JP2017186600A - Manufacturing method of alloy and alloy powder - Google Patents

Manufacturing method of alloy and alloy powder Download PDF

Info

Publication number
JP2017186600A
JP2017186600A JP2016075403A JP2016075403A JP2017186600A JP 2017186600 A JP2017186600 A JP 2017186600A JP 2016075403 A JP2016075403 A JP 2016075403A JP 2016075403 A JP2016075403 A JP 2016075403A JP 2017186600 A JP2017186600 A JP 2017186600A
Authority
JP
Japan
Prior art keywords
metal
powder
alloy
melting point
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016075403A
Other languages
Japanese (ja)
Inventor
滋 中澤
Shigeru Nakazawa
滋 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Printing and Equipment Trading Co Ltd
Original Assignee
Tokyo Printing and Equipment Trading Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Printing and Equipment Trading Co Ltd filed Critical Tokyo Printing and Equipment Trading Co Ltd
Priority to JP2016075403A priority Critical patent/JP2017186600A/en
Publication of JP2017186600A publication Critical patent/JP2017186600A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of alloy particles of metal A-metal C by a solid phase-solid phase reaction method hardly generating oxide and capable of obtaining a uniform composition.SOLUTION: There is provided a manufacturing method of an alloy for accommodating a mixture obtained by uniformly mixing a power of metal A and a powder of metal C, which are easy to be heat dispersed each other, a mixture obtained by uniformly mixing the powder of metal A, a powder of hydrogen compound of metal A and the powder of metal C, or a mixture obtained by uniformly mixing the powder of hydrogen compound of metal A and the powder of metal C in a graphite crucible 1 and heat treating the same at a temperature which is lower than the melting point of metal A and lower than the melting point of metal C after evacuation to obtain an alloy powder with a uniform composition.SELECTED DRAWING: Figure 1

Description

本発明は、互いに熱拡散しやすい金属Aと金属Cの合金及びその製造方法に関する。   The present invention relates to an alloy of metal A and metal C that easily diffuses to each other and a method for manufacturing the same.

合金の製造方法として、溶解法、固相−液相反応法、固相−固相反応法、メカニカルミリング法が知られている。 As a method for producing an alloy, a melting method, a solid-liquid phase reaction method, a solid-solid phase reaction method, and a mechanical milling method are known.

特開2002−249801号公報JP 2002-249801 A 特開2011−249742号公報JP 2011-249742 A 特開2000−54009号公報JP 2000-54009 A

特許文献1においては、メカニカルミリング法によりMg−Si合金を製造している。メカニカルミリング法は、硬質Cr鋼容器にステンレス製ボールを入れ、さらに配合粉末を入れて容器を振動あるいは回転させることによって、容器内の粉末を混合あるいは粉砕して合金化して合金を製造する方法である。メカニカルアロイング装置として、振動ボールミル、遊星型ボールミル、転動型ボールミル、回転子挿入型ボールミルを挙げることができる。 In Patent Document 1, an Mg—Si alloy is manufactured by a mechanical milling method. The mechanical milling method is a method in which a stainless steel ball is placed in a hard Cr steel container, and further mixed powder is added and the container is vibrated or rotated to mix or pulverize the powder in the container to form an alloy. is there. Examples of the mechanical alloying device include a vibration ball mill, a planetary ball mill, a rolling ball mill, and a rotor insertion type ball mill.

特許文献2においては、ホットプレス法、熱間等方圧プレス法(HIP)、放電プラズマ焼結法(SPS)、熱間圧延法、熱間押出法、熱間鍛造法などの熱処理によってMg−Si合金を製造している。 In Patent Document 2, Mg— is applied by heat treatment such as hot pressing, hot isostatic pressing (HIP), spark plasma sintering (SPS), hot rolling, hot extrusion, hot forging, and the like. Si alloy is manufactured.

また、特許文献3においては固相−固相反応法によってMgSi合金を製造している。 In Patent Document 3, an Mg 2 Si alloy is manufactured by a solid-solid reaction method.

金属Aは融点がTfus(A)で沸点がTvap(A)であり、金属Cは融点がTfus(C)で沸点がTvap(C)であるとする。金属Aの融点Tfus(A)が金属Cの融点Tfus(C)とほぼ等しい場合には溶解法による合金製造は問題ない。しかしながら、金属Cの融点Tfus(C)が金属Aの沸点Tvap(A)より高い場合には、金属A−金属Cの合金を溶解法によって製造しようとすると、大気圧においては金属Aの蒸発量が極めて大きくなり、金属A−金属Cの合金の組成を制御するのが困難である。加圧炉中で金属Aと金属Cを加熱溶解することによって金属Aの蒸発を抑えることができるが、製造コストが高くなる。したがって、金属Cの融点Tfus(C)が金属Aの沸点Tvap(A)より高い場合には、溶融法による金属A−金属Cの合金の製造は、組成制御が困難であるとともに製造コストが高くなる。 Metal A has a melting point of Tfus (A) and a boiling point of Tvap (A), and metal C has a melting point of Tfus (C) and a boiling point of Tvap (C). When the melting point Tfus (A) of the metal A is substantially equal to the melting point Tfus (C) of the metal C, there is no problem in manufacturing the alloy by the melting method. However, when the melting point Tfus (C) of the metal C is higher than the boiling point Tvap (A) of the metal A, if an alloy of metal A and metal C is to be produced by the melting method, the amount of evaporation of the metal A at atmospheric pressure Becomes extremely large, and it is difficult to control the composition of the metal A-metal C alloy. Evaporation of the metal A can be suppressed by heating and melting the metal A and the metal C in a pressure furnace, but the manufacturing cost increases. Therefore, when the melting point Tfus (C) of the metal C is higher than the boiling point Tvap (A) of the metal A, the production of the metal A-metal C alloy by the melting method is difficult to control the composition and the production cost is high. Become.

また、溶融法により得られる合金はバルク状であるので、合金粉末とするためにはバルク状の合金を粉砕しなければならない。粉砕することによって、不純物が混入して合金の純度が低下するおそれがあるとともに製造コストが高くなり問題である。 In addition, since the alloy obtained by the melting method is in a bulk form, the bulk form alloy must be pulverized to obtain an alloy powder. By pulverizing, impurities may be mixed and the purity of the alloy may be lowered, and the manufacturing cost is increased, which is a problem.

メカニカルミリング法によって金属A−金属Cの合金を作成しようとすると、容器の材料やボールの材料が剥離し、金属A−金属Cの合金中に不純物として混入する。したがって、メカニカルミリング法による金属A−金属Cの合金の製造は、得られる金属A−金属Cの合金中に容器の材料やボールの材料が混入しやすく、純度が低く、均一な組成を得るのが困難であり問題である。 When an alloy of metal A-metal C is prepared by the mechanical milling method, the material of the container and the material of the ball are peeled and mixed as impurities in the alloy of metal A-metal C. Therefore, in the manufacture of the metal A-metal C alloy by the mechanical milling method, the container material and the ball material are easily mixed in the obtained metal A-metal C alloy, and the purity is low and a uniform composition is obtained. Is difficult and problematic.

特許文献3に開示されている固相−固相反応法によって金属A−金属Cの合金を作成しようとすると、溶解法による上記の問題やメカニカルミリング法による上記の問題はないが、酸化物が生成しやすく、均一な組成を得ることができず問題である。酸化物により固相中の原子または分子の拡散が妨害され物質拡散速度が大幅に低下したためと考えられる。 When an alloy of metal A and metal C is prepared by the solid phase-solid phase reaction method disclosed in Patent Document 3, there is no problem described above due to the dissolution method or mechanical milling method. It is a problem that it is easy to produce and a uniform composition cannot be obtained. This is probably because the diffusion of atoms or molecules in the solid phase was hindered by the oxide, and the material diffusion rate was greatly reduced.

したがって、本発明により解決しようとする課題は、酸化物が生成しにくく、均一な組成を得ることができる固相−固相反応法による金属A−金属Cの合金粒子の製造方法を提供することにある。
本発明の別の課題は、粒子径が均一な金属A−金属Cの合金粒子を提供することにある。
Therefore, the problem to be solved by the present invention is to provide a method for producing metal A-metal C alloy particles by a solid-solid reaction method, which is difficult to produce oxides and can obtain a uniform composition. It is in.
Another object of the present invention is to provide metal A-metal C alloy particles having a uniform particle diameter.

当該課題は、請求項1に記載の第1の本発明、すなわち、互いに熱拡散しやすい金属A及び金属Cについて、金属Aの粉末又は金属Aの水素化合物の粉末と金属Cの粉末を均一に混合した後に、当該混合物を黒鉛るつぼ内に収納し、真空排気した直後に、金属Aの融点より低く、かつ、金属Cの融点より低い温度で熱処理して、均一組成の合金粉末を得る合金の製造方法によって、達成される。 The subject is the first aspect of the present invention according to claim 1, that is, the metal A and the metal C that are easily thermally diffused with each other, and the metal A powder or the metal A hydrogen compound powder and the metal C powder are uniformly distributed. After mixing, the mixture is stored in a graphite crucible and immediately after being evacuated, heat treatment is performed at a temperature lower than the melting point of metal A and lower than the melting point of metal C to obtain an alloy powder having a uniform composition. This is achieved by the manufacturing method.

互いに熱拡散しやすい金属Aと金属Cの例として、Al−Be、Al−Si、Al−Ti、Al−Fe、Al−Ni、Al−Cu、Al−Mg、Al−Ag、Al−V、Be−Si、Be−Cu、Be−Au、Be−Ag、Cr−Si、Cr−W、Co−Si、Co−Ni、Co−Pd、Cu−Au、Cu−Si、Cu−Mo、Cu−Ni、Cu−Nb、Cu−Ag、Cu−V、Au−Si、Au−Ni、Mg−Ni、Mg−Si、Mn−Si、Mo−Nb、Mo−Si、Mo−Pd、Mo−Pt、Mo−Ta、Mo−W、Na−Si、Ti−Cr、Ti−Fe、Ti−Ni、Ti−Cu、Ti−Nb、Ti−Mo、Ti−Pd、Ti−Ta、Ti−W、Ti−Pt、Ti−Si、Ti−U、W−Cu、W−Si、Fe−Ni、Fe−Cu、Fe−Zr、Fe−Nb、Fe−Pd、Fe−Si、Fe−Ta、Fe−W、Fe−U、Ni−Cu、Ni−Nb、Ni−Mo、Ni−Si、Ni−Pd、Ni−Pt、Ni−W、Ni−U、Nb−Si、Nb−Ta、Nb−W、Nb−V、Pd−Si、Pd−W、Pt−Si、Pt−W、Ag−Si、Ag−Ti、Ta−Si、Ta−V、Zr−Si、Zr−U、U−Alを挙げることができる。 Examples of metal A and metal C that are likely to thermally diffuse with each other include Al-Be, Al-Si, Al-Ti, Al-Fe, Al-Ni, Al-Cu, Al-Mg, Al-Ag, Al-V, Be-Si, Be-Cu, Be-Au, Be-Ag, Cr-Si, Cr-W, Co-Si, Co-Ni, Co-Pd, Cu-Au, Cu-Si, Cu-Mo, Cu- Ni, Cu-Nb, Cu-Ag, Cu-V, Au-Si, Au-Ni, Mg-Ni, Mg-Si, Mn-Si, Mo-Nb, Mo-Si, Mo-Pd, Mo-Pt, Mo-Ta, Mo-W, Na-Si, Ti-Cr, Ti-Fe, Ti-Ni, Ti-Cu, Ti-Nb, Ti-Mo, Ti-Pd, Ti-Ta, Ti-W, Ti- Pt, Ti-Si, Ti-U, W-Cu, W-Si, Fe-Ni, Fe-Cu, e-Zr, Fe-Nb, Fe-Pd, Fe-Si, Fe-Ta, Fe-W, Fe-U, Ni-Cu, Ni-Nb, Ni-Mo, Ni-Si, Ni-Pd, Ni- Pt, Ni-W, Ni-U, Nb-Si, Nb-Ta, Nb-W, Nb-V, Pd-Si, Pd-W, Pt-Si, Pt-W, Ag-Si, Ag-Ti, Ta-Si, Ta-V, Zr-Si, Zr-U, U-Al can be mentioned.

金属Aの水素化合物の例として、LiH、BeH、NaH、MgH、TiH、CrH、CrH、NiH、CuH、ZrH、NbH、NbHを挙げることができる。 Examples of the hydrogen compound of a metal A, mention may be made of LiH, BeH, NaH, MgH 2 , TiH 2, CrH, CrH 2, NiH, CuH, ZrH 2, NbH, the NbH 2.

第1の本発明の実施態様においては、請求項2に記載のように、金属Aの粉末又は金属Aの水素化合物の粉末と金属C粉末の混合比は、得ようとする合金の化学量論比である。 In the first embodiment of the present invention, as described in claim 2, the mixing ratio of the metal A powder or the metal A hydrogen compound powder and the metal C powder is determined by the stoichiometry of the alloy to be obtained. Is the ratio.

第1の本発明の他の実施態様においては、請求項3に記載のように、金属Aの粉末又は金属Aの水素化合物の粉末の純度が99.9%以上であり、平均粒径が0.1〜100μmであり、金属C粉末の純度が99.9%以上であり、平均粒径が0.1〜100μmである。 In another embodiment of the first aspect of the present invention, as described in claim 3, the purity of the metal A powder or the metal A hydrogen compound powder is 99.9% or more, and the average particle size is 0. 0.1 to 100 μm, the purity of the metal C powder is 99.9% or more, and the average particle size is 0.1 to 100 μm.

第1の本発明のさらに他の実施態様においては、請求項4に記載のように、10Pa以下の真空度まで真空排気する。 In still another embodiment of the first aspect of the present invention, as described in claim 4, the vacuum is evacuated to a degree of vacuum of 10 Pa or less.

当該課題は、請求項5に記載の第2の本発明、すなわち、互いに熱拡散しやすい金属A及び金属Cについて、金属Aの粉末又は金属Aの水素化合物の粉末と金属Cの粉末を均一に混合した後に、当該混合物を黒鉛るつぼ内に収納し、真空排気した直後に、金属Aの融点より低く、かつ、金属Cの融点より低い温度で熱処理して、得られる均一組成の粉末合金であって、合金粉末の平均粒径が0.01〜100μmであることを特徴とする合金粉末によっても達成される。 The subject is the second aspect of the present invention according to claim 5, that is, the metal A and the metal C that are easily thermally diffused with each other, and the metal A powder or the metal A hydrogen compound powder and the metal C powder are uniformly distributed. After mixing, the mixture is stored in a graphite crucible, and immediately after being evacuated, heat treatment is performed at a temperature lower than the melting point of the metal A and lower than the melting point of the metal C. The alloy powder is also achieved by an alloy powder characterized in that the average particle diameter of the alloy powder is 0.01 to 100 μm.

市販の不活性ガスを用いず、10Pa以下の真空度まで真空排気した直後に熱拡散処理しているので、酸素分圧が低い状態で昇温、保持、冷却され、酸化物が生成しにくい。 Since the thermal diffusion treatment is performed immediately after evacuation to a vacuum degree of 10 Pa or less without using a commercially available inert gas, the oxide is not easily generated because it is heated, held and cooled in a state where the oxygen partial pressure is low.

原料として粉末状の金属Aの水素化合物を用いる場合には、加熱によって金属Aの水素化合物が金属AとHに分解され、発生したHによって、金属A粉末の表面を覆う酸化層が還元され除去され、金属A粉末の表面が活性化される。 When a powdered metal A hydrogen compound is used as a raw material, the metal A hydrogen compound is decomposed into metal A and H 2 by heating, and the generated H 2 reduces the oxide layer covering the surface of the metal A powder. And the surface of the metal A powder is activated.

そのため、熱拡散速度が遅くならず、金属Aと金属Cの固相−固相反応が促進され、比較的低温度かつ比較的短時間で原料金属C粉末の中心部まで熱による金属Aの物質移動を均等に行うことができる。その結果、本発明によって、均一な組成の金属A−金属Cの合金粉末を製造することができる。 Therefore, the thermal diffusion rate is not slowed, the solid-solid reaction between the metal A and the metal C is promoted, and the material of the metal A is heated to the center of the raw metal C powder at a relatively low temperature and in a relatively short time. The movement can be performed evenly. As a result, according to the present invention, a metal A-metal C alloy powder having a uniform composition can be produced.

本実施形態において使用した製造装置の概略図である。It is the schematic of the manufacturing apparatus used in this embodiment. 本実施形態の合金粉末製造における熱処理において実施した温度−時間グラフの概略図である。It is the schematic of the temperature-time graph implemented in the heat processing in the alloy powder manufacture of this embodiment. 得られた試料粉末の走査電子顕微鏡観察写真である。It is a scanning electron microscope observation photograph of the obtained sample powder. 得られた試料粉末の走査電子顕微鏡観察写真である。It is a scanning electron microscope observation photograph of the obtained sample powder. 得られた試料粉末の断面のカラーマップデータであり、(a)は断面のSEM像、(b)はMg分布、(c)はSi分布、(d)はO分布を示している。It is the color map data of the cross section of the obtained sample powder, (a) shows the SEM image of the cross section, (b) shows the Mg distribution, (c) shows the Si distribution, and (d) shows the O distribution.

以下、金属Mgと金属Siとの合金の製造の実施形態について説明する。 Hereinafter, an embodiment of manufacturing an alloy of metal Mg and metal Si will be described.

実施例1
原料として、Mg粉末及びSi粉末を使用した。Mg粉末(関東金属製)の純度は99.9%であり、平均粒径は100μmであった。また、金属Si粉末(東京印刷機材トレーディング(株)製)の純度は99.9999%であり、平均粒径は1μmであった。
Example 1
Mg powder and Si powder were used as raw materials. The purity of the Mg powder (manufactured by Kanto Metals) was 99.9%, and the average particle size was 100 μm. The purity of the metal Si powder (manufactured by Tokyo Printing Equipment Trading Co., Ltd.) was 99.9999%, and the average particle size was 1 μm.

上記のMg粉末3.2kgと上記のSi粉末1.85kgをポリ容器内に秤量して、振とうしたところ、Mg粉末とSi粉末は均一に混合されていた。 When 3.2 kg of the above Mg powder and 1.85 kg of the above Si powder were weighed into a plastic container and shaken, the Mg powder and the Si powder were uniformly mixed.

図1は本実施形態において使用した製造装置の概略図である。黒鉛るつぼ1は内径φ275mm×高さ280mmであり、上面の中央にガス抜き穴11が設けられている。混合原料2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空容器3内に水平に配置した。 FIG. 1 is a schematic view of a manufacturing apparatus used in this embodiment. The graphite crucible 1 has an inner diameter φ275 mm × height 280 mm, and a gas vent hole 11 is provided in the center of the upper surface. After the mixed raw material 2 was accommodated in the graphite crucible 1, it was placed horizontally in a vacuum vessel 3 equipped with a high frequency heating device 4.

そして、混合原料2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空容器3内を10Paまで真空排気した。 And the inside of the vacuum vessel 3 was evacuated to 10 Pa using the vacuum pump 6 through the pipe 5 while taking care not to scatter the mixed raw material 2.

10Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(T)から600℃(Tmax)まで1時間(0〜t)かけて昇温し、600℃(Tmax)で5時間(t〜t)保持し、その後、加熱電源をOFFして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。 Immediately after evacuation to 10 Pa, as shown in the heat treatment pattern shown in FIG. 2, the temperature was raised from room temperature (T r ) to 600 ° C. (T max ) over 1 hour (0 to t 1 ), and 600 ° C. (T max ) For 5 hours (t 1 to t 2 ), and then the heating power supply was turned off to naturally cool. Vacuum evacuation was continued using the vacuum pump 6 during the temperature raising, holding, and cooling.

混合原料2を十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After the mixed raw material 2 was sufficiently cooled, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.

得られた試料粉末についてSEM像を観察した。図3、図4は得られた試料粉末の走査電子顕微鏡観察写真である。なお図4は図3の部分拡大写真である。SEM観察の結果、試料粉末は1μm程度の微粒子が凝集した形態であり、原料のSi粉末の平均粒径と同等であった。このことから、原料粉末の融着はほとんど生じなかったと考えられる。また、得られた試料粉末には、約5%のマグネシウムの酸化物が含まれていた。 The SEM image was observed about the obtained sample powder. 3 and 4 are scanning electron microscope observation photographs of the obtained sample powder. FIG. 4 is a partially enlarged photograph of FIG. As a result of SEM observation, the sample powder was in a form in which fine particles of about 1 μm were aggregated, and was equivalent to the average particle diameter of the raw material Si powder. From this, it is considered that the raw material powder was hardly fused. The obtained sample powder contained about 5% magnesium oxide.

さらに、得られた試料粉末の断面を作成し、Mg分布、Si分布、O分布を測定した。図5は得られた試料粉末の断面のカラーマップデータであり、(a)は断面のSEM像、(b)はMg分布、(c)はSi分布、(d)はO分布を示している。Mg分布及びSi分布ともに粒子の表面から中心にわたって均等であった。このことから、得られた試料粉末の組成は粒子の表面から中心にわたって均一になっていると考えられる。   Furthermore, the cross section of the obtained sample powder was created, and Mg distribution, Si distribution, and O distribution were measured. FIG. 5 is color map data of the cross section of the obtained sample powder, (a) shows the SEM image of the cross section, (b) shows the Mg distribution, (c) shows the Si distribution, and (d) shows the O distribution. . Both the Mg distribution and the Si distribution were uniform from the surface of the particle to the center. From this, it is considered that the composition of the obtained sample powder is uniform from the surface of the particle to the center.

実施例2
原料として、Mg粉末、MgH粉末及びSi粉末を使用した。Mg粉末(関東金属製)の純度は99.9%であり、平均粒径は100μmであった。MgH粉末(バイオコーク技研製)の純度は99.9%であり、平均粒径は60μmであった。また、金属Si粉末(東京印刷機材トレーディング(株)製)の純度は99.9999%であり、平均粒径は1μmであった。
Example 2
Mg powder, MgH 2 powder and Si powder were used as raw materials. The purity of the Mg powder (manufactured by Kanto Metals) was 99.9%, and the average particle size was 100 μm. The purity of MgH 2 powder (manufactured by Bio Coke Giken) was 99.9%, and the average particle size was 60 μm. The purity of the metal Si powder (manufactured by Tokyo Printing Equipment Trading Co., Ltd.) was 99.9999%, and the average particle size was 1 μm.

上記のMg粉末1.6kgと上記のMgH粉末1.73kgと上記のSi粉末1.85kgをポリ容器内に秤量して、振とうしたところ、Mg粉末とMgH粉末とSi粉末は均一に混合されていた。 When 1.6 kg of the above Mg powder, 1.73 kg of the above MgH 2 powder and 1.85 kg of the above Si powder were weighed into a plastic container and shaken, the Mg powder, MgH 2 powder and Si powder were uniformly distributed. It was mixed.

実施例1と同様に、混合原料2を黒鉛るつぼ1内に収納した後に、高周波加熱装置4を備えた真空容器3内に水平に配置した。 In the same manner as in Example 1, after the mixed raw material 2 was stored in the graphite crucible 1, it was horizontally disposed in the vacuum vessel 3 equipped with the high-frequency heating device 4.

そして、混合原料2が飛散しないように注意しながら、配管5を通じて真空ポンプ6を用いて真空容器3内を10Paまで真空排気した。 And the inside of the vacuum vessel 3 was evacuated to 10 Pa using the vacuum pump 6 through the pipe 5 while taking care not to scatter the mixed raw material 2.

10Paまで真空排気した直後に、図2に示す熱処理パターンのように、室温(T)から600℃(Tmax)まで3時間(0〜t)かけてゆっくりと昇温し、600℃(Tmax)で5時間(t〜t)保持し、その後、加熱電源をOFFして、自然冷却した。昇温、保持、冷却の間も真空ポンプ6を用いて真空排気を続けた。急速に昇温すると時間当たりの水素発生量が多くなりすぎ混合原料2が飛散しやすくなることがわかった。 Immediately after evacuating to 10 Pa, as shown in the heat treatment pattern shown in FIG. 2, the temperature was slowly raised from room temperature (T r ) to 600 ° C. (T max ) over 3 hours (0 to t 1 ), and 600 ° C. ( (T max ) for 5 hours (t 1 to t 2 ), and then the heating power supply was turned off to naturally cool. Vacuum evacuation was continued using the vacuum pump 6 during the temperature raising, holding, and cooling. It has been found that when the temperature is rapidly increased, the amount of hydrogen generated per hour increases so that the mixed raw material 2 is easily scattered.

混合原料2を十分に冷却した後、真空ポンプ6を停止し大気圧に戻し、黒鉛るつぼ1を取り出し、試料粉末を得た。 After the mixed raw material 2 was sufficiently cooled, the vacuum pump 6 was stopped and returned to atmospheric pressure, the graphite crucible 1 was taken out, and a sample powder was obtained.

得られた試料粉末についてSEM像を観察した。SEM観察の結果、試料粉末は1μm程度の微粒子が凝集した形態であり、原料のSi粉末の平均粒径と同等であった。このことから、原料粉末の融着はほとんど生じなかったと考えられる。また、得られた試料粉末に含まれるマグネシウムの酸化物は1%以下であった。 The SEM image was observed about the obtained sample powder. As a result of SEM observation, the sample powder was in a form in which fine particles of about 1 μm were aggregated, and was equivalent to the average particle diameter of the raw material Si powder. From this, it is considered that the raw material powder was hardly fused. Moreover, the oxide of magnesium contained in the obtained sample powder was 1% or less.

さらに、得られた試料粉末の断面を作成し、Mg分布、Si分布、O分布を測定した。Mg分布及びSi分布ともに粒子の表面から中心にわたって均等であった。このことから、得られた試料粉末の組成は粒子の表面から中心にわたって均一になっていると考えられる。   Furthermore, the cross section of the obtained sample powder was created, and Mg distribution, Si distribution, and O distribution were measured. Both the Mg distribution and the Si distribution were uniform from the surface of the particle to the center. From this, it is considered that the composition of the obtained sample powder is uniform from the surface of the particle to the center.

Claims (5)

互いに熱拡散しやすい金属A及び金属Cについて、金属Aの粉末と金属Cの粉末とを均一に混合した混合物、金属Aの粉末と金属Aの水素化合物の粉末と金属Cの粉末とを均一に混合した混合物又は金属Aの水素化合物の粉末と金属Cの粉末とを均一に混合した混合物を黒鉛るつぼ内に収納し、真空排気後に、金属Aの融点より低く、かつ、金属Cの融点より低い温度で熱処理して、均一組成の合金粉末を得る合金の製造方法。   For metal A and metal C that are likely to thermally diffuse with each other, a mixture of metal A powder and metal C powder uniformly mixed, metal A powder, metal A hydrogen compound powder, and metal C powder uniformly A mixed mixture or a mixture obtained by uniformly mixing metal A hydride powder and metal C powder is placed in a graphite crucible and, after evacuation, is lower than the melting point of metal A and lower than the melting point of metal C. A method for producing an alloy that is heat-treated at a temperature to obtain an alloy powder having a uniform composition. 金属Aの粉末又は金属Aの水素化合物の粉末と金属C粉末の混合比は、得ようとする合金の化学量論比であることを特徴とする請求項1に記載の合金の製造方法。   The method for producing an alloy according to claim 1, wherein the mixing ratio of the metal A powder or the metal A hydride powder and the metal C powder is a stoichiometric ratio of the alloy to be obtained. 金属Aの粉末又は金属Aの水素化合物の粉末の純度が99.9%以上であり、平均粒径が0.1〜100μmであり、金属C粉末の純度が99.9%以上であり、平均粒径が0.1〜100μmであることを特徴とする請求項1又は2に記載の合金の製造方法。   The purity of the metal A powder or the metal A hydrogen compound powder is 99.9% or more, the average particle size is 0.1 to 100 μm, the purity of the metal C powder is 99.9% or more, and the average The method for producing an alloy according to claim 1 or 2, wherein the particle size is 0.1 to 100 µm. 10Pa以下の真空度まで真空排気することを特徴とする請求項1から3までのいずれか1つに記載の合金の製造方法。   The method for producing an alloy according to any one of claims 1 to 3, wherein the vacuum is evacuated to a degree of vacuum of 10 Pa or less. 請求項1から4までのいずれか1つに記載の製造方法により得られる合金であって、合金粉末の平均粒径が0.01〜100μmであることを特徴とする合金粉末。   An alloy powder obtained by the production method according to any one of claims 1 to 4, wherein the alloy powder has an average particle size of 0.01 to 100 µm.
JP2016075403A 2016-04-04 2016-04-04 Manufacturing method of alloy and alloy powder Pending JP2017186600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016075403A JP2017186600A (en) 2016-04-04 2016-04-04 Manufacturing method of alloy and alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016075403A JP2017186600A (en) 2016-04-04 2016-04-04 Manufacturing method of alloy and alloy powder

Publications (1)

Publication Number Publication Date
JP2017186600A true JP2017186600A (en) 2017-10-12

Family

ID=60044707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016075403A Pending JP2017186600A (en) 2016-04-04 2016-04-04 Manufacturing method of alloy and alloy powder

Country Status (1)

Country Link
JP (1) JP2017186600A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350494A (en) * 1976-10-19 1978-05-08 Matsushita Electric Ind Co Ltd Production method of resistor compound
JPH0297603A (en) * 1988-10-04 1990-04-10 Tdk Corp Silicon iron alloy powder and manufacture thereof and compacting core
JP2000054009A (en) * 1998-08-07 2000-02-22 Yazaki Corp Production of alloy powder and production of thermoelement using it
WO2003027342A1 (en) * 2001-09-25 2003-04-03 Center For Advanced Science And Technology Incubation, Ltd. Magnesium base composite material
JP2012190984A (en) * 2011-03-10 2012-10-04 Hitachi Chem Co Ltd Magnesium silicide powder, sintered compact and thermoelectric conversion element using the same, and method for producing the same
JP2015145512A (en) * 2014-01-31 2015-08-13 学校法人東海大学 Method for producing intermetallic compound particle and intermetallic compound particle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5350494A (en) * 1976-10-19 1978-05-08 Matsushita Electric Ind Co Ltd Production method of resistor compound
JPH0297603A (en) * 1988-10-04 1990-04-10 Tdk Corp Silicon iron alloy powder and manufacture thereof and compacting core
JP2000054009A (en) * 1998-08-07 2000-02-22 Yazaki Corp Production of alloy powder and production of thermoelement using it
WO2003027342A1 (en) * 2001-09-25 2003-04-03 Center For Advanced Science And Technology Incubation, Ltd. Magnesium base composite material
JP2012190984A (en) * 2011-03-10 2012-10-04 Hitachi Chem Co Ltd Magnesium silicide powder, sintered compact and thermoelectric conversion element using the same, and method for producing the same
JP2015145512A (en) * 2014-01-31 2015-08-13 学校法人東海大学 Method for producing intermetallic compound particle and intermetallic compound particle

Similar Documents

Publication Publication Date Title
JP5051168B2 (en) Nitride-dispersed Ti-Al target and method for producing the same
WO2011152359A1 (en) Titanium alloy composite powder containing ceramics and manufacturing method thereof, and densified titanium alloy and manufacturing method thereof using the same
JP6479788B2 (en) Sputtering target and manufacturing method thereof
JP5599290B2 (en) Crucible, sapphire single crystal manufacturing method using the same, and crucible manufacturing method
JP5861839B2 (en) Method for manufacturing molybdenum target
JP6768575B2 (en) Tungsten silicide target and its manufacturing method
WO1995004167A1 (en) High melting point metallic silicide target and method for producing the same, high melting point metallic silicide film and semiconductor device
JP5973041B2 (en) Cu-Ga sputtering target and method for producing Cu-Ga sputtering target
JP6037211B2 (en) Manufacturing method of MoTi target material
Novák et al. Finding the energy source for self-propagating high-temperature synthesis production of NiTi shape memory alloy
JP5910242B2 (en) Method for producing lanthanum hexaboride fine particles, lanthanum hexaboride fine particles, lanthanum hexaboride sintered body, lanthanum hexaboride film, and organic semiconductor device
JP2014055325A (en) Alloy powder for antioxidation coating and alloy excellent in antioxidation property using the same
TW202043514A (en) Sputtering target
JP2008255440A (en) MoTi ALLOY SPUTTERING TARGET MATERIAL
Chanadee et al. Synthesis of WSi2 and W2B intermetallic compound by in-situ self propagating high-temperature synthesis reaction
JP5356991B2 (en) Method for producing titanium silicon carbide ceramics
CN111136265B (en) Titanium-silicon alloy target and manufacturing method thereof
JP5988140B2 (en) Manufacturing method of MoTi target material and MoTi target material
JP2017186600A (en) Manufacturing method of alloy and alloy powder
Schumann et al. The effects of ball milling and the addition of blended elemental aluminium on the densification of TiH2 power
TWI519648B (en) Ti-Al alloy sputtering target
CN111438355B (en) Chromium-aluminum-silicon target material and preparation method thereof
JP2010150658A (en) Method for production of aluminum-containing target
JP2011084754A (en) Method for manufacturing sputtering target
Adamek Mechanical Alloying of Ti-20Ta-20Nb-(10÷ 20) Mg Alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200326

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200728