JP2017189730A - Method for producing silver phosphate-carrying porous carbon material and silver phosphate-carrying porous carbon material - Google Patents

Method for producing silver phosphate-carrying porous carbon material and silver phosphate-carrying porous carbon material Download PDF

Info

Publication number
JP2017189730A
JP2017189730A JP2016079355A JP2016079355A JP2017189730A JP 2017189730 A JP2017189730 A JP 2017189730A JP 2016079355 A JP2016079355 A JP 2016079355A JP 2016079355 A JP2016079355 A JP 2016079355A JP 2017189730 A JP2017189730 A JP 2017189730A
Authority
JP
Japan
Prior art keywords
carbon material
silver
phosphate
porous carbon
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016079355A
Other languages
Japanese (ja)
Inventor
隆志 浅田
Takashi Asada
隆志 浅田
郁哉 渡辺
Ikuya Watanabe
郁哉 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukushima University NUC
Original Assignee
Fukushima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukushima University NUC filed Critical Fukushima University NUC
Priority to JP2016079355A priority Critical patent/JP2017189730A/en
Publication of JP2017189730A publication Critical patent/JP2017189730A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a silver phosphate-carrying porous carbon material that allows silver phosphate to be carried on the surface of a porous carbon material.SOLUTION: A method for producing a silver phosphate-carrying porous carbon material includes immersing a porous carbon material in a phosphate ion-containing solution, evaporating and drying it to obtain a coagulum, bringing the coagulum into contact with a silver ion-containing solution, and thereafter, subjecting it to solid-liquid separation.SELECTED DRAWING: Figure 3

Description

本発明は、リン酸銀担持多孔性炭素材料の製造方法及びリン酸銀担持多孔性炭素材料に関する。   The present invention relates to a method for producing a silver phosphate-supporting porous carbon material and a silver phosphate-supporting porous carbon material.

リン酸銀(AgPO)は、可視光照射下で高い酸化分解力を発揮し、有機物を分解できることが知られている(特許文献1)。一方、木質バイオマスは再生可能なバイオマス資源であり、木質バイオマスを炭素化して得られる多孔性炭素化物は吸着剤として利用されている。 It is known that silver phosphate (Ag 3 PO 4 ) exhibits a high oxidative degradation power under visible light irradiation and can decompose organic substances (Patent Document 1). On the other hand, woody biomass is a renewable biomass resource, and porous carbonized material obtained by carbonizing woody biomass is used as an adsorbent.

特許文献2には、活性炭を含む多孔性無機物担体の細孔内に、AgPO又はAgで表されるリン酸銀化合物を担持させる方法として、粒状シリカ担体をリン酸二水素アンモニウム水溶液に浸漬し、余剰のリン酸二水素アンモニウム水溶液を吸引除去して前駆複合体試料を得、得られた前駆複合体試料を硝酸銀水溶液に浸漬し、余剰のリン酸二水素アンモニウム水溶液を吸引除去してリン酸銀(AgPO)−シリカ担体からなる粒状複合殺菌剤試料を得たことが具体的に開示されている。 In Patent Document 2, as a method of supporting a silver phosphate compound represented by Ag 3 PO 4 or Ag 4 P 2 O 7 in the pores of a porous inorganic support containing activated carbon, a granular silica support is prepared by phosphoric acid. Immerse in an aqueous solution of ammonium dihydrogen, remove the excess aqueous solution of ammonium dihydrogen phosphate by suction to obtain a precursor complex sample, immerse the obtained precursor complex sample in an aqueous solution of silver nitrate, and add an aqueous solution of excess ammonium dihydrogen phosphate Is specifically disclosed that a particulate composite bactericidal sample comprising a silver phosphate (Ag 3 PO 4 ) -silica carrier was obtained by suction removal.

特許文献3には、銀含有化合物及びリン酸含有化合物を共存させる方法として、活性炭と硝酸銀溶液を反応させ、銀を担持させ、乾燥させたものとリン酸アンモニウムを混合したことが具体的に開示されている。   Patent Document 3 specifically discloses that, as a method of coexisting a silver-containing compound and a phosphoric acid-containing compound, activated charcoal and a silver nitrate solution are reacted to carry silver, and dried and mixed with ammonium phosphate. Has been.

特開平10−033990号公報Japanese Patent Laid-Open No. 10-033990 特開2002−104909号公報JP 2002-104909 A 特開平03−038504号公報JP 03-038504 A

しかしながら、特許文献2,3に記載の方法では、多孔性炭素化物の表面にリン酸銀(AgPO)を担持させることができなかった。 However, in the methods described in Patent Documents 2 and 3, silver phosphate (Ag 3 PO 4 ) could not be supported on the surface of the porous carbonized material.

そこで、本発明の課題は、多孔性炭素材料の表面にリン酸銀(AgPO)を担持させることができるリン酸銀担持多孔性炭素材料の製造方法及びリン酸銀担持多孔性炭素材料を提供することである。 An object of the present invention, the porous preparation and silver phosphate supported porous carbon material silver phosphate supported porous carbon material capable of carrying a silver phosphate (Ag 3 PO 4) to the surface of the carbon material Is to provide.

本発明者らは、上記課題を解決するために鋭意検討した結果、以下によって前記課題を解決することを見出し、本発明に至ったものである。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-described problems can be solved by the following, and have reached the present invention.

本発明のリン酸銀担持多孔性炭素材料の製造方法は、多孔性炭素材料をリン酸イオン含有溶液に浸漬し、蒸発乾固させて凝固物を得、前記凝固物を銀イオン含有溶液と接触させその後、固液分離する。   In the method for producing a silver phosphate-supporting porous carbon material of the present invention, the porous carbon material is immersed in a phosphate ion-containing solution and evaporated to dryness to obtain a solidified product, and the solidified product is contacted with the silver ion-containing solution. After that, solid-liquid separation is performed.

本発明のリン酸銀担持多孔性炭素材料の製造方法は、木質バイオマスを400〜1000℃で加熱処理して前記多孔性炭素材料を得るのが好ましい。   In the method for producing a silver phosphate-supporting porous carbon material of the present invention, it is preferable to heat-treat woody biomass at 400 to 1000 ° C. to obtain the porous carbon material.

本発明のリン酸銀担持多孔性炭素材料の製造方法は、前記リン酸イオン含有溶液がリン酸水素二ナトリウム水溶液であり、その濃度が、3〜20g/lであるのが好ましい。   In the method for producing a silver phosphate-supporting porous carbon material of the present invention, the phosphate ion-containing solution is preferably a disodium hydrogen phosphate aqueous solution, and the concentration thereof is preferably 3 to 20 g / l.

本発明のリン酸銀担持多孔性炭素材料の製造方法は、前記銀イオン含有溶液が硝酸銀水溶液であり、その濃度が、3〜5g/lであるのが好ましい。   In the method for producing a silver phosphate-supporting porous carbon material of the present invention, the silver ion-containing solution is preferably a silver nitrate aqueous solution, and the concentration thereof is preferably 3 to 5 g / l.

本発明のリン酸銀担持多孔性炭素材料は、多孔性炭素材料を含む担体と、前記担体に担持された、リン酸銀を含む光触媒成分とを含む。   The silver phosphate-supporting porous carbon material of the present invention includes a support containing a porous carbon material and a photocatalytic component containing silver phosphate supported on the support.

本発明のリン酸銀担持多孔性炭素材料は、BET比表面積が、100〜1000m/gであるのが好ましい。 The silver phosphate-supporting porous carbon material of the present invention preferably has a BET specific surface area of 100 to 1000 m 2 / g.

本発明のリン酸銀担持多孔性炭素材料は、リン酸銀の担持量が、銀換算で5〜25質量%であるのが好ましい。   In the silver phosphate-supporting porous carbon material of the present invention, the supported amount of silver phosphate is preferably 5 to 25% by mass in terms of silver.

本発明によれば、多孔性炭素材料の表面にリン酸銀(AgPO)を担持させたリン酸銀担持多孔性炭素材料が得られる。 According to the present invention, a silver phosphate-supporting porous carbon material in which silver phosphate (Ag 3 PO 4 ) is supported on the surface of the porous carbon material is obtained.

図1は、実施例1、比較例1〜3の試料の粉末X線回折パターン測定結果を示す図である。縦軸は回折強度を示し、横軸は回折角(2θ/degree)を示す。FIG. 1 is a graph showing the results of measurement of powder X-ray diffraction patterns of samples of Example 1 and Comparative Examples 1 to 3. The vertical axis represents the diffraction intensity, and the horizontal axis represents the diffraction angle (2θ / degree). 図2は、実施例1の試料を倍率500倍で撮影した走査型電子顕微鏡写真である。FIG. 2 is a scanning electron micrograph of the sample of Example 1 taken at a magnification of 500 times. 図3は、実施例1の試料を倍率10,000倍で撮影した走査型電子顕微鏡写真である。FIG. 3 is a scanning electron micrograph of the sample of Example 1 taken at a magnification of 10,000. 図4は、実施例1、実施例2、実施例3の試料の粉末X線回折パターン測定結果を示す図である。縦軸は回折強度を示し、横軸は回折角(2θ/degree)を示す。FIG. 4 is a graph showing the results of measurement of powder X-ray diffraction patterns of the samples of Example 1, Example 2, and Example 3. The vertical axis represents the diffraction intensity, and the horizontal axis represents the diffraction angle (2θ / degree). 図5は、実施例1の試料のメチレンブルー分解実験(実施例5)の結果を示す図である。縦軸はメチレンブルー濃度(μmol/l)を示し、横軸は可視光照射時間(分)を示す。FIG. 5 is a diagram showing the results of a methylene blue decomposition experiment (Example 5) of the sample of Example 1. FIG. The vertical axis represents the methylene blue concentration (μmol / l), and the horizontal axis represents the visible light irradiation time (minutes).

以下、本発明を実施するための形態を説明する。   Hereinafter, modes for carrying out the present invention will be described.

〔第一実施形態に係るリン酸銀担持多孔性炭素材料の製造方法〕
第一実施形態に係るリン酸銀担持多孔性炭素材料の製造方法は、多孔性炭素材料をリン酸イオン含有溶液に浸漬し、蒸発乾固させて凝固物を得(以下、蒸発乾固工程)、凝固物を銀イオン含有溶液と接触させその後、固液分離する(以下、固液分離工程)。
[Method for Producing Silver Phosphate-Supporting Porous Carbon Material According to First Embodiment]
In the method for producing a silver phosphate-supporting porous carbon material according to the first embodiment, the porous carbon material is immersed in a phosphate ion-containing solution and evaporated to dryness to obtain a solidified product (hereinafter referred to as “evaporation drying process”). The solidified product is brought into contact with a silver ion-containing solution, and then solid-liquid separation is performed (hereinafter, solid-liquid separation step).

このように、第一実施形態に係る製造方法では、多孔性炭素材料をリン酸イオン含有溶液、銀イオン含有溶液の順で浸漬し、かつ、多孔性炭素材料をリン酸イオン含有溶液に浸漬し、蒸発乾固させる。そのため、従来の製造方法では作製することができなかった、多孔性炭素材料の表面にリン酸銀(AgPO)が担持したリン酸銀担持多孔性炭素材料が得られる。これは、蒸発乾固工程において、リン酸イオン含有溶液をろ過せずに蒸発乾固することにより、表面の大部分が無機リン酸塩で覆われた多孔性炭素材料が得られ、固液分離工程において、これを銀イオン含有溶液と接触させることで、多孔性炭素材料の表面を覆っている無機リン酸塩と銀イオンとが反応し、リン酸銀(AgPO)が生成するためと推測される。 Thus, in the manufacturing method according to the first embodiment, the porous carbon material is immersed in the phosphate ion-containing solution and the silver ion-containing solution in this order, and the porous carbon material is immersed in the phosphate ion-containing solution. Evaporate to dryness. Therefore, a silver phosphate-supporting porous carbon material in which silver phosphate (Ag 3 PO 4 ) is supported on the surface of the porous carbon material, which could not be produced by the conventional manufacturing method, is obtained. This is because in the evaporating and drying process, by evaporating and drying the phosphate ion-containing solution without filtering, a porous carbon material whose surface is mostly covered with inorganic phosphate is obtained, and solid-liquid separation is achieved. In the process, by bringing this into contact with a silver ion-containing solution, the inorganic phosphate covering the surface of the porous carbon material reacts with silver ions to produce silver phosphate (Ag 3 PO 4 ). It is guessed.

<蒸発乾固工程>
蒸発乾固工程では、多孔性炭素材料をリン酸イオン含有溶液に浸漬し、溶媒を蒸発乾固させて凝固物を得る。すなわち、多孔性炭素材料とリン酸イオン含有溶液を混合してリン酸イオン混合液を得、得られるリン酸イオン混合液を蒸発乾固させて凝固物を得る。
<Evaporation to dryness process>
In the evaporation / drying step, the porous carbon material is immersed in a phosphate ion-containing solution, and the solvent is evaporated to dryness to obtain a solidified product. That is, a porous carbon material and a phosphate ion-containing solution are mixed to obtain a phosphate ion mixed solution, and the resulting phosphate ion mixed solution is evaporated to dryness to obtain a solidified product.

第一実施形態に係る製造方法において、リン酸イオン混合液を蒸発乾固させることが重要である。例えば、リン酸イオン混合液をろ過やデカンテーションにより固液分離すると、表面にリン酸銀(AgPO)ではなく、金属銀(Ag)が担持した多孔性炭素材料が得られる。これは、リン酸イオン混合液をろ過やデカンテーションにより固液分離すると、無機リン酸塩がほとんど担持していない多孔性炭素材料が得られ、これを銀イオン含有溶液と接触させると、銀イオン含有溶液中の大部分の銀イオン(Ag)が多孔性炭素材料の表面で金属銀(Ag)に還元されるためと推測される。また、リン酸イオン混合液を固液分離せず、銀イオン含有溶液をリン酸イオン混合液に添加すると、リン酸イオン混合液中にリン酸銀(AgPO)が生成するが、表面にリン酸銀(AgPO)が担持した多孔性炭素材料が得られないおそれがある。 In the manufacturing method according to the first embodiment, it is important to evaporate and dry the phosphate ion mixture. For example, when the phosphate ion mixed liquid is solid-liquid separated by filtration or decantation, a porous carbon material carrying metal silver (Ag) instead of silver phosphate (Ag 3 PO 4 ) on the surface is obtained. This is because when a phosphate ion mixture is solid-liquid separated by filtration or decantation, a porous carbon material almost free of inorganic phosphate is obtained. When this is brought into contact with a silver ion-containing solution, silver ions are obtained. It is presumed that most of the silver ions (Ag + ) in the containing solution are reduced to metallic silver (Ag) on the surface of the porous carbon material. Further, when the phosphate ion mixed solution is not solid-liquid separated and the silver ion-containing solution is added to the phosphate ion mixed solution, silver phosphate (Ag 3 PO 4 ) is generated in the phosphate ion mixed solution. In addition, a porous carbon material supported by silver phosphate (Ag 3 PO 4 ) may not be obtained.

(多孔性炭素材料)
多孔性炭素材料は、炭素を主成分として構成される。そのため、多孔性炭素材料は、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)などの無機酸化物を担体に用いる場合よりも、耐熱性、耐酸性、耐塩基性に優れる。多孔性炭素材料としては、例えば、黒炭、白炭などの木炭;活性炭、活性炭素繊維、メゾ気孔炭素などのナノ空間炭素などを用いることができる。
(Porous carbon material)
The porous carbon material is composed mainly of carbon. Therefore, the porous carbon material has higher heat resistance, acid resistance, and base resistance than the case where inorganic oxides such as silica (SiO 2 ), alumina (Al 2 O 3 ), and titania (TiO 2 ) are used as the support. Excellent. Examples of the porous carbon material include charcoal such as black charcoal and white charcoal; and nanospace carbon such as activated carbon, activated carbon fiber, and mesoporous carbon.

多孔性炭素材料は、無数の細孔を有する。そのため、比表面積が大きく、可視光照射下で高い酸化分解力を発揮するリン酸銀(AgPO)を分散させるのに適している。 The porous carbon material has innumerable pores. Therefore, it is suitable for dispersing silver phosphate (Ag 3 PO 4 ) having a large specific surface area and exhibiting high oxidative decomposition ability under irradiation with visible light.

多孔性炭素材料のBET比表面積は、好ましくは100〜1000m/g、より好ましくは300〜700m/gである。多孔性炭素材料の全細孔容積は、好ましくは0.05〜0.50mL/gである。なお、多孔性炭素材料のBET比表面積及び全細孔容積は、実施例に記載の方法と同様にして測定することができる。 BET specific surface area of the porous carbon material is preferably 100~1000m 2 / g, more preferably 300~700m 2 / g. The total pore volume of the porous carbon material is preferably 0.05 to 0.50 mL / g. The BET specific surface area and the total pore volume of the porous carbon material can be measured in the same manner as described in the examples.

(リン酸イオン含有溶液)
リン酸イオン含有溶液は、リン酸イオンを含有する溶液であればよく、リン酸がイオンとして溶解していれば、溶質や溶媒は限定されない。なかでも、リン酸イオン含有溶液として、リン酸水素二ナトリウム水溶液を用いることが好ましい。
(Phosphate ion-containing solution)
The phosphate ion-containing solution may be a solution containing phosphate ions, and the solute and the solvent are not limited as long as phosphoric acid is dissolved as ions. Especially, it is preferable to use disodium hydrogenphosphate aqueous solution as a phosphate ion containing solution.

リン酸イオン含有溶液の濃度は、好ましくは3〜20g/l、より好ましくは3〜5g/lである。リン酸イオン含有溶液の濃度が上記範囲内であれば、リン酸イオン混合液中に多孔性炭素材料に担持しない白い析出物の生成を抑制することができ、金属銀(Ag)の担持量がより少なく、リン酸銀(AgPO)がより分散して担持したリン酸銀担持多孔性炭素材料とすることができる。 The concentration of the phosphate ion-containing solution is preferably 3 to 20 g / l, more preferably 3 to 5 g / l. If the concentration of the phosphate ion-containing solution is within the above range, the formation of white precipitates not supported on the porous carbon material in the phosphate ion mixed solution can be suppressed, and the supported amount of metallic silver (Ag) is The silver phosphate-supporting porous carbon material in which silver phosphate (Ag 3 PO 4 ) is more dispersed and supported can be obtained.

用いるリン酸イオン含有溶液の量は、リン酸イオン含有溶液の濃度などに応じて適宜調整すればよい。リン酸イオン含有溶液としてリン酸水素二ナトリウム水溶液を用いる場合、リン酸水素二ナトリウム水溶液に含まれているリン酸水素二ナトリウムの量は、NaHPO・12HOの質量として、多孔性炭素材料の総質量に対して、好ましくは0.6〜4.0g/gである。 What is necessary is just to adjust the quantity of the phosphate ion containing solution to be used suitably according to the density | concentration etc. of a phosphate ion containing solution. When using a disodium hydrogen phosphate aqueous solution as the phosphate ion-containing solution, the amount of disodium hydrogen phosphate contained in the disodium hydrogen phosphate aqueous solution is porous as the mass of Na 2 HPO 4 · 12H 2 O. Preferably it is 0.6-4.0 g / g with respect to the gross mass of a carbon material.

リン酸イオン含有溶液としてリン酸水素二ナトリウム水溶液を用いる場合、リン酸水素二ナトリウム水溶液を調製する方法としては、例えば、リン酸水素二ナトリウム・12水和物(NaHPO・12HO)を純水に溶かして調製することができる。リン酸水素二ナトリウム水溶液中のアニオンはHPO 2−が主成分となる。 When using a disodium hydrogen phosphate aqueous solution as the phosphate ion-containing solution, as a method for preparing the disodium hydrogen phosphate aqueous solution, for example, disodium hydrogen phosphate · 12 hydrate (Na 2 HPO 4 · 12H 2 O ) Can be prepared by dissolving in pure water. An anion in the aqueous solution of disodium hydrogen phosphate is mainly composed of HPO 4 2- .

(蒸発乾固)
蒸発乾固させる方法としては、例えば、ホットプレート上でリン酸イオン混合液を加熱し水分を蒸発させ、水分がほとんどなくなった後、乾燥する第一の方法;リン酸イオン混合液を常温・常圧下で放置して、リン酸イオン混合液の溶媒を蒸発させる第二の方法;リン酸イオン混合液を溶媒が沸騰しない程度の温度に加熱して、リン酸イオン混合液の溶媒を蒸発させる第三の方法などが挙げられる。第一の方法において、ホットプレートの設定温度は、ホットプレートと加熱容器の大きさなどに応じて適宜調整すればよく、リン酸イオン混合液を沸騰させない温度に調整することが好ましく、具体的には80〜200℃であることが好ましい。第一の方法における、乾燥方法としては、例えば、加熱乾燥;風乾;乾燥剤を備えた真空デシケータ内に凝固剤を静置し、油回転真空ポンプで真空デシケータ内を減圧することで、凝固剤を減圧乾燥する方法などが挙げられる。第三の方法において、リン酸イオン混合液を加熱する方法として、例えば、エバポレーターなどを用いることができる。
(Evaporation to dryness)
As a method for evaporating and drying, for example, a phosphate ion mixture is heated on a hot plate to evaporate water, and after the water is almost gone, the first method is to dry; A second method of evaporating the solvent of the phosphate ion mixture by leaving it under pressure; first evaporating the solvent of the phosphate ion mixture by heating the phosphate ion mixture to a temperature at which the solvent does not boil; There are three methods. In the first method, the set temperature of the hot plate may be adjusted as appropriate according to the size of the hot plate and the heating container, and is preferably adjusted to a temperature that does not boil the phosphate ion mixture. Is preferably 80 to 200 ° C. The drying method in the first method is, for example, heat drying; air drying; allowing the coagulant to stand in a vacuum desiccator equipped with a desiccant and reducing the pressure in the vacuum desiccator with an oil rotary vacuum pump. And a method of drying under reduced pressure. In the third method, for example, an evaporator or the like can be used as a method of heating the phosphate ion mixed solution.

リン酸イオン混合液を蒸発乾固させた後、必要により、凝固物を乾燥させてもよい。凝固物を乾燥させる方法としては、例えば、加熱乾燥;風乾;乾燥剤を備えた真空デシケータ内に凝固剤を静置し、油回転真空ポンプで真空デシケータ内を減圧することで、凝固剤を減圧乾燥する方法などが挙げられる。   After evaporating the phosphate ion mixture to dryness, the solidified product may be dried if necessary. As a method for drying the coagulated product, for example, heat drying; air drying; the coagulant is left in a vacuum desiccator equipped with a desiccant, and the coagulant is depressurized by reducing the pressure in the vacuum desiccator with an oil rotary vacuum pump. The method of drying etc. are mentioned.

<固液分離工程>
固液分離工程では、凝固物を銀イオン含有溶液と接触させその後、固液分離する。すなわち、凝固物と銀イオン含有溶液を混合して銀イオン混合液を得、得られる銀イオン混合液を固液分離する。これにより、リン酸銀担持多孔性炭素材料が得られる。
<Solid-liquid separation process>
In the solid-liquid separation step, the solidified product is brought into contact with a silver ion-containing solution and then solid-liquid separated. That is, a solidified product and a silver ion-containing solution are mixed to obtain a silver ion mixed solution, and the resulting silver ion mixed solution is subjected to solid-liquid separation. Thereby, the silver phosphate carrying | support porous carbon material is obtained.

(銀イオン含有溶液)
銀イオン含有溶液は、銀イオンを含有する溶液であればよく、銀がイオンとして溶解していれば、溶質や溶媒は限定されない。なかでも、銀イオン含有溶液として、硝酸銀水溶液を用いることが好ましい。また、銀イオン含有溶液は、リン酸イオン含有溶液とは別の溶媒を用いた溶液であってもよい。例えば、リン酸イオン含有溶液及び銀イオン含有溶液として、リン酸水素二ナトリウム水溶液と硝酸銀のエタノール溶液との組み合わせを用いることもできる。
(Silver ion-containing solution)
The silver ion-containing solution may be a solution containing silver ions, and the solute and the solvent are not limited as long as silver is dissolved as ions. Of these, an aqueous silver nitrate solution is preferably used as the silver ion-containing solution. The silver ion-containing solution may be a solution using a solvent different from the phosphate ion-containing solution. For example, a combination of an aqueous solution of disodium hydrogenphosphate and an ethanol solution of silver nitrate can be used as the phosphate ion-containing solution and the silver ion-containing solution.

銀イオン含有溶液の濃度は、リン酸イオン含有溶液の濃度に応じて適宜調整すればよく、好ましくは3〜5g/lである。銀イオン含有溶液の濃度が上記範囲内であれば、金属銀(Ag)の担持量がより少なく、リン酸銀(AgPO)がより分散して担持したリン酸銀担持多孔性炭素材料とすることができる。また、銀イオン含有溶液の濃度は、リン酸イオン含有溶液の濃度に対して、好ましくは0.5〜1.0倍、より好ましくは0.8〜1.0倍である。リン酸イオン含有溶液の濃度及び銀イオン含有溶液の濃度が上記範囲内で、かつ銀イオン含有溶液の濃度がリン酸イオン含有溶液の濃度に対して上記範囲内であれば、凝固物に担持しないリン酸銀等の生成をより抑制することができる。 What is necessary is just to adjust suitably the density | concentration of a silver ion containing solution according to the density | concentration of a phosphate ion containing solution, Preferably it is 3-5 g / l. If the concentration of the silver ion-containing solution is within the above range, the supported amount of metallic silver (Ag) is less, and the silver phosphate-supporting porous carbon material in which silver phosphate (Ag 3 PO 4 ) is more dispersed and supported It can be. The concentration of the silver ion-containing solution is preferably 0.5 to 1.0 times, more preferably 0.8 to 1.0 times the concentration of the phosphate ion-containing solution. If the concentration of the phosphate ion-containing solution and the concentration of the silver ion-containing solution are within the above range, and the concentration of the silver ion-containing solution is within the above range with respect to the concentration of the phosphate ion-containing solution, it is not supported on the coagulum Generation of silver phosphate or the like can be further suppressed.

用いる銀イオン含有溶液は、pHを3〜8に調整することが好ましい。pHが3より小さいとリン酸銀が生成しないおそれがある。   The silver ion-containing solution to be used is preferably adjusted to pH 3-8. If the pH is less than 3, silver phosphate may not be generated.

用いる銀イオン含有溶液の量は、銀イオン含有溶液の濃度などに応じて適宜調整すればよい。また、銀イオン含有溶液として硝酸銀水溶液を用いる場合、硝酸銀水溶液に含まれる硝酸銀の量は、多孔性炭素材料の総質量に対して、好ましくは0.6〜1.0g/gである。   What is necessary is just to adjust the quantity of the silver ion containing solution to be used suitably according to the density | concentration etc. of a silver ion containing solution. Moreover, when using silver nitrate aqueous solution as a silver ion containing solution, the quantity of silver nitrate contained in silver nitrate aqueous solution becomes like this. Preferably it is 0.6-1.0 g / g with respect to the gross mass of a porous carbon material.

(接触)
凝固物を銀イオン含有溶液と接触させる方法は、イオン交換反応が可能なように銀イオンと接触することができれば特に限定されず、例えば、凝固物を硝酸銀水溶液に浸漬する方法などが挙げられる。
(contact)
The method for bringing the coagulated product into contact with the silver ion-containing solution is not particularly limited as long as it can be brought into contact with the silver ion so that an ion exchange reaction is possible, and examples thereof include a method of immersing the coagulated product in an aqueous silver nitrate solution.

凝固物を銀イオン含有溶液と接触させてから、銀イオン混合液を固液分離するまでに、銀イオン含有溶液を15〜25℃で数分以上保持することが好ましい。すなわち、凝固物表面に存在するリン酸塩のカチオンと銀のイオン交換反応が起こるように、つまり数分以上保持することが好ましい。   It is preferable to keep the silver ion-containing solution at 15 to 25 ° C. for several minutes or more after the solidified product is brought into contact with the silver ion-containing solution and before the silver ion mixed solution is solid-liquid separated. That is, it is preferable to keep the ion exchange reaction between the phosphate cation and silver existing on the surface of the coagulum, that is, for several minutes or more.

(固液分離)
固液分離する方法としては、特に限定されず、例えば、ろ過法、遠心分離法、沈殿分離法、減圧濃縮などの公知の方法が挙げられる。
(Solid-liquid separation)
The method for solid-liquid separation is not particularly limited, and examples thereof include known methods such as filtration, centrifugation, precipitation separation, and vacuum concentration.

銀イオン混合液を固液分離させた後、必要により、リン酸銀担持多孔性炭素材料を乾燥させてもよい。凝固物を乾燥させる方法としては、例えば、加熱乾燥;風乾;乾燥剤を備えた真空デシケータ内に凝固剤を静置し、油回転真空ポンプで真空デシケータ内を減圧することで、凝固剤を減圧乾燥する方法などが挙げられる。   After the silver ion mixed liquid is subjected to solid-liquid separation, the silver phosphate-supporting porous carbon material may be dried as necessary. As a method for drying the coagulated product, for example, heat drying; air drying; the coagulant is left in a vacuum desiccator equipped with a desiccant, and the coagulant is depressurized by reducing the pressure in the vacuum desiccator with an oil rotary vacuum pump. The method of drying etc. are mentioned.

〔第二実施形態に係るリン酸銀担持多孔性炭素材料の製造方法〕
第二実施形態に係るリン酸銀担持多孔性炭素材料の製造方法は、第一実施形態において、蒸発乾固工程の前に、木質バイオマスを400〜1000℃で加熱処理して多孔性炭素材料を得る工程(以下、加熱処理工程)を有する他は、第一実施形態と同様である。すなわち、第二実施形態に係る製造方法は、加熱処理工程、蒸発乾固工程及び固液分離工程をこの順で行う。以下、蒸発乾固工程及び固液分離工程については説明を省略する。
[Method for Producing Silver Phosphate-Supporting Porous Carbon Material According to Second Embodiment]
In the method for producing a silver phosphate-supporting porous carbon material according to the second embodiment, in the first embodiment, before the evaporation to dryness step, the woody biomass is heat-treated at 400 to 1000 ° C. to obtain the porous carbon material. Other than having the process (henceforth heat processing process) to obtain, it is the same as that of 1st embodiment. That is, the manufacturing method according to the second embodiment performs the heat treatment step, the evaporation to dryness step, and the solid-liquid separation step in this order. Hereinafter, description of the evaporation to dryness step and the solid-liquid separation step is omitted.

<加熱処理工程>
加熱処理工程では、木質バイオマスを400〜1000℃で加熱処理して多孔性炭素材料を得る。この加熱処理によって得られる多孔性炭素材料を用いれば、リン酸銀(AgPO)の担持量がより多く、金属銀(Ag)の担持量がより少ないリン酸銀担持多孔性炭素材料とすることができる。
<Heat treatment process>
In the heat treatment step, the woody biomass is heat-treated at 400 to 1000 ° C. to obtain a porous carbon material. If a porous carbon material obtained by this heat treatment is used, a silver phosphate-supporting porous carbon material having a larger amount of silver phosphate (Ag 3 PO 4 ) and a smaller amount of metal silver (Ag) supported can do.

(木質バイオマス)
木質バイオマスは、再生可能な生物由来の有機性資源(化石燃料は除く)であって木材からなるものである。木質バイオマスの具体例としては、樹木の伐採や造材のときに発生した枝、葉などの林地残材、製材工場などから発生する樹皮やのこ屑などのほか、住宅の解体材や街路樹の剪定枝などを挙げることができる。このような木質バイオマスは、あらかじめ100〜120℃で8〜48時間乾燥させることによって水分を除去しておくことが好ましい。加熱処理の処理時間は、0.5〜3.0時間であることが好ましい。
(Woody biomass)
Woody biomass is renewable organic organic resources (excluding fossil fuels) and made of wood. Specific examples of woody biomass include tree residues from branches and leaves generated during tree felling and lumbering, bark and sawdust from lumber mills, etc., as well as demolishing houses and street trees. The pruned branch of can be mentioned. Such woody biomass is preferably previously dried at 100 to 120 ° C. for 8 to 48 hours to remove moisture. The treatment time for the heat treatment is preferably 0.5 to 3.0 hours.

木質バイオマスを加熱処理して得られる加熱処理物は、放冷後、ふるいにかけるなどして所定の大きさに整えるようにしてもよい。   A heat-treated product obtained by heat-treating woody biomass may be adjusted to a predetermined size by allowing it to cool and then passing through a sieve.

(加熱処理)
木質バイオマスの加熱処理の温度は、400〜1000℃、好ましくは550〜850℃である。木質バイオマスの加熱処理の時間は、木質バイオマスの加熱処理の温度が所望の温度に到達すれば特に限定されない。木質バイオマスを加熱処理する方法としては、例えば、電気炉を用いる方法、炭窯を用いる方法、バーナー等を備えた工業炉を用いる方法などが挙げられる。
(Heat treatment)
The temperature of the heat treatment of the woody biomass is 400 to 1000 ° C, preferably 550 to 850 ° C. The time for the heat treatment of the woody biomass is not particularly limited as long as the temperature of the heat treatment of the woody biomass reaches a desired temperature. Examples of the method for heat treating woody biomass include a method using an electric furnace, a method using a charcoal kiln, a method using an industrial furnace equipped with a burner and the like.

〔リン酸銀担持多孔性炭素材料〕
本実施形態に係るリン酸銀担持多孔性炭素材料は、多孔性炭素材料を含む担体と、担体に担持された、リン酸銀を含む光触媒成分とを含む。すなわち、リン酸銀担持多孔性炭素材料は、多孔性炭素材料の吸着性能と、可視光照射下におけるリン酸銀(AgPO)の酸化分解力(光触媒性能)とを有する。そのため、例えば、光化学オキシダントの原因となる揮発性有機化合物(Volatile Organic Compounds)を除去することができる。
[Porous carbon material carrying silver phosphate]
The silver phosphate-supporting porous carbon material according to the present embodiment includes a support containing the porous carbon material and a photocatalytic component containing silver phosphate supported on the support. That is, the silver phosphate-supporting porous carbon material has the adsorption performance of the porous carbon material and the oxidative decomposition power (photocatalytic performance) of silver phosphate (Ag 3 PO 4 ) under visible light irradiation. Therefore, for example, volatile organic compounds that cause photochemical oxidants can be removed.

リン酸銀担持多孔性炭素材料のBET比表面積は、好ましくは100〜1000m/g、より好ましくは300〜700m/gである。リン酸銀担持多孔性炭素材料のBET比表面積が上記範囲内であれば、多孔性炭素材料由来の優れた吸着性能を発揮するリン酸銀担持多孔性炭素材料とすることができる。 BET specific surface area of the silver phosphate supported porous carbon material is preferably 100~1000m 2 / g, more preferably 300~700m 2 / g. When the BET specific surface area of the silver phosphate-supporting porous carbon material is within the above range, the silver phosphate-supporting porous carbon material exhibiting excellent adsorption performance derived from the porous carbon material can be obtained.

リン酸銀担持多孔性炭素材料のリン酸銀の担持量は、銀換算で、好ましくは5〜25質量%、より好ましくは5〜10質量%である。リン酸銀の担持量が上記範囲内であれば、可視光照射下におけるリン酸銀(AgPO)の酸化分解力がより発揮されやすいリン酸銀担持多孔性炭素材料とすることができる。リン酸銀担持多孔性炭素材料のリン酸銀の担持量は実施例に記載の方法と同様にして測定することができる。 The amount of silver phosphate supported on the silver phosphate-supporting porous carbon material is preferably 5 to 25% by mass and more preferably 5 to 10% by mass in terms of silver. If the amount of silver phosphate supported is within the above range, a silver phosphate-supporting porous carbon material that can more easily exhibit the oxidative decomposition ability of silver phosphate (Ag 3 PO 4 ) under visible light irradiation can be obtained. . The amount of silver phosphate supported on the silver phosphate-supporting porous carbon material can be measured in the same manner as described in the examples.

多孔性炭素材料を含む担体は、上述した多孔性炭素材料を含むものであれば特に限定されない。光触媒成分は、リン酸銀を含むものであれば特に限定されない。光触媒成分は、リン酸銀を含むので、可視光照射下で高い酸化分解力を発揮し、ほとんどすべての有機物を分解し、最終的に二酸化炭素と水にすることができる。そのため、リン酸銀担持多孔性炭素材料は、脱臭剤、抗菌剤、有害ガス除去剤、水浄化剤などとして利用することができる。可視光とは波長が380nm〜830nmの領域の光を指すものである。可視光は、例えば、白色蛍光灯、太陽光、白色LED、電球、ハロゲンランプ、キセノンランプ等の一般照明;青色発光ダイオード;青色レーザ等を光源とする光であってもよい。   The support including the porous carbon material is not particularly limited as long as it includes the porous carbon material described above. The photocatalytic component is not particularly limited as long as it contains silver phosphate. Since the photocatalyst component contains silver phosphate, it exhibits high oxidative decomposition ability under irradiation with visible light, decomposes almost all organic substances, and finally becomes carbon dioxide and water. Therefore, the silver phosphate-supporting porous carbon material can be used as a deodorant, an antibacterial agent, a harmful gas removal agent, a water purification agent, and the like. Visible light refers to light in a wavelength region of 380 nm to 830 nm. The visible light may be, for example, a general illumination such as a white fluorescent lamp, sunlight, a white LED, a light bulb, a halogen lamp, or a xenon lamp; a blue light emitting diode; a light having a blue laser as a light source.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

[実施例1]
(加熱処理工程)
115℃で24時間乾燥したスギのおが屑をるつぼに入れ、電気炉(株式会社いすゞ製作所製、「EPDS-7.2R」)内で加熱処理した。700℃で1時間加熱処理した後、炉内放冷して、加熱処理物を得た。得られた加熱処理物を、ふるいにかけて粒径106〜1000μmの多孔性炭素材料を得た。得られた多孔性炭素材料の全細孔容積は、相対圧力0.98における窒素吸着量から求めたところ、0.24mL/gであった。
[Example 1]
(Heat treatment process)
Cedar sawdust dried at 115 ° C. for 24 hours was placed in a crucible and heat-treated in an electric furnace (“EPDS-7.2R” manufactured by Isuzu Seisakusho Co., Ltd.). After heat-processing at 700 degreeC for 1 hour, it stood to cool in a furnace and the heat-processed material was obtained. The obtained heat-treated product was sieved to obtain a porous carbon material having a particle size of 106 to 1000 μm. The total pore volume of the obtained porous carbon material was 0.24 mL / g as determined from the nitrogen adsorption amount at a relative pressure of 0.98.

(蒸発乾固工程)
リン酸水素二ナトリウム・12水和物(NaHPO・12HO)2gを純水 100mlに溶かしてリン酸水素二ナトリウム(NaHPO)水溶液(濃度:20g/l)(以下、リン酸イオン含有溶液という場合がある)を調整した。
(Evaporation and drying process)
Disodium hydrogen phosphate.12 hydrate (Na 2 HPO 4 · 12H 2 O) 2 g dissolved in 100 ml of pure water, disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution (concentration: 20 g / l) (hereinafter, (Sometimes referred to as a phosphate ion-containing solution).

得られた多孔性炭素材料 0.5gを200mLの三角フラスコにとり、これにリン酸水素二ナトリウム(NaHPO)水溶液(濃度:20g/l)100mlを添加してリン酸イオン混合液を得た。リン酸イオン混合液を24時間撹拌後、200℃に設定したホットプレート上で加熱して、リン酸イオン混合液が沸騰していない状態で水分を蒸発させ、水分がほとんどなくなった後、乾燥機(アズワン株式会社製、「ONW-450S」)で乾燥して(蒸発乾固させて)、粉末状の凝固物を得た。 0.5 g of the obtained porous carbon material is placed in a 200 mL Erlenmeyer flask, and 100 ml of a disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution (concentration: 20 g / l) is added thereto to obtain a phosphate ion mixed solution. It was. After the phosphate ion mixture is stirred for 24 hours, it is heated on a hot plate set to 200 ° C. to evaporate the moisture in a state where the phosphate ion mixture is not boiling, and the moisture is almost gone. (ONW-450S, manufactured by ASONE CORPORATION) was dried (evaporated to dryness) to obtain a powdery solidified product.

(固液分離工程)
得られた凝固物 0.5gを200mlの三角フラスコにとり、これに硝酸銀(AgNO)水溶液(濃度:5g/l)(以下、銀イオン含有溶液という場合がある)100mlを添加し、20℃・常圧下で60分間保持し、ろ過して、純水で洗浄し、115℃で24時間乾燥して試料を得た。
(Solid-liquid separation process)
0.5 g of the obtained coagulum is placed in a 200 ml Erlenmeyer flask, and 100 ml of a silver nitrate (AgNO 3 ) aqueous solution (concentration: 5 g / l) (hereinafter sometimes referred to as a silver ion-containing solution) is added to the flask. The sample was kept at normal pressure for 60 minutes, filtered, washed with pure water, and dried at 115 ° C. for 24 hours to obtain a sample.

<粉末X線回折測定>
得られた試料の粉末X線回折測定を下記の測定条件で行った。測定結果を図1に示す。
測定条件:
測定装置 :X線回折装置(株式会社リガク製、「RINT-UltimaIII」)
X線の照射線源 :Cu−Kα線
管電圧 :40kV
管電流 :40mA
走査速度 :0.4degree/min
測定範囲 :回折角2θ=20〜90
<走査型電子顕微鏡観察>
電解放出形走査電子顕微鏡(株式会社日立ハイテクノロジーズ製、「SU8000」)を用いて得られた試料を観察した。試料を倍率500倍で撮影した走査型電子顕微鏡写真を図2に示す。試料を倍率10,000倍で撮影した走査型電子顕微鏡写真を図3に示す。
<Powder X-ray diffraction measurement>
Powder X-ray diffraction measurement of the obtained sample was performed under the following measurement conditions. The measurement results are shown in FIG.
Measurement condition:
Measuring device: X-ray diffractometer (manufactured by Rigaku Corporation, “RINT-UltimaIII”)
X-ray irradiation source: Cu-Kα ray Tube voltage: 40 kV
Tube current: 40 mA
Scanning speed: 0.4 degree / min
Measurement range: Diffraction angle 2θ = 20 to 90 o
<Scanning electron microscope observation>
Samples obtained using an electrolytic emission scanning electron microscope (manufactured by Hitachi High-Technologies Corporation, “SU8000”) were observed. A scanning electron micrograph of the sample taken at 500 times magnification is shown in FIG. A scanning electron micrograph of the sample taken at a magnification of 10,000 is shown in FIG.

<BET比表面積測定>
BET比表面積測定装置(Quantachrome製、「AUTOSORB-1-C」)を用いて、吸着温度77.4K、相対圧力0.01〜1.0の範囲で窒素の吸着等温線を作成し、BETプロットから、得られた多孔性炭素材料及び試料のBET比表面積を測定した。測定結果を表1に示す。
<BET specific surface area measurement>
Using a BET specific surface area measuring device (manufactured by Quantachrome, "AUTOSORB-1-C"), an adsorption isotherm of nitrogen is created in the range of an adsorption temperature of 77.4K and a relative pressure of 0.01 to 1.0, and a BET plot. Thus, the BET specific surface area of the obtained porous carbon material and the sample was measured. The measurement results are shown in Table 1.

<Ag含有量測定>
エネルギー分散型蛍光X線測定装置(株式会社リガク製、「EDXL 300」)を用いて、蛍光X線元素分析法により、得られた試料のAg含有量を測定した。測定結果を表1に示す。
<Ag content measurement>
Using an energy dispersive X-ray fluorescence analyzer (“EDXL 300” manufactured by Rigaku Corporation), the Ag content of the obtained sample was measured by X-ray fluorescence elemental analysis. The measurement results are shown in Table 1.

[比較例1]
115℃で24時間乾燥したスギのおが屑20gと、リン酸水素二ナトリウム水和物(NaHPO・12HO) 1.7gと、硝酸銀(AgNO)2.4gと、ボール(直径:10mmと20mm)とをボールミル容器に入れて混合し、卓上ボールミル装置(アズワン株式会社製の「PM-001」)を用いて、100rpmの条件で5時間、混合攪拌し、混合物を得た。
[Comparative Example 1]
20 g of cedar sawdust dried at 115 ° C. for 24 hours, 1.7 g of disodium hydrogen phosphate hydrate (Na 2 HPO 4 · 12H 2 O), 2.4 g of silver nitrate (AgNO 3 ), balls (diameter: 10 mm and 20 mm) were mixed in a ball mill container, and mixed and stirred for 5 hours under a condition of 100 rpm using a table-top ball mill apparatus (“PM-001” manufactured by As One Co., Ltd.) to obtain a mixture.

得られた混合物をるつぼに入れ、電気炉(株式会社いすず製作所、「EPDS-7.2R」)内で加熱処理した。700℃で1時間加熱処理した後、炉内放冷して、加熱処理物を得た。得られた加熱処理物を、ふるいにかけて粒径106〜1000μmの試料を得た。   The obtained mixture was put into a crucible and heat-treated in an electric furnace (Isuzu Seisakusho, “EPDS-7.2R”). After heat-processing at 700 degreeC for 1 hour, it stood to cool in a furnace and the heat-processed material was obtained. The obtained heat-treated product was sieved to obtain a sample having a particle size of 106 to 1000 μm.

得られた試料の粉末X線回折測定を実施例1と同様にして行った。測定結果を図1に示す。   Powder X-ray diffraction measurement of the obtained sample was performed in the same manner as in Example 1. The measurement results are shown in FIG.

[比較例2]
実施例1と同様にして多孔性炭素材料及びリン酸水素二ナトリウム(NaHPO)水溶液(濃度:20g/l)を得た。
[Comparative Example 2]
A porous carbon material and a disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution (concentration: 20 g / l) were obtained in the same manner as in Example 1.

得られた多孔性炭素材料 0.5gを200mLの三角フラスコにとり、これに硝酸銀(AgNO)水溶液(濃度:5g/l)100mlを添加し、20℃・常圧下で24時間保持し、ろ過し、純水で洗浄し、115℃で24時間乾燥して炭素材料を得た。 0.5 g of the obtained porous carbon material is placed in a 200 mL Erlenmeyer flask, and 100 ml of an aqueous silver nitrate (AgNO 3 ) solution (concentration: 5 g / l) is added to the flask and kept at 20 ° C. under normal pressure for 24 hours and filtered. The carbon material was obtained by washing with pure water and drying at 115 ° C. for 24 hours.

次いで、得られた炭素材料 0.5gを200mLの三角フラスコにとり、これにリン酸水素二ナトリウム(NaHPO)水溶液(濃度:20g/l)100mlを添加し、20℃・常圧下で60分間保持し、ろ過し、純水で洗浄し、115℃で24時間乾燥して試料を得た。 Next, 0.5 g of the obtained carbon material is placed in a 200 mL Erlenmeyer flask, and 100 ml of a disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution (concentration: 20 g / l) is added thereto, and the mixture is added at 20 ° C. and normal pressure. It was kept for a minute, filtered, washed with pure water, and dried at 115 ° C. for 24 hours to obtain a sample.

得られた試料の粉末X線回折測定を実施例1と同様にして行った。測定結果を図1に示す。   Powder X-ray diffraction measurement of the obtained sample was performed in the same manner as in Example 1. The measurement results are shown in FIG.

[比較例3]
実施例1と同様にして多孔性炭素材料及びリン酸水素二ナトリウム(NaHPO)水溶液(濃度:20g/l)を得た。
[Comparative Example 3]
A porous carbon material and a disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution (concentration: 20 g / l) were obtained in the same manner as in Example 1.

得られた多孔性炭素材料 0.5gを200mLの三角フラスコにとり、これにリン酸水素二ナトリウム(NaHPO)水溶液(濃度:20g/l)100mlを添加し、20℃・常圧下で24時間保持し、ろ過し、純水で洗浄し、115℃で24時間乾燥して炭素材料を得た。 0.5 g of the obtained porous carbon material is placed in a 200 mL Erlenmeyer flask, and 100 ml of an aqueous solution of disodium hydrogen phosphate (Na 2 HPO 4 ) (concentration: 20 g / l) is added thereto, and the mixture is stirred at 20 ° C. under normal pressure. It was kept for a time, filtered, washed with pure water, and dried at 115 ° C. for 24 hours to obtain a carbon material.

次いで、得られた炭素材料 0.5gを200mLの三角フラスコにとり、これに硝酸銀(AgNO)水溶液(5g/l)100mlを添加し、20℃・常圧下で60分間保持し、ろ過し、純水で洗浄し、115℃で24時間乾燥して試料を得た。 Next, 0.5 g of the obtained carbon material is placed in a 200 mL Erlenmeyer flask, and 100 ml of an aqueous silver nitrate (AgNO 3 ) solution (5 g / l) is added thereto, and the mixture is kept at 20 ° C. under normal pressure for 60 minutes, filtered, and purified. The sample was washed with water and dried at 115 ° C. for 24 hours to obtain a sample.

得られた試料の粉末X線回折測定を実施例1と同様にして行った。測定結果を図1に示す。   Powder X-ray diffraction measurement of the obtained sample was performed in the same manner as in Example 1. The measurement results are shown in FIG.

[実施例2]
スギのおが屑の加熱処理を700℃から、400℃に代えたこと以外は、実施例1と同様の方法で試料を得た。多孔性炭素材料のBET比表面積は、141m/g、全細孔容量は0.074ml/gであった。そして、実施例1と同様に、得られた試料の粉末X線回折測定を行った。測定結果を図4に示す。
[Example 2]
A sample was obtained in the same manner as in Example 1 except that the heat treatment of cedar sawdust was changed from 700 ° C to 400 ° C. The BET specific surface area of the porous carbon material was 141 m 2 / g, and the total pore volume was 0.074 ml / g. And the powder X-ray-diffraction measurement of the obtained sample was performed similarly to Example 1. FIG. The measurement results are shown in FIG.

[実施例3]
スギのおが屑の加熱処理を700℃から、1000℃に代えたこと以外は、実施例1と同様の方法で試料を得た。多孔性炭素材料のBET比表面積は、944m/g、全細孔容量は0.47ml/gであった。そして、実施例1と同様に、得られた試料の粉末X線回折測定を行った。測定結果を図4に示す。
[Example 3]
A sample was obtained in the same manner as in Example 1 except that the heat treatment of cedar sawdust was changed from 700 ° C to 1000 ° C. The BET specific surface area of the porous carbon material was 944 m 2 / g, and the total pore volume was 0.47 ml / g. And the powder X-ray-diffraction measurement of the obtained sample was performed similarly to Example 1. FIG. The measurement results are shown in FIG.

[比較例4]
実施例1と同様にして多孔性炭素材料及びリン酸水素二ナトリウム(NaHPO)水溶液(濃度:20g/l)を得た。
[Comparative Example 4]
A porous carbon material and a disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution (concentration: 20 g / l) were obtained in the same manner as in Example 1.

得られた多孔性炭素材料 0.5gを200mLの三角フラスコにとり、これにリン酸水素二ナトリウム(NaHPO)水溶液(濃度:20g/l)100mlを添加し、24時間撹拌した。 0.5 g of the obtained porous carbon material was placed in a 200 mL Erlenmeyer flask, and 100 ml of a disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution (concentration: 20 g / l) was added thereto, followed by stirring for 24 hours.

次いで、これに硝酸銀(AgNO)水溶液(5g/l)100mlを滴下したところ、滴下すると同時に溶液中に黄色の結晶が生成した。生成した黄色の結晶のみをろ過、洗浄、乾燥し、実施例1と同様に粉末X線回折測定を行った結果、黄色の結晶は、リン酸銀(AgPO)であることを確認した。 Subsequently, when 100 ml of an aqueous silver nitrate (AgNO 3 ) solution (5 g / l) was added dropwise thereto, yellow crystals were formed in the solution simultaneously with the dropwise addition. Only the produced yellow crystals were filtered, washed and dried, and powder X-ray diffraction measurement was performed in the same manner as in Example 1. As a result, it was confirmed that the yellow crystals were silver phosphate (Ag 3 PO 4 ). .

実施例1〜3では、多孔性炭素材料をリン酸イオン含有溶液に浸漬し、蒸発乾固させて凝固物を得、凝固物を銀イオン含有溶液と接触させその後、固液分離したので、図1、図4に示すように、得られた試料の粉末X線回折測定の測定結果において、リン酸銀(AgPO)に帰属する幾つかの回折ピークが検出された。この結果から、多孔性炭素材料の表面にリン酸銀(AgPO)が存在することが確認できた。さらに、図2及び図3に示すように、試料の走査型電子顕微鏡による観察により、多孔性炭素材料の表面に、数十nmから数μmほどに凝集した粒子が担持していることが確認できた。これらの結果から、多孔性炭素材料表面に担持されている、数十nmから数μmほどに凝集した粒子は、リン酸銀(AgPO)の粒子であると考えられる。 In Examples 1 to 3, since the porous carbon material was immersed in a phosphate ion-containing solution and evaporated to dryness to obtain a solidified product, the solidified product was brought into contact with a silver ion-containing solution, and then solid-liquid separation was performed. 1. As shown in FIG. 4, several diffraction peaks attributed to silver phosphate (Ag 3 PO 4 ) were detected in the measurement result of the powder X-ray diffraction measurement of the obtained sample. From this result, it was confirmed that silver phosphate (Ag 3 PO 4 ) was present on the surface of the porous carbon material. Furthermore, as shown in FIG. 2 and FIG. 3, by observing the sample with a scanning electron microscope, it can be confirmed that particles aggregated to several tens to several μm are supported on the surface of the porous carbon material. It was. From these results, it is considered that the particles that are carried on the surface of the porous carbon material and aggregated to about several tens nm to several μm are particles of silver phosphate (Ag 3 PO 4 ).

これに対し、比較例1〜3では、多孔性炭素材料をリン酸イオン含有溶液に浸漬し、蒸発乾固させて凝固物を得、凝固物を銀イオン含有溶液と接触させその後、固液分離しなかったので、図1に示すように、得られた試料の粉末X線回折測定の測定結果において、リン酸銀(AgPO)に帰属する回折ピークが検出されなかった。この結果から、多孔性炭素材料の表面にリン酸銀(AgPO)が存在しないか、多孔性炭素材料の表面にリン酸銀(AgPO)が存在するとしても、リン酸銀(AgPO)の結晶の質量濃度が、銀(Ag)の結晶の質量濃度に比べて極めて低いことが確認できた。これにより、比較例1〜3の多孔性炭素材料の表面にリン酸銀(AgPO)がほぼ存在しないと評価できる。一方、得られた試料の粉末X線回折測定の測定結果において、金属銀(Ag)に帰属する幾つかの回折ピークが検出された。この結果から、多孔性炭素材料の表面には、金属銀(Ag)が存在することが確認できた。 On the other hand, in Comparative Examples 1 to 3, the porous carbon material is immersed in a phosphate ion-containing solution, evaporated to dryness to obtain a solidified product, the solidified product is brought into contact with the silver ion-containing solution, and then solid-liquid separation is performed. Therefore, as shown in FIG. 1, in the measurement result of the powder X-ray diffraction measurement of the obtained sample, a diffraction peak attributed to silver phosphate (Ag 3 PO 4 ) was not detected. This result, or silver phosphate on the surface of the porous carbon material (Ag 3 PO 4) is not present, even silver phosphate on the surface of the porous carbon material (Ag 3 PO 4) is present, silver phosphate It was confirmed that the mass concentration of the crystal of (Ag 3 PO 4 ) was extremely lower than the mass concentration of the crystal of silver (Ag). Thereby, it can be evaluated that silver phosphate (Ag 3 PO 4 ) is not substantially present on the surfaces of the porous carbon materials of Comparative Examples 1 to 3. On the other hand, in the measurement result of the powder X-ray diffraction measurement of the obtained sample, several diffraction peaks attributed to metallic silver (Ag) were detected. From this result, it was confirmed that metallic silver (Ag) was present on the surface of the porous carbon material.

比較例1において、リン酸銀(AgPO)に帰属する回折ピークが検出されなかったのは、混合物の加熱処理時に発生するガス(CO、CO、CH等)によって、リン酸銀(AgPO)の大部分が金属銀(Ag)に還元されたためと考えられる。 In Comparative Example 1, the diffraction peak attributed to silver phosphate (Ag 3 PO 4 ) was not detected because of the gas (CO, CO 2 , CH 4 etc.) generated during the heat treatment of the mixture. This is probably because most of (Ag 3 PO 4 ) was reduced to metallic silver (Ag).

比較例2において、リン酸銀(AgPO)に帰属する回折ピークが検出されなかったのは、硝酸銀(AgNO)水溶液を添加した際に、多孔性炭素材料表面で硝酸銀(AgNO)水溶液中の銀イオン(Ag)が金属銀(Ag)に還元されて、表面に金属銀(Ag)が担持した炭素材料が得られ、その後、この炭素材料をリン酸水素二ナトリウム(NaHPO)水溶液に浸漬しても、炭素材料の表面に担持した金属銀(Ag)とリン酸水素イオン(HPO 2−)とがほとんど反応しなかったためと考えられる。 In Comparative Example 2, the diffraction peak attributed to silver phosphate (Ag 3 PO 4 ) was not detected when silver nitrate (AgNO 3 ) aqueous solution was added and silver nitrate (AgNO 3 ) on the surface of the porous carbon material. Silver ions (Ag + ) in the aqueous solution are reduced to metallic silver (Ag) to obtain a carbon material having metallic silver (Ag) supported on the surface. Thereafter, the carbon material is converted to disodium hydrogen phosphate (Na 2). It is considered that even when immersed in the HPO 4 ) aqueous solution, the metal silver (Ag) supported on the surface of the carbon material hardly reacted with hydrogen phosphate ions (HPO 4 2− ).

比較例3において、リン酸銀(AgPO)に帰属する回折ピークが検出されなかったのは、リン酸水素二ナトリウム(NaHPO)水溶液を添加した際、表面の大部分にリン酸水素二ナトリウム(NaHPO)がほとんど担持してない炭素材料が得られ、その後、この炭素材料を硝酸銀(AgNO)水溶液に浸漬すると、硝酸銀(AgNO)水溶液中の大部分の銀イオン(Ag)が炭素材料表面で金属銀(Ag)に還元されて、金属銀(Ag)が炭素材料表面に担持したためと考えられる。 In Comparative Example 3, the diffraction peak attributed to silver phosphate (Ag 3 PO 4 ) was not detected because when a disodium hydrogen phosphate (Na 2 HPO 4 ) aqueous solution was added, phosphorous was largely present on the surface. carbon material disodium hydrogen (Na 2 HPO 4) is hardly carried is obtained, then, when immersing the carbon material silver nitrate (AgNO 3) solution, silver nitrate (AgNO 3) most of the silver in the aqueous solution This is probably because ions (Ag + ) were reduced to metallic silver (Ag) on the surface of the carbon material, and metallic silver (Ag) was supported on the surface of the carbon material.

比較例4において、リン酸イオン混合液を固液分離せずに、そのまま硝酸銀(AgNO)水溶液を添加すると、硝酸銀(AgNO)水溶液中の大部分の銀イオン(Ag)が炭素材料表面に到達する前に溶媒中でリン酸水素二ナトリウムと反応してリン酸銀が生成してしまった。 In Comparative Example 4, when the aqueous solution of silver nitrate (AgNO 3 ) was added as it was without solid-liquid separation of the phosphate ion mixture, most of the silver ions (Ag + ) in the aqueous solution of silver nitrate (AgNO 3 ) were converted to the surface of the carbon material. Before reaching the pH, it reacted with disodium hydrogen phosphate in a solvent to produce silver phosphate.

一方、実施例1〜3において、リン酸銀(AgPO)に帰属する幾つかの回折ピークが検出されたのは、リン酸水素二ナトリウム(NaHPO)溶液をろ過せずに蒸発乾固したことにより、表面の大部分がリン酸水素二ナトリウム(NaHPO)で覆われた多孔性炭素材料が得られ、その後、この多孔性炭素材料を硝酸銀(AgNO)水溶液に浸漬することで、多孔性炭素材料表面を覆っているリン酸水素二ナトリウム(NaHPO)とリン酸銀(AgNO)とが反応し、リン酸銀(AgPO)が生成したためと考えられる。 On the other hand, in Examples 1 to 3, some diffraction peaks attributed to silver phosphate (Ag 3 PO 4 ) were detected without filtering the disodium hydrogen phosphate (Na 2 HPO 4 ) solution. By evaporating to dryness, a porous carbon material in which most of the surface was covered with disodium hydrogen phosphate (Na 2 HPO 4 ) was obtained, and then the porous carbon material was converted into an aqueous silver nitrate (AgNO 3 ) solution. By soaking, disodium hydrogen phosphate (Na 2 HPO 4 ) and silver phosphate (AgNO 3 ) covering the surface of the porous carbon material reacted to produce silver phosphate (Ag 3 PO 4 ). it is conceivable that.

そして、図4の粉末X線回折の結果から、実施例1〜3のうち実施例1(炭素化の加熱温度が700℃)の試料が、最もリン酸銀のピーク強度が大きく、リン酸銀が最もよく生成していると考えられる。   And from the result of the powder X-ray diffraction of FIG. 4, the sample of Example 1 (heating temperature of carbonization is 700 ° C.) among Examples 1 to 3 has the highest peak intensity of silver phosphate, and silver phosphate. Seems to generate the most.

実施例1において、表1に示すように、リン酸銀担持多孔性炭素材料のBET比表面積は、多孔性炭素材料のBET比表面積よりも小さかった。これは、図2に示すように、多孔性炭素材料の細孔がリン酸銀(AgPO)によって覆われたためと考えられる。 In Example 1, as shown in Table 1, the BET specific surface area of the silver phosphate-supporting porous carbon material was smaller than the BET specific surface area of the porous carbon material. This is presumably because the pores of the porous carbon material were covered with silver phosphate (Ag 3 PO 4 ) as shown in FIG.

[実施例4]
リン酸水素二ナトリウム(NaHPO)水溶液の濃度を20g/lから3g/l、5g/l又は10g/lにかえて、硝酸銀(AgNO)水溶液の濃度を5g/l又は3g/lにした以外は、実施例1と同様の方法で試料を得た。そして、実施例1と同様に、得られた試料の粉末X線回折測定を行った。
[Example 4]
The concentration of the aqueous solution of disodium hydrogen phosphate (Na 2 HPO 4 ) is changed from 20 g / l to 3 g / l, 5 g / l or 10 g / l, and the concentration of the aqueous silver nitrate (AgNO 3 ) solution is changed to 5 g / l or 3 g / l. A sample was obtained in the same manner as in Example 1 except that And the powder X-ray-diffraction measurement of the obtained sample was performed similarly to Example 1. FIG.

その結果、いずれの場合にも、リン酸銀(AgPO)に帰属する幾つかの回折ピークが検出された。この結果から、多孔性炭素材料の表面にリン酸銀(AgPO)が存在することが確認できた。 As a result, in all cases, several diffraction peaks attributed to silver phosphate (Ag 3 PO 4 ) were detected. From this result, it was confirmed that silver phosphate (Ag 3 PO 4 ) was present on the surface of the porous carbon material.

中でも、(リン酸水素二ナトリウム(NaHPO)水溶液の濃度,硝酸銀(AgNO)水溶液の濃度)=(5g/l,5g/l)、(10g/l,5g/l)の場合が、もっとも金属銀が生成することなくリン酸銀が生成していることが確認できた。さらに、(リン酸水素二ナトリウム(NaHPO)水溶液の濃度、硝酸銀(AgNO)水溶液の濃度)=(5g/l,5g/l)が最もリン酸銀がよく生成していることが確認できた。 Among them, there are cases where (concentration of aqueous solution of disodium hydrogenphosphate (Na 2 HPO 4 ), concentration of aqueous solution of silver nitrate (AgNO 3 )) = (5 g / l, 5 g / l), (10 g / l, 5 g / l). It was confirmed that silver phosphate was produced without producing metallic silver. Furthermore, (concentration of aqueous solution of disodium hydrogenphosphate (Na 2 HPO 4 ), concentration of aqueous solution of silver nitrate (AgNO 3 )) = (5 g / l, 5 g / l) indicates that silver phosphate is most often produced. It could be confirmed.

[実施例5]
実施例1で得られた試料 0.1gとメチレンブルー水溶液 30mlを100mLの三角フラスコに入れ、20℃の暗室内に静置した。水溶液の色の変化がなくなり、試料への吸着が飽和してから、水溶液をサンプリングし、その吸光度を測定した。その後、ハロゲンランプ(Schott社製、「MegaLight100」)を用いて、可視光を試料に照射し、一定時間ごとに水溶液サンプルを採取し、その吸光度を測定することによってメチレンブルーの分解について測定を行った。その結果を図5に示す。図5では、試料への吸着が飽和し、ハロゲンランプの照射を開始した時点を0分としている。そして、横軸はハロゲンランプの照射時間を示し、縦軸は水溶液中のメチレンブルーの濃度を示す。なお、図5において、−30分とはハロゲンランプの照射を開始した時点の30分前を意味し、−60分とはハロゲンランプの照射を開始した時点の60分前を意味する。
[Example 5]
0.1 g of the sample obtained in Example 1 and 30 ml of methylene blue aqueous solution were placed in a 100 mL Erlenmeyer flask and allowed to stand in a dark room at 20 ° C. After the change in the color of the aqueous solution disappeared and the adsorption to the sample was saturated, the aqueous solution was sampled and the absorbance was measured. Thereafter, using a halogen lamp (Schott, “MegaLight100”), the sample was irradiated with visible light, an aqueous solution sample was taken at regular intervals, and the absorbance was measured to measure the degradation of methylene blue. . The result is shown in FIG. In FIG. 5, the time when the adsorption to the sample is saturated and the irradiation of the halogen lamp is started is set to 0 minutes. The horizontal axis indicates the halogen lamp irradiation time, and the vertical axis indicates the concentration of methylene blue in the aqueous solution. In FIG. 5, −30 minutes means 30 minutes before the start of halogen lamp irradiation, and −60 minutes means 60 minutes before the start of halogen lamp irradiation.

メチレンブルーの濃度は、予め求めておいた、吸光度と水溶液中のエチレンブルーの濃度の検量線から算出している。図5より、実施例1で得られた試料に可視光を照射することによりメチレンブルーの濃度が低下、すなわち、ハロゲンランプによりメチレンブルーが分解されており、リン酸銀の可視光光触媒効果を確認することができた。   The concentration of methylene blue is calculated from a calibration curve obtained in advance for the absorbance and the concentration of ethylene blue in the aqueous solution. As shown in FIG. 5, the sample obtained in Example 1 is irradiated with visible light to lower the concentration of methylene blue, that is, methylene blue is decomposed by a halogen lamp, and the visible light photocatalytic effect of silver phosphate is confirmed. I was able to.

Claims (7)

多孔性炭素材料をリン酸イオン含有溶液に浸漬し、蒸発乾固させて凝固物を得、前記凝固物を銀イオン含有溶液と接触させその後、固液分離するリン酸銀担持多孔性炭素材料の製造方法。   A porous carbon material is immersed in a phosphate ion-containing solution and evaporated to dryness to obtain a coagulated product. The coagulated product is contacted with a silver ion-containing solution, and then solid-liquid separated. Production method. 木質バイオマスを400〜1000℃で加熱処理して前記多孔性炭素材料を得る請求項1に記載のリン酸銀担持多孔性炭素材料の製造方法。   The manufacturing method of the silver phosphate carrying | support porous carbon material of Claim 1 which heat-processes woody biomass at 400-1000 degreeC, and obtains the said porous carbon material. 前記リン酸イオン含有溶液がリン酸水素二ナトリウム水溶液であり、その濃度が3〜20g/lである請求項1又は2に記載のリン酸銀担持多孔性炭素材料の製造方法。   The method for producing a silver phosphate-supporting porous carbon material according to claim 1 or 2, wherein the phosphate ion-containing solution is a disodium hydrogen phosphate aqueous solution and the concentration thereof is 3 to 20 g / l. 前記銀イオン含有溶液が硝酸銀水溶液であり、その濃度が3〜5g/lである請求項1乃至3のいずれか1項に記載のリン酸銀担持多孔性炭素材料の製造方法。   The method for producing a silver phosphate-supporting porous carbon material according to any one of claims 1 to 3, wherein the silver ion-containing solution is an aqueous silver nitrate solution, and the concentration thereof is 3 to 5 g / l. 多孔性炭素材料を含む担体と、前記担体に担持された、リン酸銀を含む光触媒成分とを含むリン酸銀担持多孔性炭素材料。   A silver phosphate-carrying porous carbon material comprising a carrier containing a porous carbon material and a photocatalyst component containing silver phosphate carried on the carrier. BET比表面積が、100〜1000m/gである請求項5に記載のリン酸銀担持多孔性炭素材料。 The silver phosphate-supporting porous carbon material according to claim 5, wherein the BET specific surface area is 100 to 1000 m 2 / g. リン酸銀の担持量が、銀換算で5〜25質量%である請求項5又は6に記載のリン酸銀担持多孔性炭素材料。   The silver phosphate-supporting porous carbon material according to claim 5 or 6, wherein the supported amount of silver phosphate is 5 to 25 mass% in terms of silver.
JP2016079355A 2016-04-12 2016-04-12 Method for producing silver phosphate-carrying porous carbon material and silver phosphate-carrying porous carbon material Pending JP2017189730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016079355A JP2017189730A (en) 2016-04-12 2016-04-12 Method for producing silver phosphate-carrying porous carbon material and silver phosphate-carrying porous carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016079355A JP2017189730A (en) 2016-04-12 2016-04-12 Method for producing silver phosphate-carrying porous carbon material and silver phosphate-carrying porous carbon material

Publications (1)

Publication Number Publication Date
JP2017189730A true JP2017189730A (en) 2017-10-19

Family

ID=60086390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016079355A Pending JP2017189730A (en) 2016-04-12 2016-04-12 Method for producing silver phosphate-carrying porous carbon material and silver phosphate-carrying porous carbon material

Country Status (1)

Country Link
JP (1) JP2017189730A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216752A1 (en) 2017-09-29 2019-04-04 Nidec Elesys Corporation CIRCUIT BOARD, MOTOR DRIVE UNIT AND ELECTRIC POWER STEERING DEVICE
CN111632576A (en) * 2020-05-12 2020-09-08 北京林业大学 Method for preparing material with adsorption and catalysis functions by adopting agricultural and forestry wastes
CN112512682A (en) * 2018-11-30 2021-03-16 住友化学株式会社 Catalyst for aldehyde decomposition
CN113680358A (en) * 2021-07-13 2021-11-23 湖南农业大学 Silver phosphate/boron carbide composite photocatalyst and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018216752A1 (en) 2017-09-29 2019-04-04 Nidec Elesys Corporation CIRCUIT BOARD, MOTOR DRIVE UNIT AND ELECTRIC POWER STEERING DEVICE
CN112512682A (en) * 2018-11-30 2021-03-16 住友化学株式会社 Catalyst for aldehyde decomposition
CN111632576A (en) * 2020-05-12 2020-09-08 北京林业大学 Method for preparing material with adsorption and catalysis functions by adopting agricultural and forestry wastes
CN113680358A (en) * 2021-07-13 2021-11-23 湖南农业大学 Silver phosphate/boron carbide composite photocatalyst and preparation method and application thereof
CN113680358B (en) * 2021-07-13 2023-09-12 湖南农业大学 Silver phosphate/boron carbide composite photocatalyst and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Danish et al. Characterization of Acacia mangium wood based activated carbons prepared in the presence of basic activating agents
Zhang et al. Flower-like Bi 2 S 3/Bi 2 MoO 6 heterojunction superstructures with enhanced visible-light-driven photocatalytic activity
Iriarte-Velasco et al. Preparation of a porous biochar from the acid activation of pork bones
JP5582545B2 (en) Photocatalyst containing carbon nitride, method for producing the same, and air purification method using the photocatalyst
JP2017189730A (en) Method for producing silver phosphate-carrying porous carbon material and silver phosphate-carrying porous carbon material
Joshi et al. Preparation and characterization of activated carbon from lapsi (Choerospondias axillaris) seed stone by chemical activation with potassium hydroxide
Ghasemian et al. Comparisons of azo dye adsorptions onto activated carbon and silicon carbide nanoparticles loaded on activated carbon
Min et al. Lanthanum and boron co-doped BiVO4 with enhanced visible light photocatalytic activity for degradation of methyl orange
JP6683968B1 (en) Activated carbon
JP6379325B1 (en) Activated carbon and manufacturing method thereof
JP6379324B1 (en) Activated carbon and manufacturing method thereof
Bashanaini et al. Removal of malachite green dye from aqueous solution by adsorption using modified and unmodified local agriculture waste
JP2022132348A (en) Activated carbon and production method thereof
Sayğılı et al. Novel and sustainable precursor for high-quality activated carbon preparation by conventional pyrolysis: Optimization of produce conditions and feasibility in adsorption studies
Wang et al. Novel functionalization of ZIF-67 for an efficient broad-spectrum photocatalyst: formaldehyde degradation at room temperature
JP4142341B2 (en) Activated carbon and its manufacturing method
CN108816179B (en) Porous high-specific-surface-area amorphous MnPO material and preparation method and application thereof
Chegeni et al. Synthesis, characterization and application of V2O5/S‐doped graphitic carbon nitride nanocomposite for removing of organic pollutants
Nunell et al. Development and characterization of microwave-assisted activated carbons from Parkinsonea aculeata wood
Merzougui et al. Effect of activation method on the pore structure of activated carbon from date pits application to the treatment of water
Patel et al. Study of KOH impregnated jack fruit leaf based carbon as adsorbent for treatment of wastewater contaminated with nickel
Majidnia et al. Removal of barium from radioactive aqueous solution by PVA–alginate encapsulated titanium oxide using sunlight and other light types
Li et al. Hierarchically porous TiO 2-MnTiO 3/hollow activated carbon fibers heterojunction photocatalysts with synergistic adsorption-photocatalytic performance under visible light
Jabbar et al. Comparative study for adsorption of acidic and basic dyes on activated carbon prepared from date stone by different activation agent
Birbas Preparation of activated carbon: forest residues activated with phosphoric acid and zinc sulfate