JP2017185507A - Method and device for rolling steel plate - Google Patents

Method and device for rolling steel plate Download PDF

Info

Publication number
JP2017185507A
JP2017185507A JP2016074568A JP2016074568A JP2017185507A JP 2017185507 A JP2017185507 A JP 2017185507A JP 2016074568 A JP2016074568 A JP 2016074568A JP 2016074568 A JP2016074568 A JP 2016074568A JP 2017185507 A JP2017185507 A JP 2017185507A
Authority
JP
Japan
Prior art keywords
rolling
steel plate
shape
steel sheet
elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016074568A
Other languages
Japanese (ja)
Other versions
JP6645325B2 (en
Inventor
瀬川 裕司
Yuji Segawa
裕司 瀬川
聡 榎本
Satoshi Enomoto
聡 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016074568A priority Critical patent/JP6645325B2/en
Publication of JP2017185507A publication Critical patent/JP2017185507A/en
Application granted granted Critical
Publication of JP6645325B2 publication Critical patent/JP6645325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable flaws around an end of a steel plate to become smaller than in the case where a shape of a side surface of the end of the steel plate is not measured.SOLUTION: A shape of a side surface of an end of a steel plate S in a rolling direction, in which the steel plate S is rolled, is measured. Rolling speeds of a pair of pressure rolls 12 for rolling the steel plate S are controlled to be different circumferential velocities, on the basis of the measured shape of the end of the steel plate S.SELECTED DRAWING: Figure 1

Description

本発明は、熱間圧延により厚板を圧延する鋼板圧延方法及び鋼板圧延装置に関する。   The present invention relates to a steel plate rolling method and a steel plate rolling apparatus for rolling a thick plate by hot rolling.

厚板鋼板は、上側と下側の一対の圧延ロールにより圧延をすることで製造される。その際、上側ロールの圧延速度と、下側ロールの圧延速度とを異なるようにする、異周速圧延が知られている。   A thick steel plate is manufactured by rolling with a pair of upper and lower rolling rolls. At that time, different peripheral speed rolling is known in which the rolling speed of the upper roll and the rolling speed of the lower roll are made different.

異周速圧延をすることで、厚板鋼板を圧延しているときの板の反りを緩和することができる。例えば、特許文献1には、上下の圧延ロールの回転速度差を圧延材の長手方向に時間積分し、被圧延材の上面及び下面の長手方向の伸び差を検出して、板反りを防止する技術が開示されている。   By performing the different peripheral speed rolling, the warpage of the plate when the thick steel plate is rolled can be reduced. For example, in Patent Document 1, the difference in rotational speed between the upper and lower rolling rolls is time-integrated in the longitudinal direction of the rolled material, and the elongation difference in the longitudinal direction of the upper and lower surfaces of the material to be rolled is detected to prevent sheet warpage. Technology is disclosed.

また、鋼板の反りは、鋼板の上下の温度差に起因して発生するが、例えば、特許文献2には、圧延材先端の上下面の表面温度を測定し、反り量を相殺するだけの異周速率を上下ワークロール周速に付与して、圧延材の先端の反りを防止する技術が示されている。   Further, the warpage of the steel sheet occurs due to the temperature difference between the upper and lower sides of the steel sheet. For example, Patent Document 2 discloses a difference in which the surface temperature of the upper and lower surfaces of the rolled material is measured to offset the warpage amount. A technique for preventing the tip of a rolled material from warping by giving a peripheral speed ratio to the peripheral speed of the upper and lower work rolls is shown.

また、異周速圧延においては、例えば、特許文献3に記載されたように、入側の圧延材料の上側と下側の圧延材料の速度を等しくして圧延することで、圧延材料の上下における回り込み量を少なくして、シーム疵を製品エッジ近傍に移動させ、高い製品歩留を達成する効果があることが知られている。   Also, in different speed rolling, for example, as described in Patent Document 3, by rolling the upper rolling material on the entry side and the lower rolling material at the same speed, the upper and lower sides of the rolling material It is known that the amount of wraparound is reduced and the seam ridge is moved to the vicinity of the product edge to achieve a high product yield.

また、製品エッジ近傍のシーム疵を小さくする技術としては、例えば、特許文献4には、被圧延材の幅方向に沿う端面の形状を測定し、この端面の形状に基づいて、鋼片加熱炉における鋼片表面側の加熱量と、鋼片加熱炉における鋼片裏面側の加熱量を制御することで、鋼板の四周疵(シーム疵)を防止する熱間圧延方法が示されている。   In addition, as a technique for reducing the seam wrinkles in the vicinity of the product edge, for example, in Patent Document 4, the shape of the end face along the width direction of the material to be rolled is measured, and the slab heating furnace is based on the shape of the end face. The hot-rolling method which prevents the four rounds (seam wrinkle) of a steel plate is shown by controlling the heating amount of the steel slab surface side in and the heating amount of the steel slab back side in a steel slab heating furnace.

特開2002−96103号公報JP 2002-96103 A 特開2004−25254号公報JP 2004-25254 A 特開2000−312904号公報JP 2000-312904 A 特許第2792445号公報Japanese Patent No. 2792445

上記のように、鋼板の幅方向に沿う端面の形状を測定し、この端面の形状を用いて、鋼板の圧延方向の長手方向の四周疵を防止する技術は存在するが、鋼板の圧延方向に沿う端面の形状、すなわち鋼板端部の側面形状を測定し、測定した鋼板端部の側面形状を用いて四周疵を小さくする技術は存在しなかった。このため、従来では、鋼板端部の四周疵を小さくするのが困難であった。   As described above, there is a technique for measuring the shape of the end face along the width direction of the steel sheet, and using this shape of the end face to prevent four-sided wrinkles in the longitudinal direction of the steel sheet in the rolling direction, but in the rolling direction of the steel sheet. There has been no technique for measuring the shape of the end surface along the side surface, that is, the side surface shape of the end portion of the steel plate, and reducing the size of the four-sided ridge using the measured side surface shape of the end portion of the steel plate. For this reason, conventionally, it has been difficult to reduce the size of the four corners of the steel plate end.

本発明は、上記事情に鑑みてなされたものであり、鋼板の端部の側面の形状を測定しない場合と比較して、鋼板の端部の四周疵を小さくすることができる鋼板圧延方法及び圧延装置を提供するものである。   The present invention was made in view of the above circumstances, and compared with a case where the shape of the side surface of the end portion of the steel plate is not measured, the steel plate rolling method and rolling capable of reducing the four-sided ridges of the end portion of the steel plate A device is provided.

上記目的を達成するために、請求項1記載の発明の鋼板圧延方法は、鋼板が圧延される圧延方向における前記鋼板の端部の側面の形状を測定し、測定された前記鋼板の端部の側面の形状に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する。   In order to achieve the above-mentioned object, the steel sheet rolling method according to the first aspect of the present invention measures the shape of the side surface of the end of the steel sheet in the rolling direction in which the steel sheet is rolled, and measures the measured end of the steel sheet. Based on the shape of the side surface, the rolling speed of the pair of rolling rolls for rolling the steel sheet is controlled to be different peripheral speeds.

請求項2記載の発明は、請求項1記載の鋼板圧延方法において、測定された前記鋼板の端部の側面の形状に基づいて、前記鋼板の端部の前記圧延方向における伸び差を算出し、算出した伸び差に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する。   The invention according to claim 2 calculates the difference in elongation in the rolling direction of the end portion of the steel sheet based on the measured shape of the side surface of the end portion of the steel sheet in the steel sheet rolling method according to claim 1, Based on the calculated difference in elongation, control is performed so that the rolling speed of the pair of rolling rolls for rolling the steel sheet becomes a different peripheral speed.

請求項3記載の発明は、請求項2記載の鋼板圧延方法において、測定された前記鋼板の端部の側面の形状の板厚方向の反りを用いて、前記鋼板の端部の側面の形状を補正し、補正した前記鋼板の端部の側面の形状に基づいて、前記鋼板の端部の前記圧延方向における伸び差を算出する。   The invention according to claim 3 is the steel sheet rolling method according to claim 2, wherein the shape of the side surface of the end portion of the steel sheet is determined by using the measured warpage in the thickness direction of the side surface shape of the end portion of the steel plate. Based on the corrected shape of the side surface of the end portion of the steel sheet, the difference in elongation in the rolling direction of the end portion of the steel sheet is calculated.

請求項4記載の発明は、請求項2又は請求項3に記載の鋼板圧延方法において、測定された前記鋼板の端部の側面の形状が、前記鋼板の板厚中央部に凸部を有するシングルバルジ形状の場合は、前記板厚中央部から上側の前記圧延方向における伸び差と、前記板厚中央部から下側の前記圧延方向における伸び差と、のうち大きい方を伸び差として設定し、測定された前記鋼板の端部の側面の形状が、前記板厚中央部に凹部を有するダブルバルジ形状の場合は、前記板厚中央部より上側の凸部の前記圧延方向における伸び差と、前記板厚中央部より下側の凸部の前記圧延方向における伸び差と、のうち大きい方を伸び差として設定し、測定された前記鋼板の端部の側面の形状が、前記シングルバルジ形状及び前記ダブルバルジ形状の何れの形状でもない場合は、前記圧延方向における前記鋼板の上側の伸びと下側の伸びとの差を伸び差として設定し、設定した前記伸び差に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する。   The invention according to claim 4 is the steel sheet rolling method according to claim 2 or claim 3, wherein the measured shape of the side surface of the end portion of the steel plate has a convex portion at the center of the plate thickness of the steel plate. In the case of a bulge shape, set the larger one of the difference in elongation in the rolling direction above the plate thickness center and the difference in elongation in the rolling direction below the plate thickness center as the elongation difference, If the measured shape of the side surface of the end portion of the steel sheet is a double bulge shape having a concave portion in the plate thickness central portion, the difference in elongation in the rolling direction of the convex portion above the plate thickness central portion, and The elongation difference in the rolling direction of the convex part below the center part of the plate thickness is set as the larger difference between the elongation differences, and the measured shape of the side surface of the end of the steel sheet is the single bulge shape and the Any shape of double bulge shape If not, the difference between the upper and lower elongations of the steel sheet in the rolling direction is set as an elongation difference, and the rolling of a pair of rolling rolls that rolls the steel sheet based on the set elongation difference. Control so that the speed is different.

請求項5記載の発明は、請求項1〜4の何れか1項に記載の鋼板圧延方法において、前記一対の圧延ロールの少なくとも入側に設けられた撮影手段によって撮影された鋼板側面の撮影画像に基づいて、前記鋼板の端部の側面の形状を測定する。   Invention of Claim 5 is the steel plate rolling method of any one of Claims 1-4, The picked-up image of the steel plate side surface image | photographed by the imaging | photography means provided in the entrance side at least of the said pair of rolling rolls Based on the above, the shape of the side surface of the end of the steel sheet is measured.

請求項6記載の発明の鋼板圧延装置は、鋼板を圧延する一対の圧延ロールと、前記鋼板が圧延される圧延方向における前記鋼板の端部の側面の形状を測定する測定手段と、前記鋼板の端部の側面の形状に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する制御手段と、を含む。   The steel plate rolling apparatus according to claim 6 is a pair of rolling rolls for rolling a steel plate, a measuring means for measuring the shape of the side surface of the steel plate in the rolling direction in which the steel plate is rolled, Control means for controlling the rolling speed of a pair of rolling rolls for rolling the steel sheet to be different peripheral speeds based on the shape of the side surface of the end portion.

請求項7記載の発明は、請求項6記載の鋼板圧延装置において、前記測定手段により測定された前記鋼板の端部の側面の形状に基づいて、前記鋼板の端部の前記圧延方向における伸び差を算出する算出手段を備え、前記制御手段は、前記算出手段により算出した前記伸び差に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する。   The invention according to claim 7 is the steel sheet rolling apparatus according to claim 6, wherein the elongation difference in the rolling direction of the end portion of the steel plate is based on the shape of the side surface of the end portion of the steel plate measured by the measuring means. The control means controls the rolling speed of a pair of rolling rolls for rolling the steel sheet to be different peripheral speeds based on the difference in elongation calculated by the calculating means.

請求項8記載の発明は、請求項7記載の鋼板圧延装置において、前記測定手段により測定された前記鋼板の端部の側面の形状の板厚方向の反りを用いて、前記鋼板の端部の側面の形状を補正する補正手段を備え、前記算出手段は、前記補正手段により補正された前記鋼板の端部の側面の形状に基づいて、前記鋼板の端部の前記圧延方向における伸び差を算出する。   The invention according to claim 8 is the steel sheet rolling apparatus according to claim 7, wherein the warp in the thickness direction of the shape of the side surface of the end portion of the steel plate measured by the measuring means is used for the end portion of the steel plate. Compensating means for correcting the shape of the side surface, and the calculating means calculates the difference in elongation in the rolling direction at the end portion of the steel sheet based on the shape of the side surface of the end portion of the steel sheet corrected by the correcting means. To do.

請求項9記載の発明は、請求項7又は請求項8に記載の鋼板圧延装置において、測定された前記鋼板の端部の側面の形状が、前記鋼板の板厚中央部に凸部を有するシングルバルジ形状の場合は、前記板厚中央部から上側の前記圧延方向における伸び差と、前記板厚中央部から下側の前記圧延方向における伸び差と、のうち大きい方を伸び差として設定し、測定された前記鋼板の端部の側面の形状が、前記板厚中央部に凹部を有するダブルバルジ形状の場合は、前記板厚中央部より上側の凸部の前記圧延方向における伸び差と、前記板厚中央部より下側の凸部の前記圧延方向における伸び差と、のうち大きい方を伸び差として設定し、前記測定手段により測定された前記鋼板の端部の側面の形状が、前記シングルバルジ形状及び前記ダブルバルジ形状の何れの形状でもない場合は、前記圧延方向における前記鋼板の上側の伸びと下側の伸びとの差を伸び差として設定する設定手段を備え、前記制御手段は、前記設定手段により設定した前記伸び差に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する。   The invention according to claim 9 is the steel plate rolling apparatus according to claim 7 or claim 8, wherein the measured shape of the side surface of the end portion of the steel plate has a convex portion at the center of the plate thickness of the steel plate. In the case of a bulge shape, set the larger one of the difference in elongation in the rolling direction above the plate thickness center and the difference in elongation in the rolling direction below the plate thickness center as the elongation difference, If the measured shape of the side surface of the end portion of the steel sheet is a double bulge shape having a concave portion in the plate thickness central portion, the difference in elongation in the rolling direction of the convex portion above the plate thickness central portion, and The larger one of the elongation differences in the rolling direction of the convex part below the center part of the plate thickness is set as the elongation difference, and the shape of the side surface of the end of the steel sheet measured by the measuring means is the single Bulge shape and double bulge If it is not any shape of the shape, it comprises setting means for setting the difference between the upper elongation and the lower elongation of the steel sheet in the rolling direction as an elongation difference, and the control means is set by the setting means Based on the difference in elongation, the rolling speed of the pair of rolling rolls for rolling the steel sheet is controlled to be different peripheral speeds.

請求項10記載の発明は、請求項6〜9の何れか1項に記載の鋼板圧延装置において、前記一対の圧延ロールの少なくとも入側に設けられた撮影手段を備え、前記測定手段は、前記撮影手段によって撮影された鋼板側面の撮影画像に基づいて、前記鋼板の端部の側面の形状を測定する。   A tenth aspect of the present invention is the steel sheet rolling apparatus according to any one of the sixth to ninth aspects, further comprising a photographing unit provided on at least the entry side of the pair of rolling rolls, The shape of the side surface of the end portion of the steel sheet is measured based on the captured image of the side surface of the steel sheet photographed by the photographing means.

本発明によれば、鋼板の端部の側面の形状を測定しない場合と比較して、鋼板の端部の四周疵を小さくすることができる。   According to this invention, compared with the case where the shape of the side surface of the edge part of a steel plate is not measured, the four rounds of the edge part of a steel plate can be made small.

(A)は鋼板圧延装置の概略構成を示す側面図、(B)は鋼板圧延装置の概略構成を示す平面図である。(A) is a side view which shows schematic structure of a steel plate rolling apparatus, (B) is a top view which shows schematic structure of a steel plate rolling apparatus. 鋼板圧延装置の概略ブロック図である。It is a schematic block diagram of a steel plate rolling apparatus. プロセスコンピュータで実行される鋼板圧延処理のフローチャートである。It is a flowchart of the steel plate rolling process performed with a process computer. 上下伸び差算出処理のフローチャートである。It is a flowchart of a vertical elongation difference calculation process. 鋼板の端部の形状の測定について説明するための図である。It is a figure for demonstrating the measurement of the shape of the edge part of a steel plate. 鋼板の端部の形状の測定について説明するための図である。It is a figure for demonstrating the measurement of the shape of the edge part of a steel plate. 鋼板の端部の形状の測定について説明するための図である。It is a figure for demonstrating the measurement of the shape of the edge part of a steel plate. 鋼板の端部の形状の測定について説明するための図である。It is a figure for demonstrating the measurement of the shape of the edge part of a steel plate. 鋼板の端部の形状の測定について説明するための図である。It is a figure for demonstrating the measurement of the shape of the edge part of a steel plate. 鋼板の端部の形状の測定について説明するための図である。It is a figure for demonstrating the measurement of the shape of the edge part of a steel plate. 鋼板の端部の形状の測定について説明するための図である。It is a figure for demonstrating the measurement of the shape of the edge part of a steel plate. 鋼板の端部の形状の測定について説明するための図である。It is a figure for demonstrating the measurement of the shape of the edge part of a steel plate. 鋼板の端部の形状の測定について説明するための図である。It is a figure for demonstrating the measurement of the shape of the edge part of a steel plate. 鋼板の端部の形状の測定について説明するための図である。It is a figure for demonstrating the measurement of the shape of the edge part of a steel plate.

以下、図面を用いて、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1(A)には、本実施形態に係る鋼板圧延装置10の概略構成を示す側面図を、図1(B)の平面図には、本実施形態に係る鋼板圧延装置10の概略構成を示す平面図を示した。また、図2には、鋼板圧延装置10の機能ブロック図を示した。   1A is a side view showing a schematic configuration of a steel plate rolling apparatus 10 according to the present embodiment, and FIG. 1B is a plan view of the schematic configuration of the steel plate rolling apparatus 10 according to the present embodiment. A plan view is shown. Moreover, in FIG. 2, the functional block diagram of the steel plate rolling apparatus 10 was shown.

図1(A)、(B)、図2に示すように、鋼板圧延装置10は、鋼板Sを圧延する一対の圧延ロール12と、鋼板Sが圧延される圧延方向における鋼板Sの端部の側面を撮影する撮影カメラ14と、鋼板Sの表面温度を測定する表面温度計16と、鋼板Sの裏面温度を測定する裏面温度計18と、設備全体を制御するプロセスコンピュータ20と、を含む。   As shown in FIGS. 1A, 1B, and 2, the steel plate rolling apparatus 10 includes a pair of rolling rolls 12 for rolling the steel plate S, and an end portion of the steel plate S in the rolling direction in which the steel plate S is rolled. It includes a photographing camera 14 that photographs the side surface, a surface thermometer 16 that measures the surface temperature of the steel sheet S, a back surface thermometer 18 that measures the back surface temperature of the steel sheet S, and a process computer 20 that controls the entire equipment.

図1(A)、(B)、図2に示すように、一対の圧延ロール12は、上側の圧延ロール12A、下側の圧延ロール12Bから構成される。鋼板Sは、図1(A)において矢印A方向に搬送され、一対の圧延ロール12によって圧延される。なお、リバース圧延が行われる際には、鋼板Sは、図1(A)において矢印A方向に搬送されて圧延された後、矢印A方向と反対方向に搬送され、再度一対の圧延ロール12によって圧延される。   As shown in FIGS. 1A, 1B, and 2, the pair of rolling rolls 12 includes an upper rolling roll 12A and a lower rolling roll 12B. The steel sheet S is conveyed in the direction of arrow A in FIG. 1 (A) and rolled by a pair of rolling rolls 12. In addition, when reverse rolling is performed, the steel sheet S is conveyed in the direction of arrow A in FIG. 1A and rolled, and then conveyed in the direction opposite to the direction of arrow A, and again by the pair of rolling rolls 12. Rolled.

プロセスコンピュータ20は、撮影カメラ14によって撮影された鋼板Sの側面の撮影画像に基づいて、鋼板Sの端部の側面の形状を測定する。   The process computer 20 measures the shape of the side surface of the end portion of the steel sheet S based on the captured image of the side surface of the steel sheet S photographed by the photographing camera 14.

また、プロセスコンピュータ20は、測定された鋼板Sの端部の側面の形状に基づいて、鋼板Sの端部を圧延する際に、圧延ロール12A、12Bの周速(圧延速度)が異周速となるように制御する。   Moreover, when the process computer 20 rolls the edge part of the steel plate S based on the measured shape of the side surface of the edge part of the steel plate S, the peripheral speed (rolling speed) of the rolling rolls 12A and 12B is different. Control to be

プロセスコンピュータ20は、鋼板Sの端部の圧延方向における上下伸び差が零となるように、鋼板Sの端部を圧延する際に、圧延ロール12A、12Bの周速に周速差を与える。   The process computer 20 gives a peripheral speed difference to the peripheral speeds of the rolling rolls 12 </ b> A and 12 </ b> B when rolling the end of the steel sheet S so that the difference in vertical elongation in the rolling direction of the end of the steel sheet S becomes zero.

以下、圧延ロール12A、12Bの周速の周速差の程度を表す異周速割合Δωの算出方法について説明する。   Hereinafter, a method of calculating the different peripheral speed ratio Δω representing the degree of the peripheral speed difference between the peripheral speeds of the rolling rolls 12A and 12B will be described.

まず、一対の圧延ロール12による圧延前の鋼板Sの端部の上下伸び差L圧延前(mm)、圧延後の鋼板Sの端部の上下伸び差L圧延後(mm)は、圧延前の鋼板Sの端部の上面の長さをLA圧延前、下面の長さをLB圧延前、圧延後の鋼板Sの端部の上面の長さをLA圧延後、下面の長さをLB圧延後として、次式で表される。 First, a pair of rolling rolls 12 before the upper and lower elongation difference L rolled end of the steel plate S before rolling by (mm), after the upper and lower elongation difference L rolled end of the steel sheet S after rolling (mm), the pre-rolling The length of the upper surface of the end of the steel sheet S is before LA rolling , the length of the lower surface is before LB rolling , the length of the upper surface of the end of the steel sheet S after rolling is LA rolled , and the length of the lower surface is LB rolled Is expressed by the following equation.

圧延前=LA圧延前−LB圧延前 ・・・(1)
圧延後=LA圧延後−LB圧延後 ・・・(2)
Before L rolling = Before LA rolling-Before LB rolling (1)
After L rolling = After LA rolling-After LB rolling (2)

上下伸び差L圧延前、L圧延後は、撮影カメラ14により撮影された撮影画像に基づいて測定した鋼板Sの端部の形状に基づいて算出するが、詳細は後述する。また、上記(1)、(2)式より、圧延前後における鋼板Sの端部の上下伸び差の変化ΔLは次式で表される。 Before and after the up-and-down elongation difference L rolling and after the L rolling , calculation is performed based on the shape of the end portion of the steel sheet S measured based on the photographed image photographed by the photographing camera 14, and details will be described later. Further, from the above equations (1) and (2), the change ΔL in the vertical elongation difference at the end of the steel sheet S before and after rolling is expressed by the following equation.

ΔL=L圧延後−L圧延前 ・・・(3) ΔL = after L rolling-before L rolling (3)

また、圧延ロール12A、12Bの周速の異周速割合Δω(%)は、圧延ロール12Aの周速をS、圧延ロール12Bの周速をSとして、次式で表される。 Further, the rolling rolls 12A, differential speed ratio of 12B peripheral speed of the [Delta] [omega (%) is, the peripheral speed of the rolling rolls 12A S A, the peripheral speed of the rolling rolls 12B as S B, is expressed by the following equation.

Δω= (S−S)/S ・・・(4) Δω = (S A −S B ) / S B (4)

また、圧延ロール12Bの半径をR、単位時間当たりの回転数をnとすると、下側の圧延ロール12Bの周速S(m/s)は次式で表される。 Further, assuming that the radius of the rolling roll 12B is R and the rotational speed per unit time is n, the peripheral speed S B (m / s) of the lower rolling roll 12B is expressed by the following equation.

=2π×R×n ・・・(5) S B = 2π × R × n (5)

そして、異周速圧延を行う鋼板Sの端部の長さをM(mm)とすると、鋼板Sの端部を異周速圧延する時間Tim(s)は次式で表される。   And when the length of the edge part of the steel plate S which performs different circumferential speed rolling is set to M (mm), time Tim (s) which carries out the different circumferential speed rolling of the edge part of the steel plate S is represented by following Formula.

Tim=M/S ・・・(6) Tim = M / S B (6)

そして、異周速割合Δωの1%当たりの鋼板Sの端部の上下伸び差をβ(mm/%)とすると、異周速割合Δωによる鋼板Sの端部の上下伸び差ΔLrは次式で表される。なお、βは実験結果等から予め定められる。   When the vertical elongation difference at the end of the steel sheet S per 1% of the different peripheral speed ratio Δω is β (mm /%), the vertical elongation difference ΔLr at the end of the steel sheet S due to the different peripheral speed ratio Δω is It is represented by Note that β is determined in advance from experimental results and the like.

ΔLr=β×Tim×S×Δω
=β×M×Δω ・・・(7)
ΔLr = β × Tim × S B × Δω
= Β × M × Δω (7)

また、鋼板Sの表面温度(上側温度)をT、裏面温度(下側温度)をTとすると、鋼板Sの表裏温度差ΔT(℃)は次式で表される。 The surface temperature (top temperature) to T A of the steel sheet S, when the back surface temperature (bottom temperature) and T B, the front and rear temperature difference ΔT of the steel sheet S (° C.) is expressed by the following equation.

ΔT=T−T ・・・(8) ΔT = T A -T B ··· ( 8)

そして、表裏温度差ΔTの1℃当たりの鋼板Sの端部の上下伸び差をα(mm/℃)とすると、表裏温度差ΔTによる鋼板Sの端部の上下伸び差ΔLtは次式で表される。なお、αの求め方については後述する。   When the difference in vertical elongation at the end of the steel sheet S per 1 ° C. of the front / back temperature difference ΔT is α (mm / ° C.), the vertical elongation difference ΔLt at the end of the steel sheet S due to the front / back temperature difference ΔT is expressed by the following equation. Is done. A method for obtaining α will be described later.

ΔLt=α×ΔT ・・・(9) ΔLt = α × ΔT (9)

鋼板Sの端部のトータルの上下伸び差ΔLは、次式に示すように、異周速割合Δωによる上下伸び差ΔLrと、表裏温度差ΔTによる上下伸び差ΔLtの合計で表される。   The total vertical elongation difference ΔL at the end of the steel sheet S is represented by the sum of the vertical elongation difference ΔLr due to the different peripheral speed ratio Δω and the vertical elongation difference ΔLt due to the front / back temperature difference ΔT, as shown in the following equation.

ΔL=ΔLr+ΔLt ・・・(10) ΔL = ΔLr + ΔLt (10)

上記(1)〜(10)式より、表裏温度差ΔTの1℃当たりの鋼板Sの端部の上下伸び差αは次式で表される。   From the above formulas (1) to (10), the vertical elongation difference α at the end of the steel sheet S per 1 ° C. of the front-back temperature difference ΔT is expressed by the following formula.

α=(ΔL−ΔLr)/ΔT
=(L圧延後−L圧延前−β×M×Δω)/(T−T) ・・・(11)
α = (ΔL−ΔLr) / ΔT
= (L rolled after -L before rolling -β × M × Δω) / ( T A -T B) ··· (11)

一対の圧延ロール12が、厚板のように往復圧延するようなリバースミルである場合、往時(1パス目)のα1パス目と複時(2パス目)のα2パス目の平均であるα往復平均は、1パス目のΔLをΔL1、1パス目のΔLrをΔLr1、1パス目のΔTをΔT1、2パス目のΔLをΔL2、2パス目のΔLrをΔLr2、2パス目のΔTをΔT2として、次式で表される。 When the pair of rolling rolls 12 is a reverse mill that reciprocates and rolls like a thick plate, the average of the first pass α (first pass) and the second pass α (double pass) One α round trip average is ΔL for the first pass ΔL1, ΔLr for the first pass ΔLr1, ΔT for the first pass ΔT1, ΔL for the second pass ΔL2, ΔLr for the second pass ΔLr2, and second pass When ΔT is ΔT2, it is expressed by the following equation.

α往復平均=(α1パス目+α2パス目)/2
=[(ΔL1−ΔLr1)/ΔT1+(ΔL2−ΔLr2)/ΔT2]/2
・・・(12)
α round trip average = (α 1st pass + α 2nd pass ) / 2
= [(ΔL1-ΔLr1) / ΔT1 + (ΔL2-ΔLr2) / ΔT2] / 2
(12)

そして、1パス目と2パス目の圧延時の表裏温度差がほぼ同じ(ΔT1≒ΔT2)であると仮定すると、次式が成り立つ。   Assuming that the temperature difference between the front and back surfaces during the first pass and the second pass is substantially the same (ΔT1≈ΔT2), the following equation is established.

α往復平均=[(ΔL1−ΔLr1)+(ΔL2−ΔLr2)]/(2×ΔT1)
・・・(13)
α round - trip average = [(ΔL1−ΔLr1) + (ΔL2−ΔLr2)] / (2 × ΔT1)
... (13)

ここで、1パス目の圧延前のL圧延前をL1パス圧延前、1パス目の圧延後のL圧延後をL1パス圧延後、2パス目の圧延前のL圧延前をL2パス圧延前、2パス目の圧延後のL圧延後をL2パス圧延後とすると、上記(3)式より、上記(13)式は次式で表される Here, before L rolling before the first pass rolling, before L 1 pass rolling , after L rolling after the first pass rolling, after L 1 pass rolling , and before L rolling before the second pass rolling , L 2. Assuming that after L rolling after the second pass rolling before pass rolling and after L 2 pass rolling , the above equation (13) is expressed by the following equation from the above equation (3).

α往復平均=(L1パス圧延後−L1パス圧延前−ΔLr1+L2パス圧延後−L2パス圧延前−ΔLr2)/(2×ΔT1) ・・・(14) α round trip average = ( after L 1 pass rolling− L before 1 pass rolling− ΔLr1 + L after 2 pass rolling− L2 pass before rolling− ΔLr2) / (2 × ΔT1) (14)

また、リバース圧延では、L1パス圧延後とL2パス圧延前は同じ値であるから、上記(14)式は次式で表される。 In reverse rolling, the value after L 1 pass rolling is the same as that before L 2 pass rolling, and therefore the above equation (14) is expressed by the following equation.

α往復平均=(L2パス圧延後−L1パス圧延前−ΔLr1−ΔLr2)/(2×ΔT1)
・・・(15)
α reciprocal average = ( after L 2 pass rolling− L before 1 pass rolling− ΔLr1−ΔLr2) / (2 × ΔT1)
(15)

1パス目の鋼板Sの先端部は、2パス目の鋼板Sの後端部となるが、異周速とするのは鋼板Sが一対の圧延ロール12に突入する際の先端部のみである。このため、2パス目の後端部が一対の圧延ロール12によって圧延される際の異周速割合Δωは、通常は零(ΔLr2=0)である。従って、次式が成り立つ。   The front end portion of the first-pass steel plate S is the rear end portion of the second-pass steel plate S, but only the front end portion when the steel plate S enters the pair of rolling rolls 12 is the different peripheral speed. . For this reason, the different peripheral speed ratio Δω when the rear end portion of the second pass is rolled by the pair of rolling rolls 12 is normally zero (ΔLr2 = 0). Therefore, the following equation holds.

α往復平均=(L2パス圧延後−L1パス圧延前−ΔLr1)/(2×ΔT1)
=(L2パス圧延後−L1パス圧延前−β×M×Δω)/(2×ΔT1) ・・・(16)
α reciprocal average = ( after L 2 pass rolling− L before 1 pass rolling− ΔLr1) / (2 × ΔT1)
= (After L 2 pass rolling -L Before 1 pass rolling- β × M × Δω) / (2 × ΔT1) (16)

本実施形態のように、鋼板Sの端部の形状を撮影する撮影カメラ14が一対の圧延ロール12の入側にのみ設けられている場合は、上記(16)式により、往復圧延する際の平均である、表裏温度差ΔTの1℃当たりの鋼板Sの端部の上下伸び差α、すなわち、上下伸び差α往復平均を求めることができる。 When the imaging camera 14 that captures the shape of the end portion of the steel sheet S is provided only on the entry side of the pair of rolling rolls 12 as in the present embodiment, when reciprocating rolling is performed according to the above equation (16). It is possible to obtain the average vertical elongation difference α at the end of the steel sheet S per 1 ° C. of the front-back temperature difference ΔT, that is, the vertical elongation difference α round-trip average .

このようにして求めた上下伸び差α往復平均を用いて、次回の圧延をする際には、L圧延後が零になるように、異周速割合Δωを求める。 Using the vertical elongation difference α reciprocal average obtained in this way, when performing the next rolling, the different peripheral speed ratio Δω is obtained so that it becomes zero after the L rolling .

これまで述べたように、上記(3)、(7)、(9)、(10)式より、次式が成立する。   As described above, the following expression is established from the above expressions (3), (7), (9), and (10).

ΔL=L圧延後−L圧延前=ΔLr+ΔLt=β×M×Δω+α×ΔT ・・・(17) ΔL = after L rolling−before L rolling = ΔLr + ΔLt = β × M × Δω + α × ΔT (17)

ここで、上記(17)式のαに上記(16)式で表されるα往復平均を用いると共に、L圧延後を零としてΔωの式にすると、次式が成立する。 Here, the α reciprocal average represented by the above equation (16) is used as α in the above equation (17), and the following equation is established when the equation after Δ rolling is set to zero after L rolling .

Δω=(−L圧延前−α往復平均×ΔT)/(β×M) ・・・(18) Δω = (− L before rolling− α reciprocal average × ΔT) / (β × M) (18)

上記(18)式で表される異周速割合Δωが成立するように、鋼板Sの端部を圧延する際の圧延ロール12A及び圧延ロール12Bの周速を設定することにより、圧延後の鋼板Sの端部の上下伸び差L圧延後が零となり、四周疵を抑制できる。 By setting the peripheral speed of the rolling roll 12A and the rolling roll 12B when rolling the end of the steel sheet S so that the different peripheral speed ratio Δω represented by the above equation (18) is established, the steel sheet after rolling After the up-and-down elongation difference L rolling of the edge part of S, it becomes zero, and it can suppress four rounds.

なお、リバース圧延が複数回の往復圧延で行われる場合、例えばリバース圧延が2回の往復圧延で行われる場合には、1回目の往復圧延におけるα往復平均をα往復平均1、2回目の往復圧延におけるα往復平均をα往復平均2、配分係数をr(0≦r≦1)として次式によりα往復平均を求めても良い。 In addition, when reverse rolling is performed by a plurality of reciprocating rollings, for example, when reverse rolling is performed by two reciprocating rollings, the α reciprocating average in the first reciprocating rolling is the α reciprocating average 1 , and the second reciprocating rolling. The α reciprocal average in rolling may be calculated by the following equation, with α reciprocal average 2 being the α reciprocal average 2 and distribution coefficient being r (0 ≦ r ≦ 1).

α往復平均=r×α往復平均1+(1−r)×α往復平均2 ・・・(19) α round trip average = r × α round trip average 1+ (1−r) × α round trip average 2 (19)

また、リバース圧延がn回以上(n≧3)の往復圧延で行われる場合には、配分係数をr、r、・・・r(r+r+・・・+r=1)として、次式によりα往復平均を求めればよい。 Further, when the reverse rolling is performed in a reciprocating rolling over n times (n ≧ 3) is the distribution coefficient r 1, r 2, ··· r n (r 1 + r 2 + ··· + r n = 1 ), The α round-trip average may be obtained by the following equation.

α往復平均=r×α往復平均1+r×α往復平均2+・・・+r×α往復平均n ・・・(20) α round trip average = r 1 × α round trip average 1 + r 2 × α round trip average 2 +... + r n × α round trip average n (20)

次に、プロセスコンピュータ20で実行される鋼板圧延処理について、図3に示すフローチャートを参照して説明する。   Next, the steel plate rolling process executed by the process computer 20 will be described with reference to the flowchart shown in FIG.

ステップS100では、鋼板Sの端部で異周速圧延をする際の圧延ロール12Aの周速をS、圧延ロール12Bの周速をSとするように圧延ロール12A、12Bを制御する。なお、鋼板Sの端部で異周速圧延をする長さM以降は、通常、圧延ロール12Aの周速と、圧延ロール12Bの周速とは同じ速さである。 In step S100, the controlled rolling rolls 12A, and 12B so that the peripheral speed S A rolling roll 12A when the differential speed rolling at the end of the steel sheet S, the peripheral speed of the rolling rolls 12B and S B. In addition, after length M which performs different peripheral speed rolling in the edge part of the steel plate S, the peripheral speed of the rolling roll 12A and the peripheral speed of the rolling roll 12B are the same speed normally.

ステップS102では、表面温度計16から鋼板Sの表面温度Tを取得する。 In step S102, it obtains the surface temperature T A of the steel sheet S from the surface thermometer 16.

ステップS104では、裏面温度計18から鋼板Sの裏面温度Tを取得する。 In step S < b > 104, the back surface temperature TB of the steel sheet S is acquired from the back surface thermometer 18.

ステップS106では、鋼板Sの先端部が撮影カメラ14を通過するタイミングで撮影カメラ14に撮影指示し、撮影カメラ14により撮影された鋼板Sの先端部の側面の撮影画像を取得する。   In step S <b> 106, the photographing camera 14 is instructed to shoot at the timing when the leading end of the steel sheet S passes the photographing camera 14, and a photographed image of the side surface of the leading end of the steel sheet S photographed by the photographing camera 14 is acquired.

ステップS108では、ステップS106で取得した撮影画像に基づいて、1パス目の圧延前のL1パス圧延前を算出する。具体的には、図4に示す伸び差算出処理により1パス目の圧延前のL1パス圧延前を算出する。 In step S108, based on the captured image acquired in step S106, the L1 pass before rolling before the first pass rolling is calculated. Specifically, the L1 pass before rolling before the first pass rolling is calculated by the elongation difference calculating process shown in FIG.

図4に示すように、ステップS200では、境界点を取得する処理を実行する。以下では、ステップS106で取得した撮影画像が図5に示すような撮影画像30の場合について説明する。なお、図5において、撮影画像30の右下の角部を原点Oとし、図5において左右方向(鋼板Sの圧延方向)をX方向、上下方向(鋼板Sの厚み方向)をY方向とする。また、原点Oより左方向及び上方向がプラス方向であり、右方向及び下方向がマイナス方向である。   As shown in FIG. 4, in step S200, a process for acquiring a boundary point is executed. Hereinafter, the case where the captured image acquired in step S106 is a captured image 30 as shown in FIG. 5 will be described. 5, the lower right corner of the captured image 30 is the origin O, and in FIG. 5 the left and right direction (the rolling direction of the steel sheet S) is the X direction, and the up and down direction (the thickness direction of the steel sheet S) is the Y direction. . Further, the left direction and the upward direction from the origin O are positive directions, and the right direction and the downward direction are negative directions.

まず、撮影画像30の左上の画素から順に1画素ずつX方向に走査しながら、対象画素の輝度と左隣の画素の輝度との輝度差が予め定めた閾値以上か否かを判定する。これは、熱間圧延の鋼板は例えば1000℃前後であり自発光しているため、輝度が高い部分が鋼板と考えられるためである。そして、X方向に走査しながら、対象画素の輝度が左隣の画素の輝度よりも閾値以上高くなった画素をその高さの画像開始点とし、その後、対象画素の輝度が左隣の画素の輝度よりも閾値以上低くなった画素をその高さの画像終了点とする。例えば、図5に示すように、Y座標がy1の画素の輝度値のグラフ32を見ると、座標(x1、y1)の画素の輝度値が急激に上昇するため、この画素を画像開始点とする。また、座標(x2、y1)の画素の輝度値が急激に下降するため、この画素を画像終了点とする。このような処理を画像の左上の画素から右下の画素まで実行することにより、画像の境界点の集合である境界点群34を取得することができる。   First, while scanning one pixel at a time in order from the upper left pixel of the captured image 30, it is determined whether or not the luminance difference between the luminance of the target pixel and the luminance of the pixel on the left is equal to or greater than a predetermined threshold value. This is because a hot-rolled steel sheet is, for example, around 1000 ° C. and emits light spontaneously, so that a portion with high luminance is considered to be a steel sheet. Then, while scanning in the X direction, the pixel whose luminance is higher than the threshold of the pixel on the left by the threshold or more is set as the image start point at that height, and then the luminance of the pixel of interest is the pixel on the left A pixel that is lower than the luminance by a threshold or more is set as an image end point at that height. For example, as shown in FIG. 5, when the luminance value graph 32 of the pixel whose Y coordinate is y1 is viewed, the luminance value of the pixel whose coordinates are (x1, y1) rapidly increases. To do. In addition, since the luminance value of the pixel at the coordinates (x2, y1) falls rapidly, this pixel is set as the image end point. By executing such processing from the upper left pixel to the lower right pixel of the image, a boundary point group 34 that is a set of boundary points of the image can be acquired.

ステップS202では、例えば図6に示すように、最も右上にある境界点に境界点1とし、境界点1に最も近い境界点を境界点2とする。以下同様に、境界点iに最も近く、未だ境界点番号が付与されていない境界点を境界点(i+1)とする。このようにして、全ての境界点に境界点番号を付与する。   In step S202, for example, as shown in FIG. 6, the boundary point located at the uppermost right is the boundary point 1, and the boundary point closest to the boundary point 1 is the boundary point 2. Similarly, a boundary point closest to the boundary point i and not yet assigned a boundary point number is defined as a boundary point (i + 1). In this way, boundary point numbers are assigned to all boundary points.

ステップS204では、境界点群34で表される鋼板Sの端部の画像の反りを補正する。例えば、図7に示すように、まず境界点群34のうち最も左側にある境界点Lを求める。そして、境界点1と境界点L/2(境界点1と境界点Lの中間点)に注目し、これら2つの境界点の各々のX座標に最も近い境界点を、最も右下の境界点Nから逆番号順に探索し、それぞれ境界点1’、境界点L/2’とする。   In step S204, the curvature of the image of the edge part of the steel plate S represented by the boundary point group 34 is corrected. For example, as shown in FIG. 7, first, the leftmost boundary point L in the boundary point group 34 is obtained. Then, focusing on boundary point 1 and boundary point L / 2 (intermediate point between boundary point 1 and boundary point L), the boundary point closest to the X coordinate of each of these two boundary points is defined as the lowermost boundary point. Search is performed in the reverse number order from N, and the boundary points are 1 ′ and L / 2 ′, respectively.

次に、図8に示すように、境界点1と1’の中点A、境界点L/2とL/2’の中点Bを通る傾きがm、切片がnである直線y(=m×x+n)を求める。   Next, as shown in FIG. 8, a straight line y (== slope m passing through the midpoint A between the boundary points 1 and 1 ′ and the midpoint B between the boundary points L / 2 and L / 2 ′ is n. m × x + n).

次に、中点Aが原点Oと一致するように、境界点群34全体をY方向にn画素分平行移動する。そして、傾きm=0となるように、境界点群34に含まれる各境界点の座標を補正する。すなわち、全ての境界点について、Y座標から(X座標×m)を減じた値を新たなY座標とする。これにより、図9に示す直線yが原点Oを通るX軸と一致することとなる。   Next, the entire boundary point group 34 is translated by n pixels in the Y direction so that the midpoint A coincides with the origin O. Then, the coordinates of each boundary point included in the boundary point group 34 are corrected so that the inclination m = 0. That is, for all boundary points, a value obtained by subtracting (X coordinate × m) from the Y coordinate is set as a new Y coordinate. Thereby, the straight line y shown in FIG. 9 coincides with the X axis passing through the origin O.

ステップS206では、鋼板Sの端部の形状を判定するための境界点U、D、Right、Leftを特定する。具体的には、図10に示すように、原点Oを通るX軸と境界点群34との交点となる境界点Cを求める。すなわち、境界点番号順にY座標がプラスからマイナス又は0へ変化する境界点を境界点Cとする。そして、境界点Cを起点に、境界点1と境界点1’とのY座標の差をHとし、aを係数として、境界点のY座標がa×Hを初めて越える境界点を境界点番号の逆番号順に探索する。そして、境界点のY座標がa×Hを初めて越える境界点を上側の境界点Uとする。また、境界点Cを起点として、境界点のY座標が−a×Hを初めて下回る境界点を境界点番号の番号順に探索する。そして、境界点のY座標が−a×Hを初めて下回る境界点を下側の境界点Dとする。なお、aは固定の係数であり、図10の例では0.3としているが、aの値はこれに限らず、実験結果等に基づいて適宜設定すればよい。   In step S206, boundary points U, D, Right, and Left for determining the shape of the end of the steel sheet S are specified. Specifically, as shown in FIG. 10, a boundary point C that is an intersection of the X axis passing through the origin O and the boundary point group 34 is obtained. That is, a boundary point where the Y coordinate changes from plus to minus or 0 in the order of the boundary point number is defined as a boundary point C. Then, with the boundary point C as the starting point, the difference between the Y coordinates of the boundary point 1 and the boundary point 1 ′ is H, the coefficient a is a coefficient, and the boundary point where the Y coordinate of the boundary point exceeds a × H for the first time is the boundary point number. Search in reverse order of. A boundary point where the Y coordinate of the boundary point first exceeds a × H is defined as an upper boundary point U. Also, starting from the boundary point C, a boundary point whose Y coordinate is less than −a × H for the first time is searched in the order of the boundary point number. A boundary point whose Y coordinate is less than −a × H for the first time is defined as a lower boundary point D. Note that a is a fixed coefficient and is 0.3 in the example of FIG. 10, but the value of a is not limited to this, and may be set as appropriate based on experimental results and the like.

また、境界点Uから境界点Dの間で最も左側の点である境界点を境界点Leftとし、最も右側の境界点を境界点Rightとする。なお、図10の例では、境界点U=境界点Leftであり、境界点D=境界点Rightである。   The boundary point that is the leftmost point between the boundary point U and the boundary point D is the boundary point Left, and the rightmost boundary point is the boundary point Right. In the example of FIG. 10, boundary point U = boundary point Left, and boundary point D = boundary point Right.

なお、以下では、図11に示すように、境界点UのX座標をXu、境界点DのX座標をXd、境界点LeftのX座標をXl、境界点RightのX座標をXrとする。   In the following, as shown in FIG. 11, the X coordinate of the boundary point U is Xu, the X coordinate of the boundary point D is Xd, the X coordinate of the boundary point Left is Xl, and the X coordinate of the boundary point Right is Xr.

ステップS208では、鋼板Sの端部の形状がシングルバルジ形状又はダブルバルジ形状であるか否かを判定するための判定閾値をTBとして、次式を満たすか否かを判定する。なお、判定閾値TBは実験結果等に基づいて適宜設定すればよい。   In step S208, it is determined whether the following equation is satisfied, where TB is a determination threshold value for determining whether the shape of the end portion of the steel sheet S is a single bulge shape or a double bulge shape. Note that the determination threshold value TB may be set as appropriate based on experimental results and the like.

Xl>Xu+TB かつ Xl>Xd+TB ・・・(21) Xl> Xu + TB and Xl> Xd + TB (21)

ここで、シングルバルジ形状とは、図12に示すように、鋼板Sの板厚中央部に凸部を有する形状である。すなわち、ステップS208は、境界点Leftが境界点Uや境界点Dよりも判定閾値TB以上左側に存在するか否かを判定しており、この判定により、鋼板Sの端部の形状がシングルバルジ形状であるか否かを判定することができる。   Here, the single bulge shape is a shape having a convex portion at the center of the plate thickness of the steel sheet S as shown in FIG. That is, step S208 determines whether or not the boundary point Left is on the left side of the boundary point U or boundary point D by the determination threshold value TB or more. By this determination, the shape of the end portion of the steel sheet S is a single bulge. It can be determined whether or not the shape.

そして、ステップS208の判定が肯定判定であった場合、すなわち鋼板Sの端部の形状がシングルバルジ形状であった場合は、ステップS210へ移行する。一方、ステップS208の判定が否定判定であった場合、すなわち鋼板Sの端部の形状がシングルバルジ形状ではない場合は、ステップS212へ移行する。   If the determination in step S208 is affirmative, that is, if the shape of the end of the steel sheet S is a single bulge shape, the process proceeds to step S210. On the other hand, if the determination in step S208 is negative, that is, if the shape of the end of the steel sheet S is not a single bulge shape, the process proceeds to step S212.

ステップS210では、鋼板Sの端部の形状がシングルバルジ形状であるものとして、鋼板Sの端部の上下伸び差を設定する。具体的には、板厚中央部から上側の圧延方向における伸び差と、板厚中央部から下側の圧延方向における伸び差と、のうち大きい方を上下伸び差として設定する。例えば図12の場合、板厚中央部、すなわち境界点Leftから上側の圧延方向における伸び差(Xl−Xu)と、境界点Leftから下側の圧延方向における伸び差(Xl−Xd)と、のうち大きい方である伸び差(Xl−Xd)を、鋼板Sの端部の上下伸び差として設定する。なお、境界点Uの方を採用した場合は上伸び形状であり、境界点Dの方を採用した場合は下伸び形状である。   In step S210, assuming that the shape of the end portion of the steel sheet S is a single bulge shape, the difference in vertical elongation at the end portion of the steel sheet S is set. Specifically, the larger one of the difference in elongation in the rolling direction on the upper side from the sheet thickness central part and the difference in elongation in the rolling direction on the lower side from the sheet thickness central part is set as the difference in vertical elongation. For example, in the case of FIG. 12, the elongation difference (X1-Xu) in the rolling direction on the upper side from the boundary point Left, that is, the elongation difference (X1-Xd) in the rolling direction on the lower side from the boundary point Left. The larger elongation difference (Xl−Xd) is set as the difference in vertical elongation at the end of the steel sheet S. In addition, when the direction of the boundary point U is employ | adopted, it is an upward extension shape, and when the direction of the boundary point D is employ | adopted, it is a downward extension shape.

ステップS212では、次式を満たすか否かを判定することにより、鋼板Sの端部の形状がダブルバルジ形状であるか否かを判定する。   In step S212, it is determined whether or not the shape of the end portion of the steel sheet S is a double bulge shape by determining whether or not the following equation is satisfied.

Xu>Xr+TB かつ Xd>Xr+TB ・・・(22) Xu> Xr + TB and Xd> Xr + TB (22)

ここで、ダブルバルジ形状とは、図13に示すように、鋼板Sの板厚中央部に凹部を有する形状である。すなわち、ステップS212は、境界点Uや境界点Dが境界点Rightよりも判定閾値TB以上左側に存在するか否かを判定しており、この判定により、鋼板Sの端部の形状がダブルバルジ形状であるか否かを判定することができる。   Here, a double bulge shape is a shape which has a recessed part in the plate | board thickness center part of the steel plate S, as shown in FIG. That is, step S212 determines whether or not the boundary point U or boundary point D is on the left side of the determination threshold TB or more than the boundary point Right, and by this determination, the shape of the end of the steel sheet S is double bulge. It can be determined whether or not the shape.

そして、ステップS212の判定が肯定判定であった場合、すなわち鋼板Sの端部の形状がダブルバルジ形状であった場合は、ステップS214へ移行する。一方、ステップS212の判定が否定判定であった場合、すなわち鋼板Sの端部の形状がダブルバルジ形状ではない場合は、ステップS216へ移行する。   If the determination in step S212 is affirmative, that is, if the shape of the end of the steel sheet S is a double bulge shape, the process proceeds to step S214. On the other hand, if the determination in step S212 is negative, that is, if the shape of the end of the steel sheet S is not a double bulge shape, the process proceeds to step S216.

ステップS214では、鋼板Sの端部の形状がダブルバルジ形状であるものとして、鋼板Sの端部の上下伸び差を設定する。具体的には、板厚中央部より上側の凸部の圧延方向における伸び差と、板厚中央部より下側の凸部の圧延方向における伸び差と、のうち大きい方を伸び差として設定する。例えば図13の場合、板厚中央部、すなわち境界点Rightから上側の圧延方向における伸び差(Xu−Xr)と、境界点Rightから下側の圧延方向における伸び差(Xd−Xr)と、のうち大きい方である伸び差(Xu−Xr)を、鋼板Sの端部の上下伸び差として設定する。なお、境界点Uの方を採用した場合は上伸び形状であり、境界点Dの方を採用した場合は下伸び形状である。   In step S214, the difference in vertical elongation at the end of the steel sheet S is set assuming that the end of the steel sheet S has a double bulge shape. Specifically, the larger one of the difference in elongation in the rolling direction of the convex portion above the central portion of the plate thickness and the difference in elongation in the rolling direction of the convex portion lower than the central portion of the thickness is set as the differential elongation. . For example, in the case of FIG. 13, the elongation difference (Xu−Xr) in the upper rolling direction from the boundary point Right, that is, the elongation difference (Xd−Xr) in the lower rolling direction from the boundary point Right. The larger elongation difference (Xu−Xr) is set as the vertical elongation difference at the end of the steel sheet S. In addition, when the direction of the boundary point U is employ | adopted, it is an upward extension shape, and when the direction of the boundary point D is employ | adopted, it is a downward extension shape.

ステップS216では、鋼板Sの端部の形状が上伸び形状又は下伸び形状であるか否かを判定するための判定閾値をTLとして、次式を満たすか否かを判定することにより、鋼板Sの端部の形状が上伸び形状であるか否かを判定する。   In step S216, the determination threshold value for determining whether or not the shape of the end portion of the steel sheet S is an upwardly extended shape or a downwardly extended shape is set to TL, and it is determined whether or not the following expression is satisfied. It is determined whether or not the shape of the end portion is an upwardly elongated shape.

Xu>Xd+TL ・・・(23) Xu> Xd + TL (23)

ここで、上伸び形状とは、図11に示すように、鋼板Sの板厚中央部よりも上側の伸び量が下側の伸び量よりも大きい形状である。すなわち、ステップS216は、境界点Uが境界点Dよりも判定閾値TL以上左側に存在するか否かを判定しており、この判定により、鋼板Sの端部の形状が上伸び形状であるか否かを判定することができる。   Here, as shown in FIG. 11, the upwardly elongated shape is a shape in which the amount of elongation on the upper side of the center portion of the steel sheet S is larger than the amount of elongation on the lower side. That is, step S216 determines whether or not the boundary point U is present on the left side of the boundary point D by the determination threshold TL or more. Based on this determination, whether or not the shape of the end of the steel sheet S is an upwardly elongated shape. It can be determined whether or not.

そして、ステップS216の判定が肯定判定であった場合、すなわち鋼板Sの端部の形状が上伸び形状であった場合は、ステップS218へ移行する。一方、ステップS216の判定が否定判定であった場合、すなわち鋼板Sの端部の形状が上伸び形状ではない場合は、ステップS220へ移行する。   If the determination in step S216 is affirmative, that is, if the shape of the end of the steel sheet S is an upwardly elongated shape, the process proceeds to step S218. On the other hand, if the determination in step S216 is negative, that is, if the shape of the end of the steel sheet S is not an upwardly elongated shape, the process proceeds to step S220.

ステップS218では、鋼板Sの端部の形状が上伸び形状であるものとして、鋼板Sの端部の上下伸び差を設定する。具体的には、圧延方向における鋼板Sの上側の伸びと下側の伸びとの差を伸び差として設定する。例えば図11の場合、上側の境界点Uと下側の境界点DのX座標の差(Xu−Xd)を、鋼板Sの端部の上下伸び差として設定する。   In step S218, assuming that the shape of the end portion of the steel sheet S is an upwardly extending shape, the difference in the vertical extension of the end portion of the steel sheet S is set. Specifically, the difference between the upper and lower elongations of the steel sheet S in the rolling direction is set as the difference in elongation. For example, in the case of FIG. 11, the difference (Xu−Xd) in the X coordinate between the upper boundary point U and the lower boundary point D is set as the vertical elongation difference of the end portion of the steel sheet S.

ステップS220では、次式を満たすか否かを判定することにより、鋼板Sの端部の形状が下伸び形状であるか否かを判定する。   In step S220, it is determined whether or not the shape of the end portion of the steel sheet S is a downwardly elongated shape by determining whether or not the following expression is satisfied.

Xd>Xu+TL ・・・(24) Xd> Xu + TL (24)

ここで、下伸び形状とは、図14に示すように、鋼板Sの板厚中央部よりも下側の伸び量が上側の伸び量よりも大きい形状である。すなわち、ステップS220は、境界点Dが境界点Uよりも判定閾値TL以上左側に存在するか否かを判定しており、この判定により、鋼板Sの端部の形状が下伸び形状であるか否かを判定することができる。   Here, as shown in FIG. 14, the downwardly elongated shape is a shape in which the amount of elongation on the lower side of the center portion of the steel sheet S is larger than the amount of elongation on the upper side. That is, step S220 determines whether or not the boundary point D is present on the left side of the boundary point U by more than the determination threshold TL. Based on this determination, whether the shape of the end of the steel sheet S is a downward extension shape. It can be determined whether or not.

そして、ステップS220の判定が肯定判定であった場合、すなわち鋼板Sの端部の形状が下伸び形状であった場合は、ステップS222へ移行する。一方、ステップS220の判定が否定判定であった場合、すなわち鋼板Sの端部の形状が下伸び形状ではない場合は、ステップS224へ移行する。   If the determination in step S220 is affirmative, that is, if the shape of the end of the steel sheet S is a downwardly elongated shape, the process proceeds to step S222. On the other hand, if the determination in step S220 is a negative determination, that is, if the shape of the end of the steel sheet S is not a downwardly elongated shape, the process proceeds to step S224.

ステップS222では、鋼板Sの端部の形状が下伸び形状であるものとして、鋼板Sの端部の上下伸び差を設定する。具体的には、圧延方向における鋼板Sの上側の伸びと下側の伸びとの差を伸び差として設定する。例えば図14の場合、下側の境界点Dと上側の境界点UのX座標の差(Xd−Xu)を、鋼板Sの端部の上下伸び差として設定する。   In step S222, assuming that the shape of the end portion of the steel sheet S is a downward extension shape, the difference in the vertical extension of the end portion of the steel sheet S is set. Specifically, the difference between the upper and lower elongations of the steel sheet S in the rolling direction is set as the difference in elongation. For example, in the case of FIG. 14, the difference (Xd−Xu) in the X coordinate between the lower boundary point D and the upper boundary point U is set as the vertical elongation difference of the end portion of the steel sheet S.

ステップS224では、鋼板Sの端部の形状が、上下伸び差が無い形状であるものとして、上下伸び差を0に設定する。   In step S224, the shape of the end portion of the steel sheet S is set to a shape having no difference in vertical elongation, and the vertical elongation difference is set to zero.

以上のようにして鋼板Sの端部の形状を判定する。   As described above, the shape of the end of the steel sheet S is determined.

図3へ戻って、ステップS110では、鋼板Sの1パス目の圧延を実行する。   Returning to FIG. 3, in step S110, the first pass rolling of the steel sheet S is performed.

ステップS112では、鋼板Sの2パス目の圧延を実行する。   In step S112, the second rolling of the steel sheet S is performed.

ステップS114では、鋼板Sの先端部(2パス目の後端部)が撮影カメラ14を通過するタイミングで撮影カメラ14に撮影指示し、撮影カメラ14により撮影された鋼板Sの先端部の撮影画像を取得する。   In step S114, the photographing camera 14 is instructed to shoot at the timing when the leading end portion of the steel sheet S (the rear end portion of the second pass) passes through the photographing camera 14, and the photographed image of the leading end portion of the steel sheet S photographed by the photographing camera 14 To get.

ステップS116では、ステップS114で取得した撮影画像に基づいて、ステップS108と同様に2パス目の圧延後のL2パス圧延後を算出する。
ステップS118では、表面温度計16から鋼板Sの表面温度Tを取得する。
ステップS120では、裏面温度計18から鋼板Sの裏面温度Tを取得する。
In step S116, based on the captured image acquired in step S114, the post-L2 pass rolling after the second pass rolling is calculated as in step S108.
At step S118, the obtaining of the surface temperature T A of the steel sheet S from the surface thermometer 16.
In step S120, it acquires the back side temperature T B of the steel sheet S from the back surface thermometer 18.

ステップS122では、異周速割合Δωを上記(8)、(16)、(18)式により算出する。すなわち、ステップS102で取得した鋼板Sの表面温度T、ステップS104で取得した鋼板Sの裏面温度Tを上記(8)式に代入して表裏温度差ΔTを算出する。また、ステップS100で設定した、鋼板Sの端部で異周速圧延をする際の圧延ロール12Aの周速S、圧延ロール12Bの周速Sと上記(4)式よりΔωを算出する。そして、算出したΔT、算出したΔω、ステップS108で算出したL1パス圧延前、ステップS116で算出したL2パス圧延後、M、βを上記(16)式に代入してα往復平均を算出する。そして、算出したα往復平均、ステップS118で取得した鋼板Sの表面温度T、ステップS120で取得した鋼板Sの裏面温度Tを、上記(8)式に代入して得られる表裏温度差ΔTを用い、ステップS116で算出したL2パス圧延後をL圧延前として用い、M、βを上記(18)式に代入してΔωを算出する。なお、ステップS108、S116で算出した伸び差は、上伸び形状である場合は正の数とし、下伸び形状である場合は負の数とする。 In step S122, the different peripheral speed ratio Δω is calculated by the above equations (8), (16), and (18). That is, the front-back temperature difference ΔT is calculated by substituting the surface temperature T A of the steel sheet S acquired in step S102 and the back surface temperature T B of the steel sheet S acquired in step S104 into the above equation (8). Further, it sets in step S100, the peripheral speed S A rolling roll 12A when the differential speed rolling at the end of the steel sheet S, calculates the Δω than the peripheral speed S B and the (4) of the rolling rolls 12B . Then, calculated ΔT, calculated Δω, before L 1 pass rolling calculated in step S108, after L 2 pass rolling calculated in step S116, M and β are substituted into the above equation (16) to calculate α round-trip average . To do. And the calculated back-and-forth temperature difference ΔT obtained by substituting the calculated α round-trip average , the surface temperature T A of the steel sheet S acquired in step S118, and the back surface temperature T B of the steel sheet S acquired in step S120 into the above equation (8). , And after the L2 pass rolling calculated in step S116 is used as before L rolling , M and β are substituted into the above equation (18) to calculate Δω. Note that the difference in elongation calculated in steps S108 and S116 is a positive number in the case of an upwardly extending shape, and a negative number in the case of a downwardly extending shape.

そして、次の鋼板Sの先端部を圧延する際には、ステップS122で算出した異周速割合Δωとなるように、圧延ロール12Aの周速S及び圧延ロール12Bの周速Sを設定する。
ステップS124では、ステップS122で設定した周速S、Sで駆動されるように圧延ロール12A、12Bを各々制御することにより、異周速圧延を実行する。これにより、四周疵を抑制することができる。
Then, when rolling the front end portion of the next steel sheet S, as the differential speed ratio Δω calculated in step S122, sets the peripheral speed S B of the peripheral speed S A and the rolling roll 12B of the rolling rolls 12A To do.
In step S124, different peripheral speed rolling is performed by controlling the rolling rolls 12A and 12B so as to be driven at the peripheral speeds S A and S B set in step S122. As a result, it is possible to suppress quadruple wrinkles.

そして、これらの一連の制御は、3パス目以降も同様に繰り返し行っても良い。すなわち、3パス目及び4パス目の圧延を実行する場合は、ステップS102〜S124が再度実行される。また、5パス目及び6パス目の圧延が実行される場合は、ステップS102〜S124が再度実行される。このように、往復圧延の回数に応じてステップS102〜S124が繰り返し実行される。   These series of controls may be repeated in the same manner after the third pass. That is, when performing rolling of the 3rd pass and the 4th pass, Steps S102-S124 are performed again. Moreover, when rolling of the 5th pass and the 6th pass is performed, step S102-S124 are performed again. Thus, steps S102 to S124 are repeatedly executed according to the number of reciprocating rolling operations.

このように、本実施形態では、撮影カメラ14により鋼板Sの端部の側面の形状を撮影し、撮影した画像に基づいて、鋼板Sの端部の上下伸び差が0となるように、圧延ロール12A、12Bの周速が異周速となるように制御する。これにより、精度良く鋼板Sの先端部の四周疵を小さくすることができる。   Thus, in the present embodiment, the shape of the side surface of the end portion of the steel sheet S is photographed by the photographing camera 14, and rolling is performed so that the difference in vertical elongation at the end portion of the steel sheet S becomes 0 based on the photographed image. Control is performed so that the peripheral speeds of the rolls 12A and 12B become different peripheral speeds. Thereby, it is possible to accurately reduce the four rounds of the tip of the steel sheet S.

なお、本実施形態では、撮影カメラ14が一対の圧延ロール12の入側に設けられた場合について説明したが、一対の圧延ロール12の出側にも撮影カメラ14を設けてもよい。この場合、1回の圧延で圧延前及び圧延後の鋼板Sの端部の形状を撮影できるため、リバース圧延では無く圧延が1回の場合でも上記の制御が可能となる。   In the present embodiment, the case where the photographing camera 14 is provided on the entry side of the pair of rolling rolls 12 has been described, but the photographing camera 14 may be provided also on the exit side of the pair of rolling rolls 12. In this case, since the shape of the end portion of the steel sheet S before and after rolling can be photographed by one rolling, the above control can be performed even when the rolling is performed once instead of the reverse rolling.

10 圧延装置
12A、12B 圧延ロール
14 撮影カメラ
16 表面温度計
18 裏面温度計
20 プロセスコンピュータ
DESCRIPTION OF SYMBOLS 10 Rolling apparatus 12A, 12B Roll roll 14 Photographing camera 16 Surface thermometer 18 Back surface thermometer 20 Process computer

Claims (10)

鋼板が圧延される圧延方向における前記鋼板の端部の側面の形状を測定し、
測定された前記鋼板の端部の側面の形状に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する
鋼板圧延方法。
Measure the shape of the side surface of the end of the steel plate in the rolling direction in which the steel plate is rolled,
A steel plate rolling method for controlling a rolling speed of a pair of rolling rolls for rolling the steel plate to be a different peripheral speed based on the measured shape of the side surface of the end of the steel plate.
請求項1記載の鋼板圧延方法において、
測定された前記鋼板の端部の側面の形状に基づいて、前記鋼板の端部の前記圧延方向における伸び差を算出し、
算出した伸び差に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する
鋼板圧延方法。
In the steel plate rolling method according to claim 1,
Based on the measured shape of the side surface of the end of the steel sheet, the elongation difference in the rolling direction of the end of the steel sheet is calculated,
A steel plate rolling method for controlling the rolling speed of a pair of rolling rolls for rolling the steel sheet to be different peripheral speeds based on the calculated elongation difference.
請求項2記載の鋼板圧延方法において、
測定された前記鋼板の端部の側面の形状の板厚方向の反りを用いて、前記鋼板の端部の側面の形状を補正し、補正した前記鋼板の端部の側面の形状に基づいて、前記鋼板の端部の前記圧延方向における伸び差を算出する
鋼板圧延方法。
In the steel plate rolling method according to claim 2,
Using the warpage in the thickness direction of the shape of the side surface of the end portion of the steel sheet, correcting the shape of the side surface of the end portion of the steel plate, based on the corrected shape of the side surface of the end portion of the steel plate, A steel plate rolling method for calculating an elongation difference in the rolling direction at an end of the steel plate.
請求項2又は請求項3に記載の鋼板圧延方法において、
測定された前記鋼板の端部の側面の形状が、前記鋼板の板厚中央部に凸部を有するシングルバルジ形状の場合は、前記板厚中央部から上側の前記圧延方向における伸び差と、前記板厚中央部から下側の前記圧延方向における伸び差と、のうち大きい方を伸び差として設定し、
測定された前記鋼板の端部の側面の形状が、前記板厚中央部に凹部を有するダブルバルジ形状の場合は、前記板厚中央部より上側の凸部の前記圧延方向における伸び差と、前記板厚中央部より下側の凸部の前記圧延方向における伸び差と、のうち大きい方を伸び差として設定し、
測定された前記鋼板の端部の側面の形状が、前記シングルバルジ形状及び前記ダブルバルジ形状の何れの形状でもない場合は、前記圧延方向における前記鋼板の上側の伸びと下側の伸びとの差を伸び差として設定し、
設定した前記伸び差に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する
鋼板圧延方法。
In the steel sheet rolling method according to claim 2 or claim 3,
When the shape of the side surface of the end portion of the steel plate measured is a single bulge shape having a convex portion at the plate thickness central portion of the steel plate, the difference in elongation in the rolling direction above the plate thickness central portion, and The elongation difference in the rolling direction on the lower side from the center of the plate thickness, and the larger one is set as the elongation difference,
If the measured shape of the side surface of the end portion of the steel sheet is a double bulge shape having a concave portion in the plate thickness central portion, the difference in elongation in the rolling direction of the convex portion above the plate thickness central portion, and The elongation difference in the rolling direction of the convex part below the center part of the plate thickness, and the larger one is set as the elongation difference,
When the measured shape of the side surface of the end portion of the steel sheet is neither the single bulge shape nor the double bulge shape, the difference between the upper elongation and the lower elongation of the steel plate in the rolling direction. Is set as the differential elongation,
A steel plate rolling method for controlling a rolling speed of a pair of rolling rolls for rolling the steel sheet to be different peripheral speeds based on the set elongation difference.
請求項1〜4の何れか1項に記載の鋼板圧延方法において、
前記一対の圧延ロールの少なくとも入側に設けられた撮影手段によって撮影された鋼板側面の撮影画像に基づいて、前記鋼板の端部の側面の形状を測定する
鋼板圧延方法。
In the steel plate rolling method according to any one of claims 1 to 4,
A steel plate rolling method for measuring the shape of the side surface of the end portion of the steel sheet based on a photographed image of the side surface of the steel sheet photographed by photographing means provided at least on the entry side of the pair of rolling rolls.
鋼板を圧延する一対の圧延ロールと、
前記鋼板が圧延される圧延方向における前記鋼板の端部の側面の形状を測定する測定手段と、
前記鋼板の端部の側面の形状に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する制御手段と、
を含む鋼板圧延装置。
A pair of rolling rolls for rolling steel sheets;
Measuring means for measuring the shape of the side surface of the end of the steel plate in the rolling direction in which the steel plate is rolled;
Based on the shape of the side surface of the end of the steel sheet, control means for controlling the rolling speed of a pair of rolling rolls for rolling the steel sheet to be different peripheral speeds;
Steel plate rolling equipment including
請求項6記載の鋼板圧延装置において、
前記測定手段により測定された前記鋼板の端部の側面の形状に基づいて、前記鋼板の端部の前記圧延方向における伸び差を算出する算出手段を備え、
前記制御手段は、前記算出手段により算出した前記伸び差に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する
鋼板圧延装置。
In the steel plate rolling apparatus according to claim 6,
Based on the shape of the side surface of the end portion of the steel sheet measured by the measuring means, comprising calculating means for calculating the elongation difference in the rolling direction of the end portion of the steel sheet,
The said control means is controlled so that the rolling speed of a pair of rolling roll which rolls the said steel plate becomes a different peripheral speed based on the said elongation difference calculated by the said calculation means.
請求項7記載の鋼板圧延装置において、
前記測定手段により測定された前記鋼板の端部の側面の形状の板厚方向の反りを用いて、前記鋼板の端部の側面の形状を補正する補正手段を備え、
前記算出手段は、前記補正手段により補正された前記鋼板の端部の側面の形状に基づいて、前記鋼板の端部の前記圧延方向における伸び差を算出する
鋼板圧延装置。
In the steel plate rolling apparatus according to claim 7,
Using a warp in the thickness direction of the shape of the side surface of the end portion of the steel sheet measured by the measuring means, comprising correction means for correcting the shape of the side surface of the end portion of the steel plate,
The said calculation means calculates the elongation difference in the said rolling direction of the edge part of the said steel plate based on the shape of the side surface of the edge part of the said steel plate correct | amended by the said correction means.
請求項7又は請求項8に記載の鋼板圧延装置において、
測定された前記鋼板の端部の側面の形状が、前記鋼板の板厚中央部に凸部を有するシングルバルジ形状の場合は、前記板厚中央部から上側の前記圧延方向における伸び差と、前記板厚中央部から下側の前記圧延方向における伸び差と、のうち大きい方を伸び差として設定し、
測定された前記鋼板の端部の側面の形状が、前記板厚中央部に凹部を有するダブルバルジ形状の場合は、前記板厚中央部より上側の凸部の前記圧延方向における伸び差と、前記板厚中央部より下側の凸部の前記圧延方向における伸び差と、のうち大きい方を伸び差として設定し、
前記測定手段により測定された前記鋼板の端部の側面の形状が、前記シングルバルジ形状及び前記ダブルバルジ形状の何れの形状でもない場合は、前記圧延方向における前記鋼板の上側の伸びと下側の伸びとの差を伸び差として設定する設定手段を備え、
前記制御手段は、前記設定手段により設定した前記伸び差に基づいて、前記鋼板を圧延する一対の圧延ロールの圧延速度が異周速となるように制御する
鋼板圧延装置。
In the steel plate rolling apparatus according to claim 7 or claim 8,
When the shape of the side surface of the end portion of the steel plate measured is a single bulge shape having a convex portion at the plate thickness central portion of the steel plate, the difference in elongation in the rolling direction above the plate thickness central portion, and The elongation difference in the rolling direction on the lower side from the center of the plate thickness, and the larger one is set as the elongation difference,
If the measured shape of the side surface of the end portion of the steel sheet is a double bulge shape having a concave portion in the plate thickness central portion, the difference in elongation in the rolling direction of the convex portion above the plate thickness central portion, and The elongation difference in the rolling direction of the convex part below the center part of the plate thickness, and the larger one is set as the elongation difference,
When the shape of the side surface of the end portion of the steel plate measured by the measuring means is neither the single bulge shape nor the double bulge shape, the upper elongation and lower side of the steel plate in the rolling direction It has setting means to set the difference from the elongation as the elongation difference,
The said control means is a steel plate rolling apparatus controlled based on the said elongation difference set by the said setting means so that the rolling speed of a pair of rolling roll which rolls the said steel plate may become a different peripheral speed.
請求項6〜9の何れか1項に記載の鋼板圧延装置において、
前記一対の圧延ロールの少なくとも入側に設けられた撮影手段を備え、
前記測定手段は、前記撮影手段によって撮影された鋼板側面の撮影画像に基づいて、前記鋼板の端部の側面の形状を測定する
鋼板圧延装置。
In the steel plate rolling apparatus according to any one of claims 6 to 9,
The photographing means provided at least on the entry side of the pair of rolling rolls,
The said measurement means measures the shape of the side surface of the edge part of the said steel plate based on the picked-up image of the steel plate side surface image | photographed by the said imaging means.
JP2016074568A 2016-04-01 2016-04-01 Steel plate rolling method and steel plate rolling device Active JP6645325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016074568A JP6645325B2 (en) 2016-04-01 2016-04-01 Steel plate rolling method and steel plate rolling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074568A JP6645325B2 (en) 2016-04-01 2016-04-01 Steel plate rolling method and steel plate rolling device

Publications (2)

Publication Number Publication Date
JP2017185507A true JP2017185507A (en) 2017-10-12
JP6645325B2 JP6645325B2 (en) 2020-02-14

Family

ID=60044519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074568A Active JP6645325B2 (en) 2016-04-01 2016-04-01 Steel plate rolling method and steel plate rolling device

Country Status (1)

Country Link
JP (1) JP6645325B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109261717A (en) * 2018-09-05 2019-01-25 鞍钢股份有限公司 The milling method of product quality of edges is improved in a kind of production of cold rolled silicon steel
CN109261718A (en) * 2018-09-05 2019-01-25 鞍钢股份有限公司 The milling method of edge line defect is eliminated in a kind of production of silicon steel
JP2021062405A (en) * 2019-10-11 2021-04-22 Jfeスチール株式会社 Incident angle detection method and device of rolled material
JP7428197B2 (en) 2021-05-25 2024-02-06 Jfeスチール株式会社 Steel plate shape discrimination method, shape measurement method, shape control method, manufacturing method, shape discrimination model generation method, and shape discrimination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109261717A (en) * 2018-09-05 2019-01-25 鞍钢股份有限公司 The milling method of product quality of edges is improved in a kind of production of cold rolled silicon steel
CN109261718A (en) * 2018-09-05 2019-01-25 鞍钢股份有限公司 The milling method of edge line defect is eliminated in a kind of production of silicon steel
JP2021062405A (en) * 2019-10-11 2021-04-22 Jfeスチール株式会社 Incident angle detection method and device of rolled material
JP7111142B2 (en) 2019-10-11 2022-08-02 Jfeスチール株式会社 Incident angle detection method and apparatus for rolled material
JP7428197B2 (en) 2021-05-25 2024-02-06 Jfeスチール株式会社 Steel plate shape discrimination method, shape measurement method, shape control method, manufacturing method, shape discrimination model generation method, and shape discrimination device

Also Published As

Publication number Publication date
JP6645325B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP2017185507A (en) Method and device for rolling steel plate
CN106984652B (en) The method for controlling finishing stand sideslip according to breakdown bar camber
KR102615075B1 (en) Meander control method, meander control device, and hot rolling equipment for hot rolled steel strips
CN105229413A (en) The manufacture method of the flatness assay method of sheet material, the flatness determinator of sheet material and steel plate
WO2017111222A1 (en) Apparatus and method for maintaining flatness of rolled material
KR100711408B1 (en) Device for on-line measuring width of strip
TW201231958A (en) Glass plate, method for inspecting glass plate, and method for manufacturing glass plate
KR101290424B1 (en) Apparatus for measuring warp and camber of rolled material using thermal image and controlling method therefor
JP2009250723A (en) System and method for detecting warp of steel plate
JP6795008B2 (en) Steel sheet pile manufacturing equipment and manufacturing method
TWI744739B (en) Thick steel plate cooling control method, cooling control device, and thick steel plate manufacturing method
JP7111142B2 (en) Incident angle detection method and apparatus for rolled material
JP4123582B2 (en) Steel plate shape prediction method and apparatus
JP4269394B2 (en) Steel plate shape prediction method
JP2009233724A (en) Cooling control method for hot-rolled metal strip in hot rolling, and manufacturing method for hot-rolled metal strip
JP5598583B2 (en) Automatic straightening control device for differential steel plate
JP2021182267A (en) Tracking device
CN112361985A (en) Machine vision-based blank curvature detection method
JP6172124B2 (en) Steel plate shape detection device and method, steel plate rolling method, steel plate manufacturing method
TWI511808B (en) Controlling method of shielding apparatus
KR100523099B1 (en) Method for measuring the sectional shape of the rolled bar
JP7047995B1 (en) Steel plate meandering amount measuring device, steel sheet meandering amount measuring method, hot-rolled steel strip hot rolling equipment, and hot-rolled steel strip hot-rolling method
JP4010301B2 (en) Hot rolled steel sheet production line and method
JP2019178901A (en) Curve measuring apparatus and curve measuring method for shaped steel
KR101410157B1 (en) System for measuring asymmetric upper and lower amount of side surface of slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R151 Written notification of patent or utility model registration

Ref document number: 6645325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151