JP2017183992A - Image pickup device, focus detection apparatus, and imaging apparatus - Google Patents

Image pickup device, focus detection apparatus, and imaging apparatus Download PDF

Info

Publication number
JP2017183992A
JP2017183992A JP2016067848A JP2016067848A JP2017183992A JP 2017183992 A JP2017183992 A JP 2017183992A JP 2016067848 A JP2016067848 A JP 2016067848A JP 2016067848 A JP2016067848 A JP 2016067848A JP 2017183992 A JP2017183992 A JP 2017183992A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
focus detection
conversion layer
pixel signal
conversion layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016067848A
Other languages
Japanese (ja)
Other versions
JP6740666B2 (en
Inventor
佐藤 公一
Koichi Sato
公一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Imaging Co Ltd
Original Assignee
Ricoh Imaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Imaging Co Ltd filed Critical Ricoh Imaging Co Ltd
Priority to JP2016067848A priority Critical patent/JP6740666B2/en
Publication of JP2017183992A publication Critical patent/JP2017183992A/en
Application granted granted Critical
Publication of JP6740666B2 publication Critical patent/JP6740666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To properly perform AF processing without regard to the color of a subject, in an imaging apparatus comprising a single-plate-type multilayered image pickup device.SOLUTION: A single-plate-type multilayered image pickup device 32 is obtained by laminating and arranging plural photoelectric conversion layers 62B, 62G, and 62R in this order on a silicon substrate 75. Pixels for focus detection PB, PG, and PR are arranged in the respective photoelectric conversion layers. The pixel signal mean values of the photoelectric conversion layers 62B, 62G, and 62R are compared with each other and the pixel for focus detection of a photoelectric conversion layer which outputs the largest mean value is used to execute the AF processing.SELECTED DRAWING: Figure 6

Description

本発明は、焦点検出機能を備えた撮像装置に関し、特に、積層型の光電変換層を備える撮像素子を用いた焦点検出に関する。   The present invention relates to an image pickup apparatus having a focus detection function, and more particularly to focus detection using an image pickup element including a stacked photoelectric conversion layer.

デジタルカメラでは、撮像用のイメージセンサの画素配列の一部に焦点検出用画素を設けて位相差方式による焦点検出を行う構成が知られている。対になっている焦点検出用画素によって撮影レンズを通過する光束を瞳分割して一対の分割像を形成し、分割像のパターンずれを検出してデフォーカス量を算出する。通常のフォトダイオードに代えて有機光電変換層から成る光電変換部を備えた撮像素子に対しても、焦点検出用画素を配置することが可能であり、有機光電変換層とマイクロレンズとの間に遮光膜を対称的な位置に形成する撮像素子が知られている(特許文献1参照)。   In a digital camera, a configuration is known in which focus detection pixels are provided in part of a pixel array of an image sensor for imaging and focus detection is performed using a phase difference method. A pair of focus detection pixels forms a pair of split images by dividing the light beam passing through the photographing lens by a pair of focus detection pixels, detects a pattern shift of the split images, and calculates a defocus amount. It is possible to arrange focus detection pixels for an image sensor having a photoelectric conversion unit made of an organic photoelectric conversion layer instead of a normal photodiode, and between the organic photoelectric conversion layer and the microlens. There is known an imaging device in which a light shielding film is formed at a symmetrical position (see Patent Document 1).

一方、同一半導体基板上に、シリコンフォトダイオードによって光電変換を行うモノクロ撮像素子(第1撮像素子)と、その上に有機光電変換膜を備えた撮像素子(第2撮像素子)を積層して配置した固体撮像素子によって、位相差方式による焦点検出を行う方法も知られている(特許文献2参照)。   On the other hand, a monochromatic image sensor (first image sensor) that performs photoelectric conversion using a silicon photodiode and an image sensor (second image sensor) including an organic photoelectric conversion film thereon are stacked on the same semiconductor substrate. A method of performing focus detection by a phase difference method using a solid-state imaging device is also known (see Patent Document 2).

そこでは、第2撮像素子において、Cy、Ye、Mg、Gに応じた光を光電変換する有機光電変換膜が2次元配置されており、光電変換膜を透過する光は下方に配置された第1撮像素子に入射する。Cy、Mg、Yeのそれぞれ補色であるR、G、Bに応じた光がモノクロ撮像素子に入射することで、第1撮像素子を撮影画像用、その上方にある第2撮像素子を焦点検出用に使用することが可能となる。   In the second imaging element, an organic photoelectric conversion film that photoelectrically converts light corresponding to Cy, Ye, Mg, and G is two-dimensionally arranged, and light that passes through the photoelectric conversion film is arranged below. 1 is incident on the image sensor. When light corresponding to R, G, and B, which are complementary colors of Cy, Mg, and Ye, enter the monochrome image sensor, the first image sensor is used for a captured image, and the second image sensor above the first image sensor is used for focus detection. Can be used.

特開2014−67948号公報JP 2014-67948 A 特開2013−145292号公報JP 2013-145292 A

光電変換層を一層あるいは複数積層させた撮像素子の場合、被写体の分光反射率、照明光のスペクトル特性などの影響により、撮影レンズの色収差によって結像位置が被写体によって相違することになり、焦点検出誤差が生じる。   In the case of an image sensor in which one or more photoelectric conversion layers are stacked, the imaging position differs depending on the subject due to the chromatic aberration of the photographing lens due to the influence of the spectral reflectance of the subject and the spectral characteristics of the illumination light. An error occurs.

したがって、被写体の色、照明光などに関係なく、光電変換層を備えた撮像素子を用いて正確に焦点検出することが求められる。   Therefore, it is required to accurately detect the focus using an image sensor provided with a photoelectric conversion layer regardless of the color of the subject, illumination light, and the like.

本発明の撮像素子は、互いに異なる波長域の光を光電変換する複数の光電変換層を積層させた撮像素子と、各光電変換層に設けられた焦点検出用画素から出力される焦点検出画素信号に基づいて、焦点検出処理を実行する焦点検出部とを備える。各光電変換層は、所定の波長域の光を選択的に吸収し、それ以外の波長域の光を透過することで色分離を行う。また、光電変換層が、対称的位置に遮光膜を備えた少なくとも1対の焦点検出用画素を設けて位相差方式による焦点検出を行うことが可能である。   The imaging device of the present invention includes an imaging device in which a plurality of photoelectric conversion layers that photoelectrically convert light in different wavelength ranges are stacked, and a focus detection pixel signal output from a focus detection pixel provided in each photoelectric conversion layer. And a focus detection unit that executes a focus detection process. Each photoelectric conversion layer selectively absorbs light in a predetermined wavelength region and performs color separation by transmitting light in other wavelength regions. The photoelectric conversion layer can perform focus detection by a phase difference method by providing at least one pair of focus detection pixels provided with a light shielding film at symmetrical positions.

本発明では、焦点検出部が、複数の光電変換層から出力される画素信号レベルの差異に基づき、焦点検出誤差を抑制するように焦点検出画素信号の選択もしくは焦点検出画素信号の調整を行う。ここで、「選択」とは、少なくとも1つの焦点検出用画素信号を選択する、すなわち焦点検出用画素の設けられた光電変換層を選択することを示す。また、「調整」とは、各光電変換層の焦点検出画素信号の出力レベルを調整することを示す。   In the present invention, the focus detection unit selects the focus detection pixel signal or adjusts the focus detection pixel signal so as to suppress the focus detection error based on the difference between the pixel signal levels output from the plurality of photoelectric conversion layers. Here, “select” means selecting at least one focus detection pixel signal, that is, selecting a photoelectric conversion layer provided with focus detection pixels. “Adjustment” indicates that the output level of the focus detection pixel signal of each photoelectric conversion layer is adjusted.

例えば、焦点検出部は、複数の光電変換層の中で最も大きい画素信号を出力する光電変換層の焦点検出用画素を用いて、焦点検出処理を行うことが可能である。また、焦点検出部は、複数の光電変換層での画素信号レベルの比もしくは割合に応じて、各光電変換層の画素信号に対して重み付けを行なうことができる。   For example, the focus detection unit can perform focus detection processing using the focus detection pixel of the photoelectric conversion layer that outputs the largest pixel signal among the plurality of photoelectric conversion layers. In addition, the focus detection unit can weight the pixel signals of each photoelectric conversion layer according to the ratio or ratio of the pixel signal levels in the plurality of photoelectric conversion layers.

複数の光電変換層については、光路に沿って、光電変換波長域の短い光電変換層から光電変換波長域の長い光電変換層の順に積層させるのが良い。例えば、複数の光電変換層が、Bに応じた光を光電変換する光電変換層と、Gに応じた光を光電変換する光電変換層と、Rに応じた光を光電変換する光電変換層とを入射側からこの順で配置することができる。さらに、IRに応じた光を光電変換する光電変換層を最も基板側に配置することができる。   About several photoelectric conversion layers, it is good to laminate | stack in order of the photoelectric conversion layer with a long photoelectric conversion wavelength range from the photoelectric conversion layer with a short photoelectric conversion wavelength range along an optical path. For example, a plurality of photoelectric conversion layers, a photoelectric conversion layer that photoelectrically converts light according to B, a photoelectric conversion layer that photoelectrically converts light according to G, a photoelectric conversion layer that photoelectrically converts light according to R, and Can be arranged in this order from the incident side. Furthermore, a photoelectric conversion layer that photoelectrically converts light corresponding to IR can be disposed on the most substrate side.

様々な測距方式に対応するため、各光電変換層が、撮像エリアの測距点に応じて規定される複数の分割測距エリアそれぞれに焦点検出用画素を設置するのが良い。焦点検出部は、対象となる分割測距エリアに対して、焦点検出画素信号の選択もしくは焦点検出画素信号の調整を行うことができる。   In order to support various ranging methods, each photoelectric conversion layer is preferably provided with a focus detection pixel in each of a plurality of divided ranging areas defined according to the ranging points of the imaging area. The focus detection unit can select the focus detection pixel signal or adjust the focus detection pixel signal for the target divided ranging area.

本発明の他の態様におけるプログラムは、撮像装置を、互いに異なる波長域の光を光電変換する複数の光電変換層を積層させた撮像素子の各光電変換層に設けられた焦点検出用画素から出力される焦点検出画素信号のレベルを検出する手段と、複数の光電変換層から出力される画素信号レベルの差異に基づき、焦点検出誤差を抑制するように、焦点検出画素信号の選択もしくは焦点検出画素信号の調整を行う手段として機能させる。   A program according to another aspect of the present invention outputs an imaging device from a focus detection pixel provided in each photoelectric conversion layer of an imaging element in which a plurality of photoelectric conversion layers that photoelectrically convert light in different wavelength ranges are stacked. The detection of the focus detection pixel signal or the focus detection pixel so as to suppress the focus detection error based on the difference between the means for detecting the level of the focus detection pixel signal and the pixel signal level output from the plurality of photoelectric conversion layers It functions as a means for adjusting the signal.

本発明の他の態様における焦点検出装置は、互いに異なる波長域の光を透過する複数の光電変換層を積層させた撮像素子の各光電変換層に設けられた焦点検出用画素から出力される焦点検出画素信号に基づいて、焦点検出処理を行う焦点検出装置であって、複数の光電変換層から出力される画素信号レベルの差異に基づき、焦点検出誤差を抑制するように、焦点検出画素信号の選択もしくは焦点検出画素信号の調整を行う。   According to another aspect of the present invention, a focus detection apparatus includes a focus output from a focus detection pixel provided in each photoelectric conversion layer of an imaging element in which a plurality of photoelectric conversion layers that transmit light in different wavelength ranges are stacked. A focus detection device that performs a focus detection process based on a detection pixel signal, wherein the focus detection pixel signal is controlled so as to suppress a focus detection error based on a difference in pixel signal levels output from a plurality of photoelectric conversion layers. Select or adjust the focus detection pixel signal.

本発明の他の態様における焦点検出方法は、互いに異なる波長域の光を光電変換する複数の光電変換層を積層させた撮像素子の各光電変換層に設けられた焦点検出用画素から出力される焦点検出画素信号に基づいて、焦点検出処理を行う焦点検出方法であって、複数の光電変換層から出力される画素信号レベルの差異に基づき、焦点検出誤差を抑制するように、焦点検出画素信号の調整もしくは焦点検出画素信号の選択を行う。   The focus detection method according to another aspect of the present invention is output from a focus detection pixel provided in each photoelectric conversion layer of an imaging element in which a plurality of photoelectric conversion layers that photoelectrically convert light in different wavelength ranges are stacked. A focus detection method for performing focus detection processing based on a focus detection pixel signal, wherein the focus detection pixel signal is configured to suppress a focus detection error based on differences in pixel signal levels output from a plurality of photoelectric conversion layers. Adjustment or selection of a focus detection pixel signal.

本発明の他の態様における撮像素子は、基板上にあって、互いに異なる波長域の光を光電変換する複数の光電変換層と、複数の光電変換層から画素信号を読み出す画素信号読み出し回路とを備え、複数の光電変換層が積層されており、各光電変換層が、焦点検出用画素を有する。   An imaging device according to another aspect of the present invention includes a plurality of photoelectric conversion layers that are on a substrate and photoelectrically convert light in different wavelength ranges, and a pixel signal readout circuit that reads pixel signals from the plurality of photoelectric conversion layers. A plurality of photoelectric conversion layers are stacked, and each photoelectric conversion layer has a focus detection pixel.

本発明の他の態様における撮像装置は、互いに異なる波長域の光を光電変換する複数の光電変換層を積層させた撮像素子と、複数の光電変換層のうち最短波長域の光を光電変換する光電変換層および最長波長域の光を光電変換する光電変換層以外の光電変換層に設けられた焦点検出用画素から出力される焦点検出画素信号に基づいて、焦点検出処理を実行する焦点検出部とを備える。これによって、様々な被写体の色に対しても焦点検誤差量が著しく大きくなるのを防ぐことができる。例えば、Gに応じた光(あるいはそれに近い光)を光電変換する光電変換層だけに焦点検出用画素を設ければよい。   An imaging device according to another aspect of the present invention photoelectrically converts light in the shortest wavelength region among a plurality of photoelectric conversion layers and an imaging element in which a plurality of photoelectric conversion layers that photoelectrically convert light in different wavelength regions are stacked. A focus detection unit that performs focus detection processing based on focus detection pixel signals output from focus detection pixels provided in photoelectric conversion layers other than the photoelectric conversion layer and photoelectric conversion layers that photoelectrically convert light in the longest wavelength range With. Thereby, it is possible to prevent the focus detection error amount from being remarkably increased even for various subject colors. For example, the focus detection pixel may be provided only in the photoelectric conversion layer that photoelectrically converts light corresponding to G (or light close thereto).

本発明の他の態様における撮像素子は、基板上にあって、互いに異なる波長域の光を光電変換する複数の光電変換層と、複数の光電変換層から画素信号を読み出す画素信号読み出し回路とを備え、複数の光電変換層が積層されており、複数の光電変換層が、最短波長域の光を光電変換する光電変換層および最長波長域の光を光電変換する光電変換層以外の光電変換層であって、焦点検出用画素を設けた光電変換層を備える。   An imaging device according to another aspect of the present invention includes a plurality of photoelectric conversion layers that are on a substrate and photoelectrically convert light in different wavelength ranges, and a pixel signal readout circuit that reads pixel signals from the plurality of photoelectric conversion layers. A plurality of photoelectric conversion layers are laminated, and the plurality of photoelectric conversion layers are photoelectric conversion layers that photoelectrically convert light in the shortest wavelength region and photoelectric conversion layers other than the photoelectric conversion layer that photoelectrically converts light in the longest wavelength region A photoelectric conversion layer provided with focus detection pixels is provided.

本発明によれば、単板式多層型撮像素子を備えた撮像装置において、被写体の色に関係なく、AF処理を適切に行うことができる。   According to the present invention, in an imaging apparatus including a single-plate multilayer imaging device, AF processing can be appropriately performed regardless of the color of the subject.

第1の実施形態であるデジタルカメラのブロック図である。It is a block diagram of the digital camera which is 1st Embodiment. 撮像素子の積層構造を模式的に示した図である。It is the figure which showed typically the laminated structure of an image pick-up element. 撮像素子の所定画素の内部構造を示した図である。It is the figure which showed the internal structure of the predetermined pixel of an image pick-up element. 各光電変換層に設けられる焦点検出用画素を示した図である。It is the figure which showed the pixel for focus detection provided in each photoelectric converting layer. 撮像領域に規定される分割測距エリアを示した図である。It is the figure which showed the division | segmentation ranging area prescribed | regulated to an imaging area. システムコントロール回路によって実行される焦点検出処理のフローチャートである。It is a flowchart of the focus detection process performed by a system control circuit. 色収差を示した図である。It is the figure which showed chromatic aberration. 第2の実施形態における光電変換層の積層を示した図である。It is the figure which showed lamination | stacking of the photoelectric converting layer in 2nd Embodiment. 第2の実施形態における焦点検出処理のフローチャートである。It is a flowchart of the focus detection process in 2nd Embodiment. 第3の実施形態における焦点検出処理のフローチャートである。It is a flowchart of the focus detection process in 3rd Embodiment.

以下では、図面を参照して本実施形態であるデジタルカメラについて説明する。図1は、第1の実施形態であるデジタルカメラのブロック図である。   Below, the digital camera which is this embodiment is demonstrated with reference to drawings. FIG. 1 is a block diagram of a digital camera according to the first embodiment.

デジタルカメラ10は、カメラ本体30と、カメラ本体30に着脱自在な交換レンズ20とを備える。カメラCPUを含むシステムコントロール回路40は、電源ボタン、レリーズボタン、モード選択ダイヤル(いずれも図示せず)などに対する入力操作に従い、レンズ制御回路56、画像処理回路34などに制御信号を出力し、焦点調整、撮影制御、画像処理、記録処理、再生表示処理など一連のカメラ動作制御を行う。   The digital camera 10 includes a camera body 30 and an interchangeable lens 20 that is detachable from the camera body 30. The system control circuit 40 including the camera CPU outputs a control signal to the lens control circuit 56, the image processing circuit 34, etc. in accordance with an input operation to a power button, a release button, a mode selection dial (not shown), and the like. A series of camera operation control such as adjustment, shooting control, image processing, recording processing, and playback display processing is performed.

システムコントロール回路40は、演算部、ROM、RAM、インターフェイス回路など(いずれも図示せず)を有し、カメラ動作制御のプログラムは、ROMなどの記録媒体(図示せず)に記憶されている。操作スイッチ群38は、電源スイッチ、撮影モード選択スイッチ、レリーズスイッチなどによって構成されている。図示しないタイミングジェネレータは、所定周波数のクロックパルス信号を各回路へ出力する。各回路の動作タイミングは、送られてくるクロックパルス信号に従う。   The system control circuit 40 includes a calculation unit, ROM, RAM, interface circuit, and the like (all not shown), and a camera operation control program is stored in a recording medium (not shown) such as a ROM. The operation switch group 38 includes a power switch, a shooting mode selection switch, a release switch, and the like. A timing generator (not shown) outputs a clock pulse signal having a predetermined frequency to each circuit. The operation timing of each circuit follows the clock pulse signal sent.

撮影モードでは、撮影光学系22を通った被写体からの光が撮像素子32の受光面に結像し、被写体像が撮像素子32に形成される。撮像素子32は、ここでは(M×N)の画素を配列させた単板式CMOS型イメージセンサであって、後述するように、複数の光電変換層を積層配置させた多層型撮像素子として構成されている。撮像素子駆動回路36は撮像素子32を駆動し、1フィールドあるいは1フレーム分の画素信号を撮像素子32から所定時間間隔で読み出す。なお、CMOS以外のX−Yアドレス型撮像素子を用いてもよい。   In the photographing mode, light from the subject that has passed through the photographing optical system 22 forms an image on the light receiving surface of the image sensor 32, and a subject image is formed on the image sensor 32. Here, the imaging element 32 is a single-plate CMOS image sensor in which (M × N) pixels are arranged, and is configured as a multilayer imaging element in which a plurality of photoelectric conversion layers are arranged in a stacked manner, as will be described later. ing. The image sensor drive circuit 36 drives the image sensor 32 and reads out pixel signals for one field or one frame from the image sensor 32 at predetermined time intervals. An XY address type image sensor other than CMOS may be used.

撮像素子32から読み出された1フィールド/フレーム分の画素信号は、AD変換器33によってデジタル信号に変換された後、画像メモリ35へ一時的に格納される。画像処理回路34は、1フィールド/フレーム分の画素信号に対して色補間処理、ガンマ補正処理、ホワイトバランス調整などを施し、カラー画像信号を生成する。システムコントロール回路40は、カラー画像信号に基づいてLCDなどの表示器37を駆動し、これによってスルー画像が表示器37に表示される。   The pixel signal for one field / frame read from the image sensor 32 is converted into a digital signal by the AD converter 33 and then temporarily stored in the image memory 35. The image processing circuit 34 performs color interpolation processing, gamma correction processing, white balance adjustment, and the like on the pixel signal for one field / frame to generate a color image signal. The system control circuit 40 drives a display 37 such as an LCD based on the color image signal, and thereby a through image is displayed on the display 37.

レリーズボタンが半押しされると、焦点調節が行われる。システムコントロール回路40は、撮像素子32から読み出される画素信号に基づいてAF処理を実行する。すなわち、デフォーカス量を算出して結像面を合焦位置にシフトさせる。また、多点測距によるAF処理が実行可能である。レンズCPU28は、カメラ側マウント接点およびレンズ側マウントを介してレンズ制御回路56と通信可能であり、レンズ制御回路56からの指令に基づきレンズ駆動機構26を制御する。レンズ駆動機構26は、レンズCPU28からの制御信号に従って撮影光学系22のフォーカシングレンズを光軸方向に沿って移動させる。また、レリーズボタン半押しに従い、システムコントロール回路40は撮像素子32から読み出された画素信号に基づいて被写体の明るさを検出し、露出値(シャッタスピード、絞り値など)を算出する。   When the release button is pressed halfway, focus adjustment is performed. The system control circuit 40 performs AF processing based on the pixel signal read from the image sensor 32. That is, the defocus amount is calculated to shift the imaging plane to the in-focus position. In addition, AF processing by multipoint ranging can be executed. The lens CPU 28 can communicate with the lens control circuit 56 via the camera side mount contact and the lens side mount, and controls the lens driving mechanism 26 based on a command from the lens control circuit 56. The lens driving mechanism 26 moves the focusing lens of the photographing optical system 22 along the optical axis direction in accordance with a control signal from the lens CPU 28. As the release button is pressed halfway, the system control circuit 40 detects the brightness of the subject based on the pixel signal read from the image sensor 32 and calculates an exposure value (shutter speed, aperture value, etc.).

レリーズボタンが全押しされると、システムコントロール回路40は露出制御を行う。ここでは、撮像素子32の電子シャッタ機能によってシャッタスピード、すなわち露出時間を調整する。レンズCPU28は、送られてくる絞り値データに応じて絞り23の開口度合いを調整し、撮像素子32へ入射する光量を調整する。   When the release button is fully pressed, the system control circuit 40 performs exposure control. Here, the shutter speed, that is, the exposure time is adjusted by the electronic shutter function of the image sensor 32. The lens CPU 28 adjusts the degree of opening of the diaphragm 23 according to the transmitted aperture value data, and adjusts the amount of light incident on the image sensor 32.

1フレーム分の画素信号が撮像素子32から読み出されると、画像処理回路34は、ホワイトバランス処理、γ補正処理などを1フレーム分の画素信号に対して実行し、静止画像データを生成する。静止画像データは、圧縮処理された後あるいは非圧縮状態で画像メモリ35へ一時的に格納された後、メモリカードなど着脱自在な記録媒体54に記録される。   When a pixel signal for one frame is read from the image sensor 32, the image processing circuit 34 performs white balance processing, γ correction processing, and the like on the pixel signal for one frame to generate still image data. Still image data is recorded in a removable recording medium 54 such as a memory card after being compressed or temporarily stored in the image memory 35 in an uncompressed state.

図2は、撮像素子の積層構造を模式的に示した図である。図3は、撮像素子の所定画素の内部構造を示した図である。   FIG. 2 is a diagram schematically showing a laminated structure of the image sensor. FIG. 3 is a diagram illustrating an internal structure of a predetermined pixel of the image sensor.

図2に示すように、撮像素子32では、シリコン基板75の上に3つの光電変換層62B、62G、62Rが入射側からこの順で積層配置されており、絶縁膜60、61、62が間に介在する。光電変換層62Bは、Bの波長域に応じた光を選択的に吸収、光電変換し、それ以外の波長域の光(G、Rを含む)に応じた光を透過させる。光電変換層62Gは、Gに応じた波長域の光を吸収、光電変換し、それ以外の波長域の光を透過させる。そして、光電変換層62Rは、Rに応じた波長域の光を吸収、光電変換し、それ以外の波長域の光を透過させる。   As shown in FIG. 2, in the imaging device 32, three photoelectric conversion layers 62B, 62G, and 62R are stacked on the silicon substrate 75 in this order from the incident side, and the insulating films 60, 61, and 62 are interposed. Intervene in. The photoelectric conversion layer 62B selectively absorbs and photoelectrically converts light corresponding to the wavelength range of B, and transmits light corresponding to light in other wavelength ranges (including G and R). The photoelectric conversion layer 62G absorbs light in a wavelength region corresponding to G, performs photoelectric conversion, and transmits light in other wavelength regions. The photoelectric conversion layer 62R absorbs and photoelectrically converts light in a wavelength region corresponding to R, and transmits light in other wavelength regions.

光電変換層62B、62G,62Rは、それぞれ、B、G、Rに応じた波長域の光を選択的に吸収し、光電変換する薄膜光電変換膜によって構成されており、ここでは有機光電変換膜から成る。光電変換層62Bについては、例えばペリレン誘導体を材料とすることが可能であり、光電変換層62Gについては、例えばキナクリドンを材料とし、光電変換層62Rについては、フタロシアニン誘導体を材料とすることが可能である。なお、有機材料ではなく、無機材料、有機無機混合材料によって成形してもよい。   Each of the photoelectric conversion layers 62B, 62G, and 62R is configured by a thin film photoelectric conversion film that selectively absorbs light in a wavelength region corresponding to B, G, and R, and performs photoelectric conversion. Consists of. For the photoelectric conversion layer 62B, for example, a perylene derivative can be used as a material, for the photoelectric conversion layer 62G, for example, quinacridone can be used as a material, and for the photoelectric conversion layer 62R, a phthalocyanine derivative can be used as a material. is there. In addition, you may shape | mold with an inorganic material and an organic inorganic mixed material instead of an organic material.

図3に示すように、光電変換層62Bは、画素電極92Bと対向電極91Bとの間に挟まれており、Bに応じた光が入射すると電荷が発生する。発生した電荷は、プラグ63を経由してシリコン基板75に形成されたストレージダイオード66Bに格納される。シリコン基板75には画素信号読み出し回路74が形成されており、駆動パルスによって画素信号がストレージダイオード66Bから読み出される。   As shown in FIG. 3, the photoelectric conversion layer 62B is sandwiched between the pixel electrode 92B and the counter electrode 91B, and charges are generated when light corresponding to B enters. The generated charges are stored in the storage diode 66B formed on the silicon substrate 75 via the plug 63. A pixel signal read circuit 74 is formed on the silicon substrate 75, and a pixel signal is read from the storage diode 66B by a drive pulse.

光電変換層62G、62Rも、それぞれ、画素電極82G,72Rと対向電極81G、71Rとに間に挟まれた構造であり、プラグ65、67を経由して電荷がストレージダイオード66G,66Rに格納される。画素電極72R、82G、92Bおよび対向電極71R,81G,91Bは、透明な電極材料によって成形されており、画素電極92B、82G、72Rおよび対向電極71R,81G,91Bをマトリクス状に2次元配置させることによって撮像素子32の画素領域が規定される。   The photoelectric conversion layers 62G and 62R also have a structure sandwiched between the pixel electrodes 82G and 72R and the counter electrodes 81G and 71R, respectively. Charges are stored in the storage diodes 66G and 66R via the plugs 65 and 67, respectively. The The pixel electrodes 72R, 82G, 92B and the counter electrodes 71R, 81G, 91B are formed of a transparent electrode material, and the pixel electrodes 92B, 82G, 72R and the counter electrodes 71R, 81G, 91B are two-dimensionally arranged in a matrix. As a result, the pixel region of the image sensor 32 is defined.

光電変換層62B、62G、62Rの各画素領域は互いに向かい合っており、撮像素子32の各画素は、3つの光電変換層62B、62G、62Rの画素領域をもつ。光電変換層62B上には、画素位置に合わせてマイクロレンズアレイが形成されており、各マイクロレンズに入射した光は、光電変換層62B、62G,62Rの同じ位置にある画素に入射する。R,G、Bのカラーフィルタとして機能する光電変換層62B、62G,62Rを撮像素子32の各画素に積層配置することにより、撮像素子32の各画素からR,G,Bの画素信号が出力される。なお、撮影画像において、焦点検出用画素の位置に該当する画素については、周囲の画素信号に基づいた補間処理を行う。   The pixel regions of the photoelectric conversion layers 62B, 62G, and 62R face each other, and each pixel of the imaging element 32 has three pixel regions of the photoelectric conversion layers 62B, 62G, and 62R. A microlens array is formed on the photoelectric conversion layer 62B in accordance with the pixel position, and the light incident on each microlens enters the pixels at the same position on the photoelectric conversion layers 62B, 62G, and 62R. The photoelectric conversion layers 62B, 62G, and 62R that function as R, G, and B color filters are stacked on each pixel of the image sensor 32, so that R, G, and B pixel signals are output from each pixel of the image sensor 32. Is done. It should be noted that interpolation processing based on surrounding pixel signals is performed for pixels corresponding to the position of focus detection pixels in the captured image.

本実施形態では、光電変換層62B,62G、62Rに焦点検出用画素(画素領域)を設け、位相方式によるAF処理を実行する。以下、 図4、5を用いて焦点検出用画素について説明する。   In the present embodiment, focus detection pixels (pixel regions) are provided in the photoelectric conversion layers 62B, 62G, and 62R, and AF processing by a phase method is executed. Hereinafter, the focus detection pixels will be described with reference to FIGS.

図4は、光電変換層62B,62G、62Rにそれぞれ設けられる焦点検出用画素を示した図である。図5は、撮像領域に規定される分割測距エリアを示した図である。   FIG. 4 is a diagram illustrating focus detection pixels provided in the photoelectric conversion layers 62B, 62G, and 62R, respectively. FIG. 5 is a diagram showing a divided ranging area defined in the imaging area.

図4では、撮像素子32の撮像領域(受光領域)IMの中の一部エリア32B、32G、32R(図2参照)の画素配列を示している。各光電変換層に6×6の画素ブロックBBを定めた場合、焦点検出用画素として斜め方向に隣接する一対の焦点検出用画素が配置されている。   4 shows a pixel arrangement of partial areas 32B, 32G, and 32R (see FIG. 2) in the imaging area (light receiving area) IM of the imaging element 32. When a 6 × 6 pixel block BB is defined in each photoelectric conversion layer, a pair of focus detection pixels adjacent in the oblique direction are arranged as focus detection pixels.

光電変換層62Bでは、焦点検出用画素対PBが画素ブロックBBの左隅に配置されていて、光電変換層62Gでは焦点検出用画素対PGが画素ブロックBBの中央部、光電変換層62Rでは焦点検出用画素対PRが画素ブロックBBの右隅部に配置されている。焦点検出用画素対PB、PG、PRは、同一光路上に重ならないように配置されている。   In the photoelectric conversion layer 62B, the focus detection pixel pair PB is arranged at the left corner of the pixel block BB. In the photoelectric conversion layer 62G, the focus detection pixel pair PG is in the center of the pixel block BB, and in the photoelectric conversion layer 62R, the focus detection. The pixel pair PR is arranged at the right corner of the pixel block BB. The focus detection pixel pairs PB, PG, and PR are arranged so as not to overlap on the same optical path.

焦点検出用画素対PBには、瞳分割位相差方式に従って一対の分割像を形成するため、画素半分を遮光する遮光膜SL、SMがそれぞれ形成されている。遮光膜SL、SMは、各焦点検出用画素対から一対の分割像が形成されるように、互いに対称的な位置に形成されている。   In the focus detection pixel pair PB, in order to form a pair of divided images according to the pupil division phase difference method, light shielding films SL and SM that shield light from half of the pixels are formed. The light shielding films SL and SM are formed at symmetrical positions so as to form a pair of divided images from each focus detection pixel pair.

なお、焦点検出用画素対PB、PG、PRは、斜め方向に隣接させて配置させる構成に限定されず、行方向、列方向に隣接させてもよい。遮光膜SL、SMも、一対の瞳分割像を得られるように、焦点検出用画素対の配列方向に応じて形成位置を定めればよい。   Note that the focus detection pixel pairs PB, PG, and PR are not limited to the configuration in which the focus detection pixel pairs are arranged adjacent to each other in the oblique direction, and may be adjacent to each other in the row direction and the column direction. The formation positions of the light shielding films SL and SM may be determined according to the arrangement direction of the focus detection pixel pairs so that a pair of pupil-divided images can be obtained.

多点測距によるAF処理のため、撮像素子32の撮像領域IM全体に対して複数(ここでは9つ)の分割測距エリアが規定されている(図5参照)。AF処理を行うとき、ターゲットとなる被写体が写し出されている分割測距エリアに属する焦点検出用画素対PB、PG、PRに基づき、焦点検出処理が行われる。   For AF processing by multipoint ranging, a plurality (here, nine) of divided ranging areas are defined for the entire imaging area IM of the imaging element 32 (see FIG. 5). When the AF process is performed, the focus detection process is performed based on the focus detection pixel pairs PB, PG, and PR belonging to the divided ranging area where the target subject is projected.

図6は、システムコントロール回路40によって実行される焦点検出処理のフローチャートである。図7は、色収差を示した図である。   FIG. 6 is a flowchart of the focus detection process executed by the system control circuit 40. FIG. 7 is a diagram showing chromatic aberration.

ステップS101では、AF対象となる分割測距エリア(例えば、図5の(2,2))に対し、各光電変換層の画素信号の平均値が算出される。そして、ステップS102では、光電変換層62B、62G,62Rの画素信号平均値がそれぞれ比較され、Bに応じた光電変換層62Bの画素信号平均値が最も大きいか否かが判断される。   In step S101, the average value of the pixel signals of each photoelectric conversion layer is calculated for the divided ranging area (for example, (2, 2 in FIG. 5)) to be AF target. In step S102, the pixel signal average values of the photoelectric conversion layers 62B, 62G, and 62R are respectively compared, and it is determined whether or not the pixel signal average value of the photoelectric conversion layer 62B corresponding to B is the largest.

撮影光学系22には色収差が生じ、入射光の波長の違いによって結像位置が相違する。短波長の光ほど、結像位置が撮影光学系22の側に近い(図7参照)。被写体に反射して撮影レンズ20に入射する光の波長域、すなわち被写体の色は、光源の分光分布特性と被写体の分光反射率に従うことから、被写体の色や光源の違い(自然光と室内灯の違いなど)に結像位置が影響される。   Chromatic aberration occurs in the photographing optical system 22, and the imaging position differs depending on the wavelength of incident light. The shorter the wavelength, the closer the imaging position is to the photographing optical system 22 side (see FIG. 7). The wavelength range of light reflected from the subject and incident on the taking lens 20, that is, the color of the subject follows the spectral distribution characteristics of the light source and the spectral reflectance of the subject, and therefore the difference between the color of the subject and the light source (natural light and room light) The imaging position is affected by differences).

撮像素子32では、光電変換層62B、62G、62Rが、この色収差による結像位置の違い(長波長の光ほどレンズから離れる)に合わせて積層されている。すなわち、光電変換層62Bが撮影光学系22の側(入射側)に最も近く、光電変換層62G、光電変換層62Rの順に積層されている。また、光電変換層62B、62G,62Rの間隔は、色収差量に応じて定められている。   In the image sensor 32, the photoelectric conversion layers 62B, 62G, and 62R are stacked in accordance with the difference in image formation position due to the chromatic aberration (the longer the wavelength of light, the farther from the lens). That is, the photoelectric conversion layer 62B is closest to the photographing optical system 22 side (incident side), and the photoelectric conversion layer 62G and the photoelectric conversion layer 62R are stacked in this order. The intervals between the photoelectric conversion layers 62B, 62G, and 62R are determined according to the amount of chromatic aberration.

したがって、光電変換層62B、62G,62Rの画素信号平均出力を比較したとき、最も出力レベルが高い光電変換層の深さ方向の(光軸に沿った)位置もしくはその付近に結像位置があるとみなすことができる。例えば被写体が青味を帯びた場合、光電変換層62Bもしくはその付近に結像位置が定まる。   Therefore, when the pixel signal average outputs of the photoelectric conversion layers 62B, 62G, and 62R are compared, the imaging position is at or near the position in the depth direction (along the optical axis) of the photoelectric conversion layer having the highest output level. Can be considered. For example, when the subject is bluish, the imaging position is determined at or near the photoelectric conversion layer 62B.

ステップS102において、Bに応じた光電変換層62Bの画素信号の平均出力値が最も大きい場合、光電変換層62Bの所定分割測距エリアに設けられた焦点検出用画素対を選択し、焦点検出用画素に形成される瞳分割像からデフォーカス量を検出し、合焦動作を行う(S103)。   In step S102, when the average output value of the pixel signal of the photoelectric conversion layer 62B corresponding to B is the largest, the focus detection pixel pair provided in the predetermined divided distance measurement area of the photoelectric conversion layer 62B is selected and used for focus detection. A defocus amount is detected from the divided pupil image formed on the pixel, and a focusing operation is performed (S103).

一方、Gに応じた光電変換層62Gの画素信号の平均出力値が最も大きい場合、光電変換層62Gに設けられた焦点検出用画素が選択され、AF処理が行われる(S104、S105)。あるいは、Rに応じた光電変換層62Rの画素信号の平均出力値が最も大きい場合、光電変換層62Rに設けられた焦点検出用画素が選択され、AF処理が行われる(S106)。   On the other hand, when the average output value of the pixel signal of the photoelectric conversion layer 62G corresponding to G is the largest, a focus detection pixel provided in the photoelectric conversion layer 62G is selected and AF processing is performed (S104, S105). Alternatively, when the average output value of the pixel signal of the photoelectric conversion layer 62R corresponding to R is the largest, a focus detection pixel provided in the photoelectric conversion layer 62R is selected and AF processing is performed (S106).

このように本実施形態によれば、複数の光電変換層62B、62G、62Rをシリコン基板75上にこの順で入射側から積層配置させた単板式多層型撮像素子32を設け、各光電変換層に焦点検出用画素対PB、PG、PRを配置する。そして、光電変換層62B、62G、62Rの画素信号平均値を比較して、最も大きい平均値を出力する光電変換層の焦点検出用画素を用いてAF処理を実行する。   As described above, according to the present embodiment, the single-plate multilayer imaging element 32 in which the plurality of photoelectric conversion layers 62B, 62G, and 62R are stacked on the silicon substrate 75 in this order from the incident side is provided. The focus detection pixel pair PB, PG, and PR are arranged in FIG. Then, the pixel signal average values of the photoelectric conversion layers 62B, 62G, and 62R are compared, and AF processing is performed using the focus detection pixels of the photoelectric conversion layer that output the largest average value.

被写体の主要な色成分の焦点検出用画素を用いてデフォーカス量を算出することにより、色収差の影響を低減し、焦点検出誤差量を抑えることが可能となる。また、1つの光電変換層を選択し、他の光電変換層の焦点検出用画素を使用しないため、正確なAF処理を短時間で実行することができる。   By calculating the defocus amount using the focus detection pixels of the main color component of the subject, it is possible to reduce the influence of chromatic aberration and suppress the focus detection error amount. Further, since one photoelectric conversion layer is selected and the focus detection pixels of the other photoelectric conversion layers are not used, accurate AF processing can be performed in a short time.

なお、平均値以外の代表値(メディアン値など)を分割測距エリアに対して算出してもよい。また、多点測距以外の測距方式にも適用可能である。   Note that a representative value other than the average value (such as a median value) may be calculated for the divided ranging area. Further, the present invention can be applied to ranging methods other than multipoint ranging.

次に、図8、9を用いて第2の実施形態について説明する。第2の実施形態では、赤外光(IR)に応じた光電変換層を設けている。それ以外の構成については、実質的に第1の実施形態と同じである。   Next, a second embodiment will be described with reference to FIGS. In the second embodiment, a photoelectric conversion layer corresponding to infrared light (IR) is provided. Other configurations are substantially the same as those in the first embodiment.

図8は、第2の実施形態における光電変換層の積層を示した図である。撮像素子32’には、R、G,Bに応じた光電変換層62B、62G、62Rに加え、IRに応じた光電変換層62IRが積層されている。光電変換層62IRは、シリコン基板75上に設けられており、Siフォトダイオードとして構成されている。光電変換層62IRは、赤外光に応じた光を選択的に吸収し、光電変換する。そして、他の光電変換層と同様、透明な画素電極、対向電極が対向配置されており、プラグを経由してストレージダイオードに電荷が送られる。   FIG. 8 is a diagram illustrating the stacking of photoelectric conversion layers in the second embodiment. In the imaging element 32 ', in addition to photoelectric conversion layers 62B, 62G, and 62R corresponding to R, G, and B, a photoelectric conversion layer 62IR corresponding to IR is stacked. The photoelectric conversion layer 62IR is provided on the silicon substrate 75, and is configured as a Si photodiode. The photoelectric conversion layer 62IR selectively absorbs light corresponding to infrared light and performs photoelectric conversion. Similar to the other photoelectric conversion layers, transparent pixel electrodes and counter electrodes are arranged to face each other, and charges are sent to the storage diode via the plug.

図9は、第2の実施形態における焦点検出処理のフローチャートである。   FIG. 9 is a flowchart of focus detection processing in the second embodiment.

ステップS201〜S205の実行は、図6のステップS101〜S105の実行と同じである。Rに応じた光電変換層62Rの画素信号の平均出力値が最も大きい場合、光電変換層62Rに設けられた焦点検出用画素が選択され、AF処理が実行される(S206、S207)。一方、IRに応じた光電変換層62IRの画素信号の平均出力値が最も大きい場合、光電変換層62IRに設けられた焦点検出用画素が選択され、AF処理が実行される(S206、S208)。   The execution of steps S201 to S205 is the same as the execution of steps S101 to S105 in FIG. When the average output value of the pixel signal of the photoelectric conversion layer 62R corresponding to R is the largest, a focus detection pixel provided in the photoelectric conversion layer 62R is selected, and AF processing is executed (S206, S207). On the other hand, when the average output value of the pixel signal of the photoelectric conversion layer 62IR corresponding to IR is the largest, the focus detection pixel provided in the photoelectric conversion layer 62IR is selected, and AF processing is executed (S206, S208).

このようにシリコンフォトダイオードをさらに積層させることにより、近赤外光に近い色の被写体に対しても色収差の影響を抑えることができる。   By further stacking the silicon photodiodes in this way, it is possible to suppress the influence of chromatic aberration on a subject having a color close to near infrared light.

次に、図10を用いて、第3の実施形態について説明する。第3の実施形態では、各光電変換層の焦点検出用画素を用いる一方、各光電変換層の画素信号出力のレベルの違いに応じて重み付けを行う。   Next, a third embodiment will be described with reference to FIG. In the third embodiment, focus detection pixels of each photoelectric conversion layer are used, and weighting is performed according to a difference in pixel signal output level of each photoelectric conversion layer.

図10は、第3の実施形態における焦点検出処理のフローチャートである。   FIG. 10 is a flowchart of focus detection processing in the third embodiment.

ステップS301では、AF対象となる分割測距エリアに対し、各光電変換層の画素信号平均出力Vb、Vg、Vrが算出される。それとともに、各光電変換層の焦点検出用画素を用いて、デフォーカス量fb、fg、frが算出される(S302〜S304)。そして、算出されたVb、Vg、Vrの比(割合)に応じて重み付け係数を定め、最終的なデフォーカス量を算出する(S305)。具体的には、fb、fg、frに対し、Vb/(Vb+Vg+Vr)、Vg/(Vb+Vg+Vr)、Vr/(Vb+Vg+Vr)がそれぞれ乗じられ、加算される。   In step S301, pixel signal average outputs Vb, Vg, and Vr of each photoelectric conversion layer are calculated for the divided ranging area to be an AF target. At the same time, defocus amounts fb, fg, and fr are calculated using the focus detection pixels of each photoelectric conversion layer (S302 to S304). Then, a weighting coefficient is determined according to the calculated ratio (ratio) of Vb, Vg, and Vr, and a final defocus amount is calculated (S305). Specifically, fb, fg, and fr are multiplied by Vb / (Vb + Vg + Vr), Vg / (Vb + Vg + Vr), and Vr / (Vb + Vg + Vr), respectively, and added.

このように重み付け補間処理を行なうことにより、被写体の色がR,G,Bの色成分をまたがるような場合でも、色収差の影響を確実に低減することが可能となり、正確にデフォーカス量を算出することができる。   By performing weighted interpolation processing in this way, even when the color of the subject straddles R, G, and B color components, it is possible to reliably reduce the influence of chromatic aberration and accurately calculate the defocus amount. can do.

第3の実施形態では、重み付けによって全ての光電変換層の焦点検出画素信号を利用した焦点検出処理を行っているが、重み付け以外の演算方法によって各光電変換層の焦点検出画素信号の出力レベルを調整してもよい。また、3つの光電変換層のうち2つの光電変換層の焦点検出用画素を用いて演算してもよい。   In the third embodiment, the focus detection processing using the focus detection pixel signals of all photoelectric conversion layers is performed by weighting. However, the output level of the focus detection pixel signal of each photoelectric conversion layer is set by a calculation method other than weighting. You may adjust. Moreover, you may calculate using the pixel for a focus detection of two photoelectric conversion layers among three photoelectric conversion layers.

R,G,B以外の波長域の光を選択に吸収する光電変換層を形成することも可能であり、複数の光電変換層の画素信号からカラー画像を得られるように構成すればよい。この場合、吸収波長域の光が短い層から長い層の順に光路に沿って積層配置すればよい。一方、被写体の色が主要色で占められるとは限られず、複数の色がランダムに混在する被写体もあることを踏まえれば、上述した光電変換層の積層順でなく、それ以外の積層順でもよい。   It is also possible to form a photoelectric conversion layer that selectively absorbs light in a wavelength region other than R, G, and B, and the color image may be obtained from pixel signals of a plurality of photoelectric conversion layers. In this case, the light in the absorption wavelength region may be stacked along the optical path in the order of a short layer to a long layer. On the other hand, the subject color is not necessarily occupied by the main color, and there are some subjects in which a plurality of colors are mixed at random. .

上述した焦点検出用画素の選択、あるいは重み付けなどの調整処理をすることなく、特定の光電変換層に設けられた焦点検出用画素を用いて焦点検出処理を行ってもよい。被写体の色の違いによって検出誤差量が大きくなるのを防ぐことを考慮すると、いずれかの層を選択、調整するのではなく、焦点検出用画素を設置する層をあらかじめ定めてもよい。例えば、短波長側のB、長波長側のRの中間位置にあるGの光電変換層に焦点検出洋画素を設け、焦点検出処理を行えばよい。これにより、どのような被写体の色に対しても、焦点検出誤差量をR,Bに比べて抑えることができる。さらに言えば、複数の光電変換層の中で最も短波長の光を吸収する光電変換層と、最も長波長の光を吸収する光電変換層以外の光電変換層に焦点検出用画素を設ければよい。   The focus detection process may be performed using the focus detection pixels provided in a specific photoelectric conversion layer without performing the adjustment process such as the selection or weighting of the focus detection pixels described above. In consideration of preventing the detection error amount from increasing due to the difference in the color of the subject, instead of selecting and adjusting any of the layers, a layer in which the focus detection pixels are installed may be determined in advance. For example, a focus detection processing pixel may be provided by providing a focus detection western pixel in a G photoelectric conversion layer at an intermediate position between B on the short wavelength side and R on the long wavelength side. Thereby, the focus detection error amount can be suppressed as compared with R and B for any subject color. Furthermore, if a focus detection pixel is provided in a photoelectric conversion layer that absorbs light with the shortest wavelength among the plurality of photoelectric conversion layers and a photoelectric conversion layer other than the photoelectric conversion layer that absorbs light with the longest wavelength. Good.

第1〜第3の実施形態では、単一の基板上に複数の光電変換層を積層させた構造を採用しているが、シリコン基板内の光の侵入深さが波長ごとに異なることを利用して、R,G,Bあるいはそれ以外の波長域の光を光電変換するフォトダイオードを積層させた半導体構造を採用してもよい。   In the first to third embodiments, a structure in which a plurality of photoelectric conversion layers are stacked on a single substrate is employed, but the fact that the penetration depth of light in the silicon substrate differs for each wavelength is utilized. Then, a semiconductor structure in which photodiodes that photoelectrically convert light in R, G, B, or other wavelength ranges may be employed.

10 デジタルカメラ
32 撮像素子
40 システムコントロール回路
62B 光電変換層
62G 光電変換層
62R 光電変換層
PB 焦点検出用画素対
PG 焦点検出用画素対
PR 焦点検出用画素対
10 Digital Camera 32 Image Sensor 40 System Control Circuit 62B Photoelectric Conversion Layer 62G Photoelectric Conversion Layer 62R Photoelectric Conversion Layer PB Focus Detection Pixel Pair PG Focus Detection Pixel Pair PR Focus Detection Pixel Pair

Claims (13)

互いに異なる波長域の光を光電変換する複数の光電変換層を積層させた撮像素子と、
各光電変換層に設けられた焦点検出用画素から出力される焦点検出画素信号に基づいて、焦点検出処理を実行する焦点検出部とを備え、
前記焦点検出部が、前記複数の光電変換層から出力される画素信号レベルの差異に基づき、焦点検出誤差を抑制するように焦点検出画素信号の選択もしくは焦点検出画素信号の調整を行うことを特徴とする撮像装置。
An imaging device in which a plurality of photoelectric conversion layers that photoelectrically convert light in different wavelength ranges are stacked;
A focus detection unit that performs a focus detection process based on a focus detection pixel signal output from a focus detection pixel provided in each photoelectric conversion layer;
The focus detection unit selects a focus detection pixel signal or adjusts the focus detection pixel signal so as to suppress a focus detection error based on a difference in pixel signal levels output from the plurality of photoelectric conversion layers. An imaging device.
前記焦点検出部が、前記複数の光電変換層の中で最も大きい画素信号を出力する光電変換層の焦点検出用画素を用いて、焦点検出処理を行うことを特徴とする請求項1に記載の撮像装置。   2. The focus detection unit according to claim 1, wherein the focus detection unit performs a focus detection process using a focus detection pixel of a photoelectric conversion layer that outputs the largest pixel signal among the plurality of photoelectric conversion layers. Imaging device. 前記焦点検出部が、前記複数の光電変換層での画素信号レベルの比もしくは割合に応じて、各光電変換層の画素信号に対して重み付けを行なうことを特徴とする請求項1に記載の撮像装置。   2. The imaging according to claim 1, wherein the focus detection unit weights the pixel signal of each photoelectric conversion layer according to a ratio or a ratio of pixel signal levels in the plurality of photoelectric conversion layers. apparatus. 前記複数の光電変換層が、光路に沿って、光電変換波長域の短い光電変換層から光電変換波長域の長い光電変換層の順に並んでいることを特徴とする請求項1乃至4のいずれかに記載の撮像装置。   The plurality of photoelectric conversion layers are arranged in the order of a photoelectric conversion layer having a short photoelectric conversion wavelength range to a photoelectric conversion layer having a long photoelectric conversion wavelength range along the optical path. The imaging device described in 1. 前記複数の光電変換層が、Bに応じた光を光電変換する光電変換層と、Gに応じた光を光電変換する光電変換層と、Rに応じた光を光電変換する光電変換層とを有することを特徴とする請求項1乃至4のいずれかに記載の撮像装置。   The plurality of photoelectric conversion layers include a photoelectric conversion layer that photoelectrically converts light according to B, a photoelectric conversion layer that photoelectrically converts light according to G, and a photoelectric conversion layer that photoelectrically converts light according to R. The imaging device according to claim 1, wherein the imaging device is provided. 前記複数の光電変換層が、IRに応じた光を光電変換する光電変換層を有することを特徴とする請求項5に記載の撮像装置。   The imaging apparatus according to claim 5, wherein the plurality of photoelectric conversion layers include a photoelectric conversion layer that photoelectrically converts light corresponding to IR. 各光電変換層が、撮像エリアの測距点に応じて規定される複数の分割測距エリアそれぞれに焦点検出用画素を有し、
前記焦点検出部が、対象となる分割測距エリアに対して、焦点検出画素信号の選択もしくは焦点検出画素信号の調整を行うことを特徴とする請求項1乃至6のいずれかに記載の撮像装置。
Each photoelectric conversion layer has a focus detection pixel in each of a plurality of divided ranging areas defined according to the ranging points of the imaging area,
The imaging apparatus according to claim 1, wherein the focus detection unit selects a focus detection pixel signal or adjusts a focus detection pixel signal for a target divided ranging area. .
各光電変換層が、対称的位置に遮光膜を備えた少なくとも1対の焦点検出用画素を有し、
前記焦点検出部が、位相差方式によって焦点検出を行うことを特徴とする請求項1乃至7のいずれかに記載の撮像装置。
Each photoelectric conversion layer has at least one pair of focus detection pixels provided with light shielding films at symmetrical positions,
The imaging apparatus according to claim 1, wherein the focus detection unit performs focus detection by a phase difference method.
互いに異なる波長域の光を透過する複数の光電変換層を積層させた撮像素子の各光電変換層に設けられた焦点検出用画素から出力される焦点検出画素信号に基づいて、焦点検出処理を行う焦点検出装置であって、
前記複数の光電変換層から出力される画素信号レベルの差異に基づき、焦点検出誤差を抑制するように、焦点検出画素信号の選択もしくは焦点検出画素信号の調整を行うことを特徴とする焦点検出装置。
Focus detection processing is performed based on a focus detection pixel signal output from a focus detection pixel provided in each photoelectric conversion layer of an imaging element in which a plurality of photoelectric conversion layers that transmit light in different wavelength ranges are stacked. A focus detection device,
A focus detection device that selects a focus detection pixel signal or adjusts a focus detection pixel signal so as to suppress a focus detection error based on a difference in pixel signal levels output from the plurality of photoelectric conversion layers. .
互いに異なる波長域の光を光電変換する複数の光電変換層を積層させた撮像素子の各光電変換層に設けられた焦点検出用画素から出力される焦点検出画素信号に基づいて、焦点検出処理を行う焦点検出方法であって、
前記複数の光電変換層から出力される画素信号レベルの差異に基づき、焦点検出誤差を抑制するように、焦点検出画素信号の調整もしくは焦点検出画素信号の選択を行うことを特徴とする焦点検出方法。
Focus detection processing is performed based on the focus detection pixel signal output from the focus detection pixel provided in each photoelectric conversion layer of the image sensor in which a plurality of photoelectric conversion layers that photoelectrically convert light in different wavelength ranges are stacked. A focus detection method to perform,
A focus detection method comprising adjusting a focus detection pixel signal or selecting a focus detection pixel signal so as to suppress a focus detection error based on a difference between pixel signal levels output from the plurality of photoelectric conversion layers. .
基板上にあって、互いに異なる波長域の光を光電変換する複数の光電変換層と、
前記複数の光電変換層から画素信号を読み出す画素信号読み出し回路とを備え、
前記複数の光電変換層が積層されており、
各光電変換層が、焦点検出用画素を有することを特徴とする単板式多層型撮像素子。
A plurality of photoelectric conversion layers on the substrate for photoelectrically converting light in different wavelength ranges;
A pixel signal readout circuit that reads out pixel signals from the plurality of photoelectric conversion layers;
The plurality of photoelectric conversion layers are laminated,
Each photoelectric conversion layer has a focus detection pixel, and a single-plate multilayer imaging device.
前記複数の光電変換層が、光路に沿って、光電変換波長域の短い光電変換層から光電変換波長域の長い光電変換層の順に並んでいることを特徴とする請求項11に記載の単板式多層型撮像素子。   The single plate type according to claim 11, wherein the plurality of photoelectric conversion layers are arranged in the order of a photoelectric conversion layer having a short photoelectric conversion wavelength range to a photoelectric conversion layer having a long photoelectric conversion wavelength range along the optical path. Multi-layer image sensor. 基板上にあって、互いに異なる波長域の光を光電変換する複数の光電変換層と、
前記複数の光電変換層から画素信号を読み出す画素信号読み出し回路とを備え、
前記複数の光電変換層が積層されており、
前記複数の光電変換層が、最短波長域の光を光電変換する光電変換層および最長波長域の光を光電変換する光電変換層以外の光電変換層であって、焦点検出用画素を設けた光電変換層を備えたことを特徴とする単板式多層型撮像素子。
A plurality of photoelectric conversion layers on the substrate for photoelectrically converting light in different wavelength ranges;
A pixel signal readout circuit that reads out pixel signals from the plurality of photoelectric conversion layers;
The plurality of photoelectric conversion layers are laminated,
The plurality of photoelectric conversion layers are photoelectric conversion layers other than the photoelectric conversion layer that photoelectrically converts light in the shortest wavelength region and the photoelectric conversion layer that photoelectrically converts light in the longest wavelength region, and are provided with a focus detection pixel. A single-plate multilayer imaging device comprising a conversion layer.
JP2016067848A 2016-03-30 2016-03-30 Imaging device, focus detection device, and imaging device Active JP6740666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016067848A JP6740666B2 (en) 2016-03-30 2016-03-30 Imaging device, focus detection device, and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016067848A JP6740666B2 (en) 2016-03-30 2016-03-30 Imaging device, focus detection device, and imaging device

Publications (2)

Publication Number Publication Date
JP2017183992A true JP2017183992A (en) 2017-10-05
JP6740666B2 JP6740666B2 (en) 2020-08-19

Family

ID=60008682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016067848A Active JP6740666B2 (en) 2016-03-30 2016-03-30 Imaging device, focus detection device, and imaging device

Country Status (1)

Country Link
JP (1) JP6740666B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102623A (en) * 2017-11-30 2019-06-24 日本放送協会 Color imaging device and manufacturing method thereof
WO2019240121A1 (en) * 2018-06-15 2019-12-19 ソニー株式会社 Solid-state imaging element, solid-state imaging device, electronic instrument, and method for manufacturing solid-state imaging element
CN112424939A (en) * 2018-07-26 2021-02-26 索尼公司 Solid-state image pickup element, solid-state image pickup device, and method for reading solid-state image pickup element
WO2021161134A1 (en) * 2020-02-14 2021-08-19 株式会社半導体エネルギー研究所 Imaging device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173278A (en) * 2003-12-12 2005-06-30 Canon Inc Automatic focusing system
JP2015162562A (en) * 2014-02-27 2015-09-07 株式会社ニコン Imaging apparatus and digital camera
JP2017135639A (en) * 2016-01-29 2017-08-03 株式会社シグマ Image processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173278A (en) * 2003-12-12 2005-06-30 Canon Inc Automatic focusing system
JP2015162562A (en) * 2014-02-27 2015-09-07 株式会社ニコン Imaging apparatus and digital camera
JP2017135639A (en) * 2016-01-29 2017-08-03 株式会社シグマ Image processing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019102623A (en) * 2017-11-30 2019-06-24 日本放送協会 Color imaging device and manufacturing method thereof
JP7085337B2 (en) 2017-11-30 2022-06-16 日本放送協会 Color image sensor
WO2019240121A1 (en) * 2018-06-15 2019-12-19 ソニー株式会社 Solid-state imaging element, solid-state imaging device, electronic instrument, and method for manufacturing solid-state imaging element
CN112088430A (en) * 2018-06-15 2020-12-15 索尼公司 Solid-state imaging element, solid-state imaging device, electronic apparatus, and method for manufacturing solid-state imaging element
JPWO2019240121A1 (en) * 2018-06-15 2021-07-08 ソニーグループ株式会社 Solid-state image sensor, solid-state image sensor, electronic device, and method for manufacturing solid-state image sensor
JP7420713B2 (en) 2018-06-15 2024-01-23 ソニーグループ株式会社 Solid-state imaging device, solid-state imaging device, electronic device, and method for manufacturing solid-state imaging device
CN112424939A (en) * 2018-07-26 2021-02-26 索尼公司 Solid-state image pickup element, solid-state image pickup device, and method for reading solid-state image pickup element
WO2021161134A1 (en) * 2020-02-14 2021-08-19 株式会社半導体エネルギー研究所 Imaging device

Also Published As

Publication number Publication date
JP6740666B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP6791243B2 (en) Image sensor and image sensor
US9742984B2 (en) Image capturing apparatus and method of controlling the same
JP2023120273A (en) Imaging element and imaging device
JP5547349B2 (en) Digital camera
JP5434761B2 (en) Imaging device and imaging apparatus
JP6264284B2 (en) Imaging device
US20100188532A1 (en) Image sensor and image-capturing device
JP4826507B2 (en) Focus detection apparatus and imaging apparatus
JP5629832B2 (en) Imaging device and method for calculating sensitivity ratio of phase difference pixel
JP2015162562A (en) Imaging apparatus and digital camera
JP2012027390A (en) Imaging apparatus
JP6740666B2 (en) Imaging device, focus detection device, and imaging device
JP4983271B2 (en) Imaging device
JP2008072470A (en) Photoelectric conversion element and imaging apparatus
JP2017098513A (en) Imaging device, imaging apparatus, and focusing apparatus
JP4858179B2 (en) Focus detection apparatus and imaging apparatus
JP6693567B2 (en) Imaging device, focus detection device, and electronic camera
JP2013057769A (en) Solid state imaging device, imaging device, focus control method and program
JP2010091848A (en) Focus detecting apparatus and imaging apparatus
JPWO2018062559A1 (en) Imaging device, focus detection device, and imaging device
JP6705252B2 (en) Imaging device, pixel defect correction device, and pixel defect correction method
JP2016197794A (en) Imaging device
JP2015154153A (en) Camera with imaging apparatus
JP5929307B2 (en) Imaging device and digital camera
JP7419975B2 (en) Imaging element and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200706

R150 Certificate of patent or registration of utility model

Ref document number: 6740666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250