JP2017186716A - Yarn interlacing apparatus and method for producing synthetic fiber using the same - Google Patents

Yarn interlacing apparatus and method for producing synthetic fiber using the same Download PDF

Info

Publication number
JP2017186716A
JP2017186716A JP2017002299A JP2017002299A JP2017186716A JP 2017186716 A JP2017186716 A JP 2017186716A JP 2017002299 A JP2017002299 A JP 2017002299A JP 2017002299 A JP2017002299 A JP 2017002299A JP 2017186716 A JP2017186716 A JP 2017186716A
Authority
JP
Japan
Prior art keywords
yarn
entanglement
fluid
yarn path
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017002299A
Other languages
Japanese (ja)
Inventor
萌香 平川
Moeka Hirakawa
萌香 平川
島田 浩司
Koji Shimada
浩司 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2017186716A publication Critical patent/JP2017186716A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a fluid interlacing apparatus which suppresses the occurrence of the counterflow of discharge air during interlacing processing against the yarn running direction of a running yarn, and which hardly causes fuzzing and slackening.SOLUTION: A yarn interlacing apparatus 1 includes: a yarn path section for allowing a yarn to pass therethrough and be interlaced therein; fluid jetting holes 15 for jetting a fluid onto the running yarn; a yarn guide slit 16 for allowing the yarn path section and an outside to communicate with each other and for inserting the yarn therethrough; and an air discharge groove 18 on a jetting hole surface or an opposing wall surface, communicating with the outside space of the interlacing apparatus 1 with the yarn path section in between. In the yarn interlacing apparatus 1, the air discharge groove 18 is present in a hollow conical region 25 formed by excluding a second conical region 24 from a first conical region 23.SELECTED DRAWING: Figure 1

Description

本発明は、糸条の交絡付与装置およびそれを用いた合成繊維の製造方法に関する。   The present invention relates to a yarn entanglement imparting device and a method for producing a synthetic fiber using the same.

従来、合成繊維の製造工程において、糸条に圧縮流体を噴射することで単糸同士に絡まりを生じさせ、交絡部と開繊部を形成し、集束性を付与した糸条は交絡糸として広く知られている。これらの交絡糸を形成する糸条交絡付与装置として、これまで様々なものが提案されている。   Conventionally, in a synthetic fiber manufacturing process, a compressed fluid is sprayed onto a yarn to cause entanglement between single yarns, forming an entangled portion and a spread portion, and a yarn having a converging property is widely used as an entangled yarn. Are known. Various yarn entanglement applying devices for forming these entangled yarns have been proposed so far.

特許文献1には、糸道部の糸条の走行方向に垂直な断面における面積が最も小さくなる絞り部を有し、前記断面積が絞り部から糸道部の糸条の出入り口部に向かってなだらかに拡大している交絡付与装置が開示されている。   Patent Document 1 has a narrowed portion where the area in the cross section perpendicular to the running direction of the yarn in the yarn path portion is the smallest, and the cross-sectional area is from the narrowed portion toward the entrance / exit portion of the yarn in the yarn path portion. A confounding device that is gently expanding is disclosed.

特許文献2には、横断面形状が円形もしくは長円状の糸導孔を有し、その両端部に圧縮流体を外部に導出する放出孔を設置した交絡付与装置が開示されている。   Patent Document 2 discloses an entanglement imparting device in which thread guide holes having a circular or oval cross-sectional shape are provided, and discharge holes for leading compressed fluid to the outside are provided at both ends thereof.

特開2013−227711号公報JP 2013-227711 A 特開平3−344098号公報Japanese Patent Laid-Open No. 3-344098

しかしながら、特許文献1に開示されている交絡付与装置では、糸条に噴射された圧縮流体の大半が糸条の走行方向の出口側に排気されるため、高い噴射圧では排気する流体が不安定な変動を生じやすく、交絡性能が低下したり、安定して交絡を付与することが難しい。また糸条がその排気流体の変動によって振動しやすくなるため、ノズル内部の壁面と衝突し、糸のダメージが大きくなる。   However, in the entanglement imparting device disclosed in Patent Document 1, since most of the compressed fluid injected to the yarn is exhausted to the outlet side in the running direction of the yarn, the fluid to be exhausted is unstable at a high injection pressure. Fluctuations are likely to occur, the confounding performance is reduced, and it is difficult to stably provide confounding. Further, since the yarn is likely to vibrate due to fluctuations in the exhaust fluid, the yarn collides with the wall surface inside the nozzle, and the damage to the yarn increases.

特許文献2に開示されている交絡付与装置では、糸条の入口側と出口側に配置される放出孔は入口側と出口側に均一に圧縮流体が排気されるため、糸条走行方向へ糸条を推進する効果が小さく、糸条の上流側への圧縮流体の逆流が発生しやすくなり、糸条に弛みを発生し、糸にダメージを与えやすい。   In the entanglement imparting device disclosed in Patent Document 2, the discharge holes arranged on the inlet side and the outlet side of the yarn discharge the compressed fluid uniformly on the inlet side and the outlet side. The effect of propelling the strip is small, the backflow of the compressed fluid to the upstream side of the yarn is likely to occur, the yarn is slackened, and the yarn is easily damaged.

本発明は、上記課題を鑑み、低圧縮から高圧縮流体での処理においても糸条の毛羽や弛みなどの糸ダメージを起こしにくい流体交絡付与装置を提供する。   In view of the above problems, the present invention provides a fluid entanglement imparting device that is less likely to cause yarn damage such as fuzz and slack of yarns even in processing from low compression to high compression fluid.

上記課題を達成する本発明のマルチフィラメント糸の交絡処理装置は、
糸条が通過する糸道部と、この糸道部に糸条を導入するスリット部と、前記糸道部を挟んで互いに向かい合う噴射孔面および対向壁面とからなり、前記噴射孔面には中心軸が交わる2つの流体噴射孔が開口し、前記2つの流体噴射孔から噴射された流体によって前記糸道部にて糸条に交絡を付与するマルチフィラメント糸の交絡処理装置において、
前記噴射孔面および/または前記対向壁面には、前記流体噴射孔よりも糸道の上流側に、糸道部を挟んで前記交絡処理装置の外部空間と連通する排気溝が設けられ、
前記2つの流体噴射孔の中心軸を含む平面の中で、2つの流体噴射孔の内側の稜線、噴射孔面および対向壁面に囲まれた領域、又は2つの流体噴射孔の内側の稜線および噴射孔面に囲まれた領域の重心点をGとし、
前記重心点Gから糸条走行方向上流側へ引いた糸条走行方向に平行な線をCDとして、
前記排気溝は、頂点をG、中心軸をCDおよび頂角をθ1とする第1の円錐形状領域から、頂点をG、中心軸をCDおよび頂角をθ2とする第2の円錐形状領域を除いた中空円錐形状領域に存在し、前記円錐の頂角θ1(°)と円錐の頂角θ2(°)が以下の式(1)、(2)および(3)を満足する。
(1) θ1<180°
(2) θ2≧10°
(3) θ1>θ2。
The entanglement processing apparatus for multifilament yarns of the present invention that achieves the above-described problems is as follows.
A yarn path portion through which the yarn passes, a slit portion for introducing the yarn into the yarn path portion, and an injection hole surface and an opposite wall surface facing each other across the yarn path portion. In the entanglement processing apparatus for multifilament yarns, two fluid ejection holes with intersecting axes are opened, and the yarns are entangled at the yarn path portion by the fluid ejected from the two fluid ejection holes.
The ejection hole surface and / or the opposing wall surface is provided with an exhaust groove communicating with the external space of the entanglement processing device across the yarn path portion on the upstream side of the yarn path from the fluid ejection hole,
In a plane including the central axis of the two fluid ejection holes, a ridge line inside the two fluid ejection holes, a region surrounded by the ejection hole surface and the opposite wall surface, or a ridge line and ejection inside the two fluid ejection holes G is the center of gravity of the area surrounded by the hole surface,
A line parallel to the yarn running direction drawn from the center of gravity G to the upstream side of the yarn running direction is defined as CD,
The exhaust groove has a first conical shape region having a vertex as G, a central axis as CD, and an apex angle as θ1, and a second conical shape region as having a vertex as G, the central axis as CD, and the apex angle as θ2. It exists in the excluded hollow cone-shaped region, and the apex angle θ1 (°) of the cone and the apex angle θ2 (°) of the cone satisfy the following expressions (1), (2), and (3).
(1) θ1 <180 °
(2) θ2 ≧ 10 °
(3) θ1> θ2.

本発明の合成繊維の製造方法は、本発明のマルチフィラメント糸の糸条の交絡付与装置を用いて糸条に交絡を付与することで、交絡が付与された合成繊維を製造する。   The synthetic fiber manufacturing method of the present invention manufactures a synthetic fiber to which entanglement is imparted by imparting entanglement to the yarn using the multi-filament yarn entanglement imparting device of the present invention.

本発明のマルチフィラメント糸の交絡付与装置を用いれば、糸条走行方向における圧縮流体の逆流を抑制し、糸条の毛羽や弛みなどの糸ダメージを防止でき、かつ低圧縮から高圧縮流体での処理においても交絡の付与が可能となる。   By using the multifilament yarn entanglement imparting device of the present invention, it is possible to suppress the backflow of the compressed fluid in the yarn traveling direction, to prevent yarn damage such as yarn fluff and looseness, and from low compression to high compression fluid. It is possible to add entanglement in the processing.

図1は、本発明の糸条の交絡付与装置の構造を概略的に示した斜視図である。FIG. 1 is a perspective view schematically showing the structure of the yarn entanglement imparting device of the present invention. 図2は、図1のZ-Z断面から見た噴射孔面を示す図である。FIG. 2 is a view showing the injection hole surface as seen from the ZZ cross section of FIG. 図3は、図1における中心軸線CA、CBを含む平面にて切断した断面図である。3 is a cross-sectional view taken along a plane including the central axes CA and CB in FIG. 図4は、図3の糸道通過部の拡大図である。FIG. 4 is an enlarged view of the yarn path passing portion of FIG. 図5は、図1における第1の円錐形状(図5−(a))、第2の円錐形状(図5−(b))、中空円錐形状(図5−(c))の拡大図である。FIG. 5 is an enlarged view of the first conical shape (FIG. 5- (a)), the second conical shape (FIG. 5- (b)), and the hollow conical shape (FIG. 5- (c)) in FIG. is there. 図6は、本発明の糸条の交絡付与装置において、噴射孔面21に中央溝26があり、かつ排気溝18と中央溝26とが連通した構成の概略図である。FIG. 6 is a schematic view of a configuration in which the central groove 26 is provided on the injection hole surface 21 and the exhaust groove 18 and the central groove 26 are communicated with each other in the yarn entanglement imparting device of the present invention. 図7は、図6のZ-Z断面から見た噴射孔面を示す図である。FIG. 7 is a view showing the injection hole surface as seen from the ZZ cross section of FIG. 図8は、図6における中心軸線CA、CBを含む平面にて切断した断面図である。8 is a cross-sectional view taken along a plane including the central axes CA and CB in FIG. 図9は、図8の糸道通過部の拡大図である。FIG. 9 is an enlarged view of the yarn path passing portion of FIG. 図10は、噴射壁面に排気溝がある場合の一例を示すFIG. 10 shows an example in which there is an exhaust groove on the injection wall surface. ポリエチレンテレフタレートマルチフィラメント糸を溶融紡糸して交絡処理に供して交絡マルチフィラメント糸を製造するプロセスの1例をモデル的に示した図である。It is the figure which showed one example of the process of manufacturing a entangled multifilament yarn by melt-spinning a polyethylene terephthalate multifilament yarn and using it for an entanglement process. 図12は、本発明にかかる交絡付与装置の糸条の入口側の排気圧力P1と出口側の排気圧力P2の測定方法を説明する概略図である。FIG. 12 is a schematic diagram illustrating a method for measuring the exhaust pressure P1 on the inlet side and the exhaust pressure P2 on the outlet side of the yarn of the confounding device according to the present invention. 図13は、実施例1、実施例2および比較例1における設定圧力と交絡付与装置の入口側排気圧力P1および出口側排気圧力P2との関係を示すグラフである。FIG. 13 is a graph showing the relationship between the set pressure in Example 1, Example 2 and Comparative Example 1 and the inlet side exhaust pressure P1 and the outlet side exhaust pressure P2 of the confounding imparting device. 図14は、実施例に使用した交絡付与装置の排気溝の配置を説明する概略図である。FIG. 14 is a schematic diagram illustrating the arrangement of the exhaust grooves of the confounding device used in the example.

以下、図面などを参照しながら本発明について更に詳しく説明する。図1〜5を参照する。本発明の糸条の交絡付与装置1は、流体供給部11、流体噴射ノズル部材12、側板部材13およびスペーサ14で構成されている。そして、流体噴射ノズル部材12、側板部材13およびスペーサ14を組み合わせることで、糸条が通過して糸条に交絡を付与する糸道部17と、糸道部17と外部とを連通して糸道部17に糸条を導入するための糸掛けスリット16とが、交絡付与装置1の内部に形成されている。流体噴射ノズル部材12の糸掛けスリット16側の面が噴射孔面21、側板部材13の糸掛けスリット16側の面が対向壁面22となる。噴射孔面21や対向壁面22の形状が平面ではなく、凹凸や湾曲している場合には、その凹凸もしくは湾曲部における粗さ曲線の平均線を平均値平面とし噴射孔面21、対向壁面22とする。   Hereinafter, the present invention will be described in more detail with reference to the drawings. Reference is made to FIGS. The yarn entanglement imparting device 1 according to the present invention includes a fluid supply unit 11, a fluid ejection nozzle member 12, a side plate member 13, and a spacer 14. Then, by combining the fluid ejection nozzle member 12, the side plate member 13, and the spacer 14, the yarn passage portion 17 through which the yarn passes and imparts entanglement to the yarn, and the yarn passage portion 17 and the outside communicate with each other. A threading slit 16 for introducing a thread into the path portion 17 is formed inside the entanglement imparting device 1. The surface of the fluid injection nozzle member 12 on the yarn hooking slit 16 side is the injection hole surface 21, and the surface of the side plate member 13 on the yarn hooking slit 16 side is the opposing wall surface 22. When the shape of the injection hole surface 21 or the opposed wall surface 22 is not a flat surface but is uneven or curved, the average line of the roughness curve at the unevenness or curved portion is taken as the average value plane, and the injection hole surface 21 and the opposite wall surface 22 And

流体噴射ノズル部材12には、糸掛けスリット16に開口し、走行する糸条に流体を噴射する2つの流体噴射孔15が形成されている。この2つの流体噴射孔15は、中心軸CAと中心軸CBとが交わるように形成されている。なお、中心軸CAと中心軸CBとは、対向壁面22に達する前に交わっていてもよい。流体噴射孔15の形状は円または楕円となるように設計されているのが好ましく、製作誤差の範囲内で多少円や楕円形状から外れていてもよい。中心軸CAとCBは、図1に示すように糸条の走行方向と直角に交差していてもよく、交絡付与装置1の出口側に向かって傾いていてもよい。   The fluid ejecting nozzle member 12 is formed with two fluid ejecting holes 15 that open to the yarn hooking slit 16 and eject fluid onto the traveling yarn. The two fluid ejection holes 15 are formed so that the central axis CA and the central axis CB intersect. The central axis CA and the central axis CB may intersect before reaching the opposing wall surface 22. The shape of the fluid ejection hole 15 is preferably designed to be a circle or an ellipse, and may be slightly deviated from the circle or ellipse within the range of manufacturing errors. As shown in FIG. 1, the central axes CA and CB may intersect at right angles with the running direction of the yarn, or may be inclined toward the outlet side of the entanglement imparting device 1.

図4を参照して、糸道部17について更に詳しく説明する。糸道部17は、2つの流体噴射孔15の内側の稜線、噴射孔面21及び対向壁面22に囲まれた領域の糸条走行方向に延在する空間のことである。2つの流体噴射孔15の内側の稜線が対向壁面22に達する前に交差する場合は、2つの流体噴射孔15の内側の稜線および噴射孔面21に囲まれた領域の糸条走行方向に延在する空間のことである。この空間を糸条が通過し、糸条が弦振動挙動を起こして交絡が施される。   The yarn path portion 17 will be described in more detail with reference to FIG. The yarn path portion 17 is a space extending in the yarn traveling direction in a region surrounded by the inner ridge line of the two fluid ejection holes 15, the ejection hole surface 21 and the opposing wall surface 22. When the inner ridge lines of the two fluid ejection holes 15 intersect before reaching the opposing wall surface 22, the two fluid ejection holes 15 extend in the yarn traveling direction in the region surrounded by the inner ridge lines and the ejection hole surface 21. It is an existing space. The yarn passes through this space, and the yarn causes string vibration behavior to be entangled.

糸道部17の形状については、2つの流体噴射孔の配置や角度、または噴射孔面21や対向壁面22の組み合わせによって、三角、四角、六角形などだけでなく、噴射孔面21や対向壁面22に球面がある場合などあらゆる形状が考えられる。また、噴射孔面21や対向壁面22が流体噴射孔15の付近から糸条走行方向の出口側に向かって拡大していくなどさまざまな形状が考えられる。   The shape of the yarn path portion 17 is not limited to a triangle, a square, a hexagon, or the like depending on the arrangement and angle of the two fluid injection holes, or the combination of the injection hole surface 21 and the opposing wall surface 22, but also the injection hole surface 21 and the opposing wall surface. Any shape is conceivable, such as when there is a spherical surface 22. Various shapes are conceivable, such as the injection hole surface 21 and the opposing wall surface 22 expanding from the vicinity of the fluid injection hole 15 toward the exit side in the yarn traveling direction.

噴射孔面21もしくは対向壁面22、又は噴射孔面21と対向壁面22の双方には、流体噴射孔15から噴射された圧縮空気が糸道部17を通過して糸条走行方向の上流側へ逆流することを抑制するための排気溝18が設けられている。   Compressed air injected from the fluid injection hole 15 passes through the yarn path portion 17 to the upstream side in the yarn traveling direction on the injection hole surface 21 or the opposite wall surface 22, or both the injection hole surface 21 and the opposite wall surface 22. An exhaust groove 18 is provided for suppressing backflow.

排気溝18は、図5−(c)で図示する中空円錐形状25内の領域に配置されている。中空円錐形状25は、図5−(a)で図示する第1の円錐形状23の領域から、図5−(b)で図示する第2の円錐形状24の領域を除いた領域である。第1の円錐形状23は、糸道部17の重心点をG、重心点Gから糸条走行方向の上流側へ引いた糸条走行方向に平行な線をCDとしたとき、頂点をG、中心軸をCDおよび頂角をθ1(°)とする円錐である。第2の円錐形状24は、頂点をG、中心軸をCDおよび頂角をθ2(°)とする円錐である。θ1は第1の円錐形状23の頂角であるから、θ1<180°である。第2の円錐形状24は第1の円錐形状23の領域に含まれているので、θ1>θ2である。そしてさらに、θ2がθ2≧10°を満足する角度になっている。θ2が10°未満であると、糸道部に近接して排気溝が配置されることになり、走行する糸条が排気溝から外部に流れ出す排出空気の流れに引っ張られ、交絡の抜けや不均一な交絡付与、排気溝と糸道部との境目であるエッジ部で糸切れが発生してしまう。また、エッジ部に糸が接触することで、単糸切れや、単糸のささくれ、めくれを発生しやすく、糸ダメージとなって糸の品位が低下してしまう。   The exhaust groove 18 is disposed in a region within the hollow conical shape 25 illustrated in FIG. The hollow conical shape 25 is a region obtained by removing the region of the second conical shape 24 illustrated in FIG. 5B from the region of the first conical shape 23 illustrated in FIG. The first conical shape 23 has G as the center of gravity of the yarn path portion 17 and CD as a line parallel to the yarn traveling direction drawn from the center of gravity G to the upstream side of the yarn traveling direction. A cone having a central axis of CD and an apex angle of θ1 (°). The second conical shape 24 is a cone having an apex G, a central axis CD, and an apex angle θ2 (°). Since θ1 is the apex angle of the first conical shape 23, θ1 <180 °. Since the second conical shape 24 is included in the region of the first conical shape 23, θ1> θ2. Furthermore, θ2 is an angle that satisfies θ2 ≧ 10 °. If θ2 is less than 10 °, the exhaust groove is disposed close to the yarn path, and the running yarn is pulled by the flow of exhaust air that flows out of the exhaust groove to the outside. Uniform entanglement, yarn breakage occurs at the edge that is the boundary between the exhaust groove and the yarn path. Further, when the yarn comes into contact with the edge portion, single yarn breakage, single yarn rolling or turning is likely to occur, resulting in yarn damage and lowering the quality of the yarn.

図10を参照する。図10には、噴射壁面21に排気溝18が形成された様々な形態が図示されている。排気溝18は中空円錐形状25の領域内に設けられていればよく、排気溝18の形状や深さなどは特に限定はされない。この図10に示す形態以外にも様々な形態や組み合わせが考えられる。   Please refer to FIG. FIG. 10 shows various forms in which the exhaust groove 18 is formed on the injection wall surface 21. The exhaust groove 18 only needs to be provided in the region of the hollow conical shape 25, and the shape and depth of the exhaust groove 18 are not particularly limited. Various forms and combinations other than the form shown in FIG. 10 are conceivable.

このように中空円錐形状25の領域内に排気溝18が設けられていることにより、排気溝18を設けない場合に比べ、流体噴射孔15から噴出される圧縮空気が走行する糸条Yに沿って逆流することが抑制され、圧縮空気が適切に排気溝18に回避し、排気溝18を通じて外部空間に排出する。その結果、圧縮空気の逆流による糸条の毛羽や弛み、単糸切れなど糸条への損傷が少なくなり、低圧縮流体での処理はもとより、高圧縮流体での処理においても交絡を付与することができる。   Since the exhaust groove 18 is provided in the region of the hollow conical shape 25 as described above, the compressed air ejected from the fluid ejection hole 15 travels along the yarn Y, as compared with the case where the exhaust groove 18 is not provided. Therefore, the compressed air is appropriately avoided in the exhaust groove 18 and discharged to the external space through the exhaust groove 18. As a result, there is less damage to the yarn such as fluff and looseness of the yarn due to the backflow of compressed air, breakage of single yarn, and confounding is applied not only in the treatment with a low compression fluid but also in the treatment with a high compression fluid. Can do.

糸道部17は、重心点Gを起点にして糸条の入り口側及び出口側までの距離が同じ長さであっても、入り口側までの距離が出口側までの距離よりも長くても、その反対に入り口側までの距離が出口側までの距離よりも短くてもよい。   Even if the distance from the center of gravity G to the entrance side and the exit side of the yarn is the same length, the yarn path portion 17 is longer than the distance to the exit side, On the contrary, the distance to the entrance side may be shorter than the distance to the exit side.

次に、図6〜9を参照する。本発明の糸条の交絡付与装置1は、噴射孔壁面21及び/または対向壁面22に、糸道に沿って延在する中央溝26を有することが好ましい。中央溝26は糸条走行方向上流側の糸道部開始地点から距離Tを経た位置から始まり、下流側の糸道部の終了地点まで到達している。そして、この中央溝18と排気溝18とは連通している。距離Tは、糸道部の全長をLとした場合に、L/10≦T≦L/2であることが好ましい。TがL/10以上であると、糸条走行方向の上流側における噴射孔面21と対向壁面22との間隔が短い領域を一定の長さ確保できるので、上流側へ逆流する排出空気を抑制することができる。その結果、糸条走行方向の入口側への糸条の逆流をより効果的に抑制でき、糸条の弛みや糸条走行方向の上流側の噴射孔面21や対向壁面21との糸条の擦過をより減らせ、毛羽や単糸切れなどの損傷をさらに減らすことができるので、好ましい。また、TがL/2以下であると、中央溝26の領域を一定の長さ確保できるので、交絡付与した際の糸条の挙動領域を広くでき、単糸各々の挙動範囲が大きくなり、より均一な交絡付与や交絡数の増加や単糸各々の集束部の結束が強い交絡形態を実現できるので、好ましい。   Reference is now made to FIGS. The yarn entanglement imparting device 1 of the present invention preferably has a central groove 26 extending along the yarn path on the injection hole wall surface 21 and / or the opposing wall surface 22. The central groove 26 starts from a position after a distance T from the starting point of the yarn path portion on the upstream side in the yarn traveling direction and reaches the end point of the downstream yarn path portion. The central groove 18 and the exhaust groove 18 communicate with each other. The distance T is preferably L / 10 ≦ T ≦ L / 2, where L is the total length of the yarn path portion. When T is L / 10 or more, it is possible to secure a certain length in a region where the distance between the injection hole surface 21 and the opposing wall surface 22 on the upstream side in the yarn traveling direction is short, so that exhaust air flowing backward to the upstream side is suppressed. can do. As a result, the reverse flow of the yarn to the inlet side in the yarn traveling direction can be more effectively suppressed, and the yarn slack and the yarn on the upstream side of the injection hole surface 21 and the opposing wall surface 21 in the yarn traveling direction can be suppressed. This is preferable because the abrasion can be further reduced and damage such as fluff and single yarn breakage can be further reduced. In addition, when T is L / 2 or less, the region of the central groove 26 can be secured to a certain length, so that the behavior region of the yarn when entangled can be widened, and the behavior range of each single yarn becomes large, This is preferable because a more entangled form can be realized, an increase in the number of entanglements, and a strong binding of the converging portions of each single yarn.

図11は、後述の実施例で使用したポリエチレンテレフタレートマルチフィラメント糸を溶融紡糸して流体交絡付与に供して流体交絡マルチフィラメント糸を製造するプロセスの概略図であり、31は図示しない紡糸口金より紡出された熱可塑性溶融ポリマーに工程通過性を向上させるためマルチフィラメント糸に油剤を付与する給油ガイドである。32、33は3,000m/分前後の引き取り速度においてマルチフィラメント糸を延伸し搬送する第1、第2ホットローラユニットで、34は延伸し搬送されたマルチフィラメント糸を巻き取る巻き取り機である。   FIG. 11 is a schematic view of a process for producing a fluid entangled multifilament yarn by melt spinning the polyethylene terephthalate multifilament yarn used in the examples described later and subjecting it to fluid entanglement, and 31 is a spinning nozzle (not shown). This is an oil supply guide for applying an oil agent to a multifilament yarn in order to improve the process passability of the thermoplastic melted polymer. 32 and 33 are first and second hot roller units that draw and convey the multifilament yarn at a take-up speed of around 3,000 m / min, and 34 is a winder that winds the drawn and conveyed multifilament yarn. .

(実施例1、2、比較例1)
以下、実施例を用いて本実施形態の効果をさらに詳細に説明する。まず、交絡付与装置において、排気溝の有無によって糸条走行方向の交絡付与装置外へ排気される圧縮空気の排気圧力の変化について検討した。
(Examples 1 and 2 and Comparative Example 1)
Hereinafter, the effects of the present embodiment will be described in more detail using examples. First, in the entanglement imparting device, the change in the exhaust pressure of the compressed air exhausted out of the entanglement imparting device in the yarn traveling direction depending on the presence or absence of the exhaust groove was examined.

図14は、実施例に用いた交絡付与装置の排気溝の詳細を説明する図である。排気溝18の溝幅方向両端の稜線のうち、糸条の走行軸Yに近い側の稜線の延長線を線CEとする。線CEは糸条の走行軸Yをはさんで糸条走行方向の上流側に対称となる角度θ3をもって交わり、重心Gが交点となっている。排気溝18の開始地点は、糸道部の終了地点より糸条走行方向の上流側に距離L2だけ離れた位置、および糸条の走行軸Yより糸状走行方向に垂直な方向に距離L3だけ離れた位置にある。排気溝18はこの開始時点から糸条走行方向の下流側かつ糸条走行軸Yから離れる方向に向かって形成され、交絡付与装置外まで連通している。   FIG. 14 is a diagram illustrating details of the exhaust groove of the confounding device used in the example. Of the ridge lines at both ends of the exhaust groove 18 in the groove width direction, an extension line of the ridge line on the side close to the traveling axis Y of the yarn is defined as a line CE. The line CE intersects at an angle θ3 that is symmetric with respect to the upstream side of the yarn traveling direction across the yarn traveling axis Y, and the center of gravity G is the intersection. The start point of the exhaust groove 18 is separated from the end point of the yarn path portion by a distance L2 on the upstream side in the yarn running direction, and away from the yarn running axis Y by a distance L3 in a direction perpendicular to the yarn running direction. In position. The exhaust groove 18 is formed from the start point toward the downstream side of the yarn traveling direction and away from the yarn traveling axis Y, and communicates with the outside of the entanglement imparting device.

本検討では、図1及び図14に示す交絡付与装置を使用した。実施例1、2はそれぞれ図1に示す交絡付与装置の形状を有しており、実施例1、2の排気溝18は幅とその深さがそれぞれ異なっており、実施例1は溝幅:1.3mm、溝深さ:0.65mmであり、実施例2は溝幅:3.4mm、溝深さ:0.6mmである。距離L2は6mm、距離L3は0.25mm、角度θ3は25°とした。流体噴射孔15の噴射孔径は直径0.9mmの円形、2つの流体噴射孔15の中心軸CA、CBを含む平面は走行する糸条に対して垂直であり、CAとCBとがなす角度は90度、糸道長さLは16mm、噴射壁面と対向壁面は糸条走行方向の出口側、入口側に向かって拡大していない平行で平滑な面とした。また、噴射壁面と対向壁面との間隙を調整するスペーサ厚みHは0.3mmとした。比較例1は図1に示す交絡付与装置の排気溝の無い形状であり、排気溝が無い以外は全て実施例1、2と同一の構成および寸法とした。   In this examination, the confounding imparting apparatus shown in FIGS. 1 and 14 was used. Examples 1 and 2 each have the shape of the confounding device shown in FIG. 1, and the exhaust grooves 18 of Examples 1 and 2 have different widths and depths, and Example 1 has a groove width: 1.3 mm and groove depth: 0.65 mm. In Example 2, the groove width is 3.4 mm and the groove depth is 0.6 mm. The distance L2 was 6 mm, the distance L3 was 0.25 mm, and the angle θ3 was 25 °. The injection hole diameter of the fluid injection hole 15 is a circle having a diameter of 0.9 mm, the plane including the central axes CA and CB of the two fluid injection holes 15 is perpendicular to the traveling yarn, and the angle formed by CA and CB is 90 degrees, the yarn path length L was 16 mm, and the injection wall surface and the opposing wall surface were parallel and smooth surfaces that did not expand toward the exit side and the entrance side in the yarn running direction. The spacer thickness H for adjusting the gap between the spray wall surface and the opposing wall surface was 0.3 mm. Comparative Example 1 has a shape without an exhaust groove of the confounding imparting device shown in FIG. 1 and has the same configuration and dimensions as those of Examples 1 and 2 except that there is no exhaust groove.

(1)交絡付与装置の出口側と入口側の排気圧力:
流体噴出孔から圧縮空気を噴射したときの、交絡付与装置の糸道部の入口側の排気圧力P1と出口側の排気圧力P2の測定を実施した。図12に排気圧力測定時の概略図を示す。P1、P2は圧力計を示し、L1は交絡付与装置の糸道部17の重心点GからそれぞれP1、P2の圧力計までの距離である。排気圧力の測定には、日本電産コパル電子株式会社製 ハンディーマノメーターPG-100を用いて、排出圧力測定距離L1は16mmとした。
(1) Exhaust pressure on the outlet side and the inlet side of the confounding device:
The measurement of the exhaust pressure P1 on the inlet side and the exhaust pressure P2 on the outlet side of the yarn path portion of the entanglement imparting device when compressed air was injected from the fluid ejection holes was performed. FIG. 12 shows a schematic diagram when measuring the exhaust pressure. P1 and P2 indicate pressure gauges, and L1 is the distance from the center of gravity G of the yarn path portion 17 of the confounding imparting device to the pressure gauges P1 and P2, respectively. For measurement of the exhaust pressure, a handy manometer PG-100 manufactured by Nidec Copal Electronics Co., Ltd. was used, and the discharge pressure measurement distance L1 was set to 16 mm.

流体噴射の設定圧力は0.2、0.3、0.4、0.5MPaの条件とした。各排気圧力測定結果と、その排気圧力差(P2-P1)の最大値、最小値、平均値を表1に表記した。また、表1における流体噴射の設定圧力と入口側の排気圧力P1、出口側の排気圧力P2の測定結果を図13に示す。図13は、縦軸の−側を入口側の排気圧力P1とし、縦軸の+側を出口側の排気圧力P2としてグラフ化したものである。   The set pressure for fluid ejection was set to 0.2, 0.3, 0.4, and 0.5 MPa. Each exhaust pressure measurement result and the maximum value, minimum value, and average value of the exhaust pressure difference (P2-P1) are shown in Table 1. In addition, FIG. 13 shows the measurement results of the set pressure for fluid injection, the exhaust pressure P1 on the inlet side, and the exhaust pressure P2 on the outlet side in Table 1. FIG. 13 is a graph in which the negative side of the vertical axis is the exhaust pressure P1 on the inlet side, and the positive side of the vertical axis is the exhaust pressure P2 on the outlet side.

Figure 2017186716
Figure 2017186716

表1および図13の結果から次のことが判る。実施例1、2の交絡付与装置は、図1に示すように噴射孔面に、流体噴射孔よりも糸道の上流側で糸道部を挟んで交絡処理装置の外部空間と連通する排気溝が設けられているので、入口側の排気圧力P1が出口側の排気圧力P2よりも低くなり、糸道の上流側へ逆流する圧縮空気の流れを抑制できていることが判る。一方、比較例1の交絡付与装置は、排気溝が設けられておらず、入口側の排気圧力P1と出口側の排気圧力P2がほぼ同圧となり、糸道の上流側へ逆流する圧縮空気の流れを抑制できていないことが判る。   The following can be understood from the results of Table 1 and FIG. As shown in FIG. 1, the entanglement imparting device according to the first and second embodiments has an exhaust groove that communicates with the external space of the entanglement processing device with the yarn path portion on the upstream side of the yarn path with respect to the ejection hole surface, Since the exhaust pressure P1 on the inlet side is lower than the exhaust pressure P2 on the outlet side, it can be seen that the flow of compressed air flowing backward to the upstream side of the yarn path can be suppressed. On the other hand, the confounding imparting device of Comparative Example 1 is not provided with an exhaust groove, and the exhaust pressure P1 on the inlet side and the exhaust pressure P2 on the outlet side are almost the same pressure, and the compressed air that flows backward to the upstream side of the yarn path It can be seen that the flow is not suppressed.

(実施例1〜5、比較例1〜8)
実施例1、2および比較例1の交絡付与装置を用いて、図11に示した工程概要で実際にマルチフィラメント糸を採取した。90デシテックス、フィラメント数72本の異型断面のポリエチレンテレフタレートマルチフィラメント糸を溶融紡糸して流体交絡処理に供し、巻取速度3000m/分で巻き取りマルチフィラメント糸を採取した。流体噴射の設定圧力は0.3MPaとした。採取したマルチフィラメント糸の交絡数の測定と毛羽数の測定を実施した。
(Examples 1-5, Comparative Examples 1-8)
Using the entanglement imparting devices of Examples 1 and 2 and Comparative Example 1, multifilament yarns were actually collected with the outline of the process shown in FIG. Polyethylene terephthalate multifilament yarn having a different cross section of 90 dtex and 72 filaments was melt spun and subjected to fluid entanglement treatment, and the wound multifilament yarn was collected at a winding speed of 3000 m / min. The set pressure for fluid ejection was 0.3 MPa. The number of entangled multifilament yarns and the number of fluffs were measured.

さらに、以下に示す実施例3〜5、比較例2〜8の交絡付与装置を用いて、同じ条件でマルチフィラメント糸を採取した。
実施例3: 噴射壁面と対向壁面との間に、流体噴射孔よりも糸条走行方向の上流側に噴射壁面と対向壁面の間隙が短くなる絞り部を配置し、対向壁面が糸条走行方向の出口側、入口側に向かって拡大していく形状とした以外は実施例2と同じである。絞り部における噴射壁面と対向壁面の間隙はスペーサ厚みHの0.3mmとし、噴射壁面は走行する糸条の走行軸Yと平行で平滑な面とした。
実施例4: 中央溝を配置した以外は実施例2と同じである。中央溝は、体積が12.6mmのV溝形状とした。
実施例5: 実施例3と同じ絞り部を配置し、さらに実施例4と同じ中央溝を配置した以外は実施例2と同じである。
比較例2: 実施例3と同じ絞り部を配置した以外は比較例1と同じである。
比較例3: 実施例4と中央溝を配置した以外は比較例1と同じである。
比較例4: 実施例3と同じ絞り部を配置し、さらに実施例4と同じ中央溝を配置した以外は比較例1と同じである。
比較例5〜8: 角度θ3を4°とした以外は、それぞれ実施例2〜5と同じである。
Furthermore, the multifilament yarn was extract | collected on the same conditions using the confounding provision apparatus of Examples 3-5 and Comparative Examples 2-8 shown below.
Example 3: A constricted portion in which the gap between the injection wall surface and the opposed wall surface becomes shorter between the ejection wall surface and the opposed wall surface in the yarn traveling direction than the fluid ejection hole, and the opposed wall surface is in the yarn traveling direction. Example 2 is the same as Example 2 except that the shape expands toward the exit side and the entrance side. The gap between the injection wall surface and the opposing wall surface in the throttle portion was set to a spacer thickness H of 0.3 mm, and the injection wall surface was parallel to the traveling axis Y of the running yarn and was a smooth surface.
Example 4: The same as Example 2 except that the central groove was arranged. The central groove has a V-groove shape with a volume of 12.6 mm 3 .
Example 5: The same as Example 2 except that the same throttle part as Example 3 is arranged and the same central groove as Example 4 is arranged.
Comparative Example 2: The same as Comparative Example 1 except that the same aperture part as in Example 3 was arranged.
Comparative Example 3: The same as Comparative Example 1 except that Example 4 and the central groove were arranged.
Comparative Example 4 The same as Comparative Example 1 except that the same throttle part as in Example 3 is arranged and the same central groove as in Example 4 is further arranged.
Comparative Examples 5 to 8: The same as Examples 2 to 5 except that the angle θ3 was set to 4 °.

(2)集束性(交絡数の測定と判定):
各実施例及び比較例で得られた異型断面のポリエステル糸について交絡数を測定した。測定装置にはロッシールド社製自動連続交絡度試験器R−2072を用いた。プリテンションを10cN、トリップテンションを17cNに設定し、設定係数交絡部数を20個として試料糸を走行させて、交絡部が20個カウントされるまでに要した糸長さ(走行糸長さ)を測定し、交絡部から次の交絡部までの長さの平均値を求めた。
(2) Convergence (measurement and determination of the number of confounding):
The number of entanglement was measured about the polyester thread of the atypical cross section obtained in each Example and the comparative example. As a measuring device, an automatic continuous entanglement tester R-2072 manufactured by Rosshield was used. The pretension is set to 10 cN, the trip tension is set to 17 cN, the number of setting coefficient entangled parts is set to 20, the sample yarn is run, and the yarn length required to count 20 entangled parts (running yarn length) Measurements were made to determine the average length from the entangled part to the next entangled part.

更に、上記長さの平均値から糸長さ1m当たりの交絡の個数に換算し、この換算値を「糸長さ1mあたりの交絡数」として求めた。測定にあたっては、n数を20回としてその平均値を求めた。   Further, the average value of the above lengths was converted into the number of entanglements per 1 m of yarn length, and this converted value was obtained as “number of entanglements per 1 m of yarn length”. In the measurement, the average value was obtained by setting the n number to 20 times.

交絡数についての判定は、糸1m当たりの交絡数が5個未満を「不良」として表2では「×」で表記し、5個以上15個未満を「やや未達」として表2では「△」で表記し、15個以上25個未満を「良」として表2では○で表記し、25個以上を「最良」として表2では「◎」で表記した。「最良」と「良」を合格とし、「やや未達」と「不良」は不合格とした。   In the determination of the number of entanglements, the number of entanglements per 1 m of yarn is expressed as “bad” in Table 2 as “bad”, and from 5 to less than 15 as “slightly unachieved” in Table 2, “△” In Table 2, “15” or more and less than 25 are indicated as “good”, and in Table 2, “25” or more are indicated as “best” and in Table 2, “「 ”. “Best” and “good” were accepted, and “slightly not achieved” and “bad” were rejected.

(3)パッケージ品位(毛羽数の測定と判定):
各実施例・比較例で得られた異形断面のポリエステル糸について毛羽数を測定した。測定装置には東レ・エンジニアリング株式会社製毛羽計数装置DT-105を用いた。S型検出器により検出高さを0.5mmに設定し、パッケージの解舒速度を500m/分として、10,000mの糸長さについて測定し、そのまま糸10, 000m長さ当たりに存在する毛羽数として求めた。
(3) Package quality (measurement and determination of the number of fluff):
The number of fluffs was measured for the polyester yarn having a modified cross section obtained in each of the examples and comparative examples. A fluff counting device DT-105 manufactured by Toray Engineering Co., Ltd. was used as a measuring device. The detection height is set to 0.5 mm by the S-type detector, the unwinding speed of the package is set to 500 m / min, the yarn length of 10,000 m is measured, and the fluff present per 10,000 m length of the yarn is measured as it is. Calculated as a number.

毛羽数についての判定は、糸10,000m長さ当たりの毛羽数が6個以上を「不良」として表2では「×」で表記し、4個以上6個未満を「やや未達」として表2では「△」で表記し、2個以上4個未満のものを「良」として表2では「○」で表記し、2個未満を「最良」として「◎」で表記した。「最良」と「良」を合格とし、「やや未達」と「不良」は不合格とした。   The number of fluff is judged as “bad” when the number of fluffs per 10,000 m length of yarn is “bad” in Table 2 and as “x” in the range of 4 to less than 6 2 is represented by “Δ”, 2 or more and less than 4 are represented as “good”, “Table 2” is represented by “◯”, and less than 2 are represented as “best” by “◎”. “Best” and “good” were accepted, and “slightly not achieved” and “bad” were rejected.

(4)総合評価:
総合評価は、集束性とパッケージ品位の双方の判定結果の低い方を総合評価の判定に反映した。「最良」と「良」を合格とし、「やや未達」と「不良」は不合格とした。 実施例1〜5、比較例1〜8における交絡付与装置の構成と、集束性、パッケージ品位および総合評価の結果を表2に示す。
(4) Overall evaluation:
The overall evaluation reflected the lower evaluation results for both convergence and package quality in the overall evaluation. “Best” and “good” were accepted, and “slightly not achieved” and “bad” were rejected. Table 2 shows the configuration of confounding imparting apparatuses in Examples 1 to 5 and Comparative Examples 1 to 8, and the results of convergence, package quality, and comprehensive evaluation.

Figure 2017186716
Figure 2017186716

表2の結果から次のことが判る。実施例1〜5の交絡付与装置は、交絡数については比較例1〜4と同等の性能であるが、比較例1〜4に比べて毛羽数を削減できている。比較例5〜8の交絡付与装置は、角度θ3が異なる以外は実施例2〜5と同じであるが、交絡数はやや低下傾向であり、毛羽数が大幅に増加している。   The following can be seen from the results in Table 2. The entanglement imparting devices of Examples 1 to 5 have the same performance as Comparative Examples 1 to 4 with respect to the number of entanglements, but the number of fluffs can be reduced as compared with Comparative Examples 1 to 4. The entanglement imparting devices of Comparative Examples 5 to 8 are the same as those of Examples 2 to 5 except that the angle θ3 is different. However, the number of entanglements is slightly decreasing and the number of fluffs is greatly increased.

1:交絡付与装置
11:流体供給部
12:流体噴射ノズル部材
13:側板部材
14:スペーサ
15:流体噴射孔
16:糸掛けスリット
17:糸道部
18:排気溝
19:流体導入路
20:流体供給路
21:噴射孔面
22:対向壁面
23:第1の円錐形状
24:第2の円錐形状
25:中空円錐形状
26:中央溝
31:給油ガイド
32:第1ホットローラユニット
33:第2ホットローラユニット
34:巻取機
G:糸道部17の重心点
L:糸道長さ
L1:排気圧力測定距離
L2:糸条走行方向の糸道部終了地点から排気溝18の開始地点までの距離
L3:糸条の走行軸Yと平行線CFの距離
T:糸条走行方向上流側の糸道部開始地点から中央溝開始地点までの距離
Y:糸条の走行軸
H:スペーサの厚み
CA:流体噴射孔15の中心軸
CB:流体噴射孔15の中心軸
CD:重心Gから糸条走行方向の上流側へ向かう垂線
CE:排気溝18の溝幅方向の糸条の走行軸Y側の稜線の延長線
CF:糸条の走行軸Yに平行な平行線
P1、P2:圧力計
1: Entangling device 11: fluid supply unit
12: Fluid ejection nozzle member 13: Side plate member
14: Spacer 15: Fluid injection hole 16: Yarn hooking slit 17: Yarn path 18: Exhaust groove
19: Fluid introduction path 20: Fluid supply path 21: Injection hole surface 22: Opposing wall surface 23: First conical shape 24: Second conical shape 25: Hollow conical shape 26: Central groove 31: Oil supply guide
32: First hot roller unit 33: Second hot roller unit 34: Winding machine G: Center of gravity of the yarn path 17 L: Yarn path length L1: Exhaust pressure measurement distance L2: End of the thread path in the yarn running direction Distance from point to start point of exhaust groove 18 L3: Distance between yarn travel axis Y and parallel line CF T: Distance from yarn path start point upstream of yarn travel direction to center groove start point Y: Yarn Strip running axis H: Spacer thickness CA: Center axis CB of fluid ejection hole 15: Center axis CD of fluid ejection hole 15: Vertical line CE from the center of gravity G toward the upstream side in the yarn running direction CE: Groove width of the exhaust groove 18 Extension line CF of the ridge line on the running axis Y side of the yarn in the direction CF: Parallel lines P1, P2 parallel to the running axis Y of the yarn: Pressure gauge

Claims (3)

糸条が通過する糸道部と、この糸道部に糸条を導入するスリット部と、前記糸道部を挟んで互いに向かい合う噴射孔面および対向壁面とからなり、前記噴射孔面には中心軸が交わる2つの流体噴射孔が開口し、前記2つの流体噴射孔から噴射された流体によって前記糸道部にて糸条に交絡を付与するマルチフィラメント糸の交絡処理装置において、
前記噴射孔面および/または前記対向壁面には、前記流体噴射孔よりも糸道の上流側に、糸道部を挟んで前記交絡処理装置の外部空間と連通する排気溝が設けられ、
前記2つの流体噴射孔の中心軸を含む平面の中で、2つの流体噴射孔の内側の稜線、噴射孔面および対向壁面に囲まれた領域、又は2つの流体噴射孔の内側の稜線および噴射孔面に囲まれた領域の重心点をGとし、
前記重心点Gから糸条走行方向上流側へ引いた糸条走行方向に平行な線をCDとして、
前記排気溝は、頂点をG、中心軸をCDおよび頂角をθ1とする第1の円錐形状領域から、頂点をG、中心軸をCDおよび頂角をθ2とする第2の円錐形状領域を除いた中空円錐形状領域に存在し、前記円錐の頂角θ1(°)と円錐の頂角θ2(°)が以下の式(1)、(2)および(3)を満足する、マルチフィラメント糸の交絡付与装置。
(1) θ1<180°
(2) θ2≧10°
(3) θ1>θ2
A yarn path portion through which the yarn passes, a slit portion for introducing the yarn into the yarn path portion, and an injection hole surface and an opposite wall surface facing each other across the yarn path portion. In the entanglement processing apparatus for multifilament yarns, two fluid ejection holes with intersecting axes are opened, and the yarns are entangled at the yarn path portion by the fluid ejected from the two fluid ejection holes.
The ejection hole surface and / or the opposing wall surface is provided with an exhaust groove communicating with the external space of the entanglement processing device across the yarn path portion on the upstream side of the yarn path from the fluid ejection hole,
In a plane including the central axis of the two fluid ejection holes, a ridge line inside the two fluid ejection holes, a region surrounded by the ejection hole surface and the opposite wall surface, or a ridge line and ejection inside the two fluid ejection holes G is the center of gravity of the area surrounded by the hole surface,
A line parallel to the yarn running direction drawn from the center of gravity G to the upstream side of the yarn running direction is defined as CD,
The exhaust groove has a first conical shape region having a vertex as G, a central axis as CD, and an apex angle as θ1, and a second conical shape region as having a vertex as G, the central axis as CD, and the apex angle as θ2. A multifilament yarn that exists in the hollow cone-shaped region except that the apex angle θ1 (°) of the cone and the apex angle θ2 (°) of the cone satisfy the following expressions (1), (2), and (3): Confounding device.
(1) θ1 <180 °
(2) θ2 ≧ 10 °
(3) θ1> θ2
前記噴射孔面および/または前記対向壁面に、糸道に沿って延在する中央溝を有し、
前記中央溝は糸条走行方向上流側の糸道部開始地点から距離Tを経た位置から始まり、下流側の糸道部の終了地点まで到達しており、
前記排気溝は前記中央溝と連通しており、
前記距離Tは糸道部の全長をLとして、以下の式(4)を満たす、請求項1のマルチフィラメント糸の交絡付与装置。
(4) L/10≦T≦L/2
The injection hole surface and / or the opposing wall surface has a central groove extending along a yarn path,
The central groove starts from a position that has passed a distance T from the yarn path start point on the upstream side in the yarn running direction, and reaches the end point of the downstream yarn path,
The exhaust groove communicates with the central groove;
The said distance T is the entanglement provision apparatus of the multifilament yarn of Claim 1 which satisfy | fills the following formula | equation (4) by making the full length of a yarn path part into L.
(4) L / 10 ≦ T ≦ L / 2
請求項1または2のマルチフィラメント糸の交絡付与装置を用いて糸条に交絡を付与することで、交絡が付与された合成繊維を製造する、合成繊維の製造方法。   A method for producing a synthetic fiber, wherein a synthetic fiber to which entanglement is imparted is produced by imparting entanglement to the yarn using the multifilament yarn entanglement imparting device according to claim 1.
JP2017002299A 2016-03-31 2017-01-11 Yarn interlacing apparatus and method for producing synthetic fiber using the same Pending JP2017186716A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016070878 2016-03-31
JP2016070878 2016-03-31

Publications (1)

Publication Number Publication Date
JP2017186716A true JP2017186716A (en) 2017-10-12

Family

ID=60046242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017002299A Pending JP2017186716A (en) 2016-03-31 2017-01-11 Yarn interlacing apparatus and method for producing synthetic fiber using the same

Country Status (1)

Country Link
JP (1) JP2017186716A (en)

Similar Documents

Publication Publication Date Title
EP2009150B2 (en) Air-jet spinning machine
JPS6215331A (en) Air type spinning machine
JP2017186716A (en) Yarn interlacing apparatus and method for producing synthetic fiber using the same
JP5515934B2 (en) Pneumatic spinning device and spinning machine
JP6186759B2 (en) Multifilament yarn entanglement processing apparatus, entanglement processing method and manufacturing method
EP2369044B1 (en) Pneumatic spinning device and spinning machine
JP6926501B2 (en) A device for entwining threads and a method for producing synthetic fibers using the device.
JP2007314918A (en) Apparatus for fluid treatment of yarn and method for producing interlaced yarn
JP5229117B2 (en) Multi-filament yarn entanglement imparting device and entanglement imparting method
JP6986540B2 (en) Nozzles and methods for manufacturing star yarn
JP2012097374A (en) Entanglement treatment device of multifilament yarn and method of entanglement treatment
JP2004068198A (en) Device and method for guiding filamentous form
JP2016172938A (en) Interlacing device for yarn and manufacturing method for synthetic fiber using the same
JPS6242828B2 (en)
JP2005213692A (en) Fluid interlacing treatment apparatus for filament yarn and method for producing interlaced filament yarn
JP2011195995A (en) Device for interlace-treating yarn and method of interlace-treating
JP3975765B2 (en) Yarn fluid processing equipment
JP2008075223A (en) Oil applying guide device for synthetic fiber and oil applying method by using the same
CN103014940B (en) Spinning machine
JP3992373B2 (en) Entangling device and method for producing multifilament yarn
JP2005179807A (en) Interlacing treatment apparatus for yarn and interlacing treatment method therefor
JP2008019514A (en) Interlacing device for multifilament yarn, and method for producing multifilament yarn using the same
JPS60110915A (en) Manufacture of polyester fiber
JP2000239938A (en) Nozzle for jetting liquid
CN112501728A (en) Spinning unit and method for manufacturing spun yarn