いた場合、見付け部分の第2の釉薬層の色調と第1の釉薬層の色調との違いが目立たなくなる。
The glaze constituting the first glaze layer is
In the Segel formula,
Na 2 O more than 0 mol 0.03 mol or less, K 2 O more than 0 mol 0.03 mol or less, CaO 0.02 mol, Li 2 O 0.09 mol or more and 0.99 mol or less,
Al 2 O 3 is 1.00 mol or more and 2.00 mol or less,
SiO 2 is 6.31 mol or more and 8.31 mol or less,
It is good that it is expressed as
Moreover, the glaze which comprises the said 1st glaze layer is
It may contain 1% by mass or more and 7% by mass or less α-alumina, 1% by mass or more and 2% by mass or less zircon, 1% by mass or more and less than 100% by mass petalite, or 1% by mass or more and less than 20% by mass spodomen. .
By doing in this way, the bending fracture strength of the clay roof tile can be further increased, and the mass of the clay roof tile can be reduced while maintaining the bending fracture strength required for the clay roof tile. Further, when a high silver glaze is used for the second glaze layer, the difference between the color tone of the second glaze layer at the found portion and the color tone of the first glaze layer becomes inconspicuous.

本発明によれば、粘土瓦が、釉薬層を備えない粘土瓦や表面のみに釉薬層を備える粘土瓦より大きい曲げ破壊強度を有する。このため、必要な曲げ破壊強度を保ちつつ、粘土瓦の厚みを小さくできる。これにより、粘土瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦の質量を小さくでき、曲げ破壊強度が大きく、質量の小さい粘土瓦を提供することが可能となる。   According to the present invention, a clay roof tile has a bending fracture strength greater than that of a clay roof tile without a glaze layer or a clay roof tile with a glaze layer only on the surface. For this reason, the thickness of the clay roof tile can be reduced while maintaining the required bending fracture strength. Thereby, it is possible to reduce the mass of the clay roof tile while maintaining the bending fracture strength necessary for the clay roof tile, and to provide a clay roof tile having a high bending fracture strength and a small mass.

第1〜4の実施の形態に係る粘土瓦を示す断面図である。It is sectional drawing which shows the clay roof tile which concerns on 1st-4th embodiment. (A)は、粘土瓦の曲げ破壊強度の測定方法を示す上面図であり、(B)は、粘土瓦の曲げ破壊強度の測定方法を示す側面図である。(A) is a top view which shows the measuring method of the bending fracture strength of a clay roof, (B) is a side view which shows the measuring method of the bending fracture strength of a clay roof.

以下、本発明を実施するための形態に係る粘土瓦を図面を参照しながら詳細に説明する。   Hereinafter, a clay roof according to an embodiment for carrying out the present invention will be described in detail with reference to the drawings.

(第1の実施の形態)
第1の実施の形態に係る粘土瓦10は、図1に示すように、素地層20と、素地層20の裏面に配置された第1の釉薬層30と、素地層20の表面に配置された第2の釉薬層40と、を備える。なお表面は、屋根に配置したとき外観に表れる面である。粘土瓦10は、後述する第1の釉薬層30を構成する粘土瓦用釉薬Aと第2の釉薬層40を構成する粘土瓦用釉薬Rとを素地層20にそれぞれ施釉した後、1000℃〜1200℃で酸化焼成されたものであり、一般の粘土瓦と同様の色彩、光沢を備えつつ、大きい曲げ破壊強度を有する。粘土瓦10が大きい曲げ破壊強度を有することで、瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦10の厚みを小さくできる。これにより、粘土瓦10の質量を小さくできる。
(First embodiment)
As shown in FIG. 1, the clay roof tile 10 according to the first embodiment is disposed on the surface of the base layer 20, the first glaze layer 30 disposed on the back surface of the base layer 20, and the base layer 20. And a second glaze layer 40. The surface is a surface that appears on the exterior when placed on the roof. The clay roof tile 10 is applied with the glaze A for clay roof tiles constituting the first glaze layer 30 and the glaze R for clay roof tiles constituting the second glaze layer 40 on the base layer 20, respectively. It is oxidized and fired at 1200 ° C., and has a high bending fracture strength while having the same color and gloss as ordinary clay roof tiles. Since the clay roof tile 10 has a high bending fracture strength, the thickness of the clay roof tile 10 can be reduced while maintaining the bending fracture strength required for the roof tile. Thereby, the mass of the clay roof tile 10 can be reduced.

素地層20は、粘土を主原料とする原料を混練、成形および焼成したものから構成される。素地層20の線熱膨張係数は、例えば6.8×10−6/℃である。 The base layer 20 is composed of a material obtained by kneading, molding and firing a raw material mainly composed of clay. The linear thermal expansion coefficient of the base layer 20 is, for example, 6.8 × 10 −6 / ° C.

第1の釉薬層30は、粘土瓦用釉薬Aから構成される。粘土瓦用釉薬Aは、4質量%以上5質量%以下のコージライト(2MgO2Al5SiO)、2質量%以上3質量%以下のα−アルミナ(Al)、または1質量%以上2質量%以下のジルコン(ZrOSiO)を含み、
ゼーゲル式にて、
NaOが0.01モル、KOが0.01モル、MgOが0.05モル、CaOが0.18モル、MnOが0.76モル、
Alが0.16モル、Feが0.03モル、Bが0.08モル、
SiOが1.33モル、TiOが0.22モル、ZrOが0.31モル、
として表される組成から構成される。
The first glaze layer 30 is composed of clay tile glaze A. The glaze A for clay roof tiles is 4% to 5% by weight cordierite (2MgO2Al 2 O 3 5SiO 2 ), 2% to 3% by weight α-alumina (Al 2 O 3 ), or 1% by weight. Containing 2 % by mass or less of zircon (ZrO 2 SiO 2 ),
In the Segel formula,
Na 2 O 0.01 mol, K 2 O 0.01 mol, MgO 0.05 mol, CaO 0.18 mol, MnO 0.76 mol,
Al 2 O 3 is 0.16 mol, Fe 2 O 3 is 0.03 mol, B 2 O 3 is 0.08 mol,
SiO 2 is 1.33 mol, TiO 2 is 0.22 mol, ZrO 2 is 0.31 mol,
It is comprised from the composition represented as.

コージライトの熱線膨張係数は、2.6〜2.8×10−6/℃、融点は1450℃である。粘土瓦用釉薬Aが、コージライトを4質量%以上含むことで、第1の釉薬層30の線熱膨張係数は、素地層20の線熱膨張係数より一定以上小さくなる。また、コージライトの融点は、粘土瓦10の焼成温度より高いので、焼成した際、コージライトが溶融せず固体のまま第1の釉薬層30に残る。このことも、第1の釉薬層30の線熱膨張係数を小さくすることに寄与すると考えられる。この結果、粘土瓦10が焼成した後冷却されると、素地層20と第1の釉薬層30との線熱膨張係数の差により、第1の釉薬層30にコンプレッション(圧縮応力)が加わる。これにより、粘土瓦10の曲げ破壊強度を高めることができると考えられる。
また、粘土瓦用釉薬Aが、コージライトを5質量%以下含むことで、見付け部分(表面と裏面の重なり部分)の第2の釉薬層40の色調と第1の釉薬層30の色調との違いが目立たなくなる。なお、第2の釉薬層40の詳細については後述する。
Cordierite has a coefficient of thermal expansion of 2.6 to 2.8 × 10 −6 / ° C. and a melting point of 1450 ° C. When the glaze A for clay roof contains 4 mass% or more of cordierite, the linear thermal expansion coefficient of the first glaze layer 30 becomes smaller than the linear thermal expansion coefficient of the base layer 20 by a certain amount or more. Moreover, since the melting point of cordierite is higher than the firing temperature of the clay roof tile 10, the cordierite does not melt and remains in the first glaze layer 30 as a solid when fired. This is also considered to contribute to reducing the linear thermal expansion coefficient of the first glaze layer 30. As a result, when the clay roof tile 10 is fired and then cooled, compression (compression stress) is applied to the first glaze layer 30 due to the difference in linear thermal expansion coefficient between the base layer 20 and the first glaze layer 30. Thereby, it is thought that the bending fracture strength of the clay roof tile 10 can be increased.
Moreover, the glaze A for clay tiles contains 5 mass% or less of cordierite, so that the color tone of the second glaze layer 40 and the color tone of the first glaze layer 30 in the found portion (the overlapping portion of the front surface and the back surface) The difference is less noticeable. The details of the second glaze layer 40 will be described later.

また、α−アルミナの密度は、3.95g/cm、融点は2072℃である。ジルコンの密度は、4.7g/cm、融点は2550℃である。粘土瓦用釉薬Aがα−アルミナを2質量%以上、またはジルコンを1質量%以上含むことで、第1の釉薬層30の密度が大きくなり、粘土瓦10の曲げ破壊強度を高めることに寄与すると考えられる。また、α−アルミナ、ジルコンの融点は、粘土瓦10の焼成温度より高いので、焼成した際、これらの物質が溶融せず固体のまま第1の釉薬層30に残る。このことも、粘土瓦10の曲げ破壊強度を高めることに寄与すると考えられる。
また、粘土瓦用釉薬Aが、α−アルミナを3質量%以下、またはジルコンを1質量%以下含むことで、見付け部分の第2の釉薬層40の色調と第1の釉薬層30の色調との違いが目立たなくなる。
The density of α-alumina is 3.95 g / cm 3 and the melting point is 2072 ° C. The density of zircon is 4.7 g / cm 3 and the melting point is 2550 ° C. When the glaze A for clay roof contains 2% by mass or more of α-alumina or 1% by mass or more of zircon, the density of the first glaze layer 30 increases and contributes to increasing the bending fracture strength of the clay roof 10. I think that. Moreover, since melting | fusing point of (alpha) -alumina and zircon is higher than the calcination temperature of the clay roof tile 10, when baked, these substances do not melt and remain in the first glaze layer 30 as a solid. This is also considered to contribute to increasing the bending fracture strength of the clay roof tile 10.
Further, the glaze A for clay roof contains 3% by mass or less of α-alumina or 1% by mass or less of zircon, so that the color tone of the second glaze layer 40 and the color tone of the first glaze layer 30 in the found portion are The difference becomes inconspicuous.

ゼーゲル式で表されたNaO、KO、LiO、MgO、CaO、MnOは、粘土瓦用釉薬Aの溶ける温度を調整するために加えられるものである。これらは、粘土瓦用釉薬Aの中では、電子供与性(電子を放出しやすい性質)の塩基性成分として振るまい、多く加えると溶融温度が低下する。 Na 2 O, K 2 O, Li 2 O, MgO, CaO, and MnO expressed by the Seegel formula are added to adjust the melting temperature of the glaze A for clay roof tiles. In the glaze A for clay roof tiles, these do not behave as electron-donating (a property that easily emits electrons) basic components, and if added in large quantities, the melting temperature decreases.

ゼーゲル式で表されたAl、FeO、Bは、粘土瓦用釉薬A中で中性成分として振るまい、粘土瓦用釉薬Aが溶ける温度には影響しない。これらは、粘土瓦用釉薬Aが結晶化するのを防ぎ釉薬の清澄性を促進し、粘土瓦用釉薬Aに適度な粘りを持たせ厚みを均一にする働きがある。 Al 2 O 3 , FeO 3 , and B 2 O 3 represented by the Seegel formula do not affect the temperature at which the glaze A for clay roofing melts and does not act as a neutral component in the glaze A for clay roofing. These prevent the glaze A for clay roof tiles from crystallizing, promote the clarity of the glaze, and have the clay A for clay roof tiles having an appropriate viscosity to make the thickness uniform.

ゼーゲル式で表されたSiO、TiO、ZrOは、粘土瓦用釉薬A中で電子受容性(電子を引きつける性質)を持つ酸として振るまい、粘土瓦用釉薬Aの溶融温度を上昇させる働きがある。これらを加え過ぎると、釉薬が溶ける温度が上昇し、仕上がりが不透明になる傾向がある。逆に少なすぎると粘度が小さくなり、脆くなる。 SiO 2 , TiO 2 , and ZrO 2 represented by the Seegel formula behave as an acid having an electron accepting property (a property of attracting electrons) in the glaze A for clay roof tiles, and increase the melting temperature of the glaze A for clay roof tiles. There is work. If these are added too much, the temperature at which the glaze melts rises and the finish tends to become opaque. On the other hand, if the amount is too small, the viscosity becomes small and the material becomes brittle.

第2の釉薬層40は、結晶系銀色釉薬である粘土瓦用釉薬Rから構成される。なお、結晶系銀色釉薬層を配置した粘土瓦は、「新銀」として井野瓦工業株式会社で販売されているものである。   The second glaze layer 40 is composed of a clay tile glaze R, which is a crystalline silver glaze. Note that the clay roof tiles on which the crystalline silver glaze layer is arranged are sold as “Shin Silver” by Ino Kawara Kogyo Co., Ltd.

粘土瓦用釉薬Rは、ゼーゲル式にて、
NaOが0.02モル以下、KOが0.02モル以下、LiOが0.10〜0.40モル、CaOが0.01〜0.30モル、MgOが0.01〜0.20モル、MnOが0.50〜090モル、
Alが0.10〜0.80モル、Feが0.01〜0.10モル、Bが0.01〜0.10モル、
SiOが1.00〜4.00モル、TiOが0.05〜2.00モル、ZrOが0.20〜0.40モル、
として表される組成から構成される。
The glaze R for clay roof tiles is the Zegel formula,
Na 2 O is 0.02 mol or less, K 2 O is 0.02 mol or less, Li 2 O is 0.10 to 0.40 mol, CaO is 0.01 to 0.30 mol, MgO is 0.01 to 0.20 mol, MnO 0.50-090 mol,
Al 2 O 3 is 0.10 to 0.80 mol, Fe 2 O 3 is 0.01 to 0.10 mol, B 2 O 3 is 0.01 to 0.10 mol,
SiO 2 is 1.00 to 4.00 mol, TiO 2 is from 0.05 to 2.00 mol, ZrO 2 is 0.20 to 0.40 mol,
It is comprised from the composition represented as.

粘土瓦用釉薬Rのゼーゲル式による作用効果は、上述した粘土瓦用釉薬Aのゼーゲル式による作用効果と同様である。   The effect of the clay tile glaze R according to the Zegel formula is the same as the effect of the clay tile glaze A according to the Zegel formula described above.

つぎに、粘土瓦10の製造方法について説明する。   Next, a method for manufacturing the clay roof tile 10 will be described.

粘土瓦10の製造方法は、粘土瓦用釉薬Aおよび粘土瓦用釉薬Rの調製工程と、素地層20の成形工程と、粘土瓦用釉薬Aおよび粘土瓦用釉薬Rを素地層20に施釉する施釉工程と、粘土瓦10を焼成する焼成工程と、を備える。   The method for producing the clay roof tile 10 includes the steps of preparing the clay tile glaze A and the clay tile glaze R, forming the base layer 20, and applying the clay roof glaze A and the clay tile glaze R to the base layer 20. A glazing step and a firing step for firing the clay roof tile 10.

まず、粘土瓦用釉薬Aおよび粘土瓦用釉薬Rを調製する(調製工程)。具体的には、上述した割合でコージライト、α−アルミナ、ジルコンを配合し、上記のゼーゲル式で表された組成になるように釉薬原料を適宜配合し、粘土瓦用釉薬Aを調製する。この釉薬原料には、曹長石、正長石、炭酸カルシウム、酸化マンガン、二酸化ケイ素、酸化チタンなどを含む。この粘土瓦用釉薬Aと、適量の水と、糊剤と、をミルに投入し、混合して粘土瓦用釉薬Aの釉薬泥漿を得る。同様に粘土瓦用釉薬Rを調製し、釉薬泥漿を得る。   First, glaze A for clay roof tiles and glaze R for clay roof tiles are prepared (preparation step). Specifically, cordierite, α-alumina, and zircon are blended in the proportions described above, and the glaze raw material is blended as appropriate so that the composition represented by the Zegel formula is obtained, thereby preparing glaze A for clay roof tiles. This glaze raw material includes feldspar, orthofeldspar, calcium carbonate, manganese oxide, silicon dioxide, titanium oxide and the like. The clay roofing glaze A, an appropriate amount of water, and a paste are put into a mill and mixed to obtain a clay roofing glaze A glaze slurry. Similarly, a glaze R for clay roof tiles is prepared to obtain a glaze slurry.

つぎに、粘土を主原料とする原料を混練し、瓦の形状になるように素地層20を成形する(成形工程)。   Next, the raw material which makes clay the main raw material is knead | mixed, and the base layer 20 is shape | molded so that it may become the shape of a tile (forming process).

つぎに、粘土瓦用釉薬Aおよび粘土瓦用釉薬Rを素地層20に施釉する(施釉工程)。具体的には、素地層20の裏面に調製工程で調製した粘土瓦用釉薬Aの釉薬泥漿を施釉し、表面に粘土瓦用釉薬Rの釉薬泥漿を施釉する。   Next, the glaze A for clay roof tiles and the glaze R for clay roof tiles are applied to the base layer 20 (glazing process). Specifically, the glaze slurry of the clay tile glaze A prepared in the preparation step is applied to the back surface of the base layer 20, and the glaze slurry of the clay tile glaze R is applied to the surface.

つぎに、素地層20に粘土用釉薬Aおよび粘土瓦用釉薬Rが施釉された粘土瓦10を炉で焼成する焼成工程を実施する。焼成工程では、粘土瓦10をトンネル炉などで1000℃〜1200℃で酸化焼成する。焼成工程の後、粘土瓦10の焼成品が得られる。   Next, a firing step is performed in which the clay tile 10 in which the base layer 20 is coated with the clay glaze A and the clay tile glaze R is fired in a furnace. In the firing step, the clay roof tile 10 is oxidized and fired at 1000 ° C. to 1200 ° C. in a tunnel furnace or the like. After the firing step, a fired product of the clay roof tile 10 is obtained.

以上述たように、第1の実施の形態の粘土瓦10は、第1の釉薬層30を構成する粘土瓦用釉薬Aが、コージライト、α−アルミナ、ジルコンを所定の割合以上含み、且つ上記ゼーゲル式で表される組成に調製されることで、粘土瓦10は、大きい曲げ破壊強度を有する。このため、粘土瓦10が瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦10の厚みを小さくできる。これにより、粘土瓦10の質量を小さくできる。また、粘土瓦10は、表面に従来から用いられている粘土瓦用釉薬Rを施釉することで、一般の粘土瓦と同様の色彩、光沢を備える。また、粘土瓦用釉薬Aが、コージライト、α−アルミナ、ジルコンを所定の割合以下含み、且つ上記ゼーゲル式で表される組成に調製されることで、見付け部分の第2の釉薬層40の色調と第1の釉薬層30の色調との違いが目立たない。   As described above, in the clay roof tile 10 according to the first embodiment, the clay roof glaze A constituting the first glaze layer 30 includes cordierite, α-alumina, zircon in a predetermined ratio or more, and By preparing the composition represented by the Zegel formula, the clay roof tile 10 has a high bending fracture strength. For this reason, the thickness of the clay roof tile 10 can be reduced while the clay roof tile 10 maintains the bending fracture strength required for the roof tile. Thereby, the mass of the clay roof tile 10 can be reduced. Further, the clay roof tile 10 is provided with the same color and gloss as a general clay roof tile by applying a conventionally used clay roof glaze R to the surface. Moreover, the glaze A for clay roof tiles contains cordierite, α-alumina, zircon at a predetermined ratio or less, and is prepared in a composition represented by the Zegel formula, so that the second glaze layer 40 of the found portion is formed. The difference between the color tone and the color tone of the first glaze layer 30 is not noticeable.

(第2の実施の形態)
第1の実施の形態では、第2の釉薬層40が結晶系銀色釉薬から構成される粘土瓦10について説明した。これに対して、第2の実施の形態では、第2の釉薬層40がいぶし系銀色釉薬から構成される粘土瓦10について説明する。なお、いぶし系銀色釉薬層を配置した粘土瓦は、「白寿」として井野瓦工業株式会社で販売されているものである。
(Second Embodiment)
In the first embodiment, the clay roof tile 10 in which the second glaze layer 40 is made of a crystalline silver glaze has been described. On the other hand, in 2nd Embodiment, the 2nd glaze layer 40 demonstrates the clay roof tile 10 comprised from a glaze type silver glaze. In addition, clay tiles with an Ibushi-based silver glaze layer are sold by Inogawara Kogyo Co., Ltd. as “Shirasu”.

第2の実施の形態の粘土瓦10は、粘土瓦用釉薬Bから構成される第1の釉薬層30と、粘土瓦用釉薬(いぶし系銀色釉薬)Sから構成される第2の釉薬層40を備える。   The clay roof tile 10 according to the second embodiment includes a first glaze layer 30 composed of the glaze B for clay roof tiles and a second glaze layer 40 composed of the glaze for clay roof tiles (smoldering silver glaze) S. Is provided.

粘土瓦用釉薬Bは、2質量%以上6質量%以下のコージライト、または2質量%のペタライト(LiOAl8SiO)、を含み、
ゼーゲル式にて、
NaOが0.01モル、KOが0.01モル、LiOが0.21モル、MgOが0.67モル、CaOが0.02モル、MnOが0.08モル、
Alが0.67モル、Feが0.05モル、
SiOが3.08モル、TiOが1.01モル、ZrOが0.63モル、
として表される組成から構成される。
The glaze B for clay roof includes 2% by mass or more and 6% by mass or less of cordierite, or 2% by mass of petalite (Li 2 OAl 2 O 3 8SiO 2 ),
In the Segel formula,
Na 2 O 0.01 mol, K 2 O 0.01 mol, Li 2 O 0.21 mol, MgO 0.67 mol, CaO 0.02 mol, MnO 0.08 mol,
Al 2 O 3 is 0.67 mol, Fe 2 O 3 is 0.05 mol,
SiO 2 is 3.08 mol, TiO 2 is 1.01 mol, ZrO 2 is 0.63 moles,
It is comprised from the composition represented as.

粘土瓦用釉薬Sは、
ゼーゲル式にて、
NaOが0.00〜0.05モル、KOが0.00〜0.05モル、LiOが0.01〜0.03モル、MgOが0.05〜0.25モル、CaOが0.00〜0.10モル、MnOが0.35〜1.25モル、
Alが0.43〜1.05モル、Feが0.00〜0.23モル、
SiOが2.05〜4.32モル、TiOが0.53〜1.52モル、ZrOが0.32〜1.25モル、
として表される組成から構成される。
The glaze S for clay roof
In the Segel formula,
Na 2 O is 0.00 to 0.05 mol, K 2 O is from 0.00 to 0.05 mol, Li 2 O is 0.01 to 0.03 mol, MgO is 0.05 to 0.25 mol, 0.000 to 0.10 mole of CaO, 0.35 to 1.25 mole of MnO,
Al 2 O 3 is 0.43 to 1.05 mol, Fe 2 O 3 is 0.00 to 0.23 mol,
SiO 2 is 2.05 to 4.32 mol, TiO 2 is from 0.53 to 1.52 mol, ZrO 2 is 0.32 to 1.25 mol,
It is comprised from the composition represented as.

コージライトの熱線膨張係数は、上述したように、2.6〜2.8×10−6/℃、融点は1450℃である。ペタライトの熱線膨張係数は、0.5×10−6/℃であり、融点は1350℃である。粘土瓦用釉薬Bが、コージライトを2質量%以上、またはペタライトを2質量%含むことで、第1の釉薬層30の線熱膨張係数は、素地層20の線熱膨張係数より一定以上小さくなる。また、コージライト、ペタライトの融点は、粘土瓦10の焼成温度より高いので、焼成した際、コージライト、ペタライトが溶融せず固体のまま第1の釉薬層30に残る。このことも、第1の釉薬層30の線熱膨張係数を小さくすることに寄与すると考えられる。この結果、粘土瓦10が焼成した後冷却されると、素地層20と第1の釉薬層30との線熱膨張係数の差により、第1の釉薬層30にコンプレッション(圧縮応力)が加わる。これにより、粘土瓦10の曲げ破壊強度を高めることができると考えられる。粘土瓦10が大きい曲げ破壊強度を有することで、瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦10の厚みを小さくできる。これにより、粘土瓦10の質量を小さくできる。
また、粘土瓦用釉薬Bが、コージライトを6質量%以下、またはペタライトを2質量%含むことで、見付け部分(表面と裏面の重なり部分)の第2の釉薬層40の色調と第1の釉薬層30の色調との違いが目立たなくなる。
As described above, the thermal expansion coefficient of cordierite is 2.6 to 2.8 × 10 −6 / ° C., and the melting point is 1450 ° C. The thermal expansion coefficient of petalite is 0.5 × 10 −6 / ° C., and the melting point is 1350 ° C. Since the glaze B for clay roof contains 2 mass% or more of cordierite or 2 mass% of petalite, the linear thermal expansion coefficient of the first glaze layer 30 is smaller than the linear thermal expansion coefficient of the base layer 20 by a certain amount or more. Become. Moreover, since the melting point of cordierite and petalite is higher than the firing temperature of the clay roof tile 10, cordierite and petalite do not melt and remain in the first glaze layer 30 as a solid when fired. This is also considered to contribute to reducing the linear thermal expansion coefficient of the first glaze layer 30. As a result, when the clay roof tile 10 is fired and then cooled, compression (compression stress) is applied to the first glaze layer 30 due to the difference in linear thermal expansion coefficient between the base layer 20 and the first glaze layer 30. Thereby, it is thought that the bending fracture strength of the clay roof tile 10 can be increased. Since the clay roof tile 10 has a high bending fracture strength, the thickness of the clay roof tile 10 can be reduced while maintaining the bending fracture strength required for the roof tile. Thereby, the mass of the clay roof tile 10 can be reduced.
Further, the glaze B for clay roof contains 6% by weight or less of cordierite or 2% by weight of petalite, so that the color tone and the first tone of the second glaze layer 40 in the found portion (the overlapping portion of the front surface and the back surface) can be obtained. The difference from the color tone of the glaze layer 30 becomes inconspicuous.

粘土瓦用釉薬Bおよび粘土瓦用釉薬Sのゼーゲル式による作用効果は、上述した粘土瓦用釉薬Aのゼーゲル式による作用効果と同様である。   The operational effects of the clay roofing glaze B and the clay roofing glaze S are the same as the above-described operational effects of the clay roofing glaze A of the clay roofing glaze A.

(第3の実施の形態)
第3の実施の形態では、第2の釉薬層40が半光沢黒色(ブラックマット)釉薬から構成される粘土瓦10について説明する。第3の実施の形態の粘土瓦10は、粘土瓦用釉薬Cから構成される第1の釉薬層30と、粘土瓦用釉薬(半光沢黒色釉薬)Tから構成される第2の釉薬層40を備える。
(Third embodiment)
In the third embodiment, the clay roof tile 10 in which the second glaze layer 40 is composed of a semi-glossy black (black matte) glaze will be described. The clay roof tile 10 of the third embodiment includes a first glaze layer 30 composed of a clay roofing glaze C and a second glaze layer 40 composed of a clay roofing glaze (semi-glossy black glaze) T. Is provided.

粘土瓦用釉薬Cは、4質量%以上6質量%以下のコージライトを含み、
ゼーゲル式にて、
NaOが0.01モル、KOが0.01モル、MgOが0.02モル、CaOが0.07モル、MnOが0.80モル、BaOが0.09モル、
Alが0.27モル、Feが0.02モル、
SiOが1.66モル、TiOが0.19モル、ZrOが0.13、Bが0.04モル、
として表される組成から構成される。
The glaze C for clay roof tiles includes 4% by weight to 6% by weight of cordierite,
In the Segel formula,
Na 2 O 0.01 mol, K 2 O 0.01 mol, MgO 0.02 mol, CaO 0.07 mol, MnO 0.80 mol, BaO 0.09 mol,
Al 2 O 3 is 0.27 mol, Fe 2 O 3 is 0.02 mol,
SiO 2 is 1.66 mol, TiO 2 is 0.19 mol, ZrO 2 is 0.13, B 2 O 3 is 0.04 mol,
It is comprised from the composition represented as.

粘土瓦用釉薬Tは、
ゼーゲル式にて、
NaOが0.01モル、KOが0.01モル、MgOが0.01モル、CaOが0.07モル、MnOが0.80モル、BaOが0.10モル、
Alが0.25モル、Feが0.02モル、
SiOが1.60モル、TiOが0.19モル、ZrOが0.13、Bが0.04モル、
として表される組成から構成される。
Glaze T for clay roof
In the Segel formula,
Na 2 O 0.01 mol, K 2 O 0.01 mol, MgO 0.01 mol, CaO 0.07 mol, MnO 0.80 mol, BaO 0.10 mol,
Al 2 O 3 is 0.25 mol, Fe 2 O 3 is 0.02 mol,
SiO 2 is 1.60 mol, TiO 2 is 0.19 mol, ZrO 2 is 0.13, B 2 O 3 is 0.04 mol,
It is comprised from the composition represented as.

粘土瓦用釉薬Cが、コージライトを4質量%以上含むことで、第1の釉薬層30の線熱膨張係数は、素地層20の線熱膨張係数より一定以上小さくなる。また、コージライトの融点は、粘土瓦10の焼成温度より高いので、焼成した際、コージライトが溶融せず固体のまま第1の釉薬層30に残る。このことも、第1の釉薬層30の線熱膨張係数を小さくすることに寄与すると考えられる。この結果、粘土瓦10が焼成した後冷却されると、素地層20と第1の釉薬層30との線熱膨張係数の差により、第1の釉薬層30にコンプレッション(圧縮応力)が加わる。これにより、粘土瓦10の曲げ破壊強度を高めることができると考えられる。粘土瓦10が大きい曲げ破壊強度を有することで、瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦10の厚みを小さくできる。これにより、粘土瓦10の質量を小さくできる。
また、粘土瓦用釉薬Cが、コージライトを6質量%以下含むことで、見付け部分(表面と裏面の重なり部分)の第2の釉薬層40の色調と第1の釉薬層30の色調との違いが目立たなくなる。
When the glaze C for clay roof contains 4 mass% or more of cordierite, the linear thermal expansion coefficient of the first glaze layer 30 becomes smaller than the linear thermal expansion coefficient of the base layer 20 by a certain amount or more. Moreover, since the melting point of cordierite is higher than the firing temperature of the clay roof tile 10, the cordierite does not melt and remains in the first glaze layer 30 as a solid when fired. This is also considered to contribute to reducing the linear thermal expansion coefficient of the first glaze layer 30. As a result, when the clay roof tile 10 is fired and then cooled, compression (compression stress) is applied to the first glaze layer 30 due to the difference in linear thermal expansion coefficient between the base layer 20 and the first glaze layer 30. Thereby, it is thought that the bending fracture strength of the clay roof tile 10 can be increased. Since the clay roof tile 10 has a high bending fracture strength, the thickness of the clay roof tile 10 can be reduced while maintaining the bending fracture strength required for the roof tile. Thereby, the mass of the clay roof tile 10 can be reduced.
Moreover, the glaze C for clay tiles contains 6 mass% or less of cordierite, so that the color tone of the second glaze layer 40 and the color tone of the first glaze layer 30 in the found portion (the overlapping portion of the front surface and the back surface) The difference is less noticeable.

粘土瓦用釉薬Cおよび粘土瓦用釉薬Tのゼーゲル式による作用効果は、上述した粘土瓦用釉薬Aのゼーゲル式による作用効果と同様である。   The operational effects of the clay tile glaze C and the clay roof glaze T according to the Zegel formula are the same as the above-described operational effects of the clay tile glaze A of the clay tile glaze A.

(第4の実施の形態)
第4の実施の形態では、第2の釉薬層40がハイシルバー釉薬から構成される粘土瓦10について説明する。第4の実施の形態の粘土瓦10は、粘土瓦用釉薬Dから構成される第1の釉薬層30と、粘土瓦用釉薬(ハイシルバー釉薬)Uから構成される第2の釉薬層40を備える。
(Fourth embodiment)
4th Embodiment demonstrates the clay roof tile 10 in which the 2nd glaze layer 40 is comprised from a high silver glaze. The clay roof tile 10 according to the fourth embodiment includes a first glaze layer 30 composed of a clay tile glaze D and a second glaze layer 40 composed of a clay tile glaze (high silver glaze) U. Prepare.

粘土瓦用釉薬Dは、
ゼーゲル式にて、
NaOが0.00モル超0.03モル以下、KOが0.00モル超0.01モル以下、CaOが0.02モル、LiOが0.96モル以上0.99モル以下、
Alが1.00モル以上2.00モル以下、
SiOが6.31モル以上8.31モル以下、
として表される組成から構成されるとよい。
Glaze D for clay roof
In the Segel formula,
Na 2 O more than 0.00 mol 0.03 mol or less, K 2 O more than 0.00 mol 0.01 mol or less, CaO 0.02 mol, Li 2 O 0.96 mol or more and 0.99 mol Less than,
Al 2 O 3 is 1.00 mol or more and 2.00 mol or less,
SiO 2 is 6.31 mol or more and 8.31 mol or less,
It is good to be comprised from the composition represented as.

また、粘土瓦用釉薬Dは、
1質量%以上7質量%以下のα−アルミナ、1質量%以上2質量%以下のジルコン、1質量%以上100質量%未満のペタライト、または1質量%以上20%以下のスポジューメン(LiOAl4SiO)を含むとよい。
In addition, glaze D for clay roof
1% by mass or more and 7% by mass or less α-alumina, 1% by mass or more and 2% by mass or less zircon, 1% by mass or more and less than 100% by mass petalite, or 1% by mass or more and less than 20% spodomen (Li 2 OAl 2 O 3 4SiO 2 ).

粘土瓦用釉薬Uは、
ゼーゲル式にて、
NaOが0.11モル、KOが0.17モル、MgOが0.06モル、CaOが0.65モル、MnOが0.01モル、
Alが0.17モル、Feが0.02モル、
SiOが2.34モル、TiOが0.03モル、Bが0.55モル、Crが0.02モル、
として表される組成から構成される。
The glaze U for clay tile is
In the Segel formula,
Na 2 O 0.11 mol, K 2 O 0.17 mol, MgO 0.06 mol, CaO 0.65 mole, MnO is 0.01 mol,
Al 2 O 3 is 0.17 mol, Fe 2 O 3 is 0.02 mol,
SiO 2 is 2.34 mol, TiO 2 is 0.03 mol, B 2 O 3 is 0.55 mol, Cr 2 O 3 is 0.02 mol,
It is comprised from the composition represented as.

粘土瓦用釉薬Dおよび粘土瓦用釉薬Uのゼーゲル式による作用効果は、上述した粘土瓦用釉薬Aのゼーゲル式による作用効果と同様である。   The operational effects of the clay roofing glaze D and the clay roofing glaze U are the same as the above-described operational effects of the clay roofing glaze A of the clay roofing glaze A.

粘土瓦用釉薬Dは、上記ゼーゲル式で示されるSiOの含有率が大きいため、粘土瓦用釉薬Dの溶融温度が高くなり、粘土瓦10の曲げ破壊強度を高めることができると考えられる。また、α−アルミナを1質量%以上、ジルコンを1質量%以上、ペタライトを1質量%以上、またはスポジューメンを1質量%含むことで、粘土瓦10の曲げ破壊強度をより高めることができると考えられる。粘土瓦10が大きい曲げ破壊強度を有することで、瓦に必要な曲げ破壊強度を保ちつつ、粘土瓦10の厚みを小さくできる。これにより、粘土瓦10の質量を小さくできる。
また、粘土瓦用釉薬Dが、α−アルミナを7質量%以下、ジルコンを2質量%以下、ペタライトを100質量%未満、またはスポジューメンを20質量%以下含むことで、見付け部分(表面と裏面の重なり部分)の第2の釉薬層40の色調と第1の釉薬層30の色調との違いが目立たなくなる。
It is considered that the clay roofing glaze D has a high content of SiO 2 represented by the Zegel formula, so that the melting temperature of the clay roofing glaze D is increased and the bending fracture strength of the clay roofing tile 10 can be increased. Further, it is considered that the bending fracture strength of the clay roof tile 10 can be further increased by including 1% by mass or more of α-alumina, 1% by mass or more of zircon, 1% by mass or more of petalite, or 1% by mass of spodumene. It is done. Since the clay roof tile 10 has a high bending fracture strength, the thickness of the clay roof tile 10 can be reduced while maintaining the bending fracture strength required for the roof tile. Thereby, the mass of the clay roof tile 10 can be reduced.
Further, the glaze D for clay roof contains 7 mass% or less of α-alumina, 2 mass% or less of zircon, less than 100 mass% of petalite, or 20 mass% or less of spodumene. The difference between the color tone of the second glaze layer 40 in the overlapping portion) and the color tone of the first glaze layer 30 becomes inconspicuous.

(変形例)
本発明は上記の実施の形態に限定されるものではなく、様々な実施形態を包含する。上記実施の形態では、第1の釉薬層30が、粘土瓦用釉薬A〜Dから構成され、第2の釉薬層40が、粘土瓦用釉薬R〜Uから構成された粘土瓦10について説明したが、第1の釉薬層30と第2の釉薬層40とは、粘土瓦用釉薬A〜Cから構成されてもよい。
(Modification)
The present invention is not limited to the above-described embodiment, and includes various embodiments. In the said embodiment, the 1st glaze layer 30 comprised the glazes A-D for clay roof tiles, and the 2nd glaze layer 40 demonstrated the clay roof tile 10 comprised from the glazes R-U for clay roof tiles. However, the 1st glaze layer 30 and the 2nd glaze layer 40 may be comprised from the glazes AC for clay roof tiles.

以下に、本発明を実施例に基づき、さらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(結晶系銀色釉薬を表面に施釉した粘土瓦)
従来用いられている結晶系銀色釉薬を表面に、実施例の粘土瓦用釉薬を裏面に施釉した粘土瓦の実施例について説明する。まず、表1に示すように、コージライトを2質量%含み、ゼーゲル式にて、NaOが0.01モル、KOが0.01モル、MgOが0.05モル、CaOが0.18モル、MnOが0.76モル、Alが0.16モル、Feが0.03モル、Bが0.08モル、SiOが1.33モル、TiOが0.22モル、ZrOが0.31モル、の割合になるように、原料を適宜配合し実施例1の粘土瓦用釉薬を調製した。ここで用いた原料は、曹長石、正長石、炭酸カルシウム、酸化マンガン、二酸化ケイ素、酸化チタンなどを含む。実施例1の粘土瓦用釉薬と水と糊剤とをミルに投入し、混合して実施例1の釉薬泥漿を得た。実施例2〜実施例13および比較例1の粘土瓦用釉薬についても表1に示す組成成分、含有率に基づいて、実施例1の粘土瓦用釉薬と同様に調製し、実施例2〜実施例13、比較例1の釉薬泥漿を得た。なお、比較例1の粘土瓦用釉薬は、結晶系銀色釉薬である。また、釉薬泥漿中粘土瓦用釉薬は、55質量%、水は、45質量%、糊剤は、0.05質量%とした。また、表1中コージライト、α−アルミナ、ジルコンの「−」は、配合しないことを示す。また、表1中比較例1の曲げ破壊強度の「−」は、比較対象であることを示す。
(Clay tile with a crystal silver glaze on the surface)
An example of a clay roof tile in which a conventionally used crystalline silver glaze is applied on the surface and the clay roof glaze of the embodiment on the back surface will be described. First, as shown in Table 1, it contains 2% by mass of cordierite, and in the Zegel formula, Na 2 O is 0.01 mol, K 2 O is 0.01 mol, MgO is 0.05 mol, and CaO is 0. .18 mol, MnO 0.76 mol, Al 2 O 3 0.16 mol, Fe 2 O 3 0.03 mol, B 2 O 3 0.08 mol, SiO 2 1.33 mol, TiO The material for the clay roof tile of Example 1 was prepared by appropriately blending the raw materials so that 2 was 0.22 mol and ZrO 2 was 0.31 mol. The raw materials used here include feldspar, orthofeldspar, calcium carbonate, manganese oxide, silicon dioxide, titanium oxide and the like. The glaze for clay roof tile of Example 1, water, and the paste were put into a mill and mixed to obtain the glaze slurry of Example 1. The glazes for clay roof tiles of Examples 2 to 13 and Comparative Example 1 were also prepared in the same manner as the glaze for clay roof tiles of Example 1 based on the composition components and contents shown in Table 1, and Examples 2 to The glaze slurry of Example 13 and Comparative Example 1 was obtained. In addition, the glaze for clay roofs of the comparative example 1 is a crystalline silver glaze. Further, the glaze for clay roof tiles in the glaze slurry was 55% by mass, water was 45% by mass, and the paste was 0.05% by mass. In Table 1, “-” of cordierite, α-alumina, and zircon indicates that they are not blended. Moreover, "-" of the bending fracture strength of Comparative Example 1 in Table 1 indicates that it is a comparison target.

Figure 2017190645
Figure 2017190645

つぎに、粘土を主原料とする原料を混練し、JIS A5208 J形桟瓦53Aに基づく瓦の形状、大きさになるように素地層を成形した。焼成後の1枚当りの瓦の質量は、2.40Kgとした。素地層の表面に比較例1の釉薬泥漿を施釉し、裏面に実施例1の釉薬泥漿を施釉し、実施例1の粘土瓦を得た。実施例1の粘土瓦と同様に、素地層の表面に比較例1の釉薬泥漿を施釉し、裏面に実施例2〜実施例13の釉薬泥漿をそれぞれ施釉し、実施例2〜実施例13の粘土瓦をそれぞれ得た。また、素地層の表面および裏面に比較例1の釉薬泥漿を施釉し、比較例1の粘土瓦を得た。実施例1〜実施例13、比較例1の釉薬釉薬泥漿の施釉量は、粘土瓦用釉薬換算で730g/mとした。つぎに、素地層に釉薬泥漿が施釉された実施例1〜実施例13、比較例1の粘土瓦をトンネル炉で酸化焼成した。焼成温度は、1120℃とし、焼成時間は、16時間とした。焼成工程の後、実施例1〜実施例13、比較例1の粘土瓦の焼成品が得られた。 Next, the raw material which makes clay the main raw material was knead | mixed, and the base layer was shape | molded so that it might become the shape and magnitude | size of a tile based on JIS A5208 J-shaped roof tile 53A. The mass of the tile per sheet after firing was 2.40 kg. The glaze slurry of Comparative Example 1 was glazed on the surface of the base layer and the glaze slurry of Example 1 was glazed on the back surface to obtain the clay roof tile of Example 1. Similarly to the clay roof tile of Example 1, the glaze slurry of Comparative Example 1 is applied to the surface of the base layer, and the glaze slurry of Examples 2 to 13 is applied to the back surface, respectively. Each clay tile was obtained. Further, the glaze slurry of Comparative Example 1 was applied to the front and back surfaces of the base layer to obtain the clay roof tile of Comparative Example 1. The amount of glazing glaze slurry of Examples 1 to 13 and Comparative Example 1 was 730 g / m 2 in terms of glaze for clay roof tiles. Next, the clay tiles of Examples 1 to 13 and Comparative Example 1 in which glaze sludge was applied to the base layer were oxidized and fired in a tunnel furnace. The firing temperature was 1120 ° C., and the firing time was 16 hours. After the firing step, fired products of the clay tiles of Examples 1 to 13 and Comparative Example 1 were obtained.

[釉薬の色調]
焼成後の実施例1〜実施例13、比較例1の粘土瓦の目付け部分の裏面の釉薬色調と裏面の釉薬色調との違いを目視検査した。目付け部分の裏面の釉薬色調と裏面の釉薬色調との違いが目立たない場合を良好○(○印)、目付け部分の裏面の釉薬色調と裏面の釉薬色調とが異なる場合を不良△(△印)、目付け部分の裏面の釉薬色調と裏面の釉薬色調とがかけ離れる場合を不良×(×印)とした。
[Color tone of glaze]
The difference between the glaze color tone on the back surface and the glaze color tone on the back surface of the clay roof tiles of Examples 1 to 13 and Comparative Example 1 after firing was visually inspected. Good if the difference between the glaze color on the back of the weighted area and the glaze color on the back is inconspicuous ○ (○ mark), bad if the glaze color on the back of the weighted area is different from the glaze color on the back △ (△ mark) The case where the glaze color tone on the back surface of the basis weight part and the glaze color tone on the back surface are separated from each other was defined as defective x (x mark).

[曲げ破壊強度]
焼成後の実施例1〜実施例13、比較例1の粘土瓦の曲げ破壊強度を測定した。曲げ破壊強度の測定は、JIS A5208で定められた方法により実施した。具体的には、図2(A)、図2(B)に示すように、水平な台100の上に直径φ1=30mmの丸棒110Aと、直径φ2=30mmの丸棒110Bを平行に載置する。丸棒110Aの軸と110Bの軸との間隔d1は、200mmである。その上に粘土瓦10を載置する。その上に直径φ3=30mmの丸棒110Cを丸棒110A、110Bに平行になるように粘土瓦10に載置する。丸棒110Cを載置する位置は、水平な台100を上から見て、丸棒110A、110Bから間隔d2=間隔d3=100mm離れた位置である。この状態で、上から丸棒110Cに徐々に力を加え、粘土瓦10が割れない最大の丸棒110Cを押し当てる力を測定し、この力を曲げ破壊強度とした。測定結果を比較例1と比較して、曲げ破壊荷重が122%以上(3000N以上)であるものを優良◎(◎印)、曲げ破壊荷重が110%以上(2700N以上)122%未満であるものを良好○(○印)、曲げ破壊荷重が110%未満であるものを不良△(△印)とした。
[Bending fracture strength]
The bending fracture strength of the clay roof tiles of Examples 1 to 13 and Comparative Example 1 after firing was measured. The bending fracture strength was measured by the method defined in JIS A5208. Specifically, as shown in FIGS. 2A and 2B, a round bar 110A having a diameter φ1 = 30 mm and a round bar 110B having a diameter φ2 = 30 mm are mounted in parallel on a horizontal base 100. Put. The distance d1 between the axis of the round bar 110A and the axis of 110B is 200 mm. A clay roof tile 10 is placed thereon. A round bar 110C having a diameter φ3 = 30 mm is placed on the clay tile 10 so as to be parallel to the round bars 110A and 110B. The position where the round bar 110C is placed is a position where the distance d2 = the distance d3 = 100 mm away from the round bars 110A and 110B when the horizontal base 100 is viewed from above. In this state, a force was gradually applied to the round bar 110C from above, and the force pressing the largest round bar 110C at which the clay roof tile 10 was not broken was measured, and this force was defined as the bending fracture strength. Compared with the measurement results of Comparative Example 1, those having a bending fracture load of 122% or more (3000 N or more) are excellent ◎ (◎), bending fracture load is 110% or more (2700 N or more) and less than 122% Was good (circle), and the one having a bending fracture load of less than 110% was regarded as defective Δ (triangle).

表1に示すように、釉薬の色調は、実施例1〜実施例3、実施例6、実施例7、実施例10、実施例11の粘土瓦で良好○であった。これは、コージライト、α−アルミナ、ジルコンの含有率が所定割合以下であったため、釉薬の色調の変化が少なかったためと考えられる。一方、実施例4、実施例8、実施例12、実施例13の粘土瓦の色調は、不良△であり、実施例5、実施例9の粘土瓦の色調は、不良×であった。これは、コージライト、α−アルミナ、ジルコンの含有率が所定割合以上であったため釉薬の色調が変化したためと考えられる。
また、曲げ破壊強度は、実施例3、実施例7、実施例11の粘土瓦は優良◎であり、実施例2、実施例4〜実施例6、実施例8〜実施例10、実施例12、実施例13の粘土瓦は、良好○であった。これは、コージライトの含有率が所定割合以上であったため、釉薬層の線熱膨張係数が小さくなったため、またはα−アルミナ、ジルコンの含有率が所定割合以上であったため、釉薬層の密度が大きくなったためと考えられる。一方、実施例1の粘土瓦は不良△であった。これは、コージライトの含有率が所定割合以下であったため、釉薬層の線熱膨張係数が十分小さくならなかったためと考えられる。
As shown in Table 1, the color tone of the glaze was good in the clay roof tiles of Examples 1 to 3, Example 6, Example 7, Example 10, and Example 11. This is presumably because the change in the color tone of the glaze was small because the content of cordierite, α-alumina, and zircon was not more than a predetermined ratio. On the other hand, the color tone of the clay roof tiles of Example 4, Example 8, Example 12, and Example 13 was poor Δ, and the color tone of the clay roof tiles of Examples 5 and 9 was poor x. This is considered to be because the color tone of the glaze changed because the content ratios of cordierite, α-alumina, and zircon were not less than a predetermined ratio.
In addition, the bending fracture strength of the clay roofs of Example 3, Example 7, and Example 11 is excellent. Example 2, Example 4 to Example 6, Example 8 to Example 10, Example 12 The clay roof tile of Example 13 was good. This is because the cordierite content was a predetermined ratio or more, the linear thermal expansion coefficient of the glaze layer was reduced, or the content of α-alumina and zircon was a predetermined ratio or more, so the density of the glaze layer was This is thought to be due to the increase. On the other hand, the clay roof of Example 1 was defective Δ. This is thought to be because the linear thermal expansion coefficient of the glaze layer did not become sufficiently small because the cordierite content was below a predetermined ratio.

(いぶし系銀色釉薬を表面に施釉した粘土瓦)
従来用いられているいぶし系銀色釉薬を表面に、実施例の粘土瓦用釉薬を裏面に施釉した粘土瓦の実施例について説明する。実施例14〜実施例20、比較例2の粘土瓦用釉薬を、表2に示す組成成分、含有率に基づいて、実施例1の粘土瓦用釉薬と同様に調製した。この粘土瓦用釉薬と水と糊剤とをミルに投入し、混合して実施例14〜実施例20、比較例2の釉薬泥漿を得た。なお、比較例2の粘土瓦用釉薬は、いぶし系銀色釉薬である。また、表2中コージライト、ペタライトの「−」は、配合しないことを示す。また、比較例2の曲げ破壊強度の「−」は、比較対象であることを示す。
(Clay roof tiles with a silver-based silver glaze on the surface)
A description will be given of an example of a clay roof tile in which a conventionally used silver-based silver glaze is applied to the surface and the clay roof glaze of the embodiment is applied to the back surface. The clay roof glazes of Examples 14 to 20 and Comparative Example 2 were prepared in the same manner as the clay roof glaze of Example 1 based on the compositional components and contents shown in Table 2. The glaze for clay roof tile, water and glue were put into a mill and mixed to obtain glaze slurries of Examples 14 to 20 and Comparative Example 2. In addition, the glaze for clay roofs of the comparative example 2 is an smoldering silver glaze. In Table 2, "-" for cordierite and petalite indicates that they are not blended. Further, “−” in the bending fracture strength of Comparative Example 2 indicates that it is a comparison target.

Figure 2017190645
Figure 2017190645

つぎに、粘土を主原料とする原料を混練し、実施例1と同様に瓦の形状になるように素地層を成形した。焼成後の1枚当りの瓦の質量は、2.40Kgとした。素地層の表面に比較例2の釉薬泥漿を施釉し、裏面に実施例14の釉薬泥漿を施釉し、実施例14の粘土瓦を得た。実施例14の粘土瓦と同様に、素地層の表面に比較例2の釉薬泥漿を施釉し、裏面に実施例15〜実施例20の釉薬泥漿をそれぞれ施釉し、実施例15〜実施例20の粘土瓦をそれぞれ得た。また、素地層の表面および裏面に比較例2の釉薬泥漿を施釉し、比較例2の粘土瓦を得た。実施例14〜実施例20、比較例2の釉薬釉薬泥漿の施釉量は、実施例1と同様である。
つぎに、実施例14〜実施例20、比較例2の粘土瓦をトンネル炉で酸化焼成した。焼成温度、焼成時間は、実施例1と同様である。焼成工程の後、実施例14〜実施例20、比較例2の粘土瓦の焼成品が得られた。
Next, a raw material containing clay as a main raw material was kneaded, and a base layer was formed so as to have a tile shape as in Example 1. The mass of the tile per sheet after firing was 2.40 kg. The glaze slurry of Comparative Example 2 was applied to the surface of the base layer, and the glaze slurry of Example 14 was applied to the back surface to obtain the clay roof tile of Example 14. Similarly to the clay roof tile of Example 14, the glaze slurry of Comparative Example 2 was applied to the surface of the base layer, and the glaze slurry of Examples 15 to 20 was applied to the back surface, respectively. Each clay tile was obtained. Further, the glaze slurry of Comparative Example 2 was applied to the front and back surfaces of the base layer to obtain the clay roof tile of Comparative Example 2. The amount of glaze of the glaze glaze slurry of Examples 14 to 20 and Comparative Example 2 is the same as that of Example 1.
Next, the clay roof tiles of Examples 14 to 20 and Comparative Example 2 were oxidized and fired in a tunnel furnace. The firing temperature and firing time are the same as in Example 1. After the firing step, fired products of the clay tiles of Examples 14 to 20 and Comparative Example 2 were obtained.

[釉薬の色調]
焼成後の実施例14〜実施例20、比較例2の粘土瓦の目付け部分の裏面の釉薬色調と裏面の釉薬色調との違いを実施例1と同様の評価基準で目視検査した。
[Color tone of glaze]
The difference between the glaze color tone of the back surface and the glaze color tone of the back surface of the clay tiles of Examples 14 to 20 and Comparative Example 2 after firing was visually inspected according to the same evaluation criteria as in Example 1.

[曲げ破壊強度]
焼成後の実施例14〜実施例20、比較例2の粘土瓦の曲げ破壊強度を実施例1と同様に測定した。測定結果を比較例2と比較して、曲げ破壊荷重が123%以上(3000N以上)であるものを優良◎(◎印)、曲げ破壊荷重が110%以上(2673N以上)123%未満であるものを良好○(○印)、曲げ破壊荷重が110%未満であるものを不良△(△印)とした。
[Bending fracture strength]
The bending fracture strength of the clay roof tiles of Examples 14 to 20 and Comparative Example 2 after firing was measured in the same manner as in Example 1. Compared with the measurement result of Comparative Example 2, the one having a bending fracture load of 123% or more (3000N or more) is excellent ◎ (◎ mark), and the bending fracture load is 110% or more (2673N or more) less than 123% Was good (circle), and the one having a bending fracture load of less than 110% was regarded as defective Δ (triangle).

表2に示すように、釉薬の色調は、実施例14〜実施例19の粘土瓦で良好○であった。これは、コージライト、ペタライトの含有率が所定割合以下であったため、釉薬の色調の変化が少なかったためと考えられる。一方、実施例20の粘土瓦の色調は、不良△であった。これは、ペタライトの含有率が所定割合以上であったため釉薬の色調が変化したためと考えられる。
また、曲げ破壊強度は、実施例15〜実施例17の粘土瓦で優良◎であり、実施例14、実施例19、実施例20で良好○であった。これは、コージライト、ペタライトの含有率が所定割合以上であったため、釉薬層の線熱膨張係数が小さくなったためと考えられる。一方、実施例18の粘土瓦は不良△であった。これは、ペタライトの含有率が所定割合以下であったため、釉薬層の線熱膨張係数が十分小さくならなかったためと考えられる。
As shown in Table 2, the color tone of the glaze was good in the clay roof tiles of Examples 14 to 19. This is presumably because the change in the color tone of the glaze was small because the cordierite and petalite content was less than a predetermined ratio. On the other hand, the color tone of the clay roof of Example 20 was poor Δ. This is presumably because the color tone of the glaze changed because the petalite content was a predetermined ratio or more.
Moreover, the bending fracture strength was excellent in the clay roofs of Examples 15 to 17, and excellent in Examples 14, 19, and 20. This is thought to be because the linear thermal expansion coefficient of the glaze layer was reduced because the content of cordierite and petalite was a predetermined ratio or more. On the other hand, the clay tile of Example 18 was poor Δ. This is presumably because the linear thermal expansion coefficient of the glaze layer did not become sufficiently small because the petalite content was less than a predetermined ratio.

(半光沢黒色(ブラックマット)釉薬を表面に施釉した粘土瓦)
従来用いられている半光沢黒色釉薬を表面に、実施例の粘土瓦用釉薬を裏面に施釉した粘土瓦について説明する。実施例21〜実施例24、比較例3の粘土瓦用釉薬を、表3に示す組成成分、含有率が異なる以外は、実施例1の粘土瓦用釉薬と同様に調製した。この粘土瓦用釉薬と水と糊剤とをミルに投入し、混合して実施例21〜実施例24、比較例3の釉薬泥漿を得た。なお、比較例3の粘土瓦用釉薬は、半光沢黒色釉薬である。また、表3中コージライトの「−」は、配合しないことを示す。また、比較例3の曲げ破壊強度の「−」は、比較対象であることを示す。
(Clay tiles with a semi-glossy black matte glaze on the surface)
Description will be made on a clay roof tile in which a conventionally used semi-gloss black glaze is applied on the surface and the clay tile glaze of the embodiment is applied on the back surface. The clay roofing glazes of Examples 21 to 24 and Comparative Example 3 were prepared in the same manner as the clay roofing glaze of Example 1 except that the composition components and contents shown in Table 3 were different. The glaze for clay roof tile, water and paste were put into a mill and mixed to obtain glaze sludges of Examples 21 to 24 and Comparative Example 3. In addition, the clay tile glaze of the comparative example 3 is a semi-glossy black glaze. Moreover, "-" of cordierite in Table 3 indicates that it is not blended. Further, “−” in the bending fracture strength of Comparative Example 3 indicates that it is a comparison target.

Figure 2017190645
Figure 2017190645

つぎに、粘土を主原料とする原料を混練し、実施例1と同様の瓦の形状になるように素地層を成形した。焼成後の1枚当りの瓦の質量は、2.40Kgとした。素地層の表面に比較例3の釉薬泥漿を施釉し、裏面に実施例21の釉薬泥漿を施釉し、実施例21の粘土瓦を得た。実施例21の粘土瓦と同様に、素地層の表面に比較例3の釉薬泥漿を施釉し、裏面に実施例22〜実施例24の釉薬泥漿をそれぞれ施釉し、実施例22〜実施例24の粘土瓦をそれぞれ得た。また、素地層の表面および裏面に比較例3の釉薬泥漿を施釉し、比較例3の粘土瓦を得た。実施例21〜実施例24、比較例3の釉薬釉薬泥漿の施釉量は、実施例1と同様である。
つぎに、実施例21〜実施例24、比較例3の粘土瓦をトンネル炉で酸化焼成した。焼成温度、焼成時間は、実施例1と同様である。焼成工程の後、実施例21〜実施例24、比較例3の粘土瓦の焼成品が得られた。
Next, a raw material mainly composed of clay was kneaded, and a base layer was formed so as to have the same tile shape as in Example 1. The mass of the tile per sheet after firing was 2.40 kg. The glaze slurry of Comparative Example 3 was applied to the surface of the base layer, and the glaze slurry of Example 21 was applied to the back surface to obtain the clay roof of Example 21. Similarly to the clay roof tile of Example 21, the glaze slurry of Comparative Example 3 was applied to the surface of the base layer, and the glaze slurry of Examples 22 to 24 was applied to the back surface, respectively. Each clay tile was obtained. Further, the glaze slurry of Comparative Example 3 was applied to the front and back surfaces of the base layer to obtain the clay roof tile of Comparative Example 3. The amount of glaze of the glaze glaze slurry of Examples 21 to 24 and Comparative Example 3 is the same as that of Example 1.
Next, the clay roof tiles of Examples 21 to 24 and Comparative Example 3 were oxidized and fired in a tunnel furnace. The firing temperature and firing time are the same as in Example 1. After the firing step, fired products of clay roof tiles of Examples 21 to 24 and Comparative Example 3 were obtained.

[釉薬の色調]
焼成後の実施例21〜実施例24、比較例3の粘土瓦の目付け部分の裏面の釉薬色調と裏面の釉薬色調との違いを実施例1と同様の評価基準で目視検査した。
[Color tone of glaze]
The difference between the glaze color tone on the back surface and the glaze color tone on the back surface of the clay tiles of Examples 21 to 24 and Comparative Example 3 after firing was visually inspected according to the same evaluation criteria as in Example 1.

[曲げ破壊強度]
焼成後の実施例21〜実施例24、比較例3の粘土瓦の曲げ破壊強度を実施例1と同様に測定した。測定結果を比較例3と比較して、曲げ破壊荷重が130%以上(3000N以上)であるものを優良◎(◎印)、曲げ破壊荷重が110%以上(2544N以上)130%未満であるものを良好○(○印)、曲げ破壊荷重が110%未満であるものを不良△(△印)とした。
[Bending fracture strength]
The bending fracture strength of the clay roof tiles of Examples 21 to 24 and Comparative Example 3 after firing was measured in the same manner as in Example 1. Compared with Comparative Example 3, the measurement result is excellent when the bending fracture load is 130% or more (3000N or more), and the bending fracture load is 110% or more (2544N or more) and less than 130%. Was good (circle), and the one having a bending fracture load of less than 110% was regarded as defective Δ (triangle).

表3に示すように、釉薬の色調は、実施例21〜実施例24の粘土瓦で良好○であった。これは、コージライトの含有率が所定割合以下であったため、釉薬の色調の変化が少なかったためと考えられる。
また、曲げ破壊強度は、実施例23の粘土瓦で優良◎であり、実施例22、実施例24の粘土瓦で良好○であった。これは、コージライトの含有率が所定割合以上であったため、釉薬層の線熱膨張係数が小さくなったためと考えられる。一方、実施例21の粘土瓦は不良△であった。これは、コージライトの含有率が所定割合以下であったため、釉薬層の線熱膨張係数が十分小さくならなかったためと考えられる。
As shown in Table 3, the color tone of the glaze was good with the clay roof tiles of Examples 21 to 24. This is thought to be because the change in the color tone of the glaze was small because the cordierite content was less than a predetermined ratio.
Further, the bending fracture strength was excellent in the clay roof tile of Example 23 and excellent in the clay roof tiles of Examples 22 and 24. This is considered to be because the linear thermal expansion coefficient of the glaze layer was reduced because the cordierite content was a predetermined ratio or more. On the other hand, the clay roof tile of Example 21 was poor Δ. This is thought to be because the linear thermal expansion coefficient of the glaze layer did not become sufficiently small because the cordierite content was below a predetermined ratio.

(ハイシルバー釉薬を表面に施釉した粘土瓦)
従来用いられているハイシルバー釉薬を表面に、実施例の粘土瓦用釉薬を裏面に施釉した粘土瓦について説明する。実施例25〜実施例50の粘土瓦用釉薬を、表4に示す組成成分、含有率が異なる以外は、実施例1の粘土瓦用釉薬と同様に調製した。また、比較例4の粘土瓦用釉薬を、ゼーゲル式にて、NaOが0.11モル、KOが0.17モル、MgOが0.06モル、CaOが0.65モル、MnOが0.01モル、Alが0.17モル、Feが0.02モル、SiOが2.34モル、TiOが0.03モル、Bが0.55モル、Crが0.02モル、の割合になるように、原料を適宜配合し調製した。この粘土瓦用釉薬と水と糊剤とをミルに投入し、混合して実施例25〜実施例50、比較例4の釉薬泥漿を得た。なお、比較例4の粘土瓦用釉薬は、ハイシルバー釉薬である。また、表4中α−アルミナ、ジルコン、ペタライト、スポジューメンの「−」は、配合しないことを示す。また、比較例4のゼーゲル式の「−」は、上述したため表中には記載しないことを示す。また、比較例4の曲げ破壊強度の「−」は、比較対象であることを示す。
(Clay tile with high silver glaze on the surface)
Description will be made on a clay roof tile in which a conventionally used high silver glaze is applied on the front surface and the clay roof glaze of the embodiment is applied on the back surface. The clay roof glazes of Examples 25 to 50 were prepared in the same manner as the clay roof glaze of Example 1 except that the compositional components and contents shown in Table 4 were different. Moreover, the glaze for clay roofs of Comparative Example 4 was obtained by the Zegel formula, wherein Na 2 O was 0.11 mol, K 2 O was 0.17 mol, MgO was 0.06 mol, CaO was 0.65 mol, MnO Is 0.01 mol, Al 2 O 3 is 0.17 mol, Fe 2 O 3 is 0.02 mol, SiO 2 is 2.34 mol, TiO 2 is 0.03 mol, and B 2 O 3 is 0.55. The raw materials were appropriately blended and prepared so that the molar ratio of Cr 2 O 3 was 0.02 mol. The glaze for clay roof tile, water and paste were put into a mill and mixed to obtain glaze sludges of Examples 25 to 50 and Comparative Example 4. In addition, the glaze for clay tiles of the comparative example 4 is a high silver glaze. Moreover, in Table 4, “-” of α-alumina, zircon, petalite, and spodomen indicates that they are not blended. Further, the “−” in the Zegel formula of Comparative Example 4 indicates that it is not described in the table because it has been described above. In addition, “−” in the bending fracture strength of Comparative Example 4 indicates that it is a comparison target.

Figure 2017190645
Figure 2017190645

つぎに、粘土を主原料とする原料を混練し、実施例1と同様の瓦の形状になるように素地層を成形した。焼成後の1枚当りの瓦の質量は、2.40Kgとした。素地層の表面に比較例4の釉薬泥漿を施釉し、裏面に実施例25の釉薬泥漿を施釉し、実施例25の粘土瓦を得た。実施例25の粘土瓦と同様に、素地層の表面に比較例4の釉薬泥漿を施釉し、裏面に実施例26〜実施例50の釉薬泥漿をそれぞれ施釉し、実施例26〜実施例50の粘土瓦をそれぞれ得た。また、素地層の表面および裏面に比較例4の釉薬泥漿を施釉し、比較例4の粘土瓦を得た。実施例25〜実施例50、比較例4の釉薬釉薬泥漿の施釉量は、実施例1と同様である。
つぎに、実施例25〜実施例50、比較例4の粘土瓦をトンネル炉で酸化焼成した。焼成温度、焼成時間は、実施例1と同様である。焼成工程の後、実施例25〜実施例50、比較例4の粘土瓦の焼成品が得られた。
Next, a raw material mainly composed of clay was kneaded, and a base layer was formed so as to have the same tile shape as in Example 1. The mass of the tile per sheet after firing was 2.40 kg. The glaze slurry of Comparative Example 4 was applied to the surface of the base layer, and the glaze slurry of Example 25 was applied to the back surface to obtain the clay roof tile of Example 25. As with the clay roof tile of Example 25, the glaze slurry of Comparative Example 4 was applied to the surface of the base layer, and the glaze slurry of Examples 26 to 50 was applied to the back surface, respectively. Each clay tile was obtained. Moreover, the glaze slurry of Comparative Example 4 was applied to the front and back surfaces of the base layer to obtain the clay roof tile of Comparative Example 4. The amount of glaze of glaze glaze slurry of Examples 25 to 50 and Comparative Example 4 is the same as that of Example 1.
Next, the clay roof tiles of Examples 25 to 50 and Comparative Example 4 were oxidized and fired in a tunnel furnace. The firing temperature and firing time are the same as in Example 1. After the firing step, fired products of the clay roofs of Examples 25 to 50 and Comparative Example 4 were obtained.

[釉薬の色調]
焼成後の実施例25〜実施例50、比較例4の粘土瓦の目付け部分の裏面の釉薬色調と裏面の釉薬色調との違いを実施例1と同様の評価基準で目視検査した。
[Color tone of glaze]
The difference between the glaze color tone on the back surface and the glaze color tone on the back surface of the clay tiles of Example 25 to Example 50 and Comparative Example 4 after firing was visually inspected according to the same evaluation criteria as in Example 1.

[曲げ破壊強度]
焼成後の実施例25〜実施例50、比較例4の粘土瓦の曲げ破壊強度を実施例1と同様に測定した。測定結果を比較例4と比較して、曲げ破壊荷重が173%以上(3000N以上)であるものを優良◎(◎印)、曲げ破壊荷重が150%以上(2600N以上)173%未満であるものを良好○(○印)、曲げ破壊荷重が150%未満であるものを不良△(△印)とした。
[Bending fracture strength]
The bending fracture strength of the clay roofs of Examples 25 to 50 and Comparative Example 4 after firing were measured in the same manner as in Example 1. Compared with Comparative Example 4, the measurement results are excellent when the bending fracture load is 173% or more (3000N or more), and the bending fracture load is 150% or more (2600N or more) less than 173% Is a good ◯ (◯ mark), and the one having a bending fracture load of less than 150% is defined as a defective Δ (Δ mark).

表4に示すように、釉薬の色調は、実施例25〜実施例50の粘土瓦で良好○であった。これは、α−アルミナ、ジルコン、ペタライト、スポジューメンの含有率が所定割合以下であったため、釉薬の色調の変化が少なかったためと考えられる。
また、曲げ破壊強度は、実施例25、実施例33、実施例35、実施例38〜40、実施例42、実施例43の粘土瓦で優良◎であり、実施例26〜28、実施例32、実施例34、実施例36、実施例37、実施例41、実施例46、実施例47、実施例49の粘土瓦で良好○であった。これは、SiOの含有率が所定割合以上であったため、釉薬層の軟化温度が大きくなったためと考えられる。一方、実施例29〜31、実施例44、実施例45、実施例48、実施例50の粘土瓦は不良△であった。これは、ゼーゲル式で表されたKO、CaOの含有率が少ない又は多かったため、または、ジルコン、ペタライト、スポジューメンの含有率が所定割合以上であったためと考えられる。
As shown in Table 4, the color tone of the glaze was good with the clay roof tiles of Examples 25 to 50. This is presumably because the change in the color tone of the glaze was small because the contents of α-alumina, zircon, petalite, and spodumene were less than a predetermined ratio.
Moreover, the bending fracture strength is excellent in the clay roofs of Example 25, Example 33, Example 35, Examples 38 to 40, Example 42, and Example 43, and Examples 26 to 28 and Example 32. The clay roof tiles of Example 34, Example 36, Example 37, Example 41, Example 46, Example 47, and Example 49 were good. This is presumably because the softening temperature of the glaze layer was increased because the content of SiO 2 was a predetermined ratio or more. On the other hand, the clay roof tiles of Examples 29 to 31, Example 44, Example 45, Example 48, and Example 50 were defective Δ. This is presumably because the content of K 2 O and CaO expressed by the Seegel formula was low or high, or the content of zircon, petalite and spodumene was a predetermined ratio or more.

10 粘土瓦
20 素地層
30 第1の釉薬層
40 第2の釉薬層
100 台
110A、110B、110C 丸棒
10 clay roof tile 20 base layer 30 first glaze layer 40 second glaze layer 100 units 110A, 110B, 110C round bar

Claims (7)

粘土から構成される素地層と、前記素地層の裏面に配置された第1の釉薬層と、前記素地層の表面に配置された第2の釉薬層と、
を備えることを特徴とする粘土瓦。
A base layer composed of clay, a first glaze layer disposed on the back surface of the base layer, a second glaze layer disposed on the surface of the base layer,
Clay tiles characterized by comprising.
前記第1の釉薬層を構成する釉薬は、α−アルミナ(Al)、ジルコン(ZrOSiO)、スポジューメン(LiOAl4SiO)、ペタライト(LiOAl8SiO)、コージライト(2MgO2Al5SiO)、からなる群から選択される1または2以上の材料を含む、
ことを特徴とする請求項1に記載の粘土瓦。
The glaze constituting the first glaze layer is α-alumina (Al 2 O 3 ), zircon (ZrO 2 SiO 2 ), spodumene (Li 2 OAl 2 O 3 4SiO 2 ), petalite (Li 2 OAl 2 O 3). 8SiO 2 ), cordierite (2MgO 2 Al 2 O 3 5SiO 2 ), or one or more materials selected from the group consisting of:
The clay roof tile according to claim 1, wherein:
前記第1の釉薬層を構成する釉薬は、4質量%以上5質量%以下のコージライト、2質量%以上3質量%以下のα−アルミナ、または1質量%以上2質量%以下のジルコンを含み、
ゼーゲル式にて、
NaOが0.01モル、KOが0.01モル、MgOが0.05モル、CaOが0.18モル、MnOが0.76モル、
Alが0.16モル、Feが0.03モル、Bが0.08モル、
SiOが1.33モル、TiOが0.22モル、ZrOが0.31モル、
として表される組成であることを特徴とする請求項1または2に記載の粘土瓦。
The glaze that constitutes the first glaze layer contains 4% by mass to 5% by mass cordierite, 2% by mass to 3% by mass α-alumina, or 1% by mass to 2% by mass zircon. ,
In the Segel formula,
Na 2 O 0.01 mol, K 2 O 0.01 mol, MgO 0.05 mol, CaO 0.18 mol, MnO 0.76 mol,
Al 2 O 3 is 0.16 mol, Fe 2 O 3 is 0.03 mol, B 2 O 3 is 0.08 mol,
SiO 2 is 1.33 mol, TiO 2 is 0.22 mol, ZrO 2 is 0.31 mol,
The clay roof tile according to claim 1, wherein the clay roof tile has a composition expressed as:
前記第1の釉薬層を構成する釉薬は、2質量%以上6質量%以下のコージライト、または2質量%のペタライト、を含み、
ゼーゲル式にて、
NaOが0.01モル、KOが0.01モル、LiOが0.21モル、MgOが0.67モル、CaOが0.02モル、MnOが0.08モル、
Alが0.67モル、Feが0.05モル、
SiOが3.08モル、TiOが1.01モル、ZrOが0.63モル、
として表される組成であることを特徴とする請求項1または2に記載の粘土瓦。
The glaze constituting the first glaze layer contains 2% by mass to 6% by mass of cordierite, or 2% by mass of petalite,
In the Segel formula,
Na 2 O 0.01 mol, K 2 O 0.01 mol, Li 2 O 0.21 mol, MgO 0.67 mol, CaO 0.02 mol, MnO 0.08 mol,
Al 2 O 3 is 0.67 mol, Fe 2 O 3 is 0.05 mol,
SiO 2 is 3.08 mol, TiO 2 is 1.01 mol, ZrO 2 is 0.63 moles,
The clay roof tile according to claim 1, wherein the clay roof tile has a composition expressed as:
前記第1の釉薬層を構成する釉薬は、4質量%以上6質量%以下のコージライトを含み、
ゼーゲル式にて、
NaOが0.01モル、KOが0.01モル、MgOが0.02モル、CaOが0.07モル、MnOが0.80モル、BaOが0.09モル、
Alが0.27モル、Feが0.02モル、
SiOが1.66モル、TiOが0.19モル、ZrOが0.13、Bが0.04モル、
として表される組成であることを特徴とする請求項1または2に記載の粘土瓦。
The glaze constituting the first glaze layer contains 4% by mass or more and 6% by mass or less cordierite,
In the Segel formula,
Na 2 O 0.01 mol, K 2 O 0.01 mol, MgO 0.02 mol, CaO 0.07 mol, MnO 0.80 mol, BaO 0.09 mol,
Al 2 O 3 is 0.27 mol, Fe 2 O 3 is 0.02 mol,
SiO 2 is 1.66 mol, TiO 2 is 0.19 mol, ZrO 2 is 0.13, B 2 O 3 is 0.04 mol,
The clay roof tile according to claim 1, wherein the clay roof tile has a composition expressed as:
前記第1の釉薬層を構成する釉薬は、
ゼーゲル式にて、
NaOが0.00モル超0.03モル以下、KOが0.00モル超0.01モル以下、CaOが0.02モル、LiOが0.96モル以上0.99モル以下、
Alが1.00モル以上2.00モル以下、
SiOが6.31モル以上8.31モル以下、
として表される組成であることを特徴とする請求項1または2に記載の粘土瓦。
The glaze constituting the first glaze layer is
In the Segel formula,
Na 2 O more than 0.00 mol 0.03 mol or less, K 2 O more than 0.00 mol 0.01 mol or less, CaO 0.02 mol, Li 2 O 0.96 mol or more and 0.99 mol Less than,
Al 2 O 3 is 1.00 mol or more and 2.00 mol or less,
SiO 2 is 6.31 mol or more and 8.31 mol or less,
The clay roof tile according to claim 1, wherein the clay roof tile has a composition expressed as:
前記第1の釉薬層を構成する釉薬は、
1質量%以上7質量%以下のα−アルミナ、1質量%以上2質量%以下のジルコン、1質量%以上100質量%未満のペタライト、または1質量%以上20質量%以下のスポジューメンを含む、
ことを特徴とする請求項1または2に記載の粘土瓦。
The glaze constituting the first glaze layer is
1% by weight or more and 7% by weight or less α-alumina, 1% by weight or more and 2% by weight or less zircon, 1% by weight or more and less than 100% by weight petalite, or 1% by weight or more and less than 20% by weight spodumene,
The clay roof tile according to claim 1 or 2, wherein
JP2016082213A 2016-04-15 2016-04-15 Clay roof tile Pending JP2017190645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016082213A JP2017190645A (en) 2016-04-15 2016-04-15 Clay roof tile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016082213A JP2017190645A (en) 2016-04-15 2016-04-15 Clay roof tile

Publications (1)

Publication Number Publication Date
JP2017190645A true JP2017190645A (en) 2017-10-19

Family

ID=60085758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016082213A Pending JP2017190645A (en) 2016-04-15 2016-04-15 Clay roof tile

Country Status (1)

Country Link
JP (1) JP2017190645A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028243A (en) * 2019-04-22 2019-07-19 江西嘉顺瓷业有限公司 A kind of parian glaze heat resisting porcelain formula and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110028243A (en) * 2019-04-22 2019-07-19 江西嘉顺瓷业有限公司 A kind of parian glaze heat resisting porcelain formula and preparation method thereof

Similar Documents

Publication Publication Date Title
Da Silva et al. Glass ceramic sealants belonging to BAS (BaO–Al2O3–SiO2) ternary system modified with B2O3 addition: A different approach to access the SOFC seal issue
JP5365975B2 (en) Crystallized glass article and method for producing the same
JP2006056769A (en) Glass composition for sealing, glass frit for sealing, and glass sheet for sealing
KR102325306B1 (en) Transparent silicate glass with high fracture toughness
CZ2003197A3 (en) Glass-ceramics, process for their preparation and use
US10570049B2 (en) Self glazed ceramic/glass composite and method for manufacturing the same
CN103224331A (en) Frit dry granules with characteristics of one-time sintering and golden brown color, and preparation method thereof
JP2010503601A5 (en) Method for producing sheet-shaped glass-ceramic material, sheet thus obtained and method for using the same
KR101862720B1 (en) Composition for enamel and manufacturing method of the same
CN105541112B (en) A kind of super flat glaze frit and the method for being produced from it super spar
KR930021576A (en) Manufacturing method of synthetic product
JP2017190645A (en) Clay roof tile
CN105541114B (en) A kind of high low-expansion frit of beginning fusing point and preparation method thereof
JP4877646B2 (en) Crystallized glass article and method for producing the same
US20050130824A1 (en) Transparent tile glaze
JP5374350B2 (en) White porcelain manufacturing method and glaze suitable therefor
US10669188B2 (en) Seal compositions, methods, and structures for planar solid oxide fuel cells
JP2006188402A (en) Sintered glass article and method for manufacturing the same
CN1082013A (en) Self-released enamel enhanced ceramic
JP2009173526A (en) Patterned crystallized glass article and method for producing the same
JP2007169162A (en) Bismuth-based glass composition and bismuth-based material
JP2005320183A (en) Thickly decorated ceramic and method of manufacturing the same
JPH10212158A (en) Refractory for glass fusion furnace
JP6653109B2 (en) Good glazing ceramic glaze with good coloring
JP2005038824A (en) Dielectric structure of plasma display panel