JP2017186797A - Filling method of underground cavity part - Google Patents

Filling method of underground cavity part Download PDF

Info

Publication number
JP2017186797A
JP2017186797A JP2016076493A JP2016076493A JP2017186797A JP 2017186797 A JP2017186797 A JP 2017186797A JP 2016076493 A JP2016076493 A JP 2016076493A JP 2016076493 A JP2016076493 A JP 2016076493A JP 2017186797 A JP2017186797 A JP 2017186797A
Authority
JP
Japan
Prior art keywords
carbon dioxide
filler
filling
dioxide gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016076493A
Other languages
Japanese (ja)
Other versions
JP6683314B2 (en
Inventor
寺村 敏史
Toshifumi Teramura
敏史 寺村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANSOH GIKEN KK
Original Assignee
SANSOH GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANSOH GIKEN KK filed Critical SANSOH GIKEN KK
Priority to JP2016076493A priority Critical patent/JP6683314B2/en
Publication of JP2017186797A publication Critical patent/JP2017186797A/en
Application granted granted Critical
Publication of JP6683314B2 publication Critical patent/JP6683314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a filling method capable of providing an excellent filling state, by restraining the occurrence of a gap by an air reservoir, even when an upper overflowing part and an upper projection part exist in filling of an underground buried pipe for filling a conduit such as a sewer, a water supply, a gas pipe, an electric wire pipe and an irrigation channel buried in the ground with a filler and filling of a cavity in an underground structure or a clearance generated around the structure.SOLUTION: Before injecting a filler, air in a cavity is substituted with a carbon dioxide gas, and is filled with the carbon dioxide gas. A construction method then injects the filler including one kind or two or more kinds of components among cement, quick lime and hydrated lime in the cavity. Since a calcium ion included in injected filler slurry is absorbed and solidified in the filler slurry after becoming calcium carbonate by reacting with the carbon dioxide gas remaining in an upper overflowing part and an upper projection part, the carbon dioxide gas is consumed and an air reservoir disappears.SELECTED DRAWING: Figure 4

Description

本発明は、地中に埋設された下水道、上水道、ガス管、電線管、用水路等の導管内に充填材を充填する地中埋設管の充填工法および地中の構造物内の空洞または構造物周囲に生じた隙間を充填する工法に関するものである。特に空気溜りが生じる恐れのある形状の空洞を充填する工事に関わる工法である。   The present invention relates to a method for filling underground pipes for filling fillers in pipes such as sewers, waterworks, gas pipes, electric pipes and irrigation channels buried underground, and cavities or structures in underground structures. The present invention relates to a method of filling a gap generated around the periphery. In particular, this is a method related to the construction of filling a cavity having a shape that may cause air retention.

下水道、上水道、ガス、電機・通信、用水等の種々の用途で地下に管路が地下に埋設されている。これらの地下埋設管は老朽化等により使用されなくなると、陥没を未然に防止するため、充填材等を用いて管路内部を充填する。また、地下室および地下埋設タンクなどの空間を有する地中の構造物においても、使用されなくなると防災減災のために内部空間の埋戻しを行う。また、下水道では、既設埋設管内に新規の更生管を挿入または製管したのち、既設埋設管と更生管との間の空隙に充填材を注入して裏込めを行う管更生工法がある。   Pipes are buried underground for various uses such as sewerage, water supply, gas, electrical machinery / communication, and water. When these underground pipes are no longer used due to aging or the like, the inside of the pipe is filled with a filler or the like in order to prevent the collapse. In addition, even underground structures having spaces such as basements and underground tanks will be refilled for disaster prevention and mitigation when they are no longer used. In the sewerage system, there is a pipe rehabilitation method in which a new rehabilitation pipe is inserted or manufactured in an existing buried pipe and then backfilling is performed by injecting a filler into a gap between the existing buried pipe and the rehabilitation pipe.

充填材としては、一般的なエアーミルクやエアーモルタルが用いられる他に、種々の材料を所定の割合で配合した充填材や製造方法が開示されている。例えば、特許文献1には、水およびセメントに、粘土物質、フライアッシュ等の助材、石膏等の刺激材、および流動性を改質する薬剤を含有してなる充填材が開示されている。また、特許文献2には水、セメントおよび建設残土を混合した流動化処理土の製造方法が示されている。さらに、特許文献3では、水、セメント、粘度調節材、界面活性剤および改質したアルミニウム金属粉末を混合した事後発泡型の充填材が開示されている。これらの充填材は、流動性の高いスラリー状にして、充填性を高めるように工夫がされている。
充填方法は、特許文献4のように、地下埋設管のような充填空間が管路である場合は、管路の一端に充填口を設け、もう一方の端に到達口を設け、前記充填口から充填材を送ることで管内を充填する工法が採られる。また、特許文献5のように、到達口からバキュームポンプで吸引しながら充填口から充填材を送る工法も開示されている。どちらか一端が閉塞している場合は、閉塞していない側に充填口と空気抜きおよび充填材の到達確認の兼ねた到達口を設けて充填する工法が採られる。
As the filler, general air milk and air mortar are used, and other fillers and manufacturing methods in which various materials are blended at a predetermined ratio are disclosed. For example, Patent Document 1 discloses a filler comprising water and cement containing a clay material, an auxiliary material such as fly ash, a stimulating material such as gypsum, and an agent that improves fluidity. Patent Document 2 discloses a method for producing fluidized soil in which water, cement and construction residual soil are mixed. Furthermore, Patent Document 3 discloses a post-foaming type filler in which water, cement, a viscosity modifier, a surfactant, and a modified aluminum metal powder are mixed. These fillers are devised so as to improve the filling property by making the slurry into a highly fluid slurry.
In the filling method, as in Patent Document 4, when a filling space such as an underground buried pipe is a pipe line, a filling port is provided at one end of the pipe line, and a reaching port is provided at the other end. A method of filling the inside of the pipe by sending a filler from is adopted. Further, as disclosed in Patent Document 5, a method of sending a filler from a filling port while suctioning from a reaching port with a vacuum pump is also disclosed. When either one end is closed, a filling method is adopted in which a filling port and an arrival port that serves as air vent and filler arrival confirmation are provided on the non-blocked side for filling.

一般的に、地下埋設管は勾配がある場合が多く、充填をする区間の勾配を配慮した充填工事を行う必要がある。充填をする区間が下がり勾配または上り勾配のいずれかしかない場合であれば、上流端を充填口とし、流動性の高い充填材を注入することによって下流端へ流下させることが可能である。
しかしながら、図1に示すように、埋設管20の充填口21と到達口22の間に上り勾配とそのあとに続く下り勾配がある場合(以下、上越し部という。)や、図2に示すように、地盤10の動きによって埋設管20に変位や勾配が生じたり、老朽化によって管上部の破損や変形が生じたりすると、流動性の高い充填材を注入しても、図3に示すように、管内の空気が抜けきらず、上部凸部23に空気溜り23aが生じて空隙が残ることになる。空隙が残存した状態にしておくと、その空隙部が圧壊して陥没の原因となる可能性があるため、空気溜りによる空隙が残らない充填工法が望まれている。
In general, underground pipes often have a slope, and it is necessary to perform filling work in consideration of the slope of the section to be filled. If the section to be filled has only a downward slope or an upward slope, it is possible to flow down to the downstream end by injecting a filler having high fluidity using the upstream end as a filling port.
However, as shown in FIG. 1, there is an upward gradient between the filling port 21 and the arrival port 22 of the buried pipe 20 and a subsequent downward gradient (hereinafter referred to as a “overhead”), or FIG. 2. As shown in FIG. 3, even if a highly fluid filler is injected when the displacement or gradient of the buried pipe 20 is caused by the movement of the ground 10 or the upper part of the pipe is damaged or deformed due to aging, In addition, the air in the pipe cannot be completely removed, and an air pool 23a is generated in the upper convex portion 23, leaving a gap. If the air gap remains, the air gap portion may be collapsed and cause depression, so a filling method in which no air gap remains is desired.

特許文献6では、充填をする区間に存在する上越し部に空気抜き孔を設け、充填材を一端から圧送する際に、前記空気抜き孔から、管路内の空気および充填材を吸引することで空気溜りを生じさせない工法が開示されている。また、一般的な工法として、充填口から上越し部まで管内に注入管および空気抜き管を挿入・設置し、充填材を圧送注入しながら上越し部の空気を空気抜き管から排出する工法で、空気溜りを防止する方法がある。   In Patent Document 6, an air vent hole is provided in an upper portion existing in a section to be filled, and when the filler is pumped from one end, air in the pipe line and the filler are sucked from the air vent hole to suck air. A construction method that does not cause accumulation is disclosed. As a general construction method, an injection pipe and an air vent pipe are inserted and installed in the pipe from the filling port to the upper part, and the air in the upper part is discharged from the air vent pipe while pumping and injecting the filler. There is a way to prevent accumulation.

特開2004−67453号公報JP 2004-67453 A 特開平11―43931号公報Japanese Patent Laid-Open No. 11-43931 特開2009−83413号公報JP 2009-83413 A 特開2005−83036号公報JP-A-2005-83036 特開2009−264026号公報JP 2009-264026 A 特開2014―66056号公報JP 2014-66056 A

しかしながら、前記特許文献6のように上越し部に空気抜き孔を設置する場合は、空気抜き孔のための削穴、配管設置ならびに充填後の配管撤去などの工程で手間がかかる課題がある。また、上越し部の位置に空気抜き孔を設置する地上部に建物などの障害物があり、削穴等を行う工事スペースが設けられない場合もある。また、前記したように地盤の動きや管路の劣化によって生じた管路の上部凸部は地上からの位置決めが難しいため空気抜き孔の設置ができないなどの問題があった。
一方、充填口から上越し部や上部凸部まで管内に注入管および空気抜き管を挿入・設置する方法は、作業者が充填をする管内に入って作業を行わなければならず、老朽化した管内での作業は、崩落などの危険が伴うものであり、安全面で好ましくないなどの問題があった。また、この工法は、作業者が出入りできる大きな管径または空洞を有する工事にしか適用できない工法であり、作業者が出入りできない内径の管や空洞ではできなかった。
このような課題に対して、本発明は簡便な方法で空気溜りを残さない充填工法の提供を目的とするものである。
However, when the air vent hole is installed in the overhanging portion as in Patent Document 6, there is a problem that labor is required in processes such as drilling for the air vent hole, pipe installation, and pipe removal after filling. In addition, there may be an obstacle such as a building on the ground where the air vent hole is installed at the position of the upper part, and a construction space for drilling may not be provided. In addition, as described above, there is a problem that the upper convex portion of the pipe line caused by the movement of the ground or the deterioration of the pipe line is difficult to position from the ground, so that the air vent hole cannot be installed.
On the other hand, the method of inserting / installing the injection pipe and the air vent pipe into the pipe from the filling port to the upper part and the upper convex part requires that the worker enter the pipe to be filled and perform the work. The work at has a risk of collapse or the like, and there is a problem that it is not preferable in terms of safety. In addition, this construction method is applicable only to constructions having a large pipe diameter or a cavity that allows an operator to enter and exit, and cannot be applied to a pipe or cavity having an inner diameter that the operator cannot enter or exit.
With respect to such problems, the present invention aims to provide a filling method that does not leave an air pocket by a simple method.

本発明は、埋設管内や空洞を有する地下構造物の空洞内の空気を二酸化炭素ガスに置換し、次いでセメント、生石灰、消石灰のうち1種または2種以上の成分を含む充填材を該空洞内に注入することを特徴とする地下空洞部の充填工法である。
本発明は、気体である二酸化炭素ガスが水の存在下でカルシウムイオンと結合して固体の炭酸カルシウムに化学変化することを利用した工法である。地下埋設管やその他の地下構造物にある空洞の充填において、管内や空洞内の空気を二酸化炭素ガスに置換しておくことで、空気溜りにある二酸化炭素ガスが、次いで注入される充填材スラリーに含まれるセメント、生石灰、消石灰などのカルシウム成分と反応し炭酸カルシウムに変化するため、二酸化炭素ガスが消費され、空気溜りは負圧になり充填材スラリーの液面を上げていき、最終的に空気溜りが消失するのである。
The present invention replaces air in a buried pipe or a hollow of an underground structure having a cavity with carbon dioxide gas, and then adds a filler containing one or more components of cement, quicklime, and slaked lime into the cavity. It is a filling method for underground cavities characterized by being injected into the ground.
The present invention is a construction method utilizing the fact that carbon dioxide gas, which is a gas, is combined with calcium ions in the presence of water and chemically changed to solid calcium carbonate. Filler slurry into which carbon dioxide gas in the air reservoir is then injected by replacing the air in the pipe or cavity with carbon dioxide gas when filling the cavity in underground underground pipes and other underground structures It reacts with calcium components such as cement, quicklime, and slaked lime contained in, and changes to calcium carbonate, so carbon dioxide gas is consumed, the air pool becomes negative pressure and the liquid level of the filler slurry is raised, finally The air pocket disappears.

ここでいう置換とは、充填を行う空間の空気を外部に排気し、高濃度の二酸化炭素ガス雰囲気にして、その状態を維持することであって、気体の流入出がないように外部と該空間との間に隔壁などを設けることが必要である。置換の方法は、二酸化炭素ガス導入に先立って該空間にある空気を外部に吸引したのちに、二酸化炭素ガスを該空間に導入してもよいし、二酸化炭素ガスの導入によって該空間にある空気を押し出しながら徐々に高濃度の二酸化炭素ガス雰囲気にしてもよい。
また、充填材として、アルミニウム金属粉末の成分を含む発泡材を含有した充填材を用いるとより好ましい。発泡材を含有した充填材を用いることで、充填材は発泡による体積膨張が起こり、空気溜りを加圧させ二酸化炭素ガスの吸収・固定化を促進することができるのである。
さらに、置換する二酸化炭素ガス濃度は80%以上とすることが好適である。二酸化炭素ガスの濃度が低いと、二酸化炭素ガス以外の気体成分がスラリーに吸収されずに残ってしまうため好ましくない。
The term “replacement” as used herein refers to maintaining the state by exhausting the air in the space to be filled to the outside and creating a high-concentration carbon dioxide gas atmosphere. It is necessary to provide a partition or the like between the space. In the replacement method, the air in the space may be introduced to the space after the air in the space is sucked outside prior to the introduction of the carbon dioxide gas, or the air in the space may be introduced by introducing the carbon dioxide gas. A high concentration carbon dioxide gas atmosphere may be gradually formed while extruding.
Moreover, it is more preferable to use a filler containing a foaming material containing a component of aluminum metal powder as the filler. By using a filler containing a foaming material, the filler undergoes volume expansion due to foaming, and the air reservoir can be pressurized to promote absorption and fixation of carbon dioxide gas.
Furthermore, the carbon dioxide gas concentration to be replaced is preferably 80% or more. If the concentration of carbon dioxide gas is low, gas components other than carbon dioxide gas remain unabsorbed in the slurry, which is not preferable.

本発明の工法では、置換された二酸化炭素ガスが充填材に含まれるカルシウムと化学反応して炭酸カルシウムになり充填材に吸収されるため、空気溜りのない充填ができる。
充填に先立って、埋設管内を充填する場合は、管路の両端に充填口と到達口を設け空洞内部の空気を二酸化炭素に置換する工程を行うだけなので、上越し部に空気抜き配管を連結または設置する必要がなく、また、作業者が入れない空洞でも空気溜りのない充填が可能となる。さらに、上越し部や上面凸部等の空気溜りが発生しそうな箇所を特定できなくても、空気溜りが発生しない簡易な工法である。また、入手が容易で安価な二酸化炭素ガスおよびセメント系または石灰系の材料を使用するため、非常に経済的な工法である。
In the construction method of the present invention, the substituted carbon dioxide gas chemically reacts with calcium contained in the filler to become calcium carbonate and is absorbed by the filler, so that filling without air accumulation is possible.
Prior to filling, when filling the buried pipe, it is only necessary to replace the air inside the cavity with carbon dioxide by providing a filling port and an arrival port at both ends of the pipe line. There is no need for installation, and even a cavity that cannot be filled by an operator can be filled without air accumulation. Furthermore, even if it is not possible to identify a place where an air pocket is likely to occur, such as an overhanging part or an upper surface convex part, it is a simple construction method in which no air pool is generated. In addition, since carbon dioxide gas and cement-based or lime-based materials that are easily available and inexpensive are used, this is a very economical method.

上越し部のある地下埋設管の断面図である。It is sectional drawing of an underground burial pipe with a Joetsu part. 管路に変位が生じた地下埋設管の断面図である。It is sectional drawing of the underground burial pipe which the displacement produced in the pipe line. 管路充填で空気溜りが生じた状態の図2相当図である。FIG. 3 is a diagram corresponding to FIG. 本発明の実施形態を説明するための断面図であり、二酸化炭素ガスを導入する状態の図2相当図である。It is sectional drawing for demonstrating embodiment of this invention, and is a figure equivalent to FIG. 2 of the state which introduce | transduces a carbon dioxide gas. 本発明の実施形態を説明するための断面図であり、充填材注入の状態の図2相当図である。It is sectional drawing for demonstrating embodiment of this invention, and is a FIG. 2 equivalent view of the state of filling material injection | pouring.

(スラリーに吸収可能なガスの選定)
本発明は、充填材を注入する前に、空洞の空気を溶解性の高いガスまたは固化反応するガスに置換することで、充填材を注入した際に、充填材スラリーに吸収・固化させ、ガスを消失させる方法を用いたものである。この方法に利用可能なガスとして、二酸化炭素ガス、アンモニア、亜硫酸ガスなどが挙げられるが、アンモニアおよび亜硫酸ガスは水への溶解度が高いが、臭気や毒性が高く実用的に好ましくない。二酸化炭素の水への溶解度はアンモニアや亜硫酸ガスに対して高くないが、二酸化炭素は水の存在化でカルシウムイオンと反応して難溶性の炭酸カルシウムまたは可溶性の炭酸水素カルシウムになる性質を有している。そのため、セメント、生石灰、消石灰などのカルシウム成分を混合した充填材を用いることによって、二酸化炭素ガスを充填材スラリー中に吸収できるため最適である。また、入手が容易で安価であるため、経済的な点からも優れている。
(Selection of gas that can be absorbed in slurry)
The present invention replaces the air in the cavity with a highly soluble gas or a gas that undergoes a solidification reaction before injecting the filler, so that when the filler is injected, it is absorbed and solidified into the filler slurry. This is a method using a method of disappearing. Examples of gases that can be used in this method include carbon dioxide gas, ammonia, and sulfurous acid gas. Ammonia and sulfurous acid gas have high solubility in water, but are not practically preferable because of high odor and toxicity. Although the solubility of carbon dioxide in water is not high with respect to ammonia and sulfurous acid gas, carbon dioxide has the property of reacting with calcium ions in the presence of water to form poorly soluble calcium carbonate or soluble calcium bicarbonate. ing. Therefore, the use of a filler mixed with calcium components such as cement, quicklime, and slaked lime is optimal because carbon dioxide gas can be absorbed into the filler slurry. Moreover, since it is easy to obtain and inexpensive, it is excellent from an economical point of view.

二酸化炭素ガスは、水に溶解して炭酸イオンあるいは炭酸水素イオンとなる。一方、セメント、生石灰および消石灰は、水中にカルシウムイオンを溶出する。この炭酸イオンあるいは炭酸水素イオンがカルシウムイオンと結合して溶解度の低い炭酸カルシウムになる。さらに、二酸化炭素が高い濃度で存在すると可溶性の炭酸水素カルシウムになることが知られているが、概略として化1に示す化学反応によって、二酸化炭素ガスは充填材スラリー中で固体の炭酸カルシウムに変化する。

Carbon dioxide gas dissolves in water and becomes carbonate ions or hydrogen carbonate ions. On the other hand, cement, quicklime and slaked lime elute calcium ions in water. These carbonate ions or hydrogen carbonate ions combine with calcium ions to form calcium carbonate with low solubility. Furthermore, it is known that when carbon dioxide is present at a high concentration, it becomes a soluble calcium hydrogen carbonate, but the carbon dioxide gas is changed into solid calcium carbonate in the filler slurry by the chemical reaction shown in Chemical Formula 1 as a general rule. To do.

この式によれば、理論上は1mの二酸化炭素ガス(25℃、大気圧)は、質量は約1.98kgであり、約2.26kgの酸化カルシウムと反応して炭酸カルシウムになる。すなわち、少量のカルシウム成分で二酸化炭素ガスを吸収し固体化することができるのである。 According to this equation, theoretically, 1 m 3 of carbon dioxide gas (25 ° C., atmospheric pressure) has a mass of about 1.98 kg and reacts with about 2.26 kg of calcium oxide to become calcium carbonate. That is, carbon dioxide gas can be absorbed and solidified with a small amount of calcium component.

次に、本発明による地下埋設管の充填工法の一例を述べる。図4に示すように埋設管20の一端21に隔壁31を設け、隔壁31またはその近傍にバルブ45で連結した注入管40を設置する。埋設管の他端22にも同様に隔壁32を設け、隔壁32またはその近傍にバルブ45を連結した排気管44を設置する。該隔壁31および32は、埋設管20の内外で空気が容易に流入出しないように設置する。なお、該注入管40および該排気管44は、後工程の充填材の注入用および確認用の管を兼ねてもよいし、充填材用の注入管および確認管を別途設置してもよい。この例では、該注入管40はガス注入と充填材注入を、該排気管44はガス排気と充填材確認用をそれぞれ兼ねたものとして記載する。なお、該注入管40および該排気管44は、管内の構造および後工程の充填材注入を考慮して、管の内部まで延長してもよい。   Next, an example of the underground pipe filling method according to the present invention will be described. As shown in FIG. 4, a partition wall 31 is provided at one end 21 of the buried tube 20, and an injection tube 40 connected by a valve 45 is installed at or near the partition wall 31. A partition wall 32 is similarly provided at the other end 22 of the buried pipe, and an exhaust pipe 44 connected with a valve 45 is installed at or near the partition wall 32. The partition walls 31 and 32 are installed so that air does not easily flow in and out of the buried pipe 20. In addition, the injection pipe 40 and the exhaust pipe 44 may also serve as a pipe for injecting and confirming a filler in a later process, or a filler injecting pipe and a confirmation pipe may be separately provided. In this example, it is described that the injection pipe 40 serves as gas injection and filler injection, and the exhaust pipe 44 serves as gas exhaust and filler confirmation. Note that the injection pipe 40 and the exhaust pipe 44 may be extended to the inside of the pipe in consideration of the structure in the pipe and the filling material injection in a later process.

二酸化炭素ガスを注入管40から流入させるが、二酸化炭素ガスは、液体二酸化炭素、圧縮炭酸ガス、ドライアイス、化学反応で発生させた二酸化炭素ガスなどが使用できるが、ヒーター内蔵レギュレーターを取り付けた液体二酸化炭素ボンベを使用するのが、流量計等で確認しながら行うことができ、流量の制御が容易であるため好ましい。注入する二酸化炭素ガスの濃度は95%以上が好ましい。
二酸化炭素ガスを注入中は、排気管44から排気を行うが、排気側から吸引ポンプ等を使用して強制的に排気してもよい。埋設管が老朽化により強度低下している場合は、二酸化炭素の注入圧は、大気圧と圧力差が大きくならないように行うのが好ましい。また、排気管44の排気口周辺は高濃度の二酸化炭素ガスが停留しないように、図3のように地上まで排気管44を延長してガスの拡散を行うか、または排気口周辺を送風するなどの安全対策を行うことが好ましい。
Carbon dioxide gas is allowed to flow from the injection pipe 40. As the carbon dioxide gas, liquid carbon dioxide, compressed carbon dioxide gas, dry ice, carbon dioxide gas generated by a chemical reaction, etc. can be used, but a liquid equipped with a regulator with a built-in heater. It is preferable to use a carbon dioxide cylinder because it can be performed while confirming with a flow meter or the like and the flow rate is easily controlled. The concentration of carbon dioxide gas to be injected is preferably 95% or more.
While carbon dioxide gas is being injected, exhaust is performed from the exhaust pipe 44, but exhaust may be forced from the exhaust side using a suction pump or the like. When the strength of the buried pipe is reduced due to aging, the carbon dioxide injection pressure is preferably set so that the pressure difference from the atmospheric pressure does not increase. Further, in order to prevent high-concentration carbon dioxide gas from stopping around the exhaust port of the exhaust pipe 44, the exhaust pipe 44 is extended to the ground as shown in FIG. 3 to diffuse the gas or blow around the exhaust port. It is preferable to take safety measures such as

二酸化炭素ガス注入開始後、排気側で炭酸ガス濃度を経時的に計測する。濃度測定には濃度100%まで計測できる二酸化炭素濃度センサーや検知管等を使用することが好ましい。排気ガスの二酸化炭素濃度が80%以上、より好ましくは90%以上になったら、二酸化炭素ガスの注入を止め、両端のバルブ45を閉める。これで、管内部30の空気が二酸化炭素ガスで置換されたことになる。
本発明で使用する充填材は、セメント、生石灰、消石灰のいずれか1種または2種以上の成分を含む充填材であればよい。セメントは普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント等のポルトランドセメント、高炉セメント、フライアッシュセメント、シリカセメント等の混合セメント、エコセメント、低発熱セメント、白色セメント、ジオセメントなどの特殊セメントが使用できる。生石灰、消石灰は、工業的に焼成・反応させた生石灰・消石灰の他、カルシウム成分を含むペーパースラッジ焼却灰、汚泥焼却灰などが使用できる。また、高炉、転炉等のスラグも用いることができるが、セメント、生石灰や消石灰に比べて二酸化炭素との反応が遅いためアルカリ刺激剤と併用するのが好ましい。
After the start of carbon dioxide gas injection, the carbon dioxide gas concentration is measured over time on the exhaust side. For the concentration measurement, it is preferable to use a carbon dioxide concentration sensor, a detection tube or the like that can measure the concentration up to 100%. When the carbon dioxide concentration of the exhaust gas becomes 80% or more, more preferably 90% or more, the injection of carbon dioxide gas is stopped and the valves 45 at both ends are closed. Thus, the air inside the tube 30 is replaced with carbon dioxide gas.
The filler used in the present invention may be any filler containing one or more components of cement, quicklime, and slaked lime. Cement is ordinary Portland cement, early strength Portland cement, super early strength Portland cement, moderate heat Portland cement, low heat Portland cement, sulfate-resistant Portland cement and other Portland cement, blast furnace cement, fly ash cement, silica cement and other mixed cement, Special cements such as ecocement, low heat cement, white cement and geocement can be used. As quicklime and slaked lime, paper sludge incineration ash, sludge incineration ash, and the like containing calcium components can be used in addition to quick lime and slaked lime that have been calcined and reacted industrially. Moreover, although slag, such as a blast furnace and a converter, can also be used, since reaction with a carbon dioxide is slow compared with cement, quicklime, and slaked lime, it is preferable to use together with an alkali stimulant.

本発明で二酸化炭素ガスを吸収するのに必要なカルシウム成分は、酸化カルシウム成分換算で充填材出来高1mあたり2.5kg以上であり、好ましくは充填材出来高1mあたり10kg以上添加するのがよい。一般的な充填材として、エアーモルタルでは出来高1mあたりセメントを250〜400kg、セメントベントナイトでは200〜350kg、流動化処理土では50〜200kgが配合されている。したがって、これらの充填材には二酸化炭素を吸収するために必要なカルシウム成分を十分に含んでいるため、そのまま使用することができる。ただし、これら充填材においてカルシウム成分は、強度発現に必要な成分であるため、その一部が二酸化炭素ガスとの反応に使用されてしまうことで、強度が低下することもある。充填材の強度が不足する場合には、前記の吸収に必要なカルシウム成分に相当する量、すなわち酸化カルシウム成分換算で充填材1mあたり2.5kg以上、好ましくは10kg以上のセメント、生石灰、消石灰のうち1種または2種以上を加えればよい。 The calcium component necessary for absorbing carbon dioxide gas in the present invention is 2.5 kg or more per 1 m 3 of filler material in terms of calcium oxide component, preferably 10 kg or more per 1 m 3 of filler material. . As general fillers, 250 to 400 kg of cement per 1 m 3 of finished product is blended with air mortar, 200 to 350 kg with cement bentonite, and 50 to 200 kg with fluidized soil. Therefore, since these fillers sufficiently contain the calcium component necessary for absorbing carbon dioxide, they can be used as they are. However, in these fillers, the calcium component is a component necessary for strength development, so that a part of the calcium component is used for the reaction with carbon dioxide gas, and the strength may be reduced. When the strength of the filler is insufficient, the amount corresponding to the calcium component necessary for the absorption, that is, 2.5 kg or more, preferably 10 kg or more of cement, quick lime, slaked lime per 1 m 3 of filler in terms of calcium oxide component. One or more of them may be added.

さらに、本発明に使用する充填材として好ましい性状は、高い流動性のスラリーであり、注入後3時間以上は流動性を有していることである。充填材が高い流動性を有していると空気溜りにある二酸化炭素ガスに対して新しいスラリーが接触するため、反応がより促進される。また、注入後3時間程度は流動性を有していることで、徐々に二酸化炭素ガスがスラリーに吸収され空気溜りが負圧になった時に、スラリー液面の上昇を容易にする。
なお、図5に示すように前記充填材を圧送し充填注入管40より注入するが、充填材に空気を極力巻き込まないよう圧送するのが好ましい。充填材に管内全体にある二酸化炭素ガスを吸収させる必要はなく、上越し部または上部凸部に溜まった二酸化炭素ガスを吸収させればよいが、注入の途中でも二酸化炭素ガスが充填材に吸収されるため、注入は速やかに行うのが好ましい。注入と同時に排気管44に連結したバルブ45を開け、管内にある二酸化炭素ガスが管外に排出する。
Furthermore, a preferable property as a filler used in the present invention is a slurry having high fluidity, and has fluidity for 3 hours or more after injection. When the filler has high fluidity, the new slurry comes into contact with the carbon dioxide gas in the air pocket, and thus the reaction is further promoted. Further, since it has fluidity for about 3 hours after the injection, when the carbon dioxide gas is gradually absorbed into the slurry and the air pool becomes negative pressure, it is easy to raise the slurry liquid level.
In addition, as shown in FIG. 5, although the said filler is pumped and inject | poured from the filling injection pipe 40, it is preferable to pump so that air may not be caught in a filler as much as possible. It is not necessary for the filler to absorb the carbon dioxide gas in the entire pipe, and it is sufficient to absorb the carbon dioxide gas accumulated in the upper part or the upper convex part, but the carbon dioxide gas is absorbed by the filler even during the injection. Therefore, it is preferable to perform the injection promptly. Simultaneously with the injection, the valve 45 connected to the exhaust pipe 44 is opened, and the carbon dioxide gas in the pipe is discharged out of the pipe.

注入速度と二酸化炭素ガスが充填材に吸収される速度(以下、二酸化炭素吸収速度という。)のバランスによって管内が正圧になったり負圧になったりするため、確認管44には圧力計46または排出ガス用の流量計を設置して監視するのが好ましい。注入速度が二酸化炭素吸収速度より早い場合は、管内の二酸化炭素ガスを確認管44から排出すればよい。反対に注入速度が二酸化炭素吸収速度より遅い場合は、注入速度を上げるか、確認管44から大気の空気が管内に流れ込まないようにバルブ操作を行うか、確認管44から二酸化炭素ガスを管内に注入するかのいずれかの方法によって管内圧力の低下を抑えるようにする。
埋設管内に注入された充填材は、上越し部や条件凸部に空気溜りを残して充填されるが、空気溜りの二酸化炭素ガスが充填材中のカルシウム成分と反応し吸収されるため、空気溜りが減少する。空気溜りの容積や形状、または充填材中のカルシウム濃度、温度などにも影響するが、10〜180分で二酸化炭素ガスを吸収する。吸収を促進するために充填材の注入圧を上げることも可能である。あるいは、充填材としてアルミニウム金属粉末を主成分とする発泡材を混合したセメント系事後発泡型の材料を用いることで、発泡による体積膨張圧で二酸化炭素ガスが充填材に吸収されやすくする方法も好ましい。
Since the inside of the tube becomes a positive pressure or a negative pressure depending on the balance between the injection rate and the rate at which carbon dioxide gas is absorbed by the filler (hereinafter referred to as carbon dioxide absorption rate), a pressure gauge 46 is provided in the confirmation tube 44. Alternatively, it is preferable to monitor by installing a flow meter for exhaust gas. If the injection rate is faster than the carbon dioxide absorption rate, the carbon dioxide gas in the tube may be discharged from the confirmation tube 44. On the contrary, when the injection rate is slower than the carbon dioxide absorption rate, the injection rate is increased, the valve operation is performed so that atmospheric air does not flow into the tube from the confirmation tube 44, or carbon dioxide gas is introduced from the confirmation tube 44 into the tube. The pressure drop in the pipe is suppressed by any one of the methods of injection.
The filler injected into the buried pipe is filled with the air remaining in the upper part and the condition convex part, but the carbon dioxide gas in the air reacts with the calcium component in the filler and is absorbed. The accumulation is reduced. Although it affects the volume and shape of the air pocket or the calcium concentration and temperature in the filler, it absorbs carbon dioxide gas in 10 to 180 minutes. It is also possible to increase the filler injection pressure to facilitate absorption. Alternatively, it is also preferable to use a cement-based post-foaming type material in which a foaming material mainly composed of aluminum metal powder is used as a filler, so that carbon dioxide gas can be easily absorbed by the filler due to volume expansion pressure due to foaming. .

なお、充填容積が大きく、充填工程が断続的になる場合や、充填作業が複数日を要する場合は、空気溜りが発生する箇所の充填工事のときのみに、本発明の工法を使うのが工程的にも経済的にも好ましい。
本発明は、前記した地下埋設管の充填工事以外にも空気だまりが生じる可能性のある構造物として、地下埋設タンクなどの埋戻しや建物床下空洞において床下梁で囲まれた空間などにも使用することができる。また、空洞内に水が残留している場合も、上部の空気を二酸化炭素ガスに置換し、水中不分離性の充填材を注入することで空気溜りのない充填が可能である。
If the filling volume is large and the filling process is intermittent, or if the filling operation takes a plurality of days, the method of using the method of the present invention is used only at the time of filling work in a place where air accumulation occurs. Both economically and economically.
The present invention can be used for structures such as underground buried tanks and spaces surrounded by underfloor beams in structures such as underground tanks as structures that may cause air accumulation in addition to the above-described underground buried pipe filling work. can do. Further, even when water remains in the cavity, filling without air accumulation is possible by replacing the upper air with carbon dioxide gas and injecting an underwater non-separable filler.

10 地盤
20 埋設管
21、22 埋設管端部
23 上越し部または上部凸部
23a 空気溜り
30 埋設管内
31、32 隔壁
40 注入管
41 流量計
42 圧送ポンプ
43 グラウトミキサー
44 空気抜き兼確認管
45 開閉バルブ
46 圧力計
47 分岐コック
48 流量計付きヒーター内蔵レギュレーター
50 液体二酸化炭素ボンベ
51 流量計
52 二酸化炭素ガス濃度計
A、B 充填材

DESCRIPTION OF SYMBOLS 10 Ground 20 Buried pipes 21 and 22 Buried pipe end 23 Upper part or upper convex part 23a Air reservoir 30 Inside buried pipes 31 and 32 Bulkhead 40 Injection pipe 41 Flow meter 42 Pressure pump 43 Grout mixer 44 Air venting and confirmation pipe 45 Opening and closing valve 46 Pressure gauge 47 Branch cock 48 Regulator with built-in heater with flow meter 50 Liquid carbon dioxide cylinder 51 Flow meter 52 Carbon dioxide gas concentration meter A, B Filler

Claims (3)

地下空洞部を充填材で充填する方法において、該空洞内の空気を二酸化炭素ガスに置換する工程と、次いでセメント、生石灰、消石灰のうち1種または2種以上が含まれている充填材を該空洞内に注入し充填する工程を含むことを特徴とする地下空洞部の充填工法。   In the method of filling an underground cavity with a filler, a step of replacing the air in the cavity with carbon dioxide gas, and then a filler containing one or more of cement, quicklime, and slaked lime are included. A method for filling an underground cavity, comprising a step of filling and filling the cavity. 請求項1記載の地下空洞部の充填方法であって、前記空洞内の空気を二酸化炭素ガスに置換する工程は、該空洞内の二酸化炭素ガス濃度を80%以上にすることを特徴とする地下空洞部の充填工法。   The method for filling an underground cavity according to claim 1, wherein the step of replacing the air in the cavity with carbon dioxide gas makes the carbon dioxide gas concentration in the cavity 80% or more. Cavity filling method. 請求項1記載の地下空洞部の充填方法であって、前記充填材は、アルミニウム金属粉末を成分とする発泡材が含まれていることを特徴とする地下空洞部の充填工法。
2. The underground cavity filling method according to claim 1, wherein the filler includes a foaming material containing aluminum metal powder as a component.
JP2016076493A 2016-04-06 2016-04-06 Underground cavity filling method Active JP6683314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016076493A JP6683314B2 (en) 2016-04-06 2016-04-06 Underground cavity filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016076493A JP6683314B2 (en) 2016-04-06 2016-04-06 Underground cavity filling method

Publications (2)

Publication Number Publication Date
JP2017186797A true JP2017186797A (en) 2017-10-12
JP6683314B2 JP6683314B2 (en) 2020-04-15

Family

ID=60043859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016076493A Active JP6683314B2 (en) 2016-04-06 2016-04-06 Underground cavity filling method

Country Status (1)

Country Link
JP (1) JP6683314B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113187544A (en) * 2021-05-28 2021-07-30 辽宁科技大学 Large-scale underground dead zone treatment method of beam type roof structure
CN114622953A (en) * 2022-03-28 2022-06-14 中国矿业大学 Coal mine gangue and CO2Mining overburden rock isolation grouting filling emission reduction method
CN115306479A (en) * 2022-08-23 2022-11-08 中国矿业大学 CO based on abandoned mine goaf 2 Block sealing method
WO2024166607A1 (en) * 2023-02-06 2024-08-15 独立行政法人エネルギー・金属鉱物資源機構 Space filling method and filling system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396210A (en) * 1977-02-01 1978-08-23 Takeo Suzuki Method of making pile
JPH06336899A (en) * 1993-05-27 1994-12-06 Takeo Suzuki Execution method for shield tunnel
JP2002332797A (en) * 2001-05-08 2002-11-22 Tac:Kk Back-filling material filling device and lining construction method in pipe
JP2005145808A (en) * 2003-11-14 2005-06-09 Kagawa Prefecture Carbonate solidified body of inorganic powder and its manufacturing method
JP2006169766A (en) * 2004-12-14 2006-06-29 Fudo Constr Co Ltd Ground liquefaction preventing method
JP2006213559A (en) * 2005-02-02 2006-08-17 Sekisui Chem Co Ltd Method of manufacturing inorganic carbonated hardened body
EP2933307A1 (en) * 2014-04-17 2015-10-21 Services Pétroliers Schlumberger Methods for cementing wells, using foamed cementing compositions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5396210A (en) * 1977-02-01 1978-08-23 Takeo Suzuki Method of making pile
JPH06336899A (en) * 1993-05-27 1994-12-06 Takeo Suzuki Execution method for shield tunnel
JP2002332797A (en) * 2001-05-08 2002-11-22 Tac:Kk Back-filling material filling device and lining construction method in pipe
JP2005145808A (en) * 2003-11-14 2005-06-09 Kagawa Prefecture Carbonate solidified body of inorganic powder and its manufacturing method
JP2006169766A (en) * 2004-12-14 2006-06-29 Fudo Constr Co Ltd Ground liquefaction preventing method
JP2006213559A (en) * 2005-02-02 2006-08-17 Sekisui Chem Co Ltd Method of manufacturing inorganic carbonated hardened body
EP2933307A1 (en) * 2014-04-17 2015-10-21 Services Pétroliers Schlumberger Methods for cementing wells, using foamed cementing compositions

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113187544A (en) * 2021-05-28 2021-07-30 辽宁科技大学 Large-scale underground dead zone treatment method of beam type roof structure
CN114622953A (en) * 2022-03-28 2022-06-14 中国矿业大学 Coal mine gangue and CO2Mining overburden rock isolation grouting filling emission reduction method
CN115306479A (en) * 2022-08-23 2022-11-08 中国矿业大学 CO based on abandoned mine goaf 2 Block sealing method
CN115306479B (en) * 2022-08-23 2023-06-09 中国矿业大学 CO based on abandoned mine goaf 2 Block type sealing method
WO2024166607A1 (en) * 2023-02-06 2024-08-15 独立行政法人エネルギー・金属鉱物資源機構 Space filling method and filling system

Also Published As

Publication number Publication date
JP6683314B2 (en) 2020-04-15

Similar Documents

Publication Publication Date Title
JP2017186797A (en) Filling method of underground cavity part
CN103277120B (en) A kind of non-fully deeply freeze vertical thaw after water burst prevention and controls
JP5339498B2 (en) Method of fixing shear reinforcement
JP5284816B2 (en) Method of fixing shear reinforcement
CN206016824U (en) A kind of stopping means for preventing shield sky from pushing away Segment displacement
KR102158606B1 (en) Early-hardening grout for delaying hardening and grouting method using the same
CN104027911B (en) A kind of fire extinguishing method for coal gangue hill
KR101589298B1 (en) Permeable compacting grouting method using real-time optimization auto grouting system
KR102471506B1 (en) Sealing material and main injection material composition for steel pipe reinforcing multi stage grouting and grouting method using the same
KR102518444B1 (en) Tunnel grouting method of simultaneous injection using steel pipe and grout for watertight structure and reinforcement
CN105887904A (en) Construction method for filling dissolving cavity in outer side of deep foundation pit in karst area
KR102464905B1 (en) Method of Ground Reinforcement using silica sol
KR102490970B1 (en) Multistep steel pipe tunnel grouting reinforcement method
CN206845225U (en) Underground coal mine fire seal
JP5415362B2 (en) Method for producing concrete-filled steel pipe, and concrete-filled steel pipe
JP4937540B2 (en) Shotcrete production apparatus, shotcrete production method using the same, and shotcrete
JP2010018474A (en) Filler
JP4786241B2 (en) Spraying method
JP3482413B2 (en) Lightweight cement mortar for bolt box filling method and bolt box filling method using lightweight cement mortar
KR20100099019A (en) Eco friendly, early strength, extensive grout additive and grout material and reinforcing earth anchor method using the grout material
IT8323036A1 (en) Procedure for consolidating and making underground constructions and buildings impermeable to water, building artifacts, in particular canals and pipes, construction elements, rocks and soils,
JP2007057061A (en) Jet gas shutoff method and its device
CN111075481A (en) Construction method for primary support and secondary lining of underground excavation construction transverse channel
KR102651244B1 (en) Grout composition and slope reinforcement construction method using it
JP2016169317A (en) Liquid admixture for ground stabilization, material for ground stabilization and construction method for ground stabilization using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200311

R150 Certificate of patent or registration of utility model

Ref document number: 6683314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150