JP2017190518A - Electrolytic hydrogen generator - Google Patents

Electrolytic hydrogen generator Download PDF

Info

Publication number
JP2017190518A
JP2017190518A JP2016089855A JP2016089855A JP2017190518A JP 2017190518 A JP2017190518 A JP 2017190518A JP 2016089855 A JP2016089855 A JP 2016089855A JP 2016089855 A JP2016089855 A JP 2016089855A JP 2017190518 A JP2017190518 A JP 2017190518A
Authority
JP
Japan
Prior art keywords
hydrogen
water
negative electrode
filter
cathode chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016089855A
Other languages
Japanese (ja)
Inventor
豊成 原田
Toyonari Harada
豊成 原田
礼子 原田
Reiko Harada
礼子 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2016089855A priority Critical patent/JP2017190518A/en
Publication of JP2017190518A publication Critical patent/JP2017190518A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive electrolytic hydrogen generator which can safely and conveniently produce drinkable hydrogen-water and hydrogen gas for aspiration, by adding electrolyte such as sodium bicarbonate to tap water or the like, and can also produce complex reduced water containing hydrogen using, for example, vitamin C, tea or fruit juice, instead of the tap water without mixing ozone and bactericidal components produced at an anode into a cathode side.SOLUTION: A vessel is separated into an anode compartment and a cathode compartment using a filter of cloth or mesh different from an electrolytic membrane, and then electrolysis is performed. In this way, it is avoided that oxygen and oxidant generated in the anode compartment mix into the hydrogen-water in the cathode compartment. The hydrogen-water of high concentration is produced from the cathode of metal mesh arranged horizontally, to the whole of the cathode compartment. The hydrogen gas can be safely sucked by a top cover structure having a discharge port at the top.SELECTED DRAWING: Figure 1

Description

本発明による技術は、家庭用・医療用の小容量電解による水素水並びに水素ガスの生成分野に属する。  The technology according to the present invention belongs to the field of hydrogen water and hydrogen gas generation by small capacity electrolysis for home and medical use.

近年、体内に発生する活性酸素を還元するものとして健康用水素水が脚光を浴びている。また、脳梗塞の症状が水素ガスの吸引で軽減したという報告もなされている。
こうしたことから、水の電気分解の原理を利用し、発生する酸素と水素を分離して、水素を水に溶解させて水素水を得る電解水素水生成器も製品化されている。工業的に酸素と水素を分離して得られるようにした従来の主要な技術手段は、「特許文献1」に示されるような電解膜と呼ばれるものである。これは構造的には隔膜とも呼ばれ、電解空間を陽極室と陰極室を隔離してイオンを伝導させて電解電流を流すものである。
この電解膜を挟んで両電極を圧接すれば、電流を流さない精製水を電解原水にしても電解することが出来て、陰極室から水素のみを得ることが出来る様になった。
同様に、「特許文献2」は、このような電解膜を用いた「圧力抵抗性、気密性、コスト効率の高い膜電極アセンブリ」の例である。「特許文献3」はこの電解膜の等価抵抗を下げる工夫をしている。
In recent years, hydrogen water for health has been spotlighted as a means for reducing active oxygen generated in the body. It has also been reported that the symptoms of cerebral infarction were alleviated by inhalation of hydrogen gas.
For this reason, an electrolytic hydrogen water generator that uses the principle of water electrolysis to separate generated oxygen and hydrogen and dissolve hydrogen in water to obtain hydrogen water has been commercialized. The conventional major technical means obtained industrially by separating oxygen and hydrogen is an electrolyte membrane as shown in “Patent Document 1”. This is also structurally called a diaphragm, and separates the electrolysis space from the anode chamber and the cathode chamber to conduct ions and to conduct an electrolysis current.
If both electrodes are pressed against each other with this electrolytic membrane in between, purified water that does not flow current can be electrolyzed even as electrolytic raw water, and only hydrogen can be obtained from the cathode chamber.
Similarly, “Patent Document 2” is an example of a “pressure resistance, hermeticity, and cost-effective membrane electrode assembly” using such an electrolytic membrane. “Patent Document 3” devised to lower the equivalent resistance of this electrolytic membrane.

また、「特許文献4」の従来技術にも注目する。この事例は「イオンは通すが電子は通さない隔離シート」を「電極間に介在」させて電極のみを隔離しているが、両極側に別個の電極室を作りそれを隔離しているものではない。また、「イオンを通す」ことは孔径に関係し、「電子を通さない」と言う事は絶縁材で出来ているということで、孔径とは関係がない。このシートでは、電解により発生する酸素と水素を予め分離することはなく、気体の溶解圧力差などを利用して電解後に気体を分離している。そして例示図では多数の電極をこの隔離シートを挟んで積層している。積層することを常とする電気二重層コンデンサー等はこのようなシートをセパレータとして多用しているが、この隔離シートの本質は、電極間の距離を極力小さくし、且つ電極間をショートさせない絶縁セパレータである。  Also pay attention to the prior art of “Patent Document 4”. In this case, “Isolation sheet that allows ions to pass but not electrons” is “intervened between the electrodes” to isolate only the electrodes, but separate electrode chambers are formed on both sides to isolate them. Absent. Also, “passing ions” is related to the hole diameter, and “passing electrons” is made of an insulating material, and is not related to the hole diameter. In this sheet, oxygen and hydrogen generated by electrolysis are not separated in advance, and the gas is separated after electrolysis using a difference in gas dissolution pressure. In the example diagram, a large number of electrodes are stacked with this separator sheet interposed therebetween. Electric double layer capacitors that are usually stacked use such a sheet as a separator, but the essence of this separator sheet is an insulating separator that minimizes the distance between the electrodes and prevents shorting between the electrodes. It is.

一方、最も簡便な電解方法として、電解原水の中に陽極と陰極の両電極をそのまま挿入する無隔膜電解という方法が有る。同室内の両極からは水素と酸素が同時に生成される。発明者が実験で確認したところによれば、ほとんどの陽電極の表面にはナノサイズの絶縁酸化被膜が存在し、その膜の厚さに起因する大きな酸化電位を有した活性酸素が発生して、オゾンや殺菌成分などを生成する。
従って、無隔膜で電解した単一室の電解水にはこのように電解で生成した総ての成分が混入してしまう。例えば、悪いことに原水にごく微量の塩分が含まれていると、陰電極には水素気泡が発生しているにも関わらず、生成水には水素濃度は検出されずに殺菌成分の次亜塩素酸が検出されるということになってしまう。
On the other hand, as the simplest electrolysis method, there is a method called diaphragmless electrolysis, in which both the anode and cathode electrodes are inserted as they are into the electrolyzed raw water. Hydrogen and oxygen are produced simultaneously from both electrodes in the same room. The inventors have confirmed through experiments that a nano-sized insulating oxide film exists on the surface of most positive electrodes, and active oxygen having a large oxidation potential due to the thickness of the film is generated. Produces ozone and sterilizing components.
Therefore, all the components generated by electrolysis are mixed in the electrolyzed water in the single chamber electrolyzed by the diaphragm. For example, if the raw water contains a very small amount of salt, the hydrogen concentration is not detected in the produced water even though hydrogen bubbles are generated in the negative electrode. Chloric acid will be detected.

また、水を電気分解して出来る水素ガスを直接吸引する簡単な機器は市販されていない。電解膜を使用すると高価になるばかりでなく、多量に水素ガスを生成した場合、それが空気と混合すると爆発するという危険があった。  In addition, a simple device that directly sucks hydrogen gas generated by electrolyzing water is not commercially available. When an electrolytic membrane is used, not only is it expensive, but when hydrogen gas is produced in a large amount, there is a risk of explosion when it is mixed with air.

特開2014−1117号公報  JP 2014-1117 A 特表2009−513820号公報  Special table 2009-513820 gazette 特表2014−523965号公報  Special table 2014-523965 gazette 特開2015−128060号公報  JP2015-128060A

本発明では、高価で配置構造が複雑となる従来技術の電解膜を一切使用することなく、水を電気分解して、陽極側で生成する酸化成分が混入しない適切な飲用水素水、或は吸引用水素ガスを爆発の危険のない形態で安全に得ることが出来て、簡便で安価である電解水素生成器を提供することを課題とする。  In the present invention, without using any prior art electrolytic membranes that are expensive and complicated in arrangement structure, water is electrolyzed, and appropriate drinking water containing no oxidative components generated on the anode side, or It is an object of the present invention to provide a simple and inexpensive electrolytic hydrogen generator that can safely obtain hydrogen gas for suction in a form that does not cause explosion.

容器と、陰電極と、陽電極と、フィルターを備えていて、
前記フィルターは、前記陰電極と前記陽電極の間にあって、前記容器を、前記陰電極を含む陰極室と前記陽電極を含む陽極室に分離し、その実効孔径のサイズは1μm〜500μmであり、前記容器の少なくとも一方の前記電極室には、電解質が入った電解原水を入れる。
そして、前記フィルターの材質は、化学繊維若しくは綿からなる布、又は紙、又は金属製若しくは樹脂製のメッシュ、又は多孔質セラミックとする。
「実効孔径」とは、その穴を通過する球体の最大直径とここでは定義する。メッシュの場合の「目開き」と、パンチングメタルや多孔質体の「孔径」にも相当するものである。
従来技術の電解膜は個体電解質で出来ていてイオン伝導を本質としており、「孔」は開いていないにも関わらずに「伝導」により電荷を移動させるのでイオンは通過するのではない。本発明に用いる前記フィルターには「孔」が開いていて、イオン径は1μmよりはるかに小さいので、1μm以上の孔が開いていれば、どちらか一方の電極室に入れて存在する電解質の入った電解液内のイオンと、陽極で発生する水素イオンが、両電極間の電界に引かれてその孔を通過し、電解電流が継続して流れるようになる。
一方、実効孔径が500μm以上であると、陽電極の生成物が陰極室に混入してしまうので、陰極室で出来るだけ純粋で飲用に適切な水素が得られなくなる。
A container, a negative electrode, a positive electrode, and a filter,
The filter is between the negative electrode and the positive electrode, and separates the container into a cathode chamber including the negative electrode and an anode chamber including the positive electrode, and the effective pore size is 1 μm to 500 μm, Electrolytic raw water containing an electrolyte is placed in at least one of the electrode chambers of the container.
The material of the filter is a cloth made of chemical fiber or cotton, paper, a metal or resin mesh, or a porous ceramic.
“Effective hole diameter” is defined herein as the maximum diameter of a sphere passing through the hole. This corresponds to “aperture” in the case of a mesh and “pore diameter” of a punching metal or a porous body.
Prior art electrolyte membranes are made of solid electrolytes and are based on ionic conduction. Even though the “pores” are not open, the charge is transferred by “conduction”, so ions do not pass through. Since the filter used in the present invention has “holes” and the ionic diameter is much smaller than 1 μm, if a hole of 1 μm or more is opened, the electrolyte present in one of the electrode chambers is contained. The ions in the electrolyte and the hydrogen ions generated at the anode are attracted by the electric field between the electrodes and pass through the hole, so that the electrolytic current continues to flow.
On the other hand, when the effective pore diameter is 500 μm or more, the positive electrode product is mixed into the cathode chamber, and therefore hydrogen as pure as possible in the cathode chamber and suitable for drinking cannot be obtained.

次に、前記陰電極は、目開きが0.3mm〜30mmの金属製のメッシュ、又は孔径0.3mm〜30mmで開口率が50%〜80%のパンチングメタルを用いることが、気泡を通過させ、フィルターを支持する上で好ましい。
効率よく水素水を得るには、前記陰電極は、下側から前記陽電極、前記フィルター、前記陰電極となる順にお互いに密着するか近接して、前記陰極室の最下部に水平若しくは傾斜角が45°以内に配置され、前記陰極室の下側になる陽極室からは前記容器の上部に通ずる気泡通路を有することが好ましい。前記陰電極の目開きが0.3mm以下であると、前記陰電極で発生する水素気泡が前記陰極室側に移動できない部分が発生して、時間と共に気泡が大きく成長して、電解電流の流れを阻害してしまうようになる。30mm以上であると薄い前記フィルターを密着して支持するのが困難になってしまう。パンチングメタルの場合も同様であり、開口率についても同様で、50%より小さいと、非開口部の陽極室側に水素気泡が成長してしまい、80%以上であるとパンチングメタルは前記フィルターを密着して支持するには脆弱になってしまう。
前記陰電極から発生する水素気泡は上に向かって上昇し、マイクロバブルとなって前記陰電極のより上部に限定されて滞留して陰極室内のその部分の電解原水を白濁する。従って、前記陰電極の配置関係は前記した構造が好ましいことになる。
一方、前記の構造を採用すると、前記陽電極から発生した酸素気泡は、陰電極と近接した前記フィルターの、前記陽電極側の表面で滞留する。電解時間が長くなるとこの気泡がイオンの移動による電解電流の流れを阻害するようになるので、前記フィルターの上部にある前記陰電極は前記陰極室の最下部に配置されるものの、水平より少し傾斜することが好ましく、傾斜角が45°より大きくなると上昇する水素気泡と陰極室の原水との接触が少なくなってしまい水素の原水への溶解効率は低下してしまう。この範囲の傾斜があればフィルター下面に集まる酸素気泡は傾斜に沿って移動する。この移動の先に前記容器の上部に通ずる気泡通路を配置して電解電流の継続を可能としている。
前記陰電極は水平に配置して、前記容器そのものを少し傾斜させることでも同等の効果は得られる。
Next, the negative electrode uses a metal mesh having an aperture of 0.3 mm to 30 mm, or a punching metal having a hole diameter of 0.3 mm to 30 mm and an aperture ratio of 50% to 80% to allow bubbles to pass. It is preferable for supporting the filter.
In order to obtain hydrogen water efficiently, the negative electrode is in close contact with or close to each other in the order of the positive electrode, the filter, and the negative electrode from the bottom, and the horizontal or inclined angle at the bottom of the cathode chamber Is disposed within 45 °, and preferably has a bubble passage that communicates with the upper part of the container from the anode chamber below the cathode chamber. When the opening of the negative electrode is 0.3 mm or less, a portion where hydrogen bubbles generated at the negative electrode cannot move to the cathode chamber side is generated, and the bubbles grow large with time, and the flow of electrolytic current Will be disturbed. When it is 30 mm or more, it becomes difficult to closely support the thin filter. The same applies to punching metal, and the same applies to the opening ratio. If the opening ratio is smaller than 50%, hydrogen bubbles grow on the anode chamber side of the non-opening, and if it is 80% or more, punching metal passes the filter. It becomes fragile to support closely.
Hydrogen bubbles generated from the negative electrode rise upward, become microbubbles, stay in the upper part of the negative electrode, and become cloudy in the portion of the electrolyzed water in the cathode chamber. Therefore, the arrangement of the negative electrodes is preferably the above-described structure.
On the other hand, when the above structure is adopted, oxygen bubbles generated from the positive electrode stay on the positive electrode side surface of the filter close to the negative electrode. As the electrolysis time becomes longer, the bubbles obstruct the flow of the electrolysis current due to the movement of ions, so the negative electrode at the top of the filter is disposed at the bottom of the cathode chamber, but is slightly inclined from the horizontal. Preferably, when the inclination angle is greater than 45 °, the contact between the rising hydrogen bubbles and the raw water in the cathode chamber is reduced, and the efficiency of dissolving hydrogen in the raw water is lowered. If there is an inclination in this range, oxygen bubbles gathering on the lower surface of the filter move along the inclination. A bubble passage leading to the upper part of the container is arranged at the end of this movement, so that the electrolytic current can be continued.
The same effect can be obtained by arranging the negative electrode horizontally and slightly tilting the container itself.

水素ガスのみを専用に連続的に得るには、前記陰極室は上部に上蓋が付いて密閉され、上蓋には気体取り出し用の出口を設けることが好ましい。この上蓋が取り外し可能であれば、水素水も得られるものの、この構造では、水素ガスを一時的にこの上蓋部に溜めようとすると、陰極室の水位が下がり、その分だけ陽極室の水位が上がり容易に原水があふれ出てしまう。
この欠点を補う構造も考案した。上蓋容器が取り外してあれば水素水が得られ、上蓋容器を陰極室内に入れれば溜まった水素ガスを原水が溢れることなく得ることが出来る様にするには、前記陰極室内を上下に移動が可能で、下部が開放されていて、最上部に気体排出用の出口を設けた上蓋容器を配置することが好ましい。水素ガスが溜まるにつれて上蓋容器が上に移動して水位は変化しない。水素ガスを吸引する時には前記上蓋容器上部の水素取出口から安全に水素ガスを吸引することが出来る。
水素爆発を防止する為には、いずれの水素ガスを得る場合でも、電解開始時に上蓋の直下の空気は予め排出しておき、陽極室で生成する酸素は順次外気に放出させる。陽極室が陰極室より下に配置する場合は、酸素を外気に放出させる気泡通路と酸素排出口を陽極室側に設置する。
In order to obtain only hydrogen gas exclusively, it is preferable that the cathode chamber is sealed with an upper lid on the top, and an outlet for gas extraction is provided on the upper lid. If this top cover is removable, hydrogen water can be obtained. However, in this structure, when the hydrogen gas is temporarily stored in the top cover part, the water level in the cathode chamber is lowered, and the water level in the anode chamber is lowered by that amount. The raw water overflows easily.
The structure which compensates for this fault was also devised. Hydrogen water can be obtained if the upper lid container is removed, and if the upper lid container is placed in the cathode chamber, the accumulated hydrogen gas can be obtained without overflowing the raw water. Therefore, it is preferable to dispose an upper lid container that is open at the bottom and is provided with an outlet for gas discharge at the top. As the hydrogen gas accumulates, the upper lid container moves upward and the water level does not change. When the hydrogen gas is sucked, the hydrogen gas can be safely sucked from the hydrogen outlet at the top of the upper lid container.
In order to prevent hydrogen explosion, regardless of which hydrogen gas is obtained, the air immediately below the upper lid is discharged in advance at the start of electrolysis, and the oxygen generated in the anode chamber is sequentially released to the outside air. When the anode chamber is disposed below the cathode chamber, a bubble passage for releasing oxygen into the outside air and an oxygen discharge port are provided on the anode chamber side.

本発明に寄れば、陽極生成物の混入が無い高濃度なマイクロバブル水素水を、安価に生成出来るので、疲労や老化などにより体内に蓄積された活性酸素を効果的に還元し除去することが出来る。水道水やお茶やジュウスなどには予め電解質が含まれており、そのまま水素水を含ませて複合水素水も生成できる。
また、水素水を飲んでも最終的に腸などで体内に吸収される水素の量はごく微量と推定される。しかし、水素ガスを肺に吸引すれば、酸素同様に血液に吸収される量は多いことが推量出来る。しかも、水素濃度が0.8ppmある250ccの水素水を飲んでも、水素の量は約2.2ccである。一方、本器を480mAの電流で電解すれば毎分3.3ccの水素が生成される。これを直接肺に吸引すれば、血中の水素濃度は高まり、老化や脳梗塞などの疾患に対する作用は大きくなることが期待できるものである。
微量に連続発生する水素ガスを、空気と混合して爆発する危険を除去して、睡眠時などに安全に吸引することも出来るようになる。認知症などの老化病の予防にもなれば画期的である。
According to the present invention, high-concentration microbubble hydrogen water free from the mixing of anode products can be produced at low cost, so that active oxygen accumulated in the body due to fatigue or aging can be effectively reduced and removed. I can do it. The tap water, tea, juus, and the like contain an electrolyte in advance, and the composite hydrogen water can be generated by adding the hydrogen water as it is.
Moreover, even if hydrogen water is drunk, the amount of hydrogen that is finally absorbed into the body in the intestine is estimated to be very small. However, if hydrogen gas is sucked into the lungs, it can be estimated that the amount of blood absorbed by the blood as well as oxygen is large. Moreover, even if 250 cc of hydrogen water having a hydrogen concentration of 0.8 ppm is consumed, the amount of hydrogen is about 2.2 cc. On the other hand, if this device is electrolyzed at a current of 480 mA, 3.3 cc of hydrogen is produced per minute. If this is aspirated directly into the lung, the hydrogen concentration in the blood will increase, and the effect on diseases such as aging and cerebral infarction can be expected to increase.
A small amount of hydrogen gas generated continuously can be mixed with air to remove the danger of explosion and can be safely aspirated during sleep. It is groundbreaking if it helps prevent aging diseases such as dementia.

本発明により水素水を得る概念を示す構成断面図  Cross-sectional view showing the concept of obtaining hydrogen water according to the present invention 本発明による両電極とフィルターの配置例断面図  Cross-sectional view of arrangement example of both electrodes and filter according to the present invention [図2]を下から見た本発明による両電極とフィルターの配置例平面図  FIG. 2 is a plan view of an arrangement example of both electrodes and filters according to the present invention as viewed from below. 本発明により水素ガスを得る実施例の概念構成断面図  Conceptual configuration sectional view of an embodiment for obtaining hydrogen gas according to the present invention 本発明により水素ガスを得る別実施例の概念構成断面図  Conceptual configuration sectional view of another embodiment for obtaining hydrogen gas according to the present invention

図1を用いて本発明により水素水を得る形態について説明する。1は電解水素水を得る容器で、フィルター6が容器1を陰極室3と陽極室4を分離している。気泡通路12は陽極室4の一部をなしており、隔壁2により陰極室3と仕切られている。陽電極7で発生した酸素やオゾンの気泡はこの気泡通路12を通り酸素排気口13より外気に放出される。ここで、電極部の組立を図2と図3を用いて説明する。
図2は図1の電極部を左側から見た図で、図3はその図2を下側から見た図である。フィルター6は薄くて弱いので、金属製のメッシュで出来た陰電極5にその給電部22を残して全面を重ね、周囲のみに接着剤を付けて陰電極5に接着して両者を一体構造にする。そして、陽電極6を一番下にして、その上にフィルター6、その上に陰電極5の順番で陰極室の最下部に配置され、陰電極5はフィルター6と共に周囲を陰極室に接着して陰極室5を形成し、陽極室4から分離する。
しかし、両電極の構造や配置は上記には捉われなく、フィルター6は容器1を陰極室3と陽極室4を分離していれば、本発明の趣旨は損なわれるものではない。
The form which obtains hydrogen water by this invention using FIG. 1 is demonstrated. Reference numeral 1 denotes a container for obtaining electrolytic hydrogen water, and a filter 6 separates the container 1 from the cathode chamber 3 and the anode chamber 4. The bubble passage 12 forms part of the anode chamber 4 and is partitioned from the cathode chamber 3 by the partition 2. Bubbles of oxygen and ozone generated at the positive electrode 7 pass through the bubble passage 12 and are released to the outside air from the oxygen exhaust port 13. Here, the assembly of the electrode portion will be described with reference to FIGS.
2 is a view of the electrode portion of FIG. 1 as viewed from the left side, and FIG. 3 is a view of FIG. 2 as viewed from the bottom side. Since the filter 6 is thin and weak, the entire surface is overlapped on the negative electrode 5 made of a metal mesh, leaving the feeding portion 22, and an adhesive is attached only to the periphery to adhere to the negative electrode 5 so that both are integrated. To do. The positive electrode 6 is placed at the bottom, the filter 6 is placed on the positive electrode 6 and the negative electrode 5 is placed on the positive electrode 6 in that order. The negative electrode 5 is bonded to the cathode chamber together with the filter 6 at the periphery. Thus, the cathode chamber 5 is formed and separated from the anode chamber 4.
However, the structure and arrangement of both electrodes are not limited to the above, and the spirit of the present invention is not impaired as long as the filter 6 separates the container 1 from the cathode chamber 3 and the anode chamber 4.

陽電極7はチタンに白金をコートしたものが好ましく、価格と電解液の両電極間への浸透性を考慮すれば棒状であることが好ましく、陰電極5との対面積が広ければ電解電流を多く出来て、陰電極5との距離が小さければ電解効率を上げることが出来る。 従って、両電極はフィルター6を挟んで接近していることが好ましい。
陰電極の給電部14と陽電極7の延長部は容器1の外部に、水の漏れない圧接構造や接着封印により引き出されていて、両電極にはACアダプター8からDC電源をコード9と制御器10を介して電源が供給される。
制御器10の内部には電解電流を一定にする定電流回路11が内蔵され、陰電極5と陽電極6に接続されている。
The positive electrode 7 is preferably titanium coated with platinum, preferably in the form of a rod in consideration of the price and the permeability of the electrolyte between both electrodes, and the electrolytic current is reduced if the area of the negative electrode 5 is large. If the distance between the negative electrode 5 and the negative electrode 5 is small, the electrolysis efficiency can be increased. Therefore, it is preferable that both electrodes are close to each other with the filter 6 interposed therebetween.
The negative electrode feeding part 14 and the extension part of the positive electrode 7 are drawn out of the container 1 by a pressure-welding structure and an adhesive seal that do not leak water. Power is supplied through the vessel 10.
A constant current circuit 11 for keeping the electrolytic current constant is built in the controller 10 and connected to the negative electrode 5 and the positive electrode 6.

酸素排気口13より微量の重曹かクエン酸などの電解質を添加し、容器1の陰電極5に例えば精製水を入れると、精製水は自身の水圧により水はフィルター6をゆっくりと通過した後に陽極室7を充満し、前記電解質により電解液になる。精製水の代わりに水道水を添加しても良く、水道水にはなんらかの電解質が含まれており、水道水のみが入れられた場合も水道水にはなんらかの電解質が含まれていて電解液は電極室に存在する。水道水で電流が少ない場合にはさらに前記のような電解質を追加して加えることになる。予め電解質を添加した電解液を陰電極5に入れても良く、その場合には、陰極室3に生成された水素水にはこの電解液も一緒に含まれており、この場合は両者を一緒に飲むことになる。  When a small amount of an electrolyte such as sodium bicarbonate or citric acid is added from the oxygen exhaust port 13 and, for example, purified water is put into the negative electrode 5 of the container 1, the purified water slowly passes through the filter 6 due to its own water pressure, and then the anode. The chamber 7 is filled and becomes an electrolytic solution by the electrolyte. Tap water may be added instead of purified water, and tap water contains some electrolyte. Even when only tap water is added, tap water contains some electrolyte and the electrolyte is the electrode. Present in the room. When tap water has a small current, an electrolyte as described above is further added. An electrolytic solution to which an electrolyte has been added in advance may be placed in the negative electrode 5, and in this case, the hydrogen water generated in the cathode chamber 3 also includes this electrolytic solution. To drink.

次に、水素ガスを連続的に吸引出来る形態について説明する。図1の点線で示した上蓋20を陰極室3の上部に取り付けて陰極室3を密閉する。酸素排出口より電解液を入れて陰極室3を充満した後に電解を開始すれば水素取出し口17から水素ガスを安全に得ることが出来る。水素取出口17に医療用の酸素吸入カニョーラを転用して取り付ければ、鼻孔より微量水素ガスを連続して吸引することが可能となる。水素ガスは空気とは混合せず、多量に溜まることは無いので爆発の危険は無く安全である。但し、水素の取出しを停止すると原水が溢れることにはなってしまう。    Next, the form which can attract | suck hydrogen gas continuously is demonstrated. An upper lid 20 indicated by a dotted line in FIG. 1 is attached to the upper portion of the cathode chamber 3 to seal the cathode chamber 3. Hydrogen gas can be obtained safely from the hydrogen outlet 17 if the electrolysis is started after filling the cathode chamber 3 by filling the electrolyte from the oxygen outlet. If a medical oxygen inhalation canyon is diverted and attached to the hydrogen outlet 17, a trace amount of hydrogen gas can be continuously sucked from the nostril. Hydrogen gas does not mix with air and does not accumulate in large quantities, so there is no danger of explosion and it is safe. However, if the removal of hydrogen is stopped, the raw water will overflow.

次に、水素水を得るのみでなく、ある程度溜めた水素ガスを適時得ることが出来る本発明の形態について図4を用いて説明する。この場合は図1で示した水素水を得る構造に加えて、水素ガスを集めて溜める移動式の上蓋容器16を用いる。
水素は水に最大でも1.6ppmしか溶解せずに、余った水素はガスとなって陰極室3を上昇して上蓋容器16に溜まる。
この上蓋容器16は上部に水素取出し口17があり、その途中にコック18が付けられている。上蓋容器16の最下部は開放されていて容器の側面は陰極室3に内接していて上下に移動することが出来る。
電解開始時にコック18を開放して、上蓋容器16を電解原水の入った陰極室3の内部に押し下げるか、水素取出し口17から空気を吸引すると、上蓋容器16内の空気を無くすことが出来る。その後コック18を閉めて電解を開始すると、上蓋容器16内には水素ガスのみが溜まっていく。水素取出し口17にチューブを接続して、溜まった水素ガスが満杯になる前にコック18を開けて吸引することが出来る。
こうすれば、電解で発生する水素ガスが空気と混合して滞留することは避けられるので、火気により水素が爆発的に燃える危険性を除くことが出来る。
Next, an embodiment of the present invention capable of not only obtaining hydrogen water but also obtaining hydrogen gas accumulated to some extent in a timely manner will be described with reference to FIG. In this case, in addition to the structure for obtaining hydrogen water shown in FIG. 1, a movable upper lid container 16 for collecting and storing hydrogen gas is used.
Hydrogen dissolves in water at a maximum of 1.6 ppm, and surplus hydrogen becomes gas and rises in the cathode chamber 3 and accumulates in the upper lid container 16.
The upper lid container 16 has a hydrogen outlet 17 at the top, and a cock 18 is provided in the middle. The lowermost portion of the upper lid container 16 is open, and the side surface of the container is inscribed in the cathode chamber 3 and can move up and down.
When the cock 18 is opened at the start of electrolysis and the upper cover container 16 is pushed down into the cathode chamber 3 containing the raw electrolytic water or air is sucked from the hydrogen outlet port 17, the air in the upper cover container 16 can be eliminated. Thereafter, when the cock 18 is closed and electrolysis is started, only hydrogen gas accumulates in the upper lid container 16. A tube is connected to the hydrogen outlet port 17, and the cock 18 can be opened and sucked before the accumulated hydrogen gas is full.
In this way, it is possible to avoid the hydrogen gas generated by electrolysis from being mixed with the air and staying in the air, so that it is possible to eliminate the danger of hydrogen explosively burning by fire.

図1を用いて水素水を得る実施例を説明する。容器1は透明のアクリル製で、底辺は75cm×75cm、高さは150cm、厚さは2mmである。隔壁2もアクリル板で容器1の一つの壁面に対して約10mmの距離を取り、容器1の底面から約15mm開けて内接して接着し酸素通路12を形成している。
陰電極5には、ステンレス製で概略線径0.3mm、目開き1mmの金網を用いて、奥行きは陰極室3の下部のサイズに合わせ、横方向は制御器接続用としてそれに約15mm延長してカットする。フィルター6は市販されている厚さ0.12mmで、実効孔径が約50μmのポリエステルのサテン生地を用いて、陰極室3の下部のサイズに合わせてカットし、陰電極5の周辺に約8mmの幅で接着剤を塗布して陰電極5に接着し一体化する。図1の概念図とは少し異なって、陰電極の給電部14部分は直角に上方向に曲げて中央にネジ用の穴を開ける。そして容器1にも該位置に穴を開けてフィルター6と一体化した陰電極をネジで水平に取り付ける。このネジから定電流制御器11に配線する。また、フィルター6と一体化した陰電極5を陰極室3の下部に接着して、陽極室4で生成される物質陰極室3への還流対策としての分離が完成する。
こうして、フィルター6により水圧差が無ければ両室の液体と気泡は両室を通じての還流はしなくなる。次に、フィルター6の下部に棒状で直系2mmの陽電極7を2本取り付ける。容器1の側面下部の該位置に約25mmの間隔で直系2mmの穴を開けて陽電極7を挿入し、約8mmを外部に残して容器1に接着する。外部では定電流回路11に接続される。
陽電極は直系2mmのチタン棒に白金をメッキして活性酸素とオゾンに対して腐食しない様にし、チタン面と白金面以外の金属が陽極室4の内部に存在させないことが重要である。この様にして形成される電極とフィルターの配置関係は図2と図3に示される。
An embodiment for obtaining hydrogen water will be described with reference to FIG. The container 1 is made of transparent acrylic, has a base of 75 cm × 75 cm, a height of 150 cm, and a thickness of 2 mm. The partition wall 2 is also made of an acrylic plate, is spaced about 10 mm from one wall surface of the container 1, opens about 15 mm from the bottom surface of the container 1, and is inscribed and bonded to form the oxygen passage 12.
The negative electrode 5 is made of stainless steel and has a wire diameter of approximately 0.3 mm and a mesh opening of 1 mm. The depth is adjusted to the size of the lower part of the cathode chamber 3, and the lateral direction is extended by about 15 mm for connecting the controller. And cut. The filter 6 is a commercially available 0.12 mm thick polyester satin fabric having an effective pore diameter of about 50 μm, and is cut in accordance with the size of the lower part of the cathode chamber 3, and about 8 mm around the negative electrode 5. Adhesive is applied with a width so that the negative electrode 5 is adhered and integrated. Unlike the conceptual diagram of FIG. 1, the feeding portion 14 of the negative electrode is bent upward at a right angle to form a screw hole in the center. Then, a hole is also made in the container 1 at this position, and the negative electrode integrated with the filter 6 is horizontally attached with a screw. Wire from this screw to the constant current controller 11. Further, the negative electrode 5 integrated with the filter 6 is bonded to the lower part of the cathode chamber 3, and the separation as a countermeasure against reflux to the material cathode chamber 3 generated in the anode chamber 4 is completed.
Thus, if there is no difference in water pressure by the filter 6, the liquid and bubbles in both chambers will not circulate through both chambers. Next, two positive electrodes 7 having a rod shape and a straight line of 2 mm are attached to the lower part of the filter 6. A 2 mm-diameter hole is drilled at an interval of about 25 mm at the lower portion of the side surface of the container 1 and the positive electrode 7 is inserted. Externally connected to the constant current circuit 11.
It is important that the positive electrode is plated with platinum on a direct 2 mm titanium rod so that it does not corrode against active oxygen and ozone, and no metal other than the titanium surface and the platinum surface is present inside the anode chamber 4. The arrangement relationship between the electrode and the filter formed in this way is shown in FIGS.

電解開始時に、図1の酸素排気口13から重曹を0.2g入れ、pH8.0(15℃)の天然水500ccを容器1の陰極室3に入れた。約10秒で陽極室4は重曹の溶解した電解液で充満した。この時間はもっと遅く数時間でも良いことを考慮して計算すると、フィルター6の実効孔径が1μm以上あればよく、通過させたいイオンや水分子の直系は1μmよりはるかに小さく、安価に入手できるフィルターの孔径は一般的に1μm以上であることから、本発明で使用するフィルター6の実効孔径の下限は1μmとする。従来技術の電解膜には1μm以上の孔は存在しないことからも明確に区別される。
480mAに調整された定電流回路11にACアダプター8から電力を供給すると陰電極5から水素気泡が発生し始め、そして約4分で陰極室の原水は水素気泡のマイクロバブルで全体が充分に白濁した。陽電極7の周りには酸素気泡が発生し、フィルター6に上昇を妨げられたこの酸素気泡は行先を探して終結し拡大していく。容器1を、気泡通路12が容器の最下部より少し上になるように傾斜させたところ、拡大した酸素気泡は気泡通路12に移動して酸素排出口13から外気に放出された。これは両電極を傾斜角45°以内で気泡通路12側を上部にして設置しても良いことを示している。
この時の陰極室3の水素水を取り出して水素濃度を測定したところ0.6ppmであった。そして10分後には水素濃度は1.0ppmになった。この時の酸化還元電位は−640mV(pH9.0)で充分な還元力の有る水素水の生成が確認できた。
電解質として、重曹の代わりにクエン酸やビタミンCを添加すれば、出来上がる水素水は酸性になりその選択は自由であることも確認した。
また、水道水や精製水や天然水と添加する電解質を使わないで、お茶やジュース、牛乳などを用いることが出来ることも確認した。これらはゆっくりとした還元効果のある食品であり、電流も480mAが流れて充分な水素が溶解しており、水素水との複合効果が期待できる。
At the start of electrolysis, 0.2 g of sodium bicarbonate was introduced from the oxygen exhaust port 13 of FIG. 1 and 500 cc of natural water having a pH of 8.0 (15 ° C.) was placed in the cathode chamber 3 of the container 1. In about 10 seconds, the anode chamber 4 was filled with an electrolytic solution in which sodium bicarbonate was dissolved. If this time is calculated considering that it may be several hours later, it is sufficient that the effective pore size of the filter 6 is 1 μm or more, and the direct line of ions and water molecules to be passed is much smaller than 1 μm and can be obtained at low cost. Since the pore diameter is generally 1 μm or more, the lower limit of the effective pore diameter of the filter 6 used in the present invention is 1 μm. It is also clearly distinguished from the fact that there is no hole of 1 μm or more in the electrolyte membrane of the prior art.
When power is supplied from the AC adapter 8 to the constant current circuit 11 adjusted to 480 mA, hydrogen bubbles start to be generated from the negative electrode 5, and in about 4 minutes, the raw water in the cathode chamber is fully clouded with microbubbles of hydrogen bubbles. did. Oxygen bubbles are generated around the positive electrode 7, and the oxygen bubbles, which are prevented from rising by the filter 6, search for the destination and end and expand. When the container 1 was tilted so that the bubble passage 12 was slightly above the lowermost part of the container, the expanded oxygen bubbles moved to the bubble passage 12 and were released from the oxygen discharge port 13 to the outside air. This indicates that both electrodes may be installed with the angle of inclination within 45 ° and the bubble passage 12 side on top.
The hydrogen concentration in the cathode chamber 3 at this time was taken out and the hydrogen concentration measured was 0.6 ppm. After 10 minutes, the hydrogen concentration became 1.0 ppm. The oxidation-reduction potential at this time was -640 mV (pH 9.0), and it was confirmed that hydrogen water having sufficient reducing power was produced.
It was also confirmed that if citric acid or vitamin C was added instead of baking soda as the electrolyte, the resulting hydrogen water became acidic and the choice was free.
It was also confirmed that tea, juice, milk, etc. can be used without using electrolytes added with tap water, purified water or natural water. These are foods with a slow reducing effect, and a current of 480 mA flows and sufficient hydrogen is dissolved, and a combined effect with hydrogen water can be expected.

次に電解中の気泡や電解液の挙動を目視化して、電極の配置とフィルター6の効果を確認出来る実施例を図示していないが説明する。底面は70mm×70mmで高さが120mmの透明アクリル製の容器の下から30mmの位置に、直径が2mmで長さが50mmの陰陽の両電極を中央に20mmの間隔を有して、アクリル容器側面に穴を開けて水平に挿入し配置した。実施例1と異なり両電極は上下でなく水平に配置され、フィルターは水平でなく垂直に配置される構造である。両電極室は垂直に分割され両電極室共に上部は開放されている。
先ず、本発明とは異なり、フィルターを用いない方式で実験する。500ccの水道水に0.5gの食塩を添加して240mA(27V)で攪拌しながら10分間電解した。生成した電解水は水素気泡で白濁しているものの溶解水素濃度試薬では全く反応せずに濃度は0ppmであった。そして、生成した電解水にヨウ化カリウムを微量添加すると黄褐色に変わり次亜塩素酸の溶存が確認され、水道水に食塩を添加しない場合でもたいていの場合に溶解オゾンが検出され、このような無隔膜方式で、且つ本発明のフィルターを用いない場合の問題点は明白であった。
Next, an example in which the behavior of bubbles and electrolyte during electrolysis is visualized to confirm the electrode arrangement and the effect of the filter 6 will be described although not shown. An acrylic container having a bottom surface of 70 mm × 70 mm and a height of 120 mm, 30 mm from the bottom of a transparent acrylic container, and two Yin and Yang electrodes with a diameter of 2 mm and a length of 50 mm, with a center distance of 20 mm. A hole was made in the side and inserted horizontally. Unlike the first embodiment, both electrodes are arranged not horizontally but horizontally, and the filter is arranged vertically instead of horizontally. Both electrode chambers are divided vertically, and both electrode chambers are open at the top.
First, unlike the present invention, the experiment is performed without using a filter. 0.5 g of sodium chloride was added to 500 cc of tap water, and electrolysis was performed for 10 minutes while stirring at 240 mA (27 V). The produced electrolyzed water was clouded with hydrogen bubbles, but the dissolved hydrogen concentration reagent did not react at all and the concentration was 0 ppm. When a small amount of potassium iodide is added to the generated electrolyzed water, it turns yellowish brown and the dissolution of hypochlorous acid is confirmed, and even when no salt is added to tap water, dissolved ozone is detected in most cases. The problem in the case of the non-diaphragm type and not using the filter of the present invention was obvious.

次に、この容器の中央に溝を付け、本発明によるフィルターを取り付けて両電極間を陰極室と陽極室に分離して、本発明の課題を最も簡便に実現する。フィルターは線径は120μmで見開きが500μmのナイロン製のメッシュを用いた。フィルターは垂直になり電極は各1本で電極間距離も大きいことと、陰電極はメッシュではなく棒状で、フィルターを支持しないことが実施例1とは異なっているが、本発明による本質構造は同じである。
今回は水道水500ccに電解質として1.0gの食塩と0.1gのヨウ化カリウムを添加して容器に入れた後に、このフィルターを取り付けて両電極室を分離し、攪拌せずに240mA(28V)で電解した。約2分後には陰極室には水素気泡が陰電極位置の上部にのみ限定されて還流し、この上部のみ白濁した。つまり、陰極室全体の原水に水素気泡が届いて、この全体を水素水にするには、陰電極は陰極室の最下部に陰電極を配置することが好ましいことが明らかになった。
この時の陰極室上部では水素濃度は0.6ppmであった。一方、陽極室では陽電極でヨウ化カリウムが酸化されて黄褐色になり、それが8分も経過すると陽極室全体が濃い黄褐色になった。しかし、この黄褐色の液体はその時点では陰極室には還流しない。電解を停止して、さらに10分経過するとようやく黄褐色の液体が陰極室上部に5mmほど層をなして還流し移動していることが確認された。
また、陰極室のマイクロバブルの水素気泡はごくわずかに陽極室にフィルターから侵入していることは確認できたが、酸素気泡の陰極室への移動は確認されなかった。
こうして、この実施例2で用いた見開きが500μmのメッシュが、両極室の生成物が実用上の10分程度の間に混合しない為の見開きの上限であることが決まった。
実施例1では、フィルター6の実効孔径の下限を明確にしており、これらを合わせると、本発明で用いるフィルター6の実効孔のサイズの範囲は1μm〜500μmである。
Next, a groove is formed in the center of the container, and a filter according to the present invention is attached to separate the two electrodes into a cathode chamber and an anode chamber, thereby realizing the object of the present invention most simply. The filter used was a nylon mesh having a wire diameter of 120 μm and a spread of 500 μm. Unlike the first embodiment, the filter is vertical, the electrodes are one each and the distance between the electrodes is large, and the negative electrode is not a mesh but a rod shape and does not support the filter. The same.
This time, 1.0 g of sodium chloride and 0.1 g of potassium iodide as electrolytes were added to 500 cc of tap water and placed in a container. Then, this filter was attached to separate both electrode chambers, and 240 mA (28 V without stirring). ) Was electrolyzed. After about 2 minutes, hydrogen bubbles were limited to the upper part of the cathode electrode and refluxed in the cathode chamber, and only the upper part became cloudy. In other words, it has been clarified that it is preferable to dispose the negative electrode at the lowermost part of the cathode chamber in order for hydrogen bubbles to reach the raw water of the entire cathode chamber and to make the whole into hydrogen water.
At this time, the hydrogen concentration in the upper part of the cathode chamber was 0.6 ppm. On the other hand, in the anode chamber, potassium iodide was oxidized at the positive electrode to become yellowish brown, and after 8 minutes, the entire anode chamber became dark yellowish brown. However, this tan liquid does not reflux to the cathode chamber at that time. After the electrolysis was stopped, it was confirmed that the yellowish brown liquid finally refluxed and moved about 5 mm in the upper part of the cathode chamber after 10 minutes had passed.
In addition, it was confirmed that the hydrogen bubbles of the microbubbles in the cathode chamber had entered the anode chamber from the filter, but the movement of oxygen bubbles to the cathode chamber was not confirmed.
Thus, it was determined that the mesh having a spread of 500 μm used in Example 2 was the upper limit of the spread so that the product of the bipolar chamber would not be mixed within about 10 minutes for practical use.
In Example 1, the lower limit of the effective pore diameter of the filter 6 is clarified, and when these are combined, the effective pore size range of the filter 6 used in the present invention is 1 μm to 500 μm.

次に水素ガスを得る実施例3について図5を用いて説明する。実施例2と同様にフィルター6は縦に配置されているが、両電極とフィルターの組立は実施例1と組成は同じもので、水平の配置に対して垂直に配置したものである。従って陰電極5はステンレスのメッシュで、実施例2と同様に水素気泡を上部に発生させるものの、水素気泡が陰電極5の下側や遠方には回らないので、陰極室全体に濃度の高い水素水を得る構造としては好ましくはない。しかし、酸素は直ちに外気に放出される。上蓋20は陰極室3の上部に陰極室3を密閉するように接着されている。陽極室の上部から精製水などに電解質の添加された電解液を入れると、フィルター6を通過して陰極室3も空気をすべて排出して電解液で充満することが出来る。こうして水素取出口17にチューブを繋いて電解を開始すれば連続して水素ガスを得ることが出来る。  Next, Example 3 for obtaining hydrogen gas will be described with reference to FIG. The filter 6 is arranged vertically as in the second embodiment, but the assembly of both electrodes and the filter is the same as that of the first embodiment, and is arranged perpendicular to the horizontal arrangement. Accordingly, the negative electrode 5 is made of stainless steel and generates hydrogen bubbles at the top as in the second embodiment. However, since the hydrogen bubbles do not rotate below or far away from the negative electrode 5, high concentration of hydrogen is present throughout the cathode chamber. The structure for obtaining water is not preferable. However, oxygen is immediately released to the outside air. The upper lid 20 is bonded to the upper part of the cathode chamber 3 so as to seal the cathode chamber 3. When an electrolytic solution to which an electrolyte is added is put into purified water or the like from the upper part of the anode chamber, the cathode chamber 3 can be exhausted with air and filled with the electrolytic solution through the filter 6. Thus, hydrogen gas can be obtained continuously by connecting a tube to the hydrogen outlet 17 and starting electrolysis.

次に、水素水と水素ガスのいずれかを適時得ることが出来る実施例を図4を用いて説明する。水素水を得る場合には上蓋容器16を取り除けば実施例1の場合と同じになる。水素ガスを得る場合には新たに上蓋容器16を図4の様に配置する。陰極室3にほぼ内接するアクリル製コップを用意して下向けにする。コップの底面に直系3mmの穴を開けてシリコーンチューブを上から接続し、下側に来たコップの開放口から陰極室3に入れた。また、シリコーンチューブには止めピンを用意して開閉を可能とした。電解原水に重曹を添加する方法も実施例1と同様である。
シリコーンチューブから空気を吸ってコップ内の空気を抜き取った後に電解を開始した。約30分でコップ内の水素ガスの量を測定したら約50ccが確認出来た。このように適当な時間の経過後に止めピンを開放して水素ガスを口から吸引することが出来る。
あるいは、シリコーンチューブの代わりに酸素吸入用カニョーラを転用すれば連続して微量の水素ガスを吸引出来ることも確認した。
連続吸入の場合には、上蓋容器16に水素ガスが多く溜まると上蓋容器16内の水面が低くなり水素ガスを排出する圧力が生じるのでこれを利用する。
本実施例は水素水を飲み、水素ガスを吸引できる電解水素生成器を提供することを課題としたもので、図1の機器に、点線で示したような上蓋20を付ければ水素ガスを取り出す専用器にもなるので、本発明で水素ガスを得るのにこのような可動式の上蓋は不可欠ではない。こうして一定量以上の水素ガスが空気と混合して滞留することはなく、連続して発生する水素ガスも電解に制限されて微量であることから爆発に対して安全である。
連続電解を行いながら酸素排気口13に鼻を近づけてオゾン臭を明確に確認出来た。
しかし、この時に陰極室の水素水にはオゾンは検出されなかった。
Next, an embodiment in which either hydrogen water or hydrogen gas can be obtained in a timely manner will be described with reference to FIG. In the case of obtaining hydrogen water, if the upper lid container 16 is removed, the same result as in the first embodiment is obtained. In order to obtain hydrogen gas, the upper lid container 16 is newly arranged as shown in FIG. An acrylic cup almost inscribed in the cathode chamber 3 is prepared and turned downward. A direct hole of 3 mm was made in the bottom of the cup, a silicone tube was connected from above, and the cathode chamber 3 was placed through the opening of the cup that came down. In addition, a stop pin is prepared for the silicone tube to enable opening and closing. The method of adding sodium bicarbonate to the electrolytic raw water is the same as in Example 1.
Electrolysis was started after sucking air from the silicone tube and extracting air from the cup. When the amount of hydrogen gas in the cup was measured in about 30 minutes, about 50 cc was confirmed. As described above, the hydrogen can be sucked from the mouth by opening the stop pin after an appropriate time has elapsed.
Alternatively, it was confirmed that a trace amount of hydrogen gas can be continuously sucked by using a canola for oxygen suction instead of a silicone tube.
In the case of continuous inhalation, when a large amount of hydrogen gas is accumulated in the upper lid container 16, the water level in the upper lid container 16 is lowered, and a pressure for discharging the hydrogen gas is generated.
The present embodiment is intended to provide an electrolytic hydrogen generator capable of drinking hydrogen water and sucking hydrogen gas. If the upper lid 20 as shown by the dotted line is attached to the apparatus shown in FIG. 1, the hydrogen gas is taken out. Such a movable upper lid is not indispensable for obtaining hydrogen gas in the present invention because it also becomes a dedicated device. In this way, a certain amount or more of hydrogen gas does not stay mixed with air, and the continuously generated hydrogen gas is limited to electrolysis, so that it is a very small amount and is safe against explosion.
While performing continuous electrolysis, the ozone odor was clearly confirmed by bringing the nose close to the oxygen exhaust port 13.
At this time, however, ozone was not detected in the hydrogen water in the cathode chamber.

以上の実施例は総て本発明の一部の例を示したに過ぎない。
フィルター6の材質は化学繊維若しくは綿からなる布、又は紙、又は金属製若しくは樹脂製のメッシュ、又は多孔質セラミックでも良いことも確認した。但し、オゾンなどに接しても著しく劣化しないことが求められる。また、金属製のメッシュを用いる場合には両電極との接触を避ける配置にする必要はある。このようなフィルター6は価格を考慮すれば布が好ましいことになる。また、布は織布に限らず不織布でも良い。不織布は実効孔径が不ぞろいになるだけの事である。これらを考慮すると、電気化学の領域の電極間絶縁セパレータで使用されるほとんどの材質のシートが転用できる。しかし、本発明のフィター6は、電極のみ隔離するこれらのセパレータとは役割と配置構造が本質的に異なっていることは再度明記するものである。
また、陽電極7について、その基体は表面のナノ膜が厚いチタンが好ましくその表面は白金に限定されることなく、活性酸素が生成される陽極の反応で腐食しない金属やDLC等なら使用可能である。基体がチタンでないと表面コートにピンホールが出来ると腐食を開始してしまう。しかし、酸化されて表面が少しづつ溶解することを許容するならばグラファイトや炭素棒でも使用可能であり、形状も自由である。少し高価にはなるが、陽電極7をメッシュ構造にしてこちらにフィルター6を一部接着して一体化しても良い。
また、定電流制御の電流値も添加電解質などの量や温度との兼ね合いで自由に設定できることは言うまでもない。生成される水素ガスの量はファラデーの法則により簡単に計算できるし、実際合致していた。
また、電解質にナトリューム等のアルカリ金属イオンが含まれる場合は、このイオンが陰極室に移動していくので陰極室の原水は水素を含みつつアルカリ度が増していく。6時間の電解継続ではpH12.4(20℃)となったことを確認した。数時間に及ぶ長時間電解では陰極室の水素水は飲用には適さない洗浄水になることも付記して置く。
その他、本発明は実施例と補足説明の内容に限定されることなく発明の本質を外れない範囲で様々に応用できる。
All of the above embodiments have shown only some examples of the present invention.
It was also confirmed that the material of the filter 6 may be a cloth made of chemical fiber or cotton, paper, metal or resin mesh, or porous ceramic. However, it is required that it does not deteriorate significantly even when it comes into contact with ozone. Further, when a metal mesh is used, it is necessary to arrange so as to avoid contact with both electrodes. Such a filter 6 is preferably a cloth in consideration of the price. The cloth is not limited to a woven cloth but may be a non-woven cloth. Nonwoven fabrics only have uneven effective pore sizes. Considering these, most sheets of materials used in the interelectrode insulating separator in the electrochemical region can be diverted. However, the filter 6 of the present invention is clearly specified again that the role and the arrangement structure are essentially different from those of the separators for isolating only the electrodes.
As for the positive electrode 7, the substrate is preferably made of titanium having a thick nano film on the surface, and the surface is not limited to platinum, and any metal or DLC that does not corrode by the reaction of the anode where active oxygen is generated can be used. is there. If the substrate is not titanium, corrosion will start if pinholes are formed in the surface coat. However, graphite and carbon rods can be used as long as they are oxidized and allow the surface to dissolve little by little, and the shape is also free. Although it is a little expensive, the positive electrode 7 may have a mesh structure, and the filter 6 may be partly bonded and integrated.
Needless to say, the current value of the constant current control can be set freely in consideration of the amount of the added electrolyte and the temperature. The amount of hydrogen gas produced can easily be calculated according to Faraday's law, and is in fact consistent.
If the electrolyte contains alkali metal ions such as sodium, the ions move to the cathode chamber, so that the raw water in the cathode chamber contains hydrogen and the alkalinity increases. It was confirmed that the pH was 12.4 (20 ° C.) after 6 hours of electrolysis. It should also be noted that in long-term electrolysis over several hours, hydrogen water in the cathode chamber becomes cleaning water that is not suitable for drinking.
In addition, the present invention is not limited to the contents of the examples and supplementary explanations, and can be applied in various ways without departing from the essence of the invention.

本発明による電解水素生成器は、家庭用及び医療用の安価で簡便な水素水及び水素ガスを生成する機器として利用できる。    The electrolytic hydrogen generator according to the present invention can be used as a device for generating inexpensive and simple hydrogen water and hydrogen gas for home and medical use.

1 容器 13 酸素排出口
2 隔壁 14 陰電極の給電部
3 陰極室 16 上蓋容器
4 陽極室 17 水素取出し口
5 陰電極 18 コック
6 フィルター 20 上蓋
7 陽電極
8 ACアダプター
9 コード
10 制御器
11 定電流回路
12 気泡通路
DESCRIPTION OF SYMBOLS 1 Container 13 Oxygen discharge port 2 Partition 14 Negative electrode feeding part 3 Cathode chamber 16 Upper lid container 4 Anode chamber 17 Hydrogen outlet 5 Negative electrode 18 Cock 6 Filter 20 Upper lid 7 Positive electrode 8 AC adapter 9 Code 10 Controller 11 Constant current Circuit 12 Bubble passage

Claims (6)

容器と、
陰電極と、
陽電極と、
フィルターを備えていて、
前記フィルターは、前記陰電極と前記陽電極の間にあって、前記容器を前記陰電極を含む陰極室と前記陽電極を含む陽極室に分離し、実効孔径のサイズは1μm〜500μmであり、前記容器の少なくとも一方の前記電極室には、電解質が入った電解原水を有することを特徴とする電解水素生成器。
A container,
A negative electrode,
A positive electrode,
With a filter,
The filter is between the negative electrode and the positive electrode, and separates the container into a cathode chamber including the negative electrode and an anode chamber including the positive electrode, and an effective pore size is 1 μm to 500 μm, An electrolytic hydrogen generator characterized in that at least one of the electrode chambers has raw electrolytic water containing an electrolyte.
前記フィルターは、化学繊維若しくは綿からなる布、又は紙、又は金属製若しくは樹脂製のメッシュ、又は多孔質セラミックであることを特徴とする請求項1記載の電解水素生成器。  2. The electrolytic hydrogen generator according to claim 1, wherein the filter is a cloth made of chemical fiber or cotton, paper, a metal or resin mesh, or a porous ceramic. 前記陰電極は、目開きが0.3mm〜30mmの金属製のメッシュ、又は孔径0.3mm〜30mmで開口率が50%〜80%のパンチングメタルであることを特徴とする請求項1記載の電解水素生成器。  2. The negative electrode according to claim 1, wherein the negative electrode is a metal mesh having an opening of 0.3 mm to 30 mm, or a punching metal having a hole diameter of 0.3 mm to 30 mm and an opening ratio of 50% to 80%. Electrolytic hydrogen generator. 前記陰電極は、下側から前記陽電極、前記フィルター、前記陰電極となる順にお互いに近接して、前記陰極室の最下部に水平若しくは傾斜角が45°以内に配置され、前記陰極室の下になる陽極室からは前記容器の上部に通ずる気泡通路を有すること特徴とした請求項1記載の電解水素生成器。  The negative electrode is arranged close to each other in the order of the positive electrode, the filter, and the negative electrode from the lower side, and is disposed at the bottom of the cathode chamber within a horizontal or inclined angle of 45 °. 2. The electrolytic hydrogen generator according to claim 1, further comprising a bubble passage that communicates with an upper portion of the container from a lower anode chamber. 前記陰極室は、上部に蓋が付いて密閉され、蓋には気体取出し口が付いていることを特徴とする請求項1記載の電解水素生成器。  2. The electrolytic hydrogen generator according to claim 1, wherein the cathode chamber is hermetically sealed with a lid on the top, and the lid has a gas outlet. 前記陰極室の上部に、前記陰極室内を上下に移動が可能で、下部が開放されていて、最上部に気体取出し口を設けた上蓋容器を配置していることを特徴とする請求項1記載の電解水素生成器。  2. An upper lid container, which can move up and down in the cathode chamber, is open at the bottom, and is provided with a gas outlet at the top, is disposed above the cathode chamber. Electrolytic hydrogen generator.
JP2016089855A 2016-04-11 2016-04-11 Electrolytic hydrogen generator Pending JP2017190518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016089855A JP2017190518A (en) 2016-04-11 2016-04-11 Electrolytic hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016089855A JP2017190518A (en) 2016-04-11 2016-04-11 Electrolytic hydrogen generator

Publications (1)

Publication Number Publication Date
JP2017190518A true JP2017190518A (en) 2017-10-19

Family

ID=60085027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016089855A Pending JP2017190518A (en) 2016-04-11 2016-04-11 Electrolytic hydrogen generator

Country Status (1)

Country Link
JP (1) JP2017190518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220168307A (en) * 2021-06-16 2022-12-23 주식회사 헤즈 Hydrogen and oxygen generating supplying apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220168307A (en) * 2021-06-16 2022-12-23 주식회사 헤즈 Hydrogen and oxygen generating supplying apparatus
KR102525245B1 (en) 2021-06-16 2023-04-24 주식회사 헤즈 Hydrogen and oxygen generating supplying apparatus

Similar Documents

Publication Publication Date Title
JP5736037B2 (en) Portable hydrogen-rich water production equipment
JP5514140B2 (en) Pot-type beverage hydrogen water generator
US20170050867A1 (en) Hydrogen water generator
JP7195662B2 (en) hydrogen gas generator
JP2012086193A (en) Hydrogen dissolved water producing device
WO2016047845A1 (en) Hydrogen water production apparatus
JP2018001069A (en) Electrolytic hydrogen water generation method and electrolytic hydrogen water generator
JP6963789B2 (en) Hydrogen gas generator and hydrogen gas inhalation device including it
CN103936114B (en) Water purifier auxiliary cleaning device
JP2011177321A (en) Finger sterilizing apparatus
JP2017190518A (en) Electrolytic hydrogen generator
CN206156809U (en) Electrolysis water generation device and electrode unit
CN212334687U (en) Device for preparing hypochlorous acid water
CN212335313U (en) Device for preparing hypochlorous acid water
CN212374964U (en) Special electrolytic tank for preparing acidic water by electrolytic method
JP2015181996A (en) Electrode structure of hypochlorite generator and hypochlorite generator
JP2018158285A (en) Electrolytic water generation apparatus
CN111422955A (en) Device and method for preparing hypochlorous acid water
JP6448043B1 (en) Electrolytic ionic water generation method and electrolytic ionic water generation apparatus
JP2016172921A (en) Gas generator and device using the same
CN106163995B (en) Electrolyzed water production device, electrode unit, and electrolyzed water production method
JP3667436B2 (en) Electrolyzed water generator
JP6503054B2 (en) Electrolyzed water generating device, electrode unit, and electrolytic water generating method
US10590549B2 (en) Salt dissolver
JP2001104956A (en) Simple electrolytic water making apparatus