JP2017187034A - Exhaust gas post-treatment system and internal combustion engine - Google Patents

Exhaust gas post-treatment system and internal combustion engine Download PDF

Info

Publication number
JP2017187034A
JP2017187034A JP2017067167A JP2017067167A JP2017187034A JP 2017187034 A JP2017187034 A JP 2017187034A JP 2017067167 A JP2017067167 A JP 2017067167A JP 2017067167 A JP2017067167 A JP 2017067167A JP 2017187034 A JP2017187034 A JP 2017187034A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalytic converter
scr catalytic
aftertreatment system
reactor chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017067167A
Other languages
Japanese (ja)
Other versions
JP6893814B2 (en
Inventor
プラーメン・トシェフ
Toshev Plamen
フランシス・ナナ
Nana Francis
アンドレアス・デーリング
Andreas Doering
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAN Energy Solutions SE
Original Assignee
MAN Diesel and Turbo SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAN Diesel and Turbo SE filed Critical MAN Diesel and Turbo SE
Publication of JP2017187034A publication Critical patent/JP2017187034A/en
Application granted granted Critical
Publication of JP6893814B2 publication Critical patent/JP6893814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2093Periodically blowing a gas through the converter, e.g. in a direction opposite to exhaust gas flow or by reversing exhaust gas flow direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2086Activating the catalyst by light, photo-catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2270/00Mixing air with exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To develop a novel-type exhaust gas post-treatment system of an internal combustion engine, and an internal combustion engine having the exhaust gas post-treatment system.SOLUTION: An exhaust gas post-treatment system of an internal combustion engine includes an SCR catalyst converter (9) received in a reactor chamber (10), an exhaust gas supply line (8) for guiding to the SCR catalyst converter, an exhaust gas discharge line (11) for guiding to be separated from the SCR catalyst converter, an introduction device (16) disposed in the exhaust gas supply line to introduce a reducer into exhaust gas, and a mixing section (18) provided with the exhaust gas supply line at a downstream side of the introduction device (16) to mix the exhaust gas with the reducer at an upstream side of the reactor chamber or the SCR catalyst converter. At least one blow device (24) is disposed in the reactor chamber, and the blow device is functioned to purge the SCR catalyst converter.SELECTED DRAWING: Figure 3

Description

本発明は、内燃機関の排気ガス後処理システムに関する。さらに、本発明は、排気ガス後処理システムを有する内燃機関に関する。   The present invention relates to an exhaust gas aftertreatment system for an internal combustion engine. Furthermore, the present invention relates to an internal combustion engine having an exhaust gas aftertreatment system.

例えば発電所で採用される固定型内燃機関における燃焼過程では、及び、例えば船舶で採用される非固定型内燃機関における燃焼過程では、酸化窒素が形成され、これら酸化窒素は、主として、石炭、坑口炭、原油、重油またはディーゼル燃料のような含硫黄化石燃料を燃焼させている間に形成される。このために、このような内燃機関は、排気ガス後処理システムに配置されており、これら排気ガス後処理システムは、内燃機関から出た排気ガスを清浄化する、特に脱窒するように機能する。   For example, in the combustion process in a fixed internal combustion engine employed in a power plant and in the combustion process in a non-fixed internal combustion engine employed in a ship, for example, nitric oxide is formed. Formed during combustion of sulfur-containing fossil fuels such as charcoal, crude oil, heavy oil or diesel fuel. For this purpose, such an internal combustion engine is arranged in an exhaust gas aftertreatment system, which functions to clean, in particular to denitrify, the exhaust gas emitted from the internal combustion engine. .

排気ガスにおける酸化窒素を還元するため、いわゆるSCR触媒コンバータは、主として、前例から知られている排気ガス後処理システムで採用されている。SCR触媒コンバータでは、酸化窒素の選択接触還元が行われ、酸化窒素を還元するために、アンモニア(NH)を還元剤として必要とする。アンモニアまたは例えば尿素のようなアンモニア前駆物質は、このために、SCR触媒コンバータの上流から液体で排気ガス内に導入され、アンモニアまたはアンモニア前駆物質は、SCR触媒コンバータの上流側にある排気ガスと混合される。そのために、アンモニアまたはアンモニア前駆物質の導入とSCR触媒コンバータとの間にある混合セクションは、前例にしたがって設けられている。 In order to reduce the nitrogen oxides in the exhaust gas, so-called SCR catalytic converters are mainly employed in exhaust gas aftertreatment systems known from previous examples. In the SCR catalytic converter, selective catalytic reduction of nitric oxide is performed, and ammonia (NH 3 ) is required as a reducing agent in order to reduce nitric oxide. For this purpose, ammonia or an ammonia precursor such as urea is introduced into the exhaust gas in liquid form upstream from the SCR catalytic converter, and the ammonia or ammonia precursor is mixed with the exhaust gas upstream of the SCR catalytic converter. Is done. To that end, a mixing section between the introduction of ammonia or ammonia precursor and the SCR catalytic converter is provided according to the previous example.

前例から知られているSCR触媒コンバータを備える排気ガス後処理システムを用いて、特に酸化窒素還元において排気ガス後処理がすでに成功裏に行われているが、排気ガス後処理システムをさらに改善することに関する必要性がある。特に、このような排気ガス後処理システムの小型な設計で効果的な排気ガス後処理を可能とすることに関する必要性がある。   To further improve the exhaust gas aftertreatment system using exhaust gas aftertreatment systems with SCR catalytic converters known from previous examples, especially in exhaust gas aftertreatment, especially in the reduction of nitric oxide. There is a need for. In particular, there is a need for enabling effective exhaust gas aftertreatment with a compact design of such an exhaust gas aftertreatment system.

ここから始めて、本発明の目的は、内燃機関の新規のタイプの排気ガス後処理システム及びこのような排気ガス後処理システムを有する内燃機関を開発することに基づいている。   Beginning here, the object of the invention is based on developing a new type of exhaust gas aftertreatment system for an internal combustion engine and an internal combustion engine comprising such an exhaust gas aftertreatment system.

この目的は、請求項1にかかる内燃機関の排気ガス後処理システムを介して解決される。本発明によれば、少なくとも1つの吹付装置は、反応器チャンバ内に位置しており、SCR触媒コンバータをパージするように機能する。このため、煤粒子がSCR触媒コンバータに堆積した結果としてSCR触媒コンバータが目詰まりすることを防止し得る。小型な設計の排気ガス後処理システムを用いて特に効果的な排気ガス後処理を確実にし得る。   This object is solved via an exhaust gas aftertreatment system for an internal combustion engine according to claim 1. According to the present invention, at least one spraying device is located in the reactor chamber and functions to purge the SCR catalytic converter. For this reason, it is possible to prevent the SCR catalytic converter from being clogged as a result of accumulation of soot particles on the SCR catalytic converter. A particularly effective exhaust gas aftertreatment system can be ensured using a small design exhaust gas aftertreatment system.

本発明の有利なさらなる展開によれば、1以上の吹付装置は、吹付装置がSCR触媒コンバータのうち流動方向に対して横方向に延在する表面に、特にSCR触媒コンバータのうち横方向に延在する表面に、好ましくはSCR触媒コンバータのハニカム体のうち流動方向に対して垂直に延在する上流側面に、渦流または旋回流を引き起こすような態様で、方向付けられている。このため、煤粒子がSCR触媒コンバータ上に堆積した結果としてSCR触媒コンバータが目詰まりすることを特に効果的に防止し得る。小型な設計の排気ガス後処理システムを用いた効果的な排気ガスの清浄化を確実にし得る。   According to an advantageous further development of the invention, the one or more spraying devices extend on the surface of the SCR catalytic converter extending laterally with respect to the flow direction, in particular in the lateral direction of the SCR catalytic converter. It is oriented in such a way as to cause a vortex or swirl on the existing surface, preferably on the upstream side of the honeycomb body of the SCR catalytic converter that extends perpendicular to the flow direction. For this reason, clogging of the SCR catalytic converter as a result of accumulation of soot particles on the SCR catalytic converter can be particularly effectively prevented. Effective exhaust gas cleaning using a small design exhaust aftertreatment system may be ensured.

本発明の有利なさらなる展開によれば、反応器チャンバは、横断面で丸い壁、特に円状壁を有する。これは、渦流または旋回流を形成するために好ましい。これにより、小型な設計の特に効果的な排気ガス後処理が可能となる。   According to an advantageous further development of the invention, the reactor chamber has round walls, in particular circular walls, in cross section. This is preferred for forming a vortex or swirl. This enables a particularly effective exhaust gas aftertreatment with a small design.

本発明のさらに有利な展開によれば、吹付装置それぞれは、反応器チャンバのうち横断面で丸い壁に隣接して位置し、壁から反応器チャンバの内側に出る空気、すなわち吹出円錐を吹き付け、この吹出円錐は、少なくとも1つの他の吹付装置の吹出円錐と交差する。これは、渦流または旋回流を形成することに関して、及び、煤粒子の全領域パージに関して、好ましい。これにより、小型な設計で特に効果的な排気ガス後処理を可能とする。   According to a further advantageous development of the invention, each of the blowing devices is located adjacent to the round wall in the cross section of the reactor chamber and blows air coming out of the wall into the reactor chamber, i.e. a blowing cone, This blowing cone intersects with the blowing cone of at least one other spraying device. This is preferred with respect to forming a vortex or swirl and with respect to a full area purge of soot particles. This enables a particularly effective exhaust aftertreatment with a compact design.

さらなる有利なさらなる展開によれば、排気ガス供給ラインは、下流側端部を用いて、SCR触媒コンバータを受ける反応器チャンバ内に開口し、排気ガス供給ラインの下流側端部とSCR触媒コンバータとの間での反応器チャンバ内には、排気ガス背圧を増加させるための装置が、SCR触媒コンバータの上流側に位置する。SCR触媒コンバータの上流側で排気ガス背圧を増加させるための装置を用いて、SCR触媒コンバータの上流側にある排気ガス流を抑制し、その結果として、SCR触媒コンバータに排気ガス流を均等に、すなわち周方向で及び同様に径方向で、供給することを実現し得る。このために、小型な設計の排気ガス後処理システムを用いて効果的な排気ガスの正常化を確実にし得る。さらに、煤粒子は、排気ガス背圧を増加させるための装置上に堆積し得、これら煤粒子は、その後、SCR触媒コンバータの領域にもはや入ってSCR触媒コンバータを目詰まりさせない。これは、同様に、小型な設計の排気ガス後処理システムを用いて効果的に排気ガスを清浄化することを確実にするように機能する。   According to a further advantageous further development, the exhaust gas supply line opens into the reactor chamber which receives the SCR catalytic converter using the downstream end, and the downstream end of the exhaust gas supply line and the SCR catalytic converter In between the reactor chambers, a device for increasing the exhaust gas back pressure is located upstream of the SCR catalytic converter. Using an apparatus for increasing the exhaust gas back pressure upstream of the SCR catalytic converter, the exhaust gas flow upstream of the SCR catalytic converter is suppressed, and as a result, the exhaust gas flow is evenly distributed to the SCR catalytic converter. I.e. feeding in the circumferential direction and likewise in the radial direction. For this reason, the exhaust gas aftertreatment system having a small design can be used to ensure effective exhaust gas normalization. Furthermore, soot particles can be deposited on the apparatus for increasing exhaust gas back pressure, and these soot particles no longer enter the area of the SCR catalytic converter and clog the SCR catalytic converter. This also serves to ensure that the exhaust gas is effectively cleaned using a small design exhaust gas aftertreatment system.

好ましくは、1以上の吹付装置それぞれは、排気ガス背圧を増加させるための装置とSCR触媒コンバータとの間で反応器チャンバ内に位置している。1以上の吹付装置それぞれは、その後、少なくともSCR触媒コンバータをパージするように、そして好ましくは追加的に、排気ガス背圧を増加させるための装置をパージするように、機能する。このさらなる展開により、小型な設計で特に効果的な排気ガス後処理が可能となる。   Preferably, each of the one or more spray devices is located in the reactor chamber between the device for increasing exhaust gas back pressure and the SCR catalytic converter. Each of the one or more spray devices then functions to purge at least the SCR catalytic converter, and preferably additionally to purge the device for increasing the exhaust gas back pressure. This further development enables a particularly effective exhaust gas aftertreatment with a compact design.

本発明にかかる内燃機関は、請求項11に規定されている。   An internal combustion engine according to the present invention is defined in claim 11.

本発明の好ましいさらなる展開は、従属請求項及び以下の説明から得られる。本発明の例示的な実施形態は、図面に限定されることなく以下の図面を用いてより詳細に説明される。   Preferred further developments of the invention result from the dependent claims and the following description. Exemplary embodiments of the present invention will be described in more detail using the following drawings without being limited to the drawings.

本発明にかかる排気ガス後処理システムを有する内燃機関を示す概略斜視図である。1 is a schematic perspective view showing an internal combustion engine having an exhaust gas aftertreatment system according to the present invention. 図1の排気ガス後処理システムを示す詳細図である。FIG. 2 is a detailed view showing the exhaust gas aftertreatment system of FIG. 1. 図2の詳細図である。FIG. 3 is a detailed view of FIG. 2. 図3の詳細横断面図である。FIG. 4 is a detailed cross-sectional view of FIG. 3.

本発明は、例えば発電所における固定型内燃機関のまたは船舶で採用される非固定型内燃機関の排気ガス後処理システムに関する。特に、排気ガス後処理システムは、重油で動作する船舶のディーゼルエンジンで採用される。   The present invention relates to an exhaust gas aftertreatment system of a fixed internal combustion engine in a power plant or a non-fixed internal combustion engine employed in a ship, for example. In particular, exhaust gas aftertreatment systems are employed in marine diesel engines that operate on heavy oil.

図1は、内燃機関1の配置を示しており、この内燃機関は、排気ガスターボチャージャシステム2と、排気ガス後処理システム3と、を有する。内燃機関1は、非固定型または固定型の内燃機関、特に船舶における非固定型で動作される内燃機関であり得る。排気ガスは、内燃機関1のシリンダから出ており、内燃機関1に供給される給気を圧縮するために排気ガスの熱エネルギーから機械エネルギーを抽出するために、排気ガス過給システム2で利用される。したがって、図1は、排気ガスターボチャージャシステム2を有する内燃機関1を示しており、このターボチャージャシステムは、複数の排気ガスターボチャージャ、すなわち、高圧側にある第1排気ガスターボチャージャ4と、低圧側にある第2排気ガスターボチャージャ5と、を備える。内燃機関1のシリンダから出た排気ガスは、第1排気ガスターボチャージャ4の高圧タービン6を介して内部を流れ、この高圧タービン内で膨張され、この過程で抽出されたエネルギーは、給気を圧縮するために、第1排気ガスターボチャージャ4の高圧圧縮機で利用される。第1ターボチャージャ4の下流側における排気ガスの流動方向を見ると、第2排気ガスターボチャージャ5が配設されており、第1排気ガスターボチャージャ4の高圧タービン6をすでに流通した排気ガスは、この第2排気ガスターボチャージャを介して、すなわち第2排気ガスターボチャージャの低圧タービン7を介して、通る。第2排気ガスターボチャージャ5の低圧タービン7において、排気ガスは、さらに膨張され、この過程で抽出されたエネルギーは、内燃機関1のシリンダに供給される給気を同様に圧縮するために、第2排気ガスターボチャージャの低圧圧縮機で利用される。 Figure 1 shows the arrangement of the inner combustion engine 1, the internal combustion engine has an exhaust gas turbocharger system 2, an exhaust gas aftertreatment system 3, a. The internal combustion engine 1 may be a non-fixed type or a fixed type internal combustion engine, particularly an internal combustion engine operated in a non-fixed type in a ship. The exhaust gas leaves the cylinder of the internal combustion engine 1 and is used in the exhaust gas supercharging system 2 to extract mechanical energy from the thermal energy of the exhaust gas in order to compress the supply air supplied to the internal combustion engine 1 Is done. Accordingly, FIG. 1 shows an internal combustion engine 1 having an exhaust gas turbocharger system 2, which comprises a plurality of exhaust gas turbochargers, ie a first exhaust gas turbocharger 4 on the high pressure side, A second exhaust gas turbocharger 5 on the low pressure side. The exhaust gas discharged from the cylinder of the internal combustion engine 1 flows through the high pressure turbine 6 of the first exhaust gas turbocharger 4 and is expanded in the high pressure turbine. The energy extracted in this process In order to compress, it is used in the high pressure compressor of the first exhaust gas turbocharger 4. Looking at the flow direction of the exhaust gas on the downstream side of the first turbocharger 4, the second exhaust gas turbocharger 5 is provided, and the exhaust gas that has already circulated through the high-pressure turbine 6 of the first exhaust gas turbocharger 4 is , Through this second exhaust gas turbocharger, ie through the low pressure turbine 7 of the second exhaust gas turbocharger. In the low-pressure turbine 7 of the second exhaust gas turbocharger 5, the exhaust gas is further expanded, and the energy extracted in this process is compressed in the same way to compress the supply air supplied to the cylinders of the internal combustion engine 1. Used in low pressure compressors of two exhaust gas turbochargers.

排気ガスターボチャージャ4及び5を備える排気ガス過給システム2に加え、内燃機関1は、排気ガス後処理システム3を備えており、この排気ガス後処理システムは、SCR排気ガス後処理システムである。SCR排気ガス後処理システム3は、第1圧縮機4の高圧タービン6と低圧タービン7との間を接続しており、それにより、第1排気ガスターボチャージャ4の高圧タービン6から出た排気ガスは、この排気ガスが第2排気ガスターボチャージャ5の低圧タービン7領域に到達する前に、SCR排気ガス後処理システム3を介して内部を通し得る。   In addition to the exhaust gas supercharging system 2 comprising the exhaust gas turbochargers 4 and 5, the internal combustion engine 1 comprises an exhaust gas aftertreatment system 3, which is an SCR exhaust gas aftertreatment system. . The SCR exhaust gas aftertreatment system 3 connects between the high pressure turbine 6 and the low pressure turbine 7 of the first compressor 4, whereby the exhaust gas emitted from the high pressure turbine 6 of the first exhaust gas turbocharger 4. May pass through the interior via the SCR exhaust gas aftertreatment system 3 before this exhaust gas reaches the low pressure turbine 7 region of the second exhaust gas turbocharger 5.

図1は、排気ガス供給ライン8を示しており、この排気ガス供給ラインを介して、第1排気ガスターボチャージャ4の高圧タービン6から出る排気ガスは、SCR触媒コンバータ9の方向で通り得、このコンバータは、反応器チャンバ10内に配設されている。さらに、図1は、排気ガス排出ライン11を示しており、この排気ガス排出ラインは、第2排気ガスターボチャージャ5の低圧タービン7の方向でSCR触媒コンバータ9から排気ガスを排出させるように機能する。排気ガスは、低圧タービン7から出て、ライン21を通って、特に開口部内へ流入する。排気ガス供給ライン8は、反応器チャンバ10へひいては反応器チャンバ10内に位置するSCR触媒コンバータ9へ案内し、排気ガス排出ライン11は、反応器チャンバ10からひいてはSCR触媒コンバータ9から離れるように案内しており、これら排気ガス供給ライン及び排気ガス排出ラインは、バイパス12を介して連結され、このバイパス内には、遮断素子13が一体化されている。遮断素子13を閉塞すると、バイパス12は、閉塞され、それにより、排気ガスは、バイパスを通って流れ得ない。逆に、特に遮断素子13を開放すると、排気ガスは、バイパス12を通って流動し得る、すなわち、反応器チャンバ10を通過し、したがって反応器チャンバ10内に位置するSCR触媒コンバータ9を通過し得る。図2は、矢印14を用いて、バイパス12が遮断素子13を介して閉塞された排気ガス後処理システム3を通る排気ガスの流動を示しており、図2から明らかなことは、排気ガス供給ライン8が、下流側端部15を用いて反応器チャンバ10内に開口しており、排気ガス供給ライン8のこの端部15の領域における排気ガスが、180°だけ流動が反らされ、流動を反らせた後の排気ガスが、SCR触媒コンバータ9を介して通される。   FIG. 1 shows an exhaust gas supply line 8 via which the exhaust gas exiting from the high pressure turbine 6 of the first exhaust gas turbocharger 4 can pass in the direction of the SCR catalytic converter 9, This converter is disposed in the reactor chamber 10. Furthermore, FIG. 1 shows an exhaust gas discharge line 11, which functions to discharge exhaust gas from the SCR catalytic converter 9 in the direction of the low pressure turbine 7 of the second exhaust gas turbocharger 5. To do. The exhaust gas leaves the low-pressure turbine 7 and flows through the line 21 and in particular into the opening. The exhaust gas supply line 8 leads to the reactor chamber 10 and thus to the SCR catalytic converter 9 located in the reactor chamber 10, and the exhaust gas exhaust line 11 leaves the reactor chamber 10 and thus away from the SCR catalytic converter 9. The exhaust gas supply line and the exhaust gas discharge line are connected via a bypass 12, and a blocking element 13 is integrated in the bypass. When the blocking element 13 is closed, the bypass 12 is closed so that no exhaust gas can flow through the bypass. Conversely, especially when the shut-off element 13 is opened, the exhaust gas can flow through the bypass 12, i.e. pass through the reactor chamber 10 and thus through the SCR catalytic converter 9 located in the reactor chamber 10. obtain. FIG. 2 shows the flow of the exhaust gas through the exhaust gas aftertreatment system 3 with the bypass 12 closed via the blocking element 13 using the arrow 14, and what is clear from FIG. Line 8 opens into reactor chamber 10 using downstream end 15 and the exhaust gas in the region of this end 15 of exhaust gas supply line 8 is deflected by 180 ° and flows The exhaust gas after being warped is passed through the SCR catalytic converter 9.

排気ガス後処理システム3の排気ガス供給ライン8には、導入装置16が配置されており、還元剤、特にアンモニアまたはアンモニア前駆物質は、この導入装置を通して排気ガス流内に導入され、この還元剤は、規定の態様でSCR触媒コンバータ9の領域内で排気ガスの酸化窒素を変換させるために、必要とされる。排気ガス後処理システム3の導入装置16は、好ましくは、注入ノズルであり、アンモニアまたはアンモニア前駆物質は、この注入ノズルを通して、排気ガス供給ライン8内の排気ガスに注入される。図2は、円錐17を用いて、排気ガス供給ライン8の領域において還元剤を排気ガス内に注入することを示す。   An introduction device 16 is arranged in the exhaust gas supply line 8 of the exhaust gas aftertreatment system 3, and a reducing agent, in particular ammonia or an ammonia precursor, is introduced into the exhaust gas stream through this introduction device, and this reducing agent. Is required to convert the exhaust nitrogen oxide in the region of the SCR catalytic converter 9 in a defined manner. The introduction device 16 of the exhaust gas aftertreatment system 3 is preferably an injection nozzle, and ammonia or ammonia precursor is injected into the exhaust gas in the exhaust gas supply line 8 through this injection nozzle. FIG. 2 shows using the cone 17 to inject the reducing agent into the exhaust gas in the region of the exhaust gas supply line 8.

排気ガス後処理システム3のこのセクションは、排気ガスの流動方向で見ると、導入装置16の下流側かつSCR触媒コンバータ9の上流側に位置し、混合セクションとして説明される。特に、排気ガス供給ライン8は、導入装置16の下流側に混合セクション18を設け、排気ガスは、この混合セクションにおいて、SCR触媒コンバータ9の上流側にある還元剤と混合され得る。   This section of the exhaust gas aftertreatment system 3 is located downstream of the introduction device 16 and upstream of the SCR catalytic converter 9 when viewed in the flow direction of the exhaust gas, and is described as a mixing section. In particular, the exhaust gas supply line 8 is provided with a mixing section 18 downstream of the introduction device 16, in which the exhaust gas can be mixed with a reducing agent upstream of the SCR catalytic converter 9.

排気ガス供給ライン8は、下流側端部15を用いて、反応器チャンバ10内に開口している。排気ガス供給ライン8の下流側端部15には、邪魔板素子20に配置されており、この邪魔板素子は、排気ガス供給ライン8の下流側端部15に対して変位され得る。図示した例示的な実施形態において、邪魔板素子20は、排気ガス供給ライン8の端部15に対して直線状に変位され得、この端部は、反応器チャンバ10内に開口する。邪魔板素子20は、下流側端部15で排気ガス供給ライン8を遮断するか下流側端部15で排気ガス供給ラインを開放させるかするために、排気ガス供給ライン8の下流側端部15に対して変位され得る。特に邪魔板素子20が下流側端部15で排気ガス供給ライン8を遮断すると、バイパス12の遮断素子13は、その後にSCR触媒コンバータ9すなわちSCR触媒コンバータ9を受ける反応器チャンバ10を排気ガスを完全に通過させるために、好ましくは開放している。特に邪魔板素子20が排気ガス供給ライン8の下流側端部15を開放すると、バイパス12の遮断素子13は、完全に閉塞し得るまたは少なくとも部分的に開放し得る。   The exhaust gas supply line 8 opens into the reactor chamber 10 using the downstream end 15. A baffle plate element 20 is disposed at the downstream end 15 of the exhaust gas supply line 8, and the baffle plate element can be displaced with respect to the downstream end 15 of the exhaust gas supply line 8. In the exemplary embodiment shown, the baffle element 20 can be displaced linearly with respect to the end 15 of the exhaust gas supply line 8, which end opens into the reactor chamber 10. The baffle plate element 20 has a downstream end 15 of the exhaust gas supply line 8 to block the exhaust gas supply line 8 at the downstream end 15 or to open the exhaust gas supply line at the downstream end 15. Can be displaced. In particular, when the baffle plate element 20 shuts off the exhaust gas supply line 8 at the downstream end 15, the shut-off element 13 of the bypass 12 then passes the SCR catalytic converter 9, that is, the reactor chamber 10 that receives the SCR catalytic converter 9, It is preferably open for complete passage. Particularly when the baffle element 20 opens the downstream end 15 of the exhaust gas supply line 8, the blocking element 13 of the bypass 12 can be completely closed or at least partially open.

特に邪魔板素子20が排気ガス供給ライン8の下流側端部15を開放すると、排気ガス供給ライン8の下流側端部15に対する邪魔板素子20の相対位置は、特に、排気ガス供給ライン8を通る排気ガス質量流に、及び/または、排気ガス供給ライン8内にある排気ガスの排気ガス温度に、及び/または、導入装置16を介して排気ガス流内に導入された還元剤の量に、依存する。   In particular, when the baffle plate element 20 opens the downstream end 15 of the exhaust gas supply line 8, the relative position of the baffle plate element 20 with respect to the downstream end 15 of the exhaust gas supply line 8 is particularly limited to the exhaust gas supply line 8. To the exhaust gas mass flow through and / or to the exhaust gas temperature of the exhaust gas in the exhaust gas supply line 8 and / or to the amount of reducing agent introduced into the exhaust gas flow via the introduction device 16. ,Dependent.

排気ガス供給ライン8の下流側端部15を開いた状態の邪魔板素子20のさらなる機能は、排気ガス流内にある液状還元剤の液滴が邪魔板素子に到達し、このような液状還元剤の液滴がSCR触媒コンバータ9の領域に到達することを防止するために、途中で捕捉されて噴霧されること、にある。排気ガス供給ライン8の下流側端部15に対する邪魔板素子20の相対位置によって下流側端部15が開いていることで、排気ガス供給ライン8の下流側端部15の領域で反らされた排気ガスが、径方向内側に位置するセクションの方向で、または、径方向外側に位置するSCR触媒コンバータ9のセクションの方向で、通されるまたは案内されるかを判断し得る。   A further function of the baffle plate element 20 with the downstream end 15 of the exhaust gas supply line 8 open is that the liquid reducing agent droplets in the exhaust gas flow reach the baffle plate element and perform such liquid reduction. In order to prevent the droplet of the agent from reaching the region of the SCR catalytic converter 9, it is captured and sprayed on the way. The downstream end 15 is opened by the relative position of the baffle plate element 20 with respect to the downstream end 15 of the exhaust gas supply line 8, so that it is warped in the region of the downstream end 15 of the exhaust gas supply line 8. It can be determined whether the exhaust gas is passed or guided in the direction of the section located radially inward or in the direction of the section of the SCR catalytic converter 9 located radially outward.

好ましい実施形態によれば、排気ガス供給ライン8は、下流側端部15の領域で漏斗状に拡径しており、拡散器を形成する。このために、排気ガス供給ライン8の流動横断面は、下流側端部15の領域で増加し、特に図2で明らかなように、排気ガス供給ライン8の下流側端部15の上流側における排気ガスの流動方向で見ると、排気ガス供給ラインの流動横断面は、縮小する。したがって、図2は、還元剤のための導入装置16の下流側における排気ガスの流動方向で見ると、排気ガス供給ライン8の流動横断面が、初期的にほぼ一定であるが、その後徐々に漸減し、最終的に下流側端部15の領域で拡径すること、を示す。   According to a preferred embodiment, the exhaust gas supply line 8 expands in a funnel shape in the region of the downstream end 15 and forms a diffuser. For this reason, the flow cross section of the exhaust gas supply line 8 increases in the region of the downstream end 15, particularly as apparent in FIG. 2 at the upstream side of the downstream end 15 of the exhaust gas supply line 8. When viewed in the flow direction of the exhaust gas, the flow cross section of the exhaust gas supply line is reduced. Therefore, FIG. 2 shows that the flow cross section of the exhaust gas supply line 8 is initially substantially constant when viewed in the flow direction of the exhaust gas downstream of the introduction device 16 for reducing agent. It shows gradually decreasing and finally expanding in the region of the downstream end 15.

この場合において排気ガス供給ライン8の下流側端部15において流動横断面が大きくなることは、排気ガス供給ライン8が下流側端部15の前で初期的に漸減するそのセクションよりも短い排気ガス供給ライン8のセクションを介して達成される。   In this case, the increase in the flow cross section at the downstream end 15 of the exhaust gas supply line 8 means that the exhaust gas is shorter than the section where the exhaust gas supply line 8 gradually decreases in front of the downstream end 15. This is achieved via a section of the supply line 8.

好ましくは、邪魔板素子20は、曲がっており、好ましくは排気ガス供給ライン8を向く側22でベル状に湾曲しており、この側面は、排気ガスのための流動ガイドを形成する。したがって、邪魔板素子20のうち排気ガス供給ライン8の下流側端部15を向く側面は、排気ガス供給ライン8の下流側端部15までの距離が邪魔板素子の径方向外側セクションよりも邪魔板素子20の径方向内側セクションの方が小さくなっている。したがって、邪魔板素子20は、排気ガス供給ライン8の下流側端部15の方向で、排気ガスの流動方向に対して、中心に引き込まれているまたは湾曲されている。 Preferably, the baffle element 20 is bent and preferably curved in a bell shape on the side 22 facing the exhaust gas supply line 8, this side forming a flow guide for the exhaust gas. Therefore, the side surface of the baffle plate element 20 that faces the downstream end 15 of the exhaust gas supply line 8 has a greater distance from the downstream end 15 of the exhaust gas supply line 8 than the radially outer section of the baffle plate element. The radially inner section of the plate element 20 is smaller. Therefore, the baffle plate element 20 is drawn or curved toward the center in the direction of the downstream end 15 of the exhaust gas supply line 8 with respect to the flow direction of the exhaust gas.

すでに説明したように、排気ガス供給ライン8は、その下流側端部15を用いて反応器チャンバ10内に開口しており、この反応器チャンバは、SCR触媒コンバータ9を受ける。ここで、図2によれば、排気ガス供給ライン8は、反応器チャンバ10の下側を貫通しており、その下流側端部15によって反応器チャンバ10の上側23に隣接して終端しており、すでに説明したように、下流側端部15において排気ガス供給ラインから出た排気ガスは、排気ガスがSCR触媒コンバータ9を通して流動する前に、180°だけ反らされる。   As already explained, the exhaust gas supply line 8 opens into the reactor chamber 10 with its downstream end 15, which receives the SCR catalytic converter 9. Here, according to FIG. 2, the exhaust gas supply line 8 penetrates the lower side of the reactor chamber 10 and terminates adjacent to the upper side 23 of the reactor chamber 10 by its downstream end 15. As described above, the exhaust gas exiting from the exhaust gas supply line at the downstream end 15 is warped by 180 ° before the exhaust gas flows through the SCR catalytic converter 9.

特に図3から明らかなように、排気ガス背圧を増加させるための装置25は、SCR触媒コンバータ9の上流側において排気ガス供給ライン8とSCR触媒コンバータ9との間に位置する。排気ガス背圧を増加させるためのこの装置25は、例えば格子、好ましくはプレートなどであり得る。   As is apparent from FIG. 3 in particular, the device 25 for increasing the exhaust gas back pressure is located between the exhaust gas supply line 8 and the SCR catalytic converter 9 on the upstream side of the SCR catalytic converter 9. This device 25 for increasing the exhaust gas back pressure can be, for example, a grid, preferably a plate.

SCR触媒コンバータ9の上流側にある排気ガス背圧を増加させるための装置25を用いて、SCR触媒コンバータ9の排気ガス流を抑制し、その結果、SCR触媒コンバータ9に排気ガス流を均等に、すなわち周方向にかつ同様に径方向に、供給することを達成し得る。   The apparatus 25 for increasing the exhaust gas back pressure upstream of the SCR catalytic converter 9 is used to suppress the exhaust gas flow of the SCR catalytic converter 9, and as a result, the exhaust gas flow is evenly distributed to the SCR catalytic converter 9. That is to say, feeding in the circumferential direction and likewise in the radial direction can be achieved.

排気ガス背圧を増加させるための装置25は、排気ガスに含まれる煤粒子が装置に堆積し得るという利点をさらに有する。排気ガス背圧を増加させるための装置25に堆積するこれら煤粒子は、もはやSCR触媒コンバータ9の領域に到達してSCR触媒コンバータ、すなわちSCR触媒コンバータのハニカム体27を目詰まりさせない。図3及び図4は、横断面で丸いSCR触媒コンバータ9の複数のハニカム体27を示す。   The device 25 for increasing the exhaust gas back pressure further has the advantage that soot particles contained in the exhaust gas can be deposited on the device. These soot particles that accumulate in the device 25 for increasing the exhaust gas back pressure no longer reach the area of the SCR catalytic converter 9 and clog the SCR catalytic converter, ie the honeycomb body 27 of the SCR catalytic converter. 3 and 4 show a plurality of honeycomb bodies 27 of the SCR catalytic converter 9 having a round cross section.

排気ガス背圧を増加させるための装置25は、自由流動横断面をさらに有し、この自由流動横断面は、SCR触媒コンバータ9またはSCR触媒コンバータのハニカム体27の自由流動横断面の最大2倍、好ましくは最大1倍、特に好ましくは最大0.5倍に対応している。このようにして、一方では、SCR触媒コンバータ9を通って流動する排気ガスが均一に出ることを確実にし、他方では、排気ガス背圧を増加させるための装置25の領域に煤粒子がすでに堆積されてSCR触媒コンバータ9の領域にもはや到達しないことを確実にする。   The device 25 for increasing the exhaust gas back pressure further has a free flow cross section, which is at most twice the free flow cross section of the SCR catalytic converter 9 or the honeycomb body 27 of the SCR catalytic converter. , Preferably up to 1 time, particularly preferably up to 0.5 times. In this way, on the one hand, it is ensured that the exhaust gas flowing through the SCR catalytic converter 9 comes out uniformly, and on the other hand, soot particles are already deposited in the region of the device 25 for increasing the exhaust gas back pressure. To ensure that the region of the SCR catalytic converter 9 is no longer reached.

好ましくは、流動方向または排気ガス流動方向で見たときの排気ガス背圧を増加させるための装置25の厚さまたは長さと、流動方向または排気ガス流動方向で見たときのSCR触媒コンバータのまたは触媒コンバータ9のハニカム体の厚さまたは長さと、の比は、少なくとも1:50、好ましくは少なくとも1:100、特に好ましくは少なくとも1:200である。   Preferably, the thickness or length of the device 25 for increasing the exhaust gas back pressure as viewed in the flow direction or the exhaust gas flow direction and the SCR catalytic converter or as viewed in the flow direction or the exhaust gas flow direction The ratio of the thickness or length of the honeycomb body of the catalytic converter 9 is at least 1:50, preferably at least 1: 100, particularly preferably at least 1: 200.

好ましくは、流動方向でまたは排気ガス流動方向で見たときの排気ガス背圧を増加させるための装置25とSCR触媒コンバータ9との間の距離に対応する距離と、流動方向で見たときのSCR触媒コンバータ9のまたはSCR触媒コンバータ9のハニカム体27の厚さまたは長さと、の比は、最大2:1、好ましくは最大1:1、特に好ましくは最大1:2である。   Preferably, a distance corresponding to the distance between the device 25 for increasing the exhaust gas back pressure when viewed in the flow direction or in the exhaust gas flow direction and the SCR catalytic converter 9, and when viewed in the flow direction. The ratio of the SCR catalytic converter 9 or the thickness or length of the honeycomb body 27 of the SCR catalytic converter 9 is at most 2: 1, preferably at most 1: 1, particularly preferably at most 1: 2.

反応器チャンバ10内に位置する排気ガス背圧を増加させるための装置25によって、SCR触媒コンバータ9に排気ガスを均等に供給することを確実にし得る。排気ガス背圧を増加させることによって、排気ガス流を抑制し、このために、SCR触媒コンバータ9にわたる排気ガスの均一な分配を確実にする。排気ガス背圧を増加させるための装置25のさらなる利点は、この装置が同様に事前分離器の機能を担うことであり、この事前分離器には、排気ガスに含まれる煤粒子が堆積され得る。このために、煤粒子が障害なくSCR触媒コンバータ9に到達してSCR触媒コンバータを目詰まりさせることを防止し得る。   A device 25 for increasing the exhaust gas back pressure located in the reactor chamber 10 may ensure that the exhaust gas is evenly supplied to the SCR catalytic converter 9. By increasing the exhaust gas back pressure, the exhaust gas flow is suppressed, thus ensuring a uniform distribution of the exhaust gas across the SCR catalytic converter 9. A further advantage of the device 25 for increasing the exhaust gas back pressure is that this device likewise assumes the function of a pre-separator, in which soot particles contained in the exhaust gas can be deposited. . For this reason, it is possible to prevent the soot particles from reaching the SCR catalytic converter 9 without clogging and clogging the SCR catalytic converter.

反応器チャンバ10内には、少なくとも1つの吹付装置24が位置し、この吹付装置は、SCR触媒コンバータ9をパージするように機能する。図示した好ましい例示的な実施形態において、1以上の吹付装置24は、反応器チャンバ10内に位置し、この反応器チャンバ内には、SCR触媒コンバータ9及び追加の排気ガス背圧を増加させるための装置25が受けられており、1以上の吹付装置24は、排気ガスの流動方向で見ると、排気ガス背圧を増加させるための装置25とSCR触媒コンバータ9との間に配設されている。1以上の吹付装置25は、好ましくは、空気ノズルである。SCR触媒コンバータ9が及び好ましくは排気ガス背圧を増加させるための装置25が目詰まりすることを防止するために、1以上の吹付装置25は、SCR触媒コンバータに堆積している煤粒子に関してSCR触媒コンバータ9をパージするように、かつ好ましくは、排気ガス背圧を増加させるための装置25をパージするように、少なくとも機能する。1以上の吹付装置24は、好ましくは、SCR触媒コンバータ9のうち流動方向に対して横方向に延在する表面に、すなわち流動方向に対して垂直に延在するSCR触媒コンバータ9のハニカム体27の上流側面に、吹付装置が渦流または旋回流を引き起こすような態様で、方向付けられている。   Located in the reactor chamber 10 is at least one spraying device 24 that functions to purge the SCR catalytic converter 9. In the preferred exemplary embodiment shown, one or more spray devices 24 are located in the reactor chamber 10 to increase the SCR catalytic converter 9 and additional exhaust gas back pressure in the reactor chamber. The one or more spraying devices 24 are disposed between the device 25 for increasing the exhaust gas back pressure and the SCR catalytic converter 9 when viewed in the flow direction of the exhaust gas. Yes. The one or more spraying devices 25 are preferably air nozzles. In order to prevent the SCR catalytic converter 9 and preferably the device 25 for increasing the exhaust gas back pressure from becoming clogged, the one or more spraying devices 25 are capable of producing SCR with respect to soot particles deposited on the SCR catalytic converter. It functions at least to purge the catalytic converter 9 and preferably to purge the device 25 for increasing the exhaust gas back pressure. The one or more spraying devices 24 are preferably provided on the surface of the SCR catalytic converter 9 that extends in a direction transverse to the flow direction, that is, in the honeycomb body 27 of the SCR catalytic converter 9 that extends perpendicular to the flow direction. Is directed in such a manner that the spraying device causes a vortex or swirl.

ここで、図4は、1以上の吹付装置24の好ましい方向付けを示しており、この方向付けは、好ましくは、渦流または旋回流が反応器チャンバ10内に、すなわちSCR触媒コンバータ9のうち流動方向または排気ガス流動方向に対して垂直に延在する上流側面に、好ましくは同様に、排気ガス背圧を増加させるための装置25のうち流動方向または排気ガス流動方向に対して垂直に延在する下流側面に、発生するような態様で、方向付けられており、それぞれの場合における表面は、1以上の吹付装置24を向く。渦流または旋回流を用いて、SCR触媒コンバータ9、すなわちSCR触媒コンバータのハニカム体27から、好ましくは同様に排気ガス背圧を増加させるための装置25から、煤粒子をパージすることを特に効果的に行い得る。   Here, FIG. 4 shows a preferred orientation of one or more spray devices 24, which preferably causes a vortex or swirl flow to flow into the reactor chamber 10, ie out of the SCR catalytic converter 9. On the upstream side extending perpendicular to the direction or to the exhaust gas flow direction, preferably similarly to the apparatus 25 for increasing the exhaust gas back pressure, extending perpendicular to the flow direction or the exhaust gas flow direction Are oriented in such a way as to occur on the downstream side, with the surface in each case facing one or more spraying devices 24. It is particularly effective to purge soot particles from the SCR catalytic converter 9, i.e. the honeycomb body 27 of the SCR catalytic converter, preferably also from the device 25 for increasing the exhaust gas back pressure, using swirl or swirl. Can be done.

SCR触媒コンバータ9及び好ましくは同様に排気ガス背圧を増加させるための装置25を受ける反応器チャンバ10は、好ましくは、横断面で丸い、好ましくは円状の壁19を有し、この壁は、反応器チャンバ10の上側22及び下側23間を延在する。少なくとも、壁19は、内側において横断面で丸くまたは円状であり、少なくとも触媒コンバータ9を受ける反応器チャンバ10の内部空間を画成する。このような壁19を1以上の吹付装置24の方向付けと組み合わせることにより、反応器チャンバ10内の渦流または旋回流は、SCR触媒コンバータ9をパージするように、かつ好ましくは同様に、排気ガス背圧を増加させるための装置25をパージするように、機能しており、これらに堆積している煤粒子に関して特に有利に設計され得る。   The reactor chamber 10 which receives the SCR catalytic converter 9 and preferably also the device 25 for increasing the exhaust gas back pressure has a wall 19 which is preferably round in cross section and preferably circular. , Extending between the upper side 22 and the lower side 23 of the reactor chamber 10. At least the wall 19 is round or circular in cross section inside and defines at least the interior space of the reactor chamber 10 that receives the catalytic converter 9. By combining such a wall 19 with the orientation of one or more spray devices 24, vortices or swirling flows in the reactor chamber 10 will cause the SCR catalytic converter 9 to be purged, and preferably as well, exhaust gas. It functions to purge the device 25 for increasing the back pressure and can be designed particularly advantageously with respect to the soot particles deposited on them.

好ましくは、複数の吹付装置24、好ましくは少なくとも3つの、特に好ましくは少なくとも4つの吹付装置24は、反応器チャンバ10内に位置している。   Preferably, a plurality of spray devices 24, preferably at least three, particularly preferably at least four spray devices 24, are located in the reactor chamber 10.

ここで、吹付装置24は、横断面で丸く空気または圧縮空気を吹き付ける反応器チャンバ10に隣接して位置しており、この壁19から出る空気または圧縮空気、すなわち吹出円錐26を反応器チャンバ10の内側へ吹き付け、この吹出円錐は、少なくとも1つの他の吹付装置24の吹出円錐26と交差し、このため、この吹出円錐と部分的に重なる。このために、上述した表面においてSCR触媒コンバータ9を及び同様に排気ガス背圧を増加させるための装置25を全領域パージすることは、実現され得るまたは確実にされ得る。   Here, the blowing device 24 is located adjacent to the reactor chamber 10 which blows air or compressed air round in cross section, and the air or compressed air exiting from this wall 19, ie the blowing cone 26, is placed in the reactor chamber 10. This blowing cone intersects with the blowing cone 26 of at least one other blowing device 24 and thus partially overlaps this blowing cone. To this end, it is possible to achieve or ensure that the SCR catalytic converter 9 and the device 25 for increasing the exhaust gas back pressure in the above-mentioned surface are fully purged.

図1の内燃機関の場合において、排気ガス後処理システム3は、排気ガス過給システム2の上流側で垂直に位置している。内燃機関1のシリンダへのアクセスは、自由であるが、ターボチャージャ4及び5のアクセス性は、制限されている。しかしながら、反応器チャンバ10は、保守操作が排気ガスターボチャージャ4、6に必要な場合には、単純に分解され得る。   In the case of the internal combustion engine of FIG. 1, the exhaust gas aftertreatment system 3 is positioned vertically on the upstream side of the exhaust gas supercharging system 2. Access to the cylinders of the internal combustion engine 1 is free, but the accessibility of the turbochargers 4 and 5 is limited. However, the reactor chamber 10 can simply be disassembled if maintenance operations are required for the exhaust gas turbochargers 4, 6.

本発明によれば、小型な設計で効果的な排気ガス後処理を可能とする。   The present invention enables effective exhaust gas aftertreatment with a compact design.

図1に示す排気ガス後処理3を排気ガス過給システム2の上流側で垂直に配置することとは対照的に、排気ガス後処理システム3を排気ガス過給システム2の隣に90°だけ傾けた水平配置は、同様に可能であるが、このような水平配置の場合において、配置の長さは、大きくなる。しかしながら、内燃機関1及び排気ガス過給システム2は、その後、制限なく、反応器チャンバ10を分解する必要なく、補修作業のために利用可能である。   In contrast to the vertical arrangement of the exhaust gas aftertreatment 3 shown in FIG. 1 upstream of the exhaust gas supercharging system 2, the exhaust gas aftertreatment system 3 is placed next to the exhaust gas supercharging system 2 by 90 °. An inclined horizontal arrangement is possible as well, but in such a horizontal arrangement, the length of the arrangement becomes large. However, the internal combustion engine 1 and the exhaust gas supercharging system 2 can then be used for repair work without limitation and without having to disassemble the reactor chamber 10.

1 内燃機関
2 排気ガス過給システム
3 排気ガス後処理システム
4 排気ガスターボチャージャ
5 排気ガスターボチャージャ
6 高圧タービン
7 低圧タービン
8 排気ガス供給ライン
9 SCR触媒コンバータ
10 反応器チャンバ
11 排気ガス排出ライン
12 バイパス
13 遮断素子
14 排気ガスガイド
15 端部
16 導入装置
17 注入円錐
18 混合セクション
19 壁
20 邪魔板素子
21 ライン
22 側
23 側
24 吹付装置
25 装置
26 吹出円錐
27 ハニカム体
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Exhaust gas supercharging system 3 Exhaust gas aftertreatment system 4 Exhaust gas turbocharger 5 Exhaust gas turbocharger 6 High pressure turbine 7 Low pressure turbine 8 Exhaust gas supply line 9 SCR catalytic converter 10 Reactor chamber 11 Exhaust gas discharge line 12 Bypass 13 Blocking element 14 Exhaust gas guide 15 End 16 Introduction device 17 Injection cone 18 Mixing section 19 Wall 20 Baffle plate element 21 Line 22 Side 23 Side 24 Spraying device 25 Device 26 Blowout cone 27 Honeycomb body

Claims (12)

内燃機関の排気ガス後処理システム(3)、すなわち内燃機関のSCR排気ガス後処理システムであって、
反応器チャンバ(10)内に受けられるSCR触媒コンバータ(9)と、
前記反応器チャンバ(10)にひいては前記SCR触媒コンバータ(9)へ案内する排気ガス供給ライン(8)と、
前記反応器チャンバ(10)からひいては前記SCR触媒コンバータ(9)から離間するように案内する排気ガス排出ライン(11)と、
還元剤、特にアンモニアまたはアンモニア前駆物質を排気ガス内に導入するために前記排気ガス供給ライン(8)に配置された導入装置(16)と、
前記反応器チャンバ(10)または前記SCR触媒コンバータ(9)の上流側で排気ガスを還元剤と混合するために、前記導入装置(16)の下流側において前記排気ガス供給ライン(8)によって設けられた混合セクション(18)と、
を備え、
前記反応器チャンバ(10)内には、前記SCR触媒コンバータ(9)をパージするように機能する少なくとも1つの吹付装置(24)が位置することを特徴とする排気ガス後処理システム。
An internal combustion engine exhaust gas aftertreatment system (3), that is, an internal combustion engine SCR exhaust gas aftertreatment system,
An SCR catalytic converter (9) received in the reactor chamber (10);
An exhaust gas supply line (8) leading to the reactor chamber (10) and thus to the SCR catalytic converter (9);
An exhaust gas discharge line (11) that guides away from the reactor chamber (10) and thus away from the SCR catalytic converter (9);
An introduction device (16) arranged in the exhaust gas supply line (8) for introducing a reducing agent, in particular ammonia or an ammonia precursor, into the exhaust gas;
In order to mix the exhaust gas with the reducing agent upstream of the reactor chamber (10) or the SCR catalytic converter (9), it is provided by the exhaust gas supply line (8) downstream of the introduction device (16). Mixed section (18),
With
In the reactor chamber (10), at least one spraying device (24) that functions to purge the SCR catalytic converter (9) is located.
前記吹付装置(24)が、当該吹付装置が前記SCR触媒コンバータ(9)のうち横方向に、特に流動方向に対して垂直に延在する渦流または旋回流を引き起こすような態様で、方向付けられていることを特徴とする請求項1に記載の排気ガス後処理システム。   Said spraying device (24) is oriented in such a way that said spraying device causes a vortex or swirl flow extending laterally of said SCR catalytic converter (9), in particular perpendicular to the flow direction. The exhaust gas aftertreatment system according to claim 1, wherein 前記吹付装置(24)が、当該吹付装置が前記SCR触媒コンバータ(9)のハニカム体(27)のうち横方向に、特に流動方向に対して垂直に延在する上流側面に渦流または旋回流を引き起こすような態様で、方向付けられていることを特徴とする請求項2に記載の排気ガス後処理システム。   The spraying device (24) generates a vortex or swirl on the upstream side surface of the spraying device that extends laterally, in particular, perpendicular to the flow direction, in the honeycomb body (27) of the SCR catalytic converter (9). 3. The exhaust gas aftertreatment system of claim 2, wherein the exhaust gas aftertreatment system is oriented in such a manner as to cause. 前記反応器チャンバ(10)が、横断面で丸い、特に円状壁である壁(19)を有することを特徴とする請求項1から3のいずれか1項に記載の排気ガス後処理システム。   4. The exhaust gas aftertreatment system according to claim 1, characterized in that the reactor chamber (10) has a wall (19) that is round in cross section, in particular a circular wall. 5. 前記吹付装置(24)が、前記反応器チャンバ(10)のうち横断面で丸い前記壁(19)に隣接して位置しており、前記壁(19)から前記反応器チャンバ(10)の内側へ出る空気、すなわち吹出円錐(26)を吹き付け、
前記吹出円錐が、少なくとも1つの他の吹付装置(24)の吹出円錐(26)と交差していることを特徴とする請求項4に記載の排気ガス後処理システム。
The spraying device (24) is located adjacent to the wall (19) round in cross section of the reactor chamber (10), from the wall (19) to the inside of the reactor chamber (10). Blowing air exiting into the air, ie the blowing cone (26),
The exhaust gas aftertreatment system according to claim 4, characterized in that the blowing cone intersects the blowing cone (26) of at least one other spraying device (24).
前記排気ガス供給ライン(8)が、下流側端部(15)を用いて前記反応器チャンバ(10)内へ開口し、
前記反応器チャンバ(10)内には、前記排気ガス供給ライン(8)の前記下流側端部(15)と前記SCR触媒コンバータ(9)との間において、前記SCR触媒コンバータ(9)の上流側にある排気ガス背圧を増加させるための装置(25)が位置していることを特徴とする請求項1から5のいずれか1項に記載の排気ガス後処理システム。
The exhaust gas supply line (8) opens into the reactor chamber (10) using a downstream end (15);
In the reactor chamber (10), between the downstream end (15) of the exhaust gas supply line (8) and the SCR catalytic converter (9), the upstream of the SCR catalytic converter (9). 6. An exhaust gas aftertreatment system according to any one of claims 1 to 5, characterized in that a device (25) for increasing the exhaust gas back pressure on the side is located.
前記吹付装置(24)が、排気ガス背圧を増加させるための前記装置(25)と前記SCR触媒コンバータ(9)との間で前記反応器チャンバ(10)内に位置していることを特徴とする請求項6に記載の排気ガス後処理システム。   The spray device (24) is located in the reactor chamber (10) between the device (25) for increasing exhaust gas back pressure and the SCR catalytic converter (9). The exhaust gas aftertreatment system according to claim 6. 排気ガス背圧を増加させるための前記装置(25)が、前記SCR触媒コンバータ(9)の自由流動横断面の最大2倍、好ましくは最大1倍、特に好ましくは0.5倍に対応する自由流動横断面を有することを特徴とする請求項6または7に記載の排気ガス後処理システム。   The device (25) for increasing the exhaust gas back pressure corresponds to a free flow cross section of the SCR catalytic converter (9) of up to 2 times, preferably up to 1 time, particularly preferably 0.5 times. 8. The exhaust gas aftertreatment system according to claim 6 or 7, wherein the exhaust gas aftertreatment system has a flow cross section. 流動方向で見たときの排気ガス背圧を増加させるための装置(25)の厚さまたは長さと、流動方向で見たときの前記触媒コンバータ(9)の厚さまたは長さと、の比が、少なくとも1:50、好ましくは少なくとも1:100、特に好ましくは少なくとも1:200であることを特徴とする請求項6から8のいずれか1項に記載の排気ガス後処理システム。   The ratio of the thickness or length of the device (25) for increasing the exhaust gas back pressure when viewed in the flow direction to the thickness or length of the catalytic converter (9) when viewed in the flow direction is 9. The exhaust gas aftertreatment system according to claim 6, wherein the exhaust gas aftertreatment system is at least 1:50, preferably at least 1: 100, particularly preferably at least 1: 200. 流動方向で見たときの排気ガス背圧を増加させるための前記装置(25)と前記SCR触媒コンバータ(9)との間の距離に対応する距離と、流動方向で見たときの前記SCR触媒コンバータ(9)の厚さまたは長さと、の比が、最大2:1、好ましくは最大1:1、最も好ましくは最大1:2であることを特徴とする請求項6から9のいずれか1項に記載の排気ガス後処理システム。   A distance corresponding to the distance between the device (25) for increasing the exhaust gas back pressure when viewed in the flow direction and the SCR catalytic converter (9), and the SCR catalyst when viewed in the flow direction The ratio of the thickness or the length of the converter (9) to a maximum of 2: 1, preferably a maximum of 1: 1, most preferably a maximum of 1: 2. The exhaust gas aftertreatment system according to item. 内燃機関(1)、特にディーゼル燃料を用いてまたは重油を用いて動作される内燃機関であって、
請求項1から10のいずれか1項に記載の排気ガス後処理システム(3)を有することを特徴とする内燃機関。
An internal combustion engine (1), in particular an internal combustion engine operated with diesel fuel or with heavy oil,
11. An internal combustion engine comprising the exhaust gas aftertreatment system (3) according to any one of claims 1 to 10.
高圧タービン(6)を備える第1排気ガスターボチャージャ(4)と低圧タービン(7)を備える第2排気ガスターボチャージャ(5)とを有する多段の排気ガス過給システム(2)を備え、
前記排気ガス後処理システム(3)が、前記高圧タービン(6)と前記低圧タービン(7)との間に接続されていることを特徴とする請求項11に記載の内燃機関。
A multi-stage exhaust gas supercharging system (2) having a first exhaust gas turbocharger (4) comprising a high pressure turbine (6) and a second exhaust gas turbocharger (5) comprising a low pressure turbine (7);
The internal combustion engine according to claim 11, characterized in that the exhaust gas aftertreatment system (3) is connected between the high pressure turbine (6) and the low pressure turbine (7).
JP2017067167A 2016-03-31 2017-03-30 Exhaust gas aftertreatment system and internal combustion engine Active JP6893814B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016003743.1 2016-03-31
DE102016003743.1A DE102016003743A1 (en) 2016-03-31 2016-03-31 Exhaust after treatment system and internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017187034A true JP2017187034A (en) 2017-10-12
JP6893814B2 JP6893814B2 (en) 2021-06-23

Family

ID=59885217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017067167A Active JP6893814B2 (en) 2016-03-31 2017-03-30 Exhaust gas aftertreatment system and internal combustion engine

Country Status (6)

Country Link
JP (1) JP6893814B2 (en)
KR (1) KR102299818B1 (en)
CN (1) CN107269356B (en)
DE (1) DE102016003743A1 (en)
FI (1) FI20175263A (en)
NO (1) NO20170418A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017110685A1 (en) * 2017-05-17 2018-11-22 Man Diesel & Turbo Se Exhaust after treatment system and internal combustion engine
EP3566765A1 (en) * 2018-05-07 2019-11-13 Dinex A/S Compact exhaust mixing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344925A (en) * 1986-08-12 1988-02-25 Takuma Co Ltd Denitration treatment of exhaust gas
JPH05309233A (en) * 1992-05-06 1993-11-22 Mitsubishi Heavy Ind Ltd Catalytic denitrification device
JP2002095919A (en) * 2000-09-21 2002-04-02 Ishikawajima Harima Heavy Ind Co Ltd Clogging preventing device of denitration apparatus
JP2014163387A (en) * 2013-02-22 2014-09-08 Man Diesel & Turbo Se Internal combustion engine
JP2015190458A (en) * 2014-03-31 2015-11-02 日立造船株式会社 Exhaust emission control device and operating method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679052B2 (en) * 2001-07-31 2004-01-20 Toyota Jidosha Kaisha Emission control apparatus
JP4662334B2 (en) * 2004-11-04 2011-03-30 三菱ふそうトラック・バス株式会社 Exhaust gas purification device for internal combustion engine
US8082730B2 (en) * 2008-05-20 2011-12-27 Caterpillar Inc. Engine system having particulate reduction device and method
DE102009017684B4 (en) * 2009-04-16 2014-09-25 Mtu Friedrichshafen Gmbh Enclosed exhaust aftertreatment system
JP5995400B2 (en) * 2010-10-14 2016-09-21 三菱重工業株式会社 Marine exhaust gas denitration equipment
DE102010050413A1 (en) * 2010-11-04 2012-05-10 Daimler Ag Motor vehicle internal combustion engine with exhaust gas recirculation
KR101652454B1 (en) * 2012-05-03 2016-08-30 스카니아 씨브이 악티에볼라그 Exhaust aftertreatment system and method pertaining to such a system
DE102012019947A1 (en) * 2012-10-11 2014-04-17 Man Diesel & Turbo Se Internal combustion engine
CN104995379B (en) * 2013-01-31 2017-10-20 天纳克汽车经营有限公司 Multi-blade type soot blower
GB2523084A (en) * 2014-02-05 2015-08-19 Gm Global Tech Operations Inc An exhaust mixing device
US20140366514A1 (en) * 2014-09-01 2014-12-18 Caterpillar Inc. Premixer conduit for exhaust aftertreatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344925A (en) * 1986-08-12 1988-02-25 Takuma Co Ltd Denitration treatment of exhaust gas
JPH05309233A (en) * 1992-05-06 1993-11-22 Mitsubishi Heavy Ind Ltd Catalytic denitrification device
JP2002095919A (en) * 2000-09-21 2002-04-02 Ishikawajima Harima Heavy Ind Co Ltd Clogging preventing device of denitration apparatus
JP2014163387A (en) * 2013-02-22 2014-09-08 Man Diesel & Turbo Se Internal combustion engine
JP2015190458A (en) * 2014-03-31 2015-11-02 日立造船株式会社 Exhaust emission control device and operating method thereof

Also Published As

Publication number Publication date
JP6893814B2 (en) 2021-06-23
CN107269356A (en) 2017-10-20
FI20175263A (en) 2017-10-01
NO20170418A1 (en) 2017-10-02
DE102016003743A1 (en) 2017-10-05
CN107269356B (en) 2022-04-26
KR102299818B1 (en) 2021-09-09
KR20170113432A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
CN107269351B (en) Internal combustion engine with exhaust gas aftertreatment system
CN108223080B (en) Mixing device for an exhaust gas aftertreatment system, exhaust gas aftertreatment system and internal combustion engine
JP6966670B2 (en) Exhaust gas aftertreatment system and internal combustion engine
JP6893814B2 (en) Exhaust gas aftertreatment system and internal combustion engine
JP6802101B2 (en) Exhaust gas aftertreatment systems, internal combustion engines, and methods for operating internal combustion engines
KR102303371B1 (en) Exhaust gas after-treatment system and internal combustion engine
KR102333615B1 (en) Exhaust gas aftertreatment system and internal combustion engine
JP2017190773A (en) Exhaust gas aftertreatment system, internal combustion engine and operating method for the same
JP6966672B2 (en) Exhaust gas aftertreatment system and internal combustion engine
JP6906961B2 (en) Exhaust gas aftertreatment system and internal combustion engine
KR20200115246A (en) Scr catalytic converter, exhaust gas after-treatment system and internal combustion engine
JP6843674B2 (en) Exhaust gas aftertreatment system and internal combustion engine
KR20180010160A (en) A mixing device for an exhaust gas aftertreatment system, exhaust gas aftertreatment system, and internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200831

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210602

R150 Certificate of patent or registration of utility model

Ref document number: 6893814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150