JP2017189028A - Control method and controller for distributed power supply - Google Patents

Control method and controller for distributed power supply Download PDF

Info

Publication number
JP2017189028A
JP2017189028A JP2016076443A JP2016076443A JP2017189028A JP 2017189028 A JP2017189028 A JP 2017189028A JP 2016076443 A JP2016076443 A JP 2016076443A JP 2016076443 A JP2016076443 A JP 2016076443A JP 2017189028 A JP2017189028 A JP 2017189028A
Authority
JP
Japan
Prior art keywords
power
power factor
voltage
interconnection point
connection point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016076443A
Other languages
Japanese (ja)
Other versions
JP5979404B1 (en
Inventor
藤井 幹介
Mikisuke Fujii
幹介 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2016076443A priority Critical patent/JP5979404B1/en
Application granted granted Critical
Publication of JP5979404B1 publication Critical patent/JP5979404B1/en
Publication of JP2017189028A publication Critical patent/JP2017189028A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method and controller that suppress voltage variations at an interconnection point by controlling a power converter by calculating an optimum power factor without varying effective power.SOLUTION: A distributed power supply control method controls reactive power output from a power converter interconnected with a system to suppress voltage variations at an interconnection point. The method suppresses voltage variations at the interconnection point by controlling the reactive power output from the power converter by: calculating an interconnection point voltage variation amount, interconnection point effective power, and interconnection point power factor from the interconnection point's voltage and current in a given period of time; approximating relation between the interconnection point effective power and the interconnection point voltage variation amount by a linear function to calculate its inclination using a least square method; setting a power factor variation amount depending on increase/decrease in the interconnection point power factor and increase/decrease in the inclination that are calculated according to a predetermined period; adding the power factor variation amount to the newest interconnection point power factor to calculate a power factor instruction that makes the inclination be approximately zero; and driving the power converter on the basis of the power factor instruction.SELECTED DRAWING: Figure 4

Description

本発明は、太陽光発電システムや風力発電システム等からなる分散型電源の制御方法及び制御装置に関し、詳しくは、分散型電源と電力系統との連系点における電圧変動を抑制する技術に関するものである。   The present invention relates to a control method and a control apparatus for a distributed power source composed of a solar power generation system, a wind power generation system, and the like, and more particularly to a technique for suppressing voltage fluctuations at a connection point between a distributed power source and a power system. is there.

近年、太陽光発電システムや風力発電システム等の実用化が進んでおり、これらの分散型電源を電力系統に連系させるために、通常、インバータ及びその制御器を含むパワーコンディショナーが使用されている。この場合、分散型電源から出力される有効電力は気象条件等によって変動するものであり、有効電力の変動は電力系統との連系点における電圧を変動させ、系統の安定化を阻害する原因となる。
上記の点に鑑み、従来から、連系点における電圧変動を抑制するために種々の技術が提供されている。
In recent years, solar power generation systems and wind power generation systems have been put into practical use, and power conditioners including inverters and their controllers are usually used to connect these distributed power sources to the power system. . In this case, the active power output from the distributed power source fluctuates depending on weather conditions, etc., and the fluctuation of the active power may cause the voltage at the connection point with the power system to fluctuate, which may hinder the stabilization of the system. Become.
In view of the above points, various techniques have been conventionally provided to suppress voltage fluctuations at the interconnection point.

例えば、図8は特許文献1に記載された風力発電システムの全体構成図である。
図8において、30は風力発電装置を有する分散型電源、31は風車ブレード、32は発電機、33はコンバータ及びインバータからなる電力変換器、34は電圧検出器、35は電流検出器、36は制御器、37は風車コントローラ、40は抵抗成分R及びリアクトル成分Xにより表した連系線、50は電力系統、60は抵抗成分R及びリアクトル成分Xにより表した一般負荷、Aは分散型電源30と系統側との連系点である。
For example, FIG. 8 is an overall configuration diagram of a wind power generation system described in Patent Document 1.
In FIG. 8, 30 is a distributed power source having a wind power generator, 31 is a windmill blade, 32 is a generator, 33 is a power converter comprising a converter and an inverter, 34 is a voltage detector, 35 is a current detector, and 36 is controller, 37 windmill controller, 40 tie-line expressed by the resistance component R 1 and reactor components X 1, 50 is a power system, 60 common load expressed by the resistance component R 2 and reactor components X 2, A is This is an interconnection point between the distributed power supply 30 and the system side.

また、図9は制御器36の内部構成を示すブロック図である。
この制御器36は、連系点Aの電圧検出値V及び電流検出値Iが入力されて有効電力Pと電圧振幅値Vを演算する電力電圧演算器36aと、有効電力Pの変動成分ΔPを検出する変動検出器36bと、電圧振幅値Vの変動成分ΔVを検出する変動検出器36dと、有効電力P及び変動成分ΔP,ΔVから無効電力指令値Qを演算する無効電力指令演算器36cと、図8の風車コントローラ37から入力される有効電力指令値P及び無効電力指令値Qを用いてゲートパルス指令Gを生成する電力制御器36eと、を備えている。そして、ゲートパルス指令Gにより電力変換器33の半導体スイッチング素子をオン・オフさせて無効電力Qを制御し、有効電力Pの変動に伴って発生する電圧振幅値Vの変動成分ΔVをゼロに近付けている。
FIG. 9 is a block diagram showing the internal configuration of the controller 36.
The controller 36 receives a voltage detection value V and a current detection value I at the connection point A, calculates a valid power P and a voltage amplitude value V p, and a fluctuation component ΔP of the active power P. a variation detector 36b for detecting the reactive power for calculating the fluctuation detector 36d for detecting a fluctuation component [Delta] V p of the voltage amplitude value V p, active power P and variation component [Delta] P, the reactive power command value Q * from [Delta] V p A command calculator 36c and a power controller 36e that generates a gate pulse command G * using the active power command value P * and the reactive power command value Q * input from the windmill controller 37 of FIG. 8 are provided. . Then, the reactive power Q is controlled by turning on and off the semiconductor switching element of the power converter 33 by the gate pulse command G * , and the fluctuation component ΔV p of the voltage amplitude value V p generated with the fluctuation of the active power P is obtained. It is approaching zero.

なお、無効電力指令演算器36cでは、変動成分ΔP,ΔVを乗算してその結果を積分することにより、制御パラメータαを電力系統側の合成インピーダンスの抵抗分とリアクタンス分との比に収束させ、この制御パラメータαと有効電力P及び(−1)を乗算して無効電力指令値Qを求めている。 The reactive power command calculator 36c converges the control parameter α to the ratio of the resistance component and reactance component of the combined impedance on the power system side by multiplying the fluctuation components ΔP and ΔV p and integrating the result. The reactive power command value Q * is obtained by multiplying the control parameter α by the active power P and (−1).

次に、図10は特許文献2に記載された太陽光発電システムの全体構成図である。
図10において、連系線40上の連系点Aには、変圧器71及び構内配線72を介して複数台の太陽光発電装置80が互いに並列に接続されている。これらの太陽光発電装置80は、太陽電池81、電力変換器82及び制御器85を備えており、各検出器73,83,84により検出した全体の出力電流I、自己の出力電流I及び出力電圧Vが入力される制御器85によって電力変換器82に対するゲートパルス信号Gを生成するように構成されている。
Next, FIG. 10 is an overall configuration diagram of the photovoltaic power generation system described in Patent Document 2.
In FIG. 10, a plurality of photovoltaic power generation devices 80 are connected in parallel to the interconnection point A on the interconnection line 40 via a transformer 71 and a premises wiring 72. These photovoltaic device 80, the solar cell 81 includes a power converter 82 and controller 85, the output current I of the entire detected by the detectors 73,83,84, own output currents I 1 and The controller 85 to which the output voltage V 1 is input is configured to generate a gate pulse signal G 1 for the power converter 82.

図11は、制御器85の内部構成を示すブロック図である。
この制御器85は、電圧V及び電流I,Iが入力されて電圧V,電流Iのd,q軸成分V1d,V1q,I1d,I1qと全体の有効電力Pを演算する電圧電流電力演算器85aと、連系点Aの電圧振幅Vを推定する電圧推定演算器85bと、電圧振幅Vの変動成分ΔVを検出する変動検出器85cと、合計有効電力Pの変動成分ΔPを検出する変動検出器85dと、有効電力Pの変動成分ΔPの増減方向を示す符号信号ΔPSIGNを生成する不感帯付符号器85eと、変動成分ΔVと符号信号ΔPSIGNとを乗算する乗算器85fと、その出力を積分して特許文献1と同様の制御パラメータαを得る積分器85gと、連系点Aの有効電力Pと制御パラメータαとを用いて無効電力補償量Q を演算する無効電力補償演算器85hと、有効電力Pの変動成分ΔPと制御パラメータαとを用いて有効電力変動指令ΔP を演算する出力変動発生器85iと、を備えている。
FIG. 11 is a block diagram showing the internal configuration of the controller 85.
The controller 85 receives the voltage V 1 and the currents I and I 1 and outputs the voltage V 1 , the d of the current I 1 , the q-axis components V 1d , V 1q , I 1d , I 1q and the total effective power P. A voltage / current / power calculator 85a to be calculated, a voltage estimation calculator 85b to estimate the voltage amplitude V S of the interconnection point A, a fluctuation detector 85c to detect a fluctuation component ΔV S of the voltage amplitude V S , and the total effective power A fluctuation detector 85d for detecting a fluctuation component ΔP of P, a dead band encoder 85e for generating a sign signal ΔP SIGN indicating the increase / decrease direction of the fluctuation component ΔP of the active power P, a fluctuation component ΔV S and a sign signal ΔP SIGN a multiplier 85f for multiplying the reactive power compensation using an integrator 85g to obtain the same control parameter α Patent Document 1 by integrating its output, the effective power P 1 of the interconnection node a and the control parameter α No calculation of quantity Q 1 * An active power compensation calculator 85h and an output fluctuation generator 85i that calculates an active power fluctuation command ΔP 1 * using the fluctuation component ΔP of the active power P and the control parameter α are provided.

上記の無効電力補償量Q 、有効電力変動指令ΔP は、電圧V及び電流Iと共に電力制御器85jに入力されている。電力制御器85jは、有効電力変動指令ΔP のもとで無効電力補償量Q に等しい無効電力Qが出力されるようにゲートパルス信号Gを生成して電力変換器82の半導体スイッチング素子をオン・オフさせ、電圧振幅Vの変動成分ΔVをゼロに近付けている。 The reactive power compensation amount Q 1 * and the active power fluctuation command ΔP 1 * are input to the power controller 85j together with the voltage V 1 and the current I 1 . Power controller 85j generates a gate pulse signal G 1 as reactive power Q equal to the reactive power compensation amount Q 1 * under the active power variation command [Delta] P 1 * is output semiconductor power converter 82 The switching element is turned on / off to bring the fluctuation component ΔV S of the voltage amplitude V S close to zero.

以上のように、制御パラメータαに基づき適切な力率で無効電力を調整することにより連系点Aの電圧変動を抑制する原理は、非特許文献1に詳しく記載されている。   As described above, the principle of suppressing the voltage fluctuation at the interconnection point A by adjusting the reactive power with an appropriate power factor based on the control parameter α is described in detail in Non-Patent Document 1.

特許第4575272号公報(段落[0025]〜[0034]、図1,図2等)Japanese Patent No. 4575272 (paragraphs [0025] to [0034], FIG. 1, FIG. 2, etc.) 特許第5329603号公報(段落[0022]〜[0033]、図1,図2等)Japanese Patent No. 5329603 (paragraphs [0022] to [0033], FIG. 1, FIG. 2, etc.)

内山倫行ほか3名,「大規模太陽光発電システムの無効電力制御による電圧変動抑制」,電気学会論文誌B,130巻3号,2010年Tomoyuki Uchiyama and three others, "Voltage fluctuation suppression by reactive power control of large-scale photovoltaic power generation system", IEEJ Transaction B, Vol.130, No.3, 2010

特許文献1,2に記載されている技術では、分散型電源30や太陽光発電装置80の出力が変動しないと、最適な制御パラメータαを求めることができない。このため、例えば特許文献2では、電力制御器に有効電力の変動指令を与えて有効電力Pを意図的に変動させている。
しかしながら、有効電力Pを変動させることは本来的に出力可能な発電電力を減少させることにもなり、発電機会の損失につながると共に、系統の安定化という観点からは決して好ましいものではない。
With the techniques described in Patent Documents 1 and 2, the optimal control parameter α cannot be obtained unless the output of the distributed power source 30 or the solar power generation device 80 fluctuates. For this reason, for example, in Patent Document 2, the active power P is intentionally changed by giving an active power change command to the power controller.
However, fluctuating the active power P also decreases the generated power that can be output inherently, which leads to loss of power generation opportunities and is not preferable from the viewpoint of system stabilization.

そこで、本発明の解決課題は、太陽光発電装置等の分散型電源から出力される有効電力を変動させずに力率を最適化して電力変換器を制御することにより、連系点における電圧変動を抑制するようにした、分散型電源の制御方法及び制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is that the voltage fluctuation at the interconnection point is controlled by optimizing the power factor and controlling the power converter without changing the active power output from the distributed power source such as the photovoltaic power generation device. It is an object of the present invention to provide a distributed power supply control method and control device that suppresses the above.

上記課題を解決するため、請求項1に係る発明は、発電設備に接続され、かつ電力系統に連系して運転される電力変換器を備えた分散型電源の制御方法であって、前記電力変換器から出力される無効電力を制御して前記電力系統と前記電力変換器との連係点の電圧変動を抑制するようにした分散型電源の制御方法において、
前記連系点の一定期間の電圧及び電流から連系点電圧変動量、連系点有効電力及び連系点力率を演算し、前記連系点有効電力と前記連系点電圧変動量との関係を一次関数により近似して前記一次関数の傾きを最小二乗法により求め、
所定の演算周期に従って演算した前記連系点力率の増減及び前記傾きの増減に応じて力率変動量を設定し、前記力率変動量を最新の前記連系点力率に加算して前記傾きをほぼ0にするような力率指令を演算すると共に、
前記力率指令に基づいて前記電力変換器の半導体スイッチング素子を駆動することにより、前記電力変換器から出力される無効電力を制御して前記連係点の電圧変動を抑制するものである。
In order to solve the above problems, the invention according to claim 1 is a control method of a distributed power source including a power converter connected to a power generation facility and operated in conjunction with a power system, wherein the power In a control method of a distributed power source that controls reactive power output from a converter to suppress voltage fluctuation at a connection point between the power system and the power converter,
A connection point voltage fluctuation amount, a connection point active power and a connection point power factor are calculated from the voltage and current of the connection point for a certain period, and the connection point active power and the connection point voltage fluctuation amount are calculated. By approximating the relationship with a linear function, the slope of the linear function is obtained by the least square method,
The power factor fluctuation amount is set according to the increase / decrease of the interconnection point power factor and the inclination increase / decrease calculated according to a predetermined calculation cycle, and the power factor fluctuation amount is added to the latest interconnection point power factor to While calculating a power factor command that makes the slope almost zero,
By driving the semiconductor switching element of the power converter based on the power factor command, the reactive power output from the power converter is controlled to suppress voltage fluctuation at the linkage point.

請求項2に係る発明は、請求項1に記載した分散型電源の制御方法において、前記連系点電圧変動量が前記電力系統の定格電圧を含む前後の所定電圧範囲にある時を除いて、前記力率指令の演算処理を実行するものである。   The invention according to claim 2 is the distributed power supply control method according to claim 1, except when the interconnection point voltage fluctuation amount is in a predetermined voltage range before and after the rated voltage of the power system. The power factor command calculation process is executed.

請求項3に係る発明は、発電設備に接続され、かつ電力系統に連系して運転される電力変換器を備えた分散型電源の制御装置であって、前記電力変換器から出力される無効電力を制御して前記電力系統と前記電力変換器との連係点の電圧変動を抑制するようにした分散型電源の制御装置において、
前記連系点の一定期間の電圧及び電流から連系点電圧変動量、連系点有効電力及び連系点力率を演算する手段と、
前記連系点有効電力と前記連系点電圧変動量との関係を一次関数により近似して前記一次関数の傾きを最小二乗法により求める傾き演算手段と、
所定の演算周期に従って演算した前記連系点力率の増減及び前記傾きの増減に応じて力率変動量を設定し、前記力率変動量を最新の前記連系点力率に加算して前記傾きをほぼ0にするような力率指令を演算する力率演算手段と、
前記力率指令が与えられる制御器と、を備え、
前記制御器が前記力率指令に基づいて生成した駆動信号によって前記電力変換器の半導体スイッチング素子を駆動することにより、前記電力変換器から出力される無効電力を制御して前記連係点の電圧変動を抑制するものである。
The invention according to claim 3 is a control device for a distributed power source including a power converter that is connected to a power generation facility and is operated in conjunction with a power system, and is an ineffective output from the power converter In the control device of the distributed power source that controls the power to suppress the voltage fluctuation at the connection point between the power system and the power converter,
Means for calculating the connection point voltage fluctuation amount, the connection point active power and the connection point power factor from the voltage and current of the connection point for a certain period;
An inclination calculating means for approximating a relation between the interconnection point active power and the interconnection point voltage fluctuation amount by a linear function and obtaining an inclination of the linear function by a least square method;
The power factor fluctuation amount is set according to the increase / decrease of the interconnection point power factor and the inclination increase / decrease calculated according to a predetermined calculation cycle, and the power factor fluctuation amount is added to the latest interconnection point power factor to Power factor calculation means for calculating a power factor command that makes the slope substantially zero;
A controller to which the power factor command is given,
The controller controls the reactive power output from the power converter by driving the semiconductor switching element of the power converter by the drive signal generated based on the power factor command, thereby changing the voltage at the linkage point. It suppresses.

請求項4に係る発明は、請求項3に記載した分散型電源の制御装置において、前記連系点電圧変動量が前記電力系統の定格電圧を含む前後の所定電圧範囲にある時を除いて、前記力率演算手段による演算処理を実行するものである。   The invention according to claim 4 is the distributed power supply control device according to claim 3, except when the amount of fluctuation of the interconnection point voltage is in a predetermined voltage range before and after the rated voltage of the power system. Calculation processing by the power factor calculation means is executed.

本発明によれば、分散型電源から出力される有効電力を変動させずに、連系点における電圧変動量と有効電力とに基づいて最適化した力率に従って無効電力を制御することにより、連系点の電圧変動を抑制することができる。
このため、分散型電源の発電電力の有効利用及び系統の安定化が可能である。
According to the present invention, the reactive power is controlled according to the power factor optimized based on the voltage fluctuation amount and the active power at the interconnection point without changing the active power output from the distributed power source. Voltage fluctuations at the system point can be suppressed.
For this reason, it is possible to effectively use the power generated by the distributed power source and stabilize the system.

本発明の実施形態を太陽光発電システムに適用した場合の全体構成図である。It is a whole lineblock diagram at the time of applying an embodiment of the present invention to a photovoltaic power generation system. 連系点の有効電力と電圧変動量との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the active power of a connection point, and the amount of voltage fluctuations. 力率と一次関数の傾きとの関係を示す概念図である。It is a conceptual diagram which shows the relationship between a power factor and the inclination of a linear function. 本発明の実施形態における力率演算器の機能ブロック図である。It is a functional block diagram of the power factor calculator in the embodiment of the present invention. 本発明の実施形態における力率指令を変更する処理のフローチャートである。It is a flowchart of the process which changes the power factor instruction | command in embodiment of this invention. 本発明の実施形態における力率演算実行判定手段の動作説明図である。It is operation | movement explanatory drawing of the power factor calculation execution determination means in embodiment of this invention. 連系点の有効電力と電圧変動量との関係を示す概念図である。It is a conceptual diagram which shows the relationship between the active power of a connection point, and the amount of voltage fluctuations. 特許文献1に記載された風力発電システムの全体構成図である。1 is an overall configuration diagram of a wind power generation system described in Patent Literature 1. FIG. 図8における制御器の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the controller in FIG. 特許文献2に記載された太陽光発電システムの全体構成図である。It is a whole block diagram of the solar energy power generation system described in patent document 2. 図10における制御器の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the controller in FIG.

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態を太陽光発電システムに適用した場合の全体構成図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall configuration diagram when this embodiment is applied to a photovoltaic power generation system.

図1において、20は分散型電源としての太陽光発電システムである。
この太陽光発電システム20は、太陽電池21と、その直流出力電圧を交流電圧に変換するインバータ等の電力変換器22と、電力変換器22の半導体スイッチング素子を駆動するための制御器23と、を備えている。上記構成の太陽光発電システム20と連系変圧器26との直列回路は複数、並列に接続され、連系変圧器26の一次側が連系点Aに接続されている。
In FIG. 1, reference numeral 20 denotes a photovoltaic power generation system as a distributed power source.
This solar power generation system 20 includes a solar cell 21, a power converter 22 such as an inverter that converts the DC output voltage into an AC voltage, a controller 23 for driving a semiconductor switching element of the power converter 22, It has. A plurality of series circuits of the photovoltaic power generation system 20 and the interconnection transformer 26 configured as described above are connected in parallel, and the primary side of the interconnection transformer 26 is connected to the interconnection point A.

太陽電池21の出力電圧(PV電圧)及び出力電流(PV電流)は電圧・電流検出手段24により検出され、電力変換器22の出力電圧及び出力電流は電圧・電流検出手段25により検出される。制御器23は、これらの各検出値と後述する力率指令とに基づいて駆動信号(ゲート信号)を生成し、電力変換器22の半導体スイッチング素子をオン・オフ制御する。   The output voltage (PV voltage) and output current (PV current) of the solar cell 21 are detected by the voltage / current detection means 24, and the output voltage and output current of the power converter 22 are detected by the voltage / current detection means 25. The controller 23 generates a drive signal (gate signal) based on each detected value and a power factor command to be described later, and controls on / off of the semiconductor switching element of the power converter 22.

また、連系点Aと連系変圧器26の一次側との間には電圧検出器27及び電流検出器28が接続され、これらによって検出された連系点電圧及び連系点電流が力率演算器29に入力されている。力率演算器29は、連系点電圧及び連系点電流に基づいて生成した力率指令を前記制御器23に送出する。
なお、上記構成において、太陽光発電システム20は三相出力であり、三相の電力系統50及び連系線40に連系しているものとする。
Further, a voltage detector 27 and a current detector 28 are connected between the connection point A and the primary side of the connection transformer 26, and the connection point voltage and the connection point current detected thereby are the power factor. It is input to the calculator 29. The power factor calculator 29 sends a power factor command generated based on the connection point voltage and the connection point current to the controller 23.
In the above configuration, it is assumed that the photovoltaic power generation system 20 has a three-phase output and is connected to the three-phase power system 50 and the interconnection line 40.

次に、力率演算器29の動作原理を説明する。
力率演算器29では、力率を変化させない一定時間(例えば10分間)に測定した連系点電圧及び連系点電流から、連系点Aの有効電力と電圧変動量との関係を一次関数(比例関数)により近似し、その一次関数の傾きが0になるように力率指令(=力率の移動平均値+力率変動量)を最適化して出力する。
Next, the operation principle of the power factor calculator 29 will be described.
In the power factor calculator 29, the relationship between the active power at the connection point A and the amount of voltage fluctuation is a linear function based on the connection point voltage and the connection point current measured for a fixed time (for example, 10 minutes) when the power factor is not changed. The power factor command (= power factor moving average value + power factor fluctuation amount) is optimized and output so that the slope of the linear function becomes zero.

ここで、図2は、連系点Aの有効電力と電圧変動量との関係を示す概念図である。
図示するように、連系点電圧変動量を連系点有効電力の一次関数によって近似した場合、一次関数の傾きが正である場合には力率が高過ぎ、また、傾きが負である場合には力率が低過ぎると考えられる。
従って、図3における一次関数の傾き(△にて示す)がほぼ0に収束するように、すなわち、連系点有効電力の変動に関わらず連系点電圧変動量がほぼ0となるように力率を最適化する。
Here, FIG. 2 is a conceptual diagram showing the relationship between the active power at the interconnection point A and the voltage fluctuation amount.
As shown in the figure, when the connection point voltage fluctuation amount is approximated by a linear function of the connection point active power, if the slope of the linear function is positive, the power factor is too high, and the slope is negative The power factor is considered to be too low.
Accordingly, the linear function slope (indicated by Δ) in FIG. 3 is converged to almost zero, that is, the interconnection point voltage fluctuation amount is almost zero regardless of the fluctuation of the interconnection point active power. Optimize the rate.

上記一次関数の傾きは、連系点Aの有効電力が0の時に電圧変動量が0になることを前提とした最小二乗法により求め、また、力率を最適化する方法としては、局所探索法の一種である山登り法を用いることとした。
なお、力率演算器29は、連系点Aの電圧のばらつきが定格電圧を中心とした所定電圧範囲に収まっている場合には、力率を変化させずに従前の値を用いることとした。
The slope of the linear function is obtained by the least square method on the assumption that the amount of voltage fluctuation becomes 0 when the active power at the interconnection point A is 0. As a method for optimizing the power factor, a local search is used. We decided to use the hill-climbing method, which is a kind of law.
The power factor calculator 29 uses the previous value without changing the power factor when the variation in the voltage at the interconnection point A is within a predetermined voltage range centered on the rated voltage. .

図4は、力率演算器29の機能ブロック図である。
図4において、連系点演算手段1は、一定時間(例えば10分間)に所定のサンプリング周期により検出した連系点Aの電圧、電流(何れも瞬時値)から、三相各相の電圧実効値の平均値V、連系点Aの有効電力P、連系点Aの力率φを演算して出力する。
FIG. 4 is a functional block diagram of the power factor calculator 29.
In FIG. 4, the connection point calculation means 1 calculates the effective voltage of each phase of the three phases from the voltage and current (both instantaneous values) of the connection point A detected at a predetermined sampling period for a predetermined time (for example, 10 minutes). The average value V s of the values, the active power P s of the connection point A, and the power factor φ of the connection point A are calculated and output.

次に、移動平均手段2は、平均値Vから移動平均値Vsaveを求め、この移動平均値Vsaveを定格電圧(電圧変動量を求めるためのベース分)として出力する。ただし、電力判定手段4によって有効電力Pが電圧変動を起こさないレベルであると判定した場合には、入力された移動平均値Vsaveを更新して出力するサンプルホールド手段3が設けられている。 Next, the moving average means 2 calculates a moving average value V save from the average value V s , and outputs this moving average value V save as a rated voltage (for a base for determining the amount of voltage fluctuation). However, when the power determination unit 4 determines that the active power P s is at a level that does not cause voltage fluctuation, a sample hold unit 3 is provided that updates and outputs the input moving average value V save . .

減算手段5では、サンプルホールド手段3から出力されたVsaveと平均値Vとの差を演算し、連系点Aの電圧変動量Vsval(=Vsave−V)を求める。
この電圧変動量Vsvalを、例えば10分間のデータを格納するリングバッファ6に入力する。すなわち、リングバッファ6には、常に10分前までのデータ(電圧変動量Vsval)が格納されており、10分経過した古いデータは順に廃棄されるようになっている。
連系点Aの有効電力Pについても、リングバッファ7によって常に10分前までのデータ(有効電力P)が格納される。
The subtracting means 5 calculates the difference between the V save output from the sample hold means 3 and the average value V s, and obtains the voltage fluctuation amount V sval (= V save −V s ) at the connection point A.
This voltage fluctuation amount V sval is input to the ring buffer 6 for storing data for 10 minutes, for example. That is, the data (voltage fluctuation amount V sval ) up to 10 minutes before is always stored in the ring buffer 6, and the old data after 10 minutes has been discarded in order.
Also for the active power P s at the interconnection point A, the data up to 10 minutes before (active power P s ) is always stored by the ring buffer 7.

ここで、電圧変動量Vsvalを関数y(i)、有効電力Pを関数x(i)とすると、傾き演算手段8では、両者の関係を一次関数:y(i)=ax(i)によりモデル化し、最小二乗法により、以下の数式1〜3に示すごとく、残差平方和Sの偏微分値(∂S/∂a)が0となる傾きaを演算する。数式3による傾きaの演算は、リングバッファ6,7に格納されている過去10分間のデータy(i),x(i)を対象として実行する。 Here, assuming that the voltage fluctuation amount V sval is a function y (i) and the active power P s is a function x (i), the slope calculating means 8 represents the relationship between the two as a linear function: y (i) = ax (i). The slope a where the partial differential value (∂S / ∂a) of the residual sum of squares S is 0 is calculated by the least square method, as shown in the following equations 1-3. The calculation of the slope a according to Equation 3 is performed on the data y (i) and x (i) for the past 10 minutes stored in the ring buffers 6 and 7.

[数式1]
S=Σ(y(i)−ax(i))
[数式2]
∂S/∂a=0
[数式3]
a=Σx(i)y(i)/Σx(i)
[Formula 1]
S = Σ (y (i) −ax (i)) 2
[Formula 2]
∂S / ∂a = 0
[Formula 3]
a = Σx (i) y (i) / Σx (i) 2

一方、前述した連系点演算手段1により演算された連系点Aの力率φは、移動平均手段9に入力されており、力率φの移動平均値の今回値、及び、サンプルホールド手段11により保持された前回値が、力率演算手段16に入力されている。
また、傾き演算手段8により演算された傾きaの今回値、及び、サンプルホールド手段13により保持された傾きaの前回値が、力率演算手段16に入力されている。
なお、10,12はサンプルホールド手段11,13及び後述のアンドゲート15にそれぞれ入力されるクロック信号を生成する定周期タイマである。
On the other hand, the power factor φ of the connection point A calculated by the above-described connection point calculation means 1 is input to the moving average means 9, and the current value of the moving average value of the power factor φ and the sample hold means 11 is input to the power factor calculation means 16.
Further, the current value of the inclination a calculated by the inclination calculating means 8 and the previous value of the inclination a held by the sample hold means 13 are input to the power factor calculating means 16.
Reference numerals 10 and 12 denote fixed-cycle timers that generate clock signals input to the sample-and-hold means 11 and 13 and an AND gate 15 described later.

力率演算手段16では、図5のフローチャートに従って力率指令を生成する。なお、力率指令とは、前述したように力率の移動平均値に力率変動量を加えた値である。   The power factor calculation means 16 generates a power factor command according to the flowchart of FIG. The power factor command is a value obtained by adding the power factor fluctuation amount to the moving average value of the power factor as described above.

まず、前回の力率指令の変更後に(ステップS1)、傾きaの今回値すなわちa(i)の正負を判断する(同S2)。前述の図2,図3に示したように、傾きaが正側に大きい場合には力率φが高すぎるため(同S2Yes)、次に、力率φの増減傾向について判断する(同S3)。   First, after the previous change of the power factor command (step S1), the current value of the inclination a, that is, the sign of a (i) is determined (S2). As shown in FIG. 2 and FIG. 3, the power factor φ is too high when the inclination a is large on the positive side (Yes in S2). Next, the increase / decrease tendency of the power factor φ is determined (S3). ).

力率の今回値φ(i)が前回値φ(i-1)より減少しており(同S3Yes)、更に、傾きの今回値a(i)が前回値a(i-1)より減少している場合には(同S4Yes)、その方向(力率φを低下させて傾きaを0に近付ける方向)に力率φを調整していけば良いため、力率変動量を(−Δφ)とし(同S5)、これを力率の今回値φ(i)に加算して力率を変更する(同S1)。
また、力率の今回値φ(i)が前回値φ(i-1)より減少していても(同S3Yes)、電圧変動量Vsvalの増加や有効電力Pの減少により傾きの今回値a(i)が前回値a(i-1)より増加しているか、または前回値a(i-1)と変わらない場合には(同S4No)、力率φを逆方向に変化させるために、力率変動量を(+Δφ)とし(同S6)、これを力率の今回値φ(i)に加算して力率を変更する(同S1)。
The current value φ (i) of the power factor has decreased from the previous value φ (i-1) (S3 Yes), and the current value a (i) of the slope has decreased from the previous value a (i-1). (S4 Yes), it is only necessary to adjust the power factor φ in that direction (the direction in which the power factor φ is reduced and the inclination a is made close to 0), so the power factor fluctuation amount is (−Δφ). (S5), and this is added to the current value φ (i) of the power factor to change the power factor (S1).
Even if the current value φ (i) of the power factor is smaller than the previous value φ (i−1) (S3 Yes in the same), the current value of the slope is increased by increasing the voltage fluctuation amount V sval or decreasing the active power P s. If a (i) is greater than the previous value a (i-1) or does not change from the previous value a (i-1) (No in S4), in order to change the power factor φ in the opposite direction The power factor fluctuation amount is set to (+ Δφ) (S6), and this is added to the current value φ (i) of the power factor to change the power factor (S1).

前述したステップS3において、力率の今回値φ(i)が前回値φ(i-1)より増加しているか、または前回値φ(i-1)と変わらない場合には(同S3No)、傾きaの増減傾向について判断する(同S7)。そして、電圧変動量Vsvalの増加や有効電力Pの減少により傾きの今回値a(i)が前回値a(i-1)より増加している場合には(同S7Yes)、力率φを逆方向に変化させる必要がある。
よって、力率が低くなるように力率変動量を(−Δφ)とし(同S8)、これを力率の今回値φ(i)に加算して力率を変更する(同S1)。
When the current value φ (i) of the power factor has increased from the previous value φ (i−1) or does not change from the previous value φ (i−1) in the above-described step S3 (No in S3), It is determined whether the inclination a increases or decreases (S7). When the current value a (i) of the slope is increased from the previous value a (i-1) due to the increase in the voltage fluctuation amount V sval or the decrease in the active power P s (S7 Yes in the same), the power factor φ Must be changed in the opposite direction.
Therefore, the power factor fluctuation amount is set to (−Δφ) so that the power factor becomes low (S8), and this is added to the current value φ (i) of the power factor to change the power factor (S1).

また、傾きの今回値a(i)が前回値a(i-1)より減少しているか、または前回値a(i-1)と変わらない場合には(同S7No)、力率φを逆方向に変化させるために力率変動量を(+Δφ)とし(同S9)、これを力率の今回値φ(i)に加算して力率を変更する(同S1)。   If the current value a (i) of the slope is less than the previous value a (i-1) or is not different from the previous value a (i-1) (No in S7), the power factor φ is reversed. In order to change the power factor, the power factor variation is set to (+ Δφ) (S9), and this is added to the current value φ (i) of the power factor to change the power factor (S1).

更に、図2,図3に示したように、傾きaが負側に大きい場合には力率φが低すぎるため(同S2No)、ステップS3〜S9と同様に力率φの増減傾向、傾きaの増減傾向を判断し(同S10,S11,S14)、傾きaの増減に応じてステップS5,S6,S8,S9とはそれぞれ逆の力率変動量を設定して力率を変更する(同S12,S13,S15,S16,S1)。   Further, as shown in FIGS. 2 and 3, when the slope a is large on the negative side, the power factor φ is too low (No in S2). The increase / decrease tendency of a is determined (S10, S11, S14), and the power factor is changed by setting the amount of power factor fluctuation opposite to steps S5, S6, S8, S9 according to the increase / decrease of the inclination a ( (S12, S13, S15, S16, S1).

ここで、図4における力率演算実行判定手段14は、電圧変動量Vsvalが定格電圧を中心として±ΔV(ΔVは、例えば定格電圧の2[%])の電圧範囲に含まれるときには力率演算手段16が力率演算を実行しないように、図6に示す如く“1”または“0”の論理値を発生し、この論理値が定周期タイマ12からのクロック信号と共にアンドゲート15に入力されている。 Here, the power factor calculation execution determination unit 14 in FIG. 4 is configured such that the voltage fluctuation amount V sval is included in a voltage range of ± ΔV s (ΔV s is, for example, 2 [%] of the rated voltage) around the rated voltage. A logic value “1” or “0” is generated as shown in FIG. 6 so that the power factor calculation means 16 does not execute the power factor calculation, and this logic value together with the clock signal from the fixed period timer 12 is AND gate 15. Has been entered.

以上のように、本実施形態では、有効電力Pの変動量が小さくても、図7に示すように原点を通る一次関数y(i)=ax(i)により連系点有効電力と連系点電圧変動量との関係を近似している。このため、図4の力率演算手段16、言い換えれば図1の力率演算器29は、y(i)及びx(i)(電圧変動量Vsval及び有効電力P)に基づいて傾きaを求めることができ、この傾きaを0に近付けるように力率指令を最適化することが可能である。 As described above, in the present embodiment, even if the fluctuation amount of the active power P s is small, as shown in FIG. 7, the linear function y (i) = ax (i) passing through the origin serves as the linkage point active power. The relationship with the system point voltage fluctuation amount is approximated. For this reason, the power factor calculation means 16 in FIG. 4, in other words, the power factor calculator 29 in FIG. 1 has a slope a based on y (i) and x (i) (voltage fluctuation amount V sval and active power P s ). It is possible to optimize the power factor command so that the inclination a approaches zero.

こうして生成された力率指令は、図1の制御器23に送られている。制御器23では、入力された力率指令に従って電力変換器22が所定の無効電力を出力するように半導体スイッチング素子に対する駆動信号を生成してオン・オフ制御する。これにより、電力変換器22が出力する有効電力を意図的に変動させずに連系点Aの電圧変動を抑制することができる。
従って、太陽光発電システム20の発電能力を有効に利用可能であると共に、系統の安定化にも寄与する。
The power factor command generated in this way is sent to the controller 23 in FIG. The controller 23 generates a drive signal for the semiconductor switching element and performs on / off control so that the power converter 22 outputs predetermined reactive power in accordance with the input power factor command. Thereby, the voltage fluctuation of the connection point A can be suppressed without intentionally changing the active power output from the power converter 22.
Therefore, the power generation capacity of the solar power generation system 20 can be used effectively and contributes to the stabilization of the system.

図1の実施形態では、太陽光発電システム20が複数、並列に接続されているが、本発明は、単一の分散型電源が電力系統50に連系されている場合にも勿論、適用可能である。   In the embodiment of FIG. 1, a plurality of photovoltaic power generation systems 20 are connected in parallel. However, the present invention can also be applied to a case where a single distributed power source is connected to the power system 50. It is.

本発明は、太陽光発電システムだけでなく、風力発電システムや燃料電池発電システム等、各種の発電設備を備えた分散型電源に利用することができる。   The present invention can be used not only for a solar power generation system but also for a distributed power source including various power generation facilities such as a wind power generation system and a fuel cell power generation system.

A:連系点
1:連系点演算手段
2,9:移動平均手段
3,11,13:サンプルホールド手段
4:電力判定手段
5:減算手段
6,7:リングバッファ
8:傾き演算手段
10,12:定周期タイマ
14:力率演算実行判定手段
15:アンドゲート
16:力率演算手段
20:太陽光発電システム(分散型電源)
21:太陽電池
22:電力変換器
23:制御器
24,25:電圧・電流検出手段
26:連系変圧器
27:電圧検出器
28:電流検出器
29:力率演算器
40: 連系線
50: 電力系統
A: Linkage point 1: Linkage point calculation means 2, 9: Moving average means 3, 11, 13: Sample hold means 4: Power determination means 5: Subtraction means 6, 7: Ring buffer 8: Inclination calculation means 10, 12: Periodic timer 14: Power factor calculation execution determination means 15: AND gate 16: Power factor calculation means 20: Solar power generation system (distributed power supply)
21: Solar cell 22: Power converter 23: Controller 24, 25: Voltage / current detection means 26: Interconnection transformer 27: Voltage detector 28: Current detector 29: Power factor calculator 40: Interconnection line 50 : Power system

Claims (4)

発電設備に接続され、かつ電力系統に連系して運転される電力変換器を備えた分散型電源の制御方法であって、前記電力変換器から出力される無効電力を制御して前記電力系統と前記電力変換器との連係点の電圧変動を抑制するようにした分散型電源の制御方法において、
前記連系点の一定期間の電圧及び電流から連系点電圧変動量、連系点有効電力及び連系点力率を演算し、前記連系点有効電力と前記連系点電圧変動量との関係を一次関数により近似して前記一次関数の傾きを最小二乗法により求め、
所定の演算周期に従って演算した前記連系点力率の増減及び前記傾きの増減に応じて力率変動量を設定し、前記力率変動量を最新の前記連系点力率に加算して前記傾きをほぼ0にするような力率指令を演算すると共に、
前記力率指令に基づいて前記電力変換器の半導体スイッチング素子を駆動することにより、前記電力変換器から出力される無効電力を制御して前記連係点の電圧変動を抑制することを特徴とした分散型電源の制御方法。
A method for controlling a distributed power source including a power converter connected to a power generation facility and operated in conjunction with a power system, wherein the power system controls a reactive power output from the power converter In the control method of the distributed power source so as to suppress the voltage fluctuation at the linkage point between the power converter and the power converter,
A connection point voltage fluctuation amount, a connection point active power and a connection point power factor are calculated from the voltage and current of the connection point for a certain period, and the connection point active power and the connection point voltage fluctuation amount are calculated. By approximating the relationship with a linear function, the slope of the linear function is obtained by the least square method,
The power factor fluctuation amount is set according to the increase / decrease of the interconnection point power factor and the inclination increase / decrease calculated according to a predetermined calculation cycle, and the power factor fluctuation amount is added to the latest interconnection point power factor to While calculating a power factor command that makes the slope almost zero,
A dispersion characterized by controlling a reactive power output from the power converter by driving a semiconductor switching element of the power converter based on the power factor command to suppress a voltage fluctuation at the linkage point. Control method of mold power
請求項1に記載した分散型電源の制御方法において、
前記連系点電圧変動量が前記電力系統の定格電圧を含む前後の所定電圧範囲にある時を除いて、前記力率指令の演算処理を実行することを特徴とする分散型電源の制御方法。
The control method of the distributed power supply according to claim 1,
The distributed power supply control method, wherein the power factor command calculation process is executed except when the interconnection point voltage fluctuation amount is in a predetermined voltage range before and after the rated voltage of the power system is included.
発電設備に接続され、かつ電力系統に連系して運転される電力変換器を備えた分散型電源の制御装置であって、前記電力変換器から出力される無効電力を制御して前記電力系統と前記電力変換器との連係点の電圧変動を抑制するようにした分散型電源の制御装置において、
前記連系点の一定期間の電圧及び電流から連系点電圧変動量、連系点有効電力及び連系点力率を演算する手段と、
前記連系点有効電力と前記連系点電圧変動量との関係を一次関数により近似して前記一次関数の傾きを最小二乗法により求める傾き演算手段と、
所定の演算周期に従って演算した前記連系点力率の増減及び前記傾きの増減に応じて力率変動量を設定し、前記力率変動量を最新の前記連系点力率に加算して前記傾きをほぼ0にするような力率指令を演算する力率演算手段と、
前記力率指令が与えられる制御器と、
を備え、
前記制御器が前記力率指令に基づいて生成した駆動信号によって前記電力変換器の半導体スイッチング素子を駆動することにより、前記電力変換器から出力される無効電力を制御して前記連係点の電圧変動を抑制することを特徴とした分散型電源の制御装置。
A control device for a distributed power source including a power converter connected to a power generation facility and operated in conjunction with a power system, wherein the power system controls the reactive power output from the power converter In a control device for a distributed power source that suppresses voltage fluctuations at a connection point between the power converter and the power converter,
Means for calculating the connection point voltage fluctuation amount, the connection point active power and the connection point power factor from the voltage and current of the connection point for a certain period;
An inclination calculating means for approximating a relation between the interconnection point active power and the interconnection point voltage fluctuation amount by a linear function and obtaining an inclination of the linear function by a least square method;
The power factor fluctuation amount is set according to the increase / decrease of the interconnection point power factor and the inclination increase / decrease calculated according to a predetermined calculation cycle, and the power factor fluctuation amount is added to the latest interconnection point power factor to Power factor calculation means for calculating a power factor command that makes the slope substantially zero;
A controller to which the power factor command is given;
With
The controller controls the reactive power output from the power converter by driving the semiconductor switching element of the power converter by the drive signal generated based on the power factor command, thereby changing the voltage at the linkage point. A control device for a distributed power supply characterized by suppressing the above.
請求項3に記載した分散型電源の制御装置において、
前記連系点電圧変動量が前記電力系統の定格電圧を含む前後の所定電圧範囲にある時を除いて、前記力率演算手段による演算処理を実行することを特徴とする分散型電源の制御装置。
In the distributed power supply control device according to claim 3,
A control device for a distributed power supply, wherein the power factor calculation means performs a calculation process except when the interconnection point voltage fluctuation amount is in a predetermined voltage range before and after the rated voltage of the power system is included. .
JP2016076443A 2016-04-06 2016-04-06 Distributed power control method and control apparatus Active JP5979404B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076443A JP5979404B1 (en) 2016-04-06 2016-04-06 Distributed power control method and control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076443A JP5979404B1 (en) 2016-04-06 2016-04-06 Distributed power control method and control apparatus

Publications (2)

Publication Number Publication Date
JP5979404B1 JP5979404B1 (en) 2016-08-24
JP2017189028A true JP2017189028A (en) 2017-10-12

Family

ID=56759958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076443A Active JP5979404B1 (en) 2016-04-06 2016-04-06 Distributed power control method and control apparatus

Country Status (1)

Country Link
JP (1) JP5979404B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762078B1 (en) * 2019-07-23 2020-09-30 東芝三菱電機産業システム株式会社 Power system characteristic analyzer
JP6842815B1 (en) * 2019-07-23 2021-03-17 東芝三菱電機産業システム株式会社 Power converter and distributed generation system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108767870B (en) * 2018-06-28 2021-09-28 国网福建省电力有限公司宁德供电公司 Integrated distributed self-adaptive reactive voltage automatic control method
CN116979528B (en) * 2023-09-22 2023-12-15 国网湖北省电力有限公司 Method, device and medium for quickly starting low-voltage ride through of power electronic converter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4575272B2 (en) * 2005-10-27 2010-11-04 株式会社日立製作所 Distributed power system and system stabilization method
JP4749433B2 (en) * 2008-01-22 2011-08-17 株式会社日立製作所 Distributed power supply system and control method thereof
JP5901495B2 (en) * 2012-10-26 2016-04-13 富士古河E&C株式会社 Output stabilization controller for distributed power supply

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6762078B1 (en) * 2019-07-23 2020-09-30 東芝三菱電機産業システム株式会社 Power system characteristic analyzer
WO2021014580A1 (en) * 2019-07-23 2021-01-28 東芝三菱電機産業システム株式会社 Power system characteristic analyzer
JP6842815B1 (en) * 2019-07-23 2021-03-17 東芝三菱電機産業システム株式会社 Power converter and distributed generation system

Also Published As

Publication number Publication date
JP5979404B1 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
CA3007812C (en) Electrical systems and related islanding detection methods
JP6490249B2 (en) Power conversion device and power conversion system
JP4306760B2 (en) Distributed power supply
JP5979404B1 (en) Distributed power control method and control apparatus
JP5003819B2 (en) System stabilization device
EP3223023B1 (en) Method and apparatus for estimating capacitance of dc link
CN110311404A (en) A kind of current predictive control method of single-phase grid-connected photovoltaic DC-to-AC converter
He et al. Line voltage sensorless control of grid-connected inverters using multisampling
Peng et al. A simple model predictive instantaneous current control for single-phase PWM converters in stationary reference frame
Wang et al. Analysis, measurement, and compensation of the system time delay in a three-phase voltage source rectifier
KR101527446B1 (en) An apparatus and a method for model predictive control of an uninterruptible power supply
Yanfeng et al. The comparative analysis of PI controller with PR controller for the single-phase 4-quadrant rectifier
JP6078416B2 (en) Inverter
JP5580377B2 (en) Static reactive power compensator and voltage control method
Jangid et al. Reducing the voltage sag and swell problem in distribution system using dynamic voltage restorer with pi controller
JP6308618B2 (en) PV power conditioner
JP6592232B2 (en) Control circuit for controlling power conversion circuit, power conversion apparatus including the control circuit, and method
CN113497454A (en) MMC-HVDC inner ring current controller fault ride-through control method
Tiwari et al. Multienergy Source-Based Microgrid Incorporating Dual-Mode IFC Control Approach Under Abnormal Grid Circumstances
US20230188030A1 (en) Power conversion device and control device
US20230170782A1 (en) Power conversion device and control device
Kant et al. Single voltage measurement based control algorithm for voltage source converter
TWI657634B (en) Power conversion device and power conversion method
Zhang et al. Research on an improved control strategy of photovoltaic grid-connected inverter
Yan et al. Model predictive control strategy based on Kalman filter for dual active bridge converter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160712

R150 Certificate of patent or registration of utility model

Ref document number: 5979404

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250