JP2017183655A - Powder-compressed molded magnetic body, magnetic core, and coil type electronic component - Google Patents

Powder-compressed molded magnetic body, magnetic core, and coil type electronic component Download PDF

Info

Publication number
JP2017183655A
JP2017183655A JP2016072833A JP2016072833A JP2017183655A JP 2017183655 A JP2017183655 A JP 2017183655A JP 2016072833 A JP2016072833 A JP 2016072833A JP 2016072833 A JP2016072833 A JP 2016072833A JP 2017183655 A JP2017183655 A JP 2017183655A
Authority
JP
Japan
Prior art keywords
magnetic
powder
magnetic body
phosphorus
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016072833A
Other languages
Japanese (ja)
Other versions
JP6620643B2 (en
Inventor
中村 和広
Kazuhiro Nakamura
和広 中村
琢 村▲瀬▼
Taku Murase
琢 村▲瀬▼
伊藤 守
Mamoru Ito
守 伊藤
弘勝 佐々木
Hirokatsu Sasaki
弘勝 佐々木
繁樹 松井
Shigeki Matsui
繁樹 松井
保 小番
Tamotsu Koban
保 小番
小松 秀樹
Hideki Komatsu
秀樹 小松
好孝 渋谷
Yoshitaka Shibuya
好孝 渋谷
和明 木村
Kazuaki Kimura
和明 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2016072833A priority Critical patent/JP6620643B2/en
Priority to KR1020170029663A priority patent/KR20170113094A/en
Priority to CN201710161574.0A priority patent/CN107275030B/en
Publication of JP2017183655A publication Critical patent/JP2017183655A/en
Priority to KR1020180161140A priority patent/KR102040207B1/en
Application granted granted Critical
Publication of JP6620643B2 publication Critical patent/JP6620643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder-compressed molded magnetic body which can be easily manufactured with excellent insulation characteristics while maintaining a stable quality, and has less deterioration of magnetic characteristics, a magnetic core made of the magnetic body, and a coil type electronic component having the magnetic core.SOLUTION: A powder-compressed molded magnetic body includes an alloy particle 2 constructed by Fe-Si-Cr-based soft magnetic alloy. In the powder-compressed molded magnetic body, phosphorus of 40 to 100 ppm is included. A Cr oxide film 4 including phosphorus is formed on a front surface of the alloy particle 2.SELECTED DRAWING: Figure 1

Description

本発明は、圧粉成形磁性体、磁芯およびコイル型電子部品に関する。   The present invention relates to a compacted magnetic body, a magnetic core, and a coil-type electronic component.

一般的に、従来の軟磁性合金粒子を有する圧粉成形磁性体から成る磁心では、絶縁特性が劣ると言う課題を有している。そこで、合金粒子の表面を、たとえばリン酸系化成皮膜などのコーティングを行うことが検討されている(たとえば特許文献1)。   In general, a magnetic core made of a dust-molded magnetic body having conventional soft magnetic alloy particles has a problem of poor insulation properties. Thus, it has been studied to coat the surface of the alloy particles with, for example, a phosphoric acid-based chemical film (for example, Patent Document 1).

しかしながら、合金粒子の表面を、リン酸系化成皮膜などでコーティングを行う技術では、製造工数が増大するなどの課題を有している。また、合金粒子の表面にコーティングを行うことで、μなどの磁気特性が劣化するという課題もある。   However, the technique of coating the surface of alloy particles with a phosphoric acid-based chemical conversion film has problems such as an increase in the number of manufacturing steps. Further, there is a problem that the magnetic properties such as μ are deteriorated by coating the surfaces of the alloy particles.

そこで、粒径の異なる合金粒子を混合するなど様々な対策が併用されているが、そのために、磁性体の品質が不安定になるおそれがあると共に、製造工程が煩雑になる。   Therefore, various measures such as mixing alloy particles having different particle diameters are used together. However, the quality of the magnetic material may become unstable, and the manufacturing process becomes complicated.

特開2008−63651号公報JP 2008-63651 A

本発明は、このような実状に鑑みてなされ、その目的は、製造が容易で品質の安定化が図れ、しかも絶縁特性に優れ、磁気特性の劣化も少ない圧粉成形磁性体と、その磁性体から成る磁芯、その磁芯を有するコイル型電子部品を提供することである。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a dust-molded magnetic body that is easy to manufacture, stabilizes quality, has excellent insulating characteristics, and has little deterioration in magnetic characteristics, and the magnetic body. And a coil-type electronic component having the magnetic core.

上記目的を達成するために、本発明の第1の観点に係る圧粉成形磁性体は、
Fe−Si−Cr系軟磁性合金で構成される合金粒子を含む圧粉成形磁性体であって、
リンが40〜100ppm含まれ、
前記合金粒子の表面には、リンを含むCr酸化膜が形成してあることを特徴とする。
In order to achieve the above object, a compacted magnetic body according to the first aspect of the present invention comprises:
A compacted magnetic body comprising alloy particles composed of a Fe-Si-Cr soft magnetic alloy,
Contains 40-100 ppm phosphorus,
A Cr oxide film containing phosphorus is formed on the surface of the alloy particles.

本発明の第1の観点に係る圧粉成形磁性体によれば、合金粒子の表面にリンを含むCr酸化膜が形成してあるため、リンを含まない圧粉成形磁性体に比較して、絶縁性が格別に向上する。また、本発明の第1の観点に係る圧粉成形磁性体によれば、μなどの磁気特性の劣化が少ないことが本発明者等により見出された。   According to the compacting magnetic body according to the first aspect of the present invention, since the Cr oxide film containing phosphorus is formed on the surface of the alloy particles, compared with the compacting magnetic body not containing phosphorus, Insulation is significantly improved. Further, it has been found by the present inventors that the compacted magnetic body according to the first aspect of the present invention has little deterioration in magnetic properties such as μ.

さらに、本発明の第1の観点に係る圧粉成形磁性体は、原料となる軟磁性合金粉末にリンを所定量で含ませ、熱処理条件を適切に選択するのみで製造することができる。そのため、製造が容易で品質の安定化を図ることができる。   Furthermore, the powder compacted magnetic body according to the first aspect of the present invention can be produced simply by including a predetermined amount of phosphorus in the soft magnetic alloy powder as a raw material and appropriately selecting the heat treatment conditions. Therefore, manufacture is easy and quality can be stabilized.

上記目的を達成するために、本発明の第2の観点に係る圧粉成形磁性体は、
Fe−Si−Cr系軟磁性合金で構成される合金粒子を含む圧粉成形磁性体であって、
リンが40〜100ppm含まれ、
前記合金粒子相互間の粒界には、リンが含まれていることを特徴とする圧粉成形磁性体。
In order to achieve the above object, a compacted magnetic body according to a second aspect of the present invention is:
A compacted magnetic body comprising alloy particles composed of a Fe-Si-Cr soft magnetic alloy,
Contains 40-100 ppm phosphorus,
A powder compacted magnetic body, wherein grain boundaries between the alloy particles contain phosphorus.

本発明の第2の観点に係る圧粉成形磁性体によれば、合金粒子の粒界にリンが含まれるため、リンを含まない圧粉成形磁性体に比較して、絶縁性が格別に向上する。また、本発明の第2の観点に係る圧粉成形磁性体によれば、μなどの磁気特性の劣化が少ないことが本発明者等により見出された。   According to the powder compacted magnetic body according to the second aspect of the present invention, since the grain boundaries of the alloy particles contain phosphorus, the insulation is significantly improved compared to the powder compacted magnetic body that does not contain phosphorus. To do. Further, it has been found by the present inventors that the powder molded magnetic body according to the second aspect of the present invention has little deterioration in magnetic properties such as μ.

さらに、本発明の第2の観点に係る圧粉成形磁性体は、原料となる軟磁性合金粉末にリンを所定量で含ませ、熱処理条件を適切に選択するのみで製造することができる。そのため、製造が容易で品質の安定化を図ることができる。   Furthermore, the compacting magnetic body according to the second aspect of the present invention can be manufactured by simply including phosphorus in a predetermined amount in the soft magnetic alloy powder as a raw material and appropriately selecting the heat treatment conditions. Therefore, manufacture is easy and quality can be stabilized.

本発明に係る磁芯は、上記に記載の圧粉成形磁性体から構成されることを特徴とする。   The magnetic core which concerns on this invention is comprised from the above-mentioned compacting magnetic body.

本発明に係るコイル型電子部品は、上記に記載の磁芯を有することを特徴とする。   A coil-type electronic component according to the present invention has the magnetic core described above.

図1は本発明の一実施形態に係る圧粉成形磁性体の断面におけるSTEM画像である。FIG. 1 is a STEM image of a cross section of a compacted magnetic body according to an embodiment of the present invention. 図2は本発明の実施例および比較例に係る圧粉成形磁性体のリン含有量と絶縁特性およびμi特性の変化を示すグラフである。FIG. 2 is a graph showing changes in phosphorus content, insulation characteristics, and μi characteristics of powder-molded magnetic bodies according to examples and comparative examples of the present invention.

以下、本発明を、実施形態に基づき説明する。
本実施形態に係るコイル型電子部品用の磁芯は、圧粉成形により成形される圧粉成形磁性体から成る磁芯である。圧粉成形は、プレス機械の金型内に、軟磁性合金粉末を含む材料を充填し、所定の圧力で加圧して圧縮成形を施すことにより成形体を得る方法である。
Hereinafter, the present invention will be described based on embodiments.
The magnetic core for coil-type electronic components according to the present embodiment is a magnetic core made of a dust-molded magnetic body that is molded by dust-molding. The compacting is a method for obtaining a compact by filling a material containing a soft magnetic alloy powder in a die of a press machine and pressurizing the material with a predetermined pressure.

本実施形態に係る磁芯の形状としては、トロイダル型のほか、FT型、ET型、EI型、UU型、EE型、EER型、UI型、ドラム型、ポット型、カップ型等を例示することができる。この磁芯の周囲に巻き線を所定巻数だけ巻回することにより所望のコイル型電子部品を得ることができる。   Examples of the shape of the magnetic core according to the present embodiment include a toroidal type, FT type, ET type, EI type, UU type, EE type, EER type, UI type, drum type, pot type, cup type, and the like. be able to. A desired coil-type electronic component can be obtained by winding a predetermined number of turns around the magnetic core.

本実施形態に係るコイル型電子部品用の磁心は、本実施形態に係る圧粉成形磁性体で構成してある。   The magnetic core for a coil-type electronic component according to the present embodiment is composed of the dust-molded magnetic body according to the present embodiment.

本実施形態に係る圧粉成形磁性体は、図1に示すように、複数の軟磁性合金粒子2と、前記軟磁性合金粒子間に存在する粒界6と、を有する。軟磁性合金粒子2は、Fe−Si−Cr系軟磁性合金で構成される。   As shown in FIG. 1, the compacted magnetic body according to the present embodiment includes a plurality of soft magnetic alloy particles 2 and grain boundaries 6 existing between the soft magnetic alloy particles. The soft magnetic alloy particles 2 are composed of an Fe—Si—Cr based soft magnetic alloy.

Fe−Si−Cr系軟磁性合金において、ケイ素をSi換算で0.1〜9質量%、クロムをCr換算で0.1〜15質量%含有し、残部が鉄(Fe)で構成されていることが好ましい。さらに好ましくは、ケイ素をSi換算で1.4〜9質量%、特に好ましくは4.5〜8.5質量%、また、クロムをCr換算で1.5〜8質量%、特に好ましくは3〜7質量%含有し、残部が鉄(Fe)で構成されていることが好ましい。   The Fe—Si—Cr soft magnetic alloy contains 0.1 to 9% by mass of silicon in terms of Si, 0.1 to 15% by mass of chromium in terms of Cr, and the balance is made of iron (Fe). It is preferable. More preferably, silicon is 1.4 to 9% by mass in terms of Si, particularly preferably 4.5 to 8.5% by mass, and chromium is 1.5 to 8% by mass in terms of Cr, particularly preferably 3 to 3. It is preferable that the content is 7% by mass and the balance is composed of iron (Fe).

Fe−Ni−Si−Cr系軟磁性合金において、ニッケルをNi換算で3〜15質量%、ケイ素をSi換算で0.1〜9質量%、クロムをCr換算で0.1〜15質量%含有し、残部が鉄(Fe)で構成されていることが好ましい。さらに好ましくは、ニッケルをNi換算で3〜10質量%、ケイ素をSi換算で1.4〜9質量%、特に好ましくは4.5〜8.5質量%、また、クロムをCr換算で1.5〜8質量%、特に好ましくは3〜7質量%含有し、残部が鉄(Fe)で構成されていることが好ましい。   Fe-Ni-Si-Cr-based soft magnetic alloy containing 3-15% by mass of nickel in terms of Ni, 0.1-9% by mass of silicon in terms of Si, and 0.1-15% by mass of chromium in terms of Cr And it is preferable that the remainder is comprised with iron (Fe). More preferably, nickel is 3 to 10% by mass in terms of Ni, silicon is 1.4 to 9% by mass in terms of Si, particularly preferably 4.5 to 8.5% by mass, and chromium is 1. It is preferable to contain 5 to 8% by mass, particularly preferably 3 to 7% by mass, with the balance being composed of iron (Fe).

本実施形態に係る軟磁性合金粒子2の平均結晶粒子径は、好ましくは30〜60μmである。平均結晶粒子径を上記の範囲とすることで、磁芯の薄層化を容易に実現することができる。   The average crystal particle diameter of the soft magnetic alloy particles 2 according to this embodiment is preferably 30 to 60 μm. By making the average crystal particle diameter within the above range, it is possible to easily realize a thin magnetic core.

軟磁性合金粒子2の表面には、Cr酸化膜4が形成してある。Cr酸化膜4は、酸素とCrを含む相であって、Crおよび酸素以外の元素、たとえばSiを含む複合酸化物であってもよい。Cr酸化膜4は、合金粒子2の粒内よりもCrが多いSi−Cr複合酸化物相であってもよい。Si−Cr複合酸化物相は、特に限定されるものではないが、SiとCrを含有するアモルファス相等が挙げられる。   A Cr oxide film 4 is formed on the surface of the soft magnetic alloy particle 2. The Cr oxide film 4 is a phase containing oxygen and Cr, and may be a complex oxide containing elements other than Cr and oxygen, such as Si. The Cr oxide film 4 may be a Si—Cr composite oxide phase in which there is more Cr than in the alloy particles 2. The Si—Cr composite oxide phase is not particularly limited, and examples thereof include an amorphous phase containing Si and Cr.

また、本実施形態に係る圧粉成形磁性体において、上記酸化物相は、さらにBiおよびVのいずれか一方、または両方を含有していてもよい。このようなBiおよびVを含有する酸化物相としては、たとえば、Bi酸化物やV酸化物等が分散している酸化物相や、BiやVが軟磁性合金粒子を構成する成分の一部と化学的に結合して形成される複合酸化物相等が挙げられる。   Moreover, in the powder-molded magnetic body according to the present embodiment, the oxide phase may further contain one or both of Bi and V. Examples of the oxide phase containing Bi and V include, for example, an oxide phase in which Bi oxide, V oxide, and the like are dispersed, and Bi and V are a part of components constituting the soft magnetic alloy particles. And a complex oxide phase formed by chemically bonding to the compound.

Cr酸化膜4は、粒子2の表面全体を覆っていることが好ましいが、断続的に形成してあっても良い。Cr酸化膜4の膜厚は、特に限定されないが、好ましくは0.05〜0.2μm、さらに好ましくは0.1〜0.2μmである。Cr酸化膜4の膜厚は、均一でなくてもよく、該組成も均質でなくてもよい。   The Cr oxide film 4 preferably covers the entire surface of the particle 2, but may be formed intermittently. The thickness of the Cr oxide film 4 is not particularly limited, but is preferably 0.05 to 0.2 μm, and more preferably 0.1 to 0.2 μm. The film thickness of the Cr oxide film 4 may not be uniform, and the composition may not be uniform.

本実施形態では、Cr酸化膜4にリンが含まれる。また本実施形態では、粒界6にもリンが含まれる。Cr酸化膜4にリンが含まれることと、粒界6にリンが含まれることを検出する方法としては、特に制限されず、たとえば、リン(P)のマッピング画像を解析することで判断してもよい。   In the present embodiment, the Cr oxide film 4 contains phosphorus. In the present embodiment, the grain boundary 6 also contains phosphorus. The method for detecting that the Cr oxide film 4 contains phosphorus and that the grain boundary 6 contains phosphorus is not particularly limited. For example, it is determined by analyzing a mapping image of phosphorus (P). Also good.

また、合金粒子2および粒界6の区別は、走査透過型電子顕微鏡(STEM)を用いて磁芯を観察することにより行うことができる。具体的には、磁芯の断面をSTEMにより撮影し、明視野(BF)像を得る。この明視野像において軟磁性合金粒子と軟磁性合金粒子との間に存在し、該軟磁性合金粒子とは異なるコントラストを有する領域を粒界とする。異なるコントラストを有するか否かの判断は、目視により行ってもよいし、画像処理を行うソフトウェア等により判断してもよい。   The alloy particles 2 and the grain boundaries 6 can be distinguished by observing the magnetic core using a scanning transmission electron microscope (STEM). Specifically, a cross section of the magnetic core is photographed with a STEM to obtain a bright field (BF) image. In this bright field image, a region present between the soft magnetic alloy particles and the soft magnetic alloy particles and having a contrast different from that of the soft magnetic alloy particles is defined as a grain boundary. The determination of whether or not the contrast is different may be made by visual observation, or may be made by software or the like that performs image processing.

さらに、Cr酸化膜4が、合金粒子2の表面に存在しているか否かは、EDSまたはEPMAにより検出することができる。また、合金粒子2の表面に形成してある膜が、Cr酸化膜4であることは、EDSまたはEPMAのマッピングによって、CrとOをそれぞれマッピングし、CrとOが重なっているかどうかにより検出することができる。   Further, whether or not the Cr oxide film 4 is present on the surface of the alloy particle 2 can be detected by EDS or EPMA. Further, the fact that the film formed on the surface of the alloy particle 2 is the Cr oxide film 4 is detected by mapping Cr and O by EDS or EPMA mapping, and whether Cr and O overlap. be able to.

たとえば磁芯の任意の断面から観測点を定めて、EDS解析若しくはEPMA解析を行うことによって、Pの存在する箇所を観察することができる。具体的には、これらの解析の定性分析機能を用いてマッピング画像を得られる。マッピング画像では、観察する元素が多い箇所が色によって判別できる。目視もしくは解析ソフトによってPがCr酸化膜4または粒界6に存在するか否かを判断できる。   For example, by defining an observation point from an arbitrary cross section of the magnetic core and performing EDS analysis or EPMA analysis, it is possible to observe a portion where P exists. Specifically, a mapping image can be obtained using the qualitative analysis function of these analyses. In the mapping image, it is possible to distinguish a portion where there are many elements to be observed by color. Whether or not P exists in the Cr oxide film 4 or the grain boundary 6 can be determined by visual observation or analysis software.

さらに、これらの解析によれば、合金粒子2の内部やその表面における各種成分の濃度分布等も確認できる。また、STEM解析によれば、合金粒子2の表面に形成されたCr酸化膜4が、アモルファスか結晶質かなどに関しても特定することが可能である。本実施形態では、Cr酸化膜4は、アモルファスでも結晶質であっても良い。   Furthermore, according to these analyses, it is possible to confirm the concentration distribution of various components inside the alloy particle 2 and on the surface thereof. Further, according to the STEM analysis, it is possible to specify whether the Cr oxide film 4 formed on the surface of the alloy particle 2 is amorphous or crystalline. In the present embodiment, the Cr oxide film 4 may be amorphous or crystalline.

なお、本実施形態に係る圧粉成形磁性体において、P以外の元素(Fe、Si、CrおよびO等)についても、上記Pの場合と同様の方法により、軟磁性合金粒子の表面および粒界に各種元素が存在しているか否かを判断することができる。   In the compacted magnetic body according to the present embodiment, elements other than P (Fe, Si, Cr, O, etc.) are also applied to the surfaces and grain boundaries of the soft magnetic alloy particles by the same method as in the case of P. It can be determined whether or not various elements are present.

本実施形態に係る圧粉成形磁性体において、リン(P)の含有量は、圧粉成形磁性体100質量%に対して、40〜100ppmであり、より好ましくは60〜100ppmである。上記のような範囲を満足させることにより、本実施形態に係る磁芯において、磁気特性(特に、初期透磁率μi)を劣化させること無く、絶縁性が格別に向上する。圧粉成形磁性体において、リン(P)の含有量の測定は、ICPにより行うことができる。   In the powder molded magnetic body according to the present embodiment, the content of phosphorus (P) is 40 to 100 ppm, more preferably 60 to 100 ppm, with respect to 100% by mass of the powder molded magnetic body. By satisfying the above-described range, the insulating property is remarkably improved in the magnetic core according to the present embodiment without deteriorating the magnetic characteristics (particularly, the initial magnetic permeability μi). In the compacted magnetic body, the content of phosphorus (P) can be measured by ICP.

本実施形態に係る圧粉成形磁性体によれば、合金粒子2の表面にリンを含むCr酸化膜4が形成してあると共に、粒界6にPが含まれているため、絶縁性が格別に向上する。また、本実施形態に係る圧粉成形磁性体によれば、μなどの磁気特性の劣化が少ない。   According to the powder compacted magnetic body according to the present embodiment, the Cr oxide film 4 containing phosphorus is formed on the surface of the alloy particle 2 and P is contained in the grain boundary 6, so that the insulating property is exceptional. To improve. Moreover, according to the compacting magnetic body which concerns on this embodiment, there is little deterioration of magnetic characteristics, such as (micro | micron | mu).

さらに、本実施形態に係る圧粉成形磁性体は、後述するように、原料となる軟磁性合金粉末にリンを所定量で含ませ、熱処理条件を適切に選択するのみで製造することができる。そのため、製造が容易で品質の安定化を図ることができる。   Furthermore, as will be described later, the compacted magnetic body according to the present embodiment can be produced by simply including phosphorus in a predetermined amount in the raw soft magnetic alloy powder and appropriately selecting the heat treatment conditions. Therefore, manufacture is easy and quality can be stabilized.

本実施形態に係る圧粉成形磁性体は、上記軟磁性体合金粒子の構成成分以外にも、炭素(C)および亜鉛(Zn)等の成分が含まれることがある。   The powder compacted magnetic body according to the present embodiment may contain components such as carbon (C) and zinc (Zn) in addition to the constituent components of the soft magnetic alloy particles.

なお、Cは、圧粉成形磁性体の製造過程で用いられる有機化合物成分に由来すると考えられる。また、Znは、圧粉成形磁性体を圧粉成形により得る際に、装置の抜き圧を低減させるために金型に添加するステアリン酸亜鉛に由来すると考えられる。   In addition, it is thought that C originates in the organic compound component used in the manufacturing process of a compacting magnetic body. Further, it is considered that Zn is derived from zinc stearate added to the mold in order to reduce the punching pressure of the apparatus when the compacted magnetic body is obtained by compacting.

本実施形態に係る圧粉成形磁性体における、炭素(C)の含有量は、好ましくは0.25質量%未満であり、より好ましくは0.10〜0.20質量%である。   The content of carbon (C) in the green compact magnetic body according to this embodiment is preferably less than 0.25% by mass, and more preferably 0.10 to 0.20% by mass.

本実施形態に係る圧粉成形磁性体における、亜鉛(Zn)の含有量は、好ましくは0.004〜0.2質量%であり、より好ましくは0.01〜0.2質量%である。   The zinc (Zn) content in the compacted magnetic body according to this embodiment is preferably 0.004 to 0.2 mass%, more preferably 0.01 to 0.2 mass%.

なお、本実施形態に係る圧粉成形磁性体には、上記成分以外にも、不可避的不純物が含まれていてもよい。   In addition to the above components, the powder compacted magnetic body according to the present embodiment may contain inevitable impurities.

さらに別の実施形態としては、圧粉成形磁性体の粒界には、さらにSiが存在してもよい。これにより、高い磁気特性を維持しつつ、さらに強度を向上させることができる。特に、比較的低い成形圧で成形された場合であっても、磁芯として十分な強度を得ることができるため、金型への負担も低減され、生産性が向上する。   As yet another embodiment, Si may be further present at the grain boundaries of the compacted magnetic body. Thereby, intensity | strength can be improved further, maintaining a high magnetic characteristic. In particular, even when molded at a relatively low molding pressure, sufficient strength as a magnetic core can be obtained, so that the burden on the mold is reduced and productivity is improved.

本実施形態に係る圧粉成形磁性体において、Siは、2つの粒子間に形成される粒界6または3つ以上の粒子の間に存在する粒界(3重点など)に、Siを含有する相として存在していてもよい。   In the compacted magnetic body according to the present embodiment, Si contains Si at grain boundaries 6 formed between two particles or at grain boundaries (such as triple points) existing between three or more particles. It may exist as a phase.

このようにSiを含有する相が粒界に存在することにより、本実施形態に係る磁芯は、比較的低い成形圧で成形された場合であっても、磁芯として十分な強度を得ることができる。さらに、このようなSiを含有する相は、粒界に存在することで絶縁体の役割を果たす。   As a result of the presence of Si-containing phases at the grain boundaries, the magnetic core according to the present embodiment can obtain sufficient strength as a magnetic core even when molded with a relatively low molding pressure. Can do. Furthermore, such a phase containing Si plays a role of an insulator by being present at a grain boundary.

本実施形態に係るSiを含有する相は、好ましくは、Si酸化物相あるいはSi複合酸化物相である。Si酸化物相およびSi複合酸化物相としては、特に限定されるものではないが、たとえばSiを含有するアモルファス相、アモルファスシリコン、シリカ、Si−Cr複合酸化物等が挙げられる。   The phase containing Si according to the present embodiment is preferably a Si oxide phase or a Si composite oxide phase. The Si oxide phase and the Si composite oxide phase are not particularly limited, and examples thereof include an amorphous phase containing Si, amorphous silicon, silica, and a Si—Cr composite oxide.

また、本実施形態に係る圧粉成形磁性体において、Siを含有する相は、さらに軟磁性合金粒子2の表面(粒界6との界面)にも存在しても良い。たとえば、Cr酸化膜4は、Si―Cr複合酸化物相で構成してあっても良い。本実施形態に係るSiを含有する相は、好ましくは、アモルファス質で構成されている。なお、一部が結晶質で構成されていてもよい。   Further, in the compacted magnetic body according to the present embodiment, the phase containing Si may also exist on the surface of the soft magnetic alloy particle 2 (interface with the grain boundary 6). For example, the Cr oxide film 4 may be composed of a Si—Cr composite oxide phase. The phase containing Si according to the present embodiment is preferably made of an amorphous material. Note that a part thereof may be made of a crystalline material.

次に、本実施形態に係る磁芯の製造方法の一例を説明する。
本実施形態の圧粉成形磁性体から成る磁心は、軟磁性体合金粉末と、結合材(バインダ樹脂)とを含む成形体を熱処理することにより、作製することができる。以下、好ましい製造方法につき、詳述する。
Next, an example of a method for manufacturing a magnetic core according to the present embodiment will be described.
The magnetic core made of the compacted magnetic body of the present embodiment can be produced by heat-treating a molded body containing soft magnetic alloy powder and a binder (binder resin). Hereinafter, a preferable production method will be described in detail.

本実施形態に係る圧粉成形磁性体の製造方法は、好ましくは、
軟磁性体合金粉末と、結合材とを混合し、混合物を得る工程と、
混合物を乾燥させて塊状の乾燥体を得た後、この乾燥体を粉砕することにより、造粒粉を形成する工程と、
混合物または造粒粉を、作製すべき圧粉成形磁性体の形状に成形し、成形体を得る工程と、
得られた成形体を加熱することにより、圧粉磁心を得る工程と、を有する。
The method for producing a compacted magnetic body according to this embodiment is preferably:
Mixing a soft magnetic alloy powder and a binder to obtain a mixture;
After the mixture is dried to obtain a lump-shaped dried body, the dried body is pulverized to form granulated powder,
Forming a mixture or granulated powder into the shape of a compacted magnetic body to be produced to obtain a molded body;
And a step of obtaining a dust core by heating the obtained molded body.

軟磁性合金粉末の形状は特に制限はないが、高い磁界域までインダクタンスを維持する観点から、球状または楕円体状とすることが好ましい。これらの中では、圧粉磁芯の強度をより大きくする観点から、楕円体状が望ましい。また、軟磁性合金粉末の平均粒径は、好ましくは10〜80μm、より好ましくは30〜60μmである。   The shape of the soft magnetic alloy powder is not particularly limited, but is preferably spherical or elliptical from the viewpoint of maintaining inductance up to a high magnetic field range. Among these, an elliptical shape is desirable from the viewpoint of increasing the strength of the dust core. The average particle size of the soft magnetic alloy powder is preferably 10 to 80 μm, more preferably 30 to 60 μm.

軟磁性合金粉末は、公知の軟磁性合金粉末の調製方法と同様の方法により得ることができる。この際、ガスアトマイズ法、水アトマイズ法、回転ディスク法等を用いて調製することができる。これらの中では、所望の磁気特性を有する軟磁性合金粉末を作製しやすくするため、水アトマイズ法が好ましい。   The soft magnetic alloy powder can be obtained by a method similar to a known method for preparing a soft magnetic alloy powder. At this time, it can be prepared using a gas atomizing method, a water atomizing method, a rotating disk method or the like. Among these, the water atomization method is preferable in order to easily produce a soft magnetic alloy powder having desired magnetic characteristics.

軟磁性合金粉末にリンを含ませる方法としては、特に限定されないが、たとえば次に示すいくつかの方法が考えられる。   The method of including phosphorus in the soft magnetic alloy powder is not particularly limited. For example, the following several methods are conceivable.

軟磁性合金粉末の作製時に、原料を溶融、混合する際に、鉄単体の原料に含まれるリン以外に、リンを単体で混合することにより、軟磁性合金粉末にリンを含ませることができる。なお、リン(P)の添加量は、成形体の熱処理後に40〜100ppmとなるように調整される。熱処理の前後において、リン(P)の含有量は、変化しないと考えられる。   When the raw material is melted and mixed at the time of producing the soft magnetic alloy powder, phosphorus can be included in the soft magnetic alloy powder by mixing phosphorus alone in addition to phosphorus contained in the raw material of simple iron. In addition, the addition amount of phosphorus (P) is adjusted so that it may become 40-100 ppm after the heat processing of a molded object. It is considered that the content of phosphorus (P) does not change before and after the heat treatment.

軟磁性体合金粉末と結合材とを混合して混合物を得る際には、低融点酸化物を含ませても良い。低融点酸化物は、BiおよびVの少なくとも一方を含んでもよい。これにより、粒界にBiおよびVの少なくとも一方を効率よく形成することができる。このような低融点酸化物としては、たとえば酸化ビスマス、酸化バナジウム等が挙げられる。   When the soft magnetic alloy powder and the binder are mixed to obtain a mixture, a low melting point oxide may be included. The low melting point oxide may include at least one of Bi and V. Thereby, at least one of Bi and V can be efficiently formed at the grain boundary. Examples of such a low melting point oxide include bismuth oxide and vanadium oxide.

このような低融点酸化物の添加量は、軟磁性体合金粉末100重量部に対して、Bi2 O3 またはV2 O5 換算で、好ましくは0.1〜5.0質量部である。上記範囲を満たすことにより、軟磁性組成物の粒界に効率よくBiやVを形成でき、磁芯の強度を向上させることができる。   The addition amount of such a low melting point oxide is preferably 0.1 to 5.0 parts by mass in terms of Bi2O3 or V2O5 with respect to 100 parts by weight of the soft magnetic alloy powder. By satisfy | filling the said range, Bi and V can be formed efficiently in the grain boundary of a soft-magnetic composition, and the intensity | strength of a magnetic core can be improved.

また、より好ましくは、上記低融点酸化物は、少なくともBiを含有する。このようなビスマス(Bi)の含有する低融点酸化物の添加量は、軟磁性体合金100質量%に対して、Bi2 O3 換算で、好ましくは0.1〜5.0質量%、より好ましくは0.1〜1.0質量%ある。上記範囲を満足することにより、強度を向上しつつ、磁気特性(特に、初期透磁率μi)を高く維持できる。   More preferably, the low melting point oxide contains at least Bi. The addition amount of the low melting point oxide contained in such bismuth (Bi) is preferably 0.1 to 5.0% by mass, more preferably 0.1% by mass in terms of Bi2O3 with respect to 100% by mass of the soft magnetic material alloy. 0.1 to 1.0% by mass. By satisfying the above range, the magnetic properties (particularly, the initial magnetic permeability μi) can be kept high while improving the strength.

結合材としては、公知の樹脂を用いることができ、たとえば各種有機高分子樹脂、シリコーン樹脂、フェノール樹脂、エポキシ樹脂および水ガラス等が挙げられる。   As the binder, known resins can be used, and examples thereof include various organic polymer resins, silicone resins, phenol resins, epoxy resins, and water glass.

中でも、本実施形態においては、好ましくは、結合材としてシリコーン樹脂を含むものを用いる。結合剤としてシリコーンを用いることにより、軟磁性組成物の粒界に、Siを含有する相が効果的に形成される。このような圧粉成形磁性体により構成された磁芯は、比較的低い成形圧で成形した場合であっても、十分な強度を発揮する。   Especially, in this embodiment, Preferably, what contains a silicone resin as a binder is used. By using silicone as the binder, a Si-containing phase is effectively formed at the grain boundary of the soft magnetic composition. A magnetic core composed of such a powder-molded magnetic body exhibits sufficient strength even when molded with a relatively low molding pressure.

結合材の添加量は、必要とされる磁芯の特性に応じては異なるが、好ましくは軟磁性体合金粉末100重量部に対して、1〜10重量部添加することができ、より好ましくは軟磁性体合金粉末100重量部に対して、2〜5重量部である。   The amount of the binder added varies depending on the required characteristics of the magnetic core, but preferably 1 to 10 parts by weight can be added, more preferably 100 parts by weight of the soft magnetic alloy powder. The amount is 2 to 5 parts by weight with respect to 100 parts by weight of the soft magnetic alloy powder.

また、前記混合物または造粒粉には、本発明の効果を妨げない範囲で、必要に応じて有機溶媒を添加してもよい。   Moreover, you may add an organic solvent to the said mixture or granulated powder as needed in the range which does not inhibit the effect of this invention.

有機溶媒としては、結合材を溶解し得るものであれば特に限定されないが、たとえば、トルエン、イソプロピルアルコール、アセトン、メチルエチルケトン、クロロホルム、酢酸エチル等の各種溶媒が挙げられる。   The organic solvent is not particularly limited as long as it can dissolve the binder, and examples thereof include various solvents such as toluene, isopropyl alcohol, acetone, methyl ethyl ketone, chloroform, and ethyl acetate.

また、前記混合物または造粒粉には、本発明の効果を妨げない範囲で、必要に応じて各種添加剤、潤滑剤、可塑剤、チキソ剤等を添加してもよい。   In addition, various additives, lubricants, plasticizers, thixotropic agents, and the like may be added to the mixture or the granulated powder as necessary, as long as the effects of the present invention are not hindered.

潤滑剤としては、たとえば、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸亜鉛およびステアリン酸ストロンチウム等が挙げられる。これらは1種を単独でまたは2種以上を組み合わせて用いられる。これらの中では、いわゆるスプリングバックが小さいという観点から、潤滑剤としてステアリン酸亜鉛を用いることが好ましい。   Examples of the lubricant include aluminum stearate, barium stearate, magnesium stearate, calcium stearate, zinc stearate and strontium stearate. These are used singly or in combination of two or more. Among these, it is preferable to use zinc stearate as a lubricant from the viewpoint that so-called spring back is small.

潤滑剤を用いる場合には、その添加量は、好ましくは軟磁性体合金粉末100重量部に対して、0.1〜0.9重量部であり、より好ましくは軟磁性体合金粉末100重量部に対して、0.3〜0.7重量部である。潤滑剤が少なすぎると、成形後の脱型が困難となり、成形クラックが生じやすい傾向にある。一方、潤滑剤が多すぎると、成形密度の低下を招き、透磁率が減少してしまう。   When a lubricant is used, the amount added is preferably 0.1 to 0.9 parts by weight, more preferably 100 parts by weight of soft magnetic alloy powder, with respect to 100 parts by weight of soft magnetic alloy powder. Is 0.3 to 0.7 parts by weight. If the amount of the lubricant is too small, it is difficult to remove the mold after molding, and molding cracks tend to occur. On the other hand, when there is too much lubricant, the molding density is lowered and the magnetic permeability is reduced.

特に、潤滑剤としてステアリン酸亜鉛を用いる場合には、得られる圧粉成形磁性体中の、亜鉛(Zn)の含有量が、0.004〜0.2質量%の範囲内となる、添加量を調整することが好ましい。   In particular, when zinc stearate is used as the lubricant, the amount of zinc (Zn) contained in the obtained compacted magnetic body is in the range of 0.004 to 0.2 mass%. Is preferably adjusted.

混合物を得る方法としては、特に限定されるものではないが、従来公知の方法により、軟磁性体合金粉末と結合材と有機溶媒とを混合して得られる。なお、必要に応じて各種添加材を添加してもよい。   The method for obtaining the mixture is not particularly limited, and can be obtained by mixing soft magnetic alloy powder, binder and organic solvent by a conventionally known method. In addition, you may add various additives as needed.

混合に際しては、たとえば、加圧ニーダ、アタライタ、振動ミル、ボールミル、Vミキサー等の混合機や、流動造粒機、転動造粒機等の造粒機を用いることができる。   For mixing, for example, a mixer such as a pressure kneader, an attawriter, a vibration mill, a ball mill, or a V mixer, or a granulator such as a fluid granulator or a rolling granulator can be used.

また、混合処理の温度および時間としては、好ましくは室温で1〜30分間程度である。   Moreover, as temperature and time of a mixing process, Preferably it is about 1 to 30 minutes at room temperature.

造粒粉を得る方法としては、特に限定されるものではないが、従来公知の方法により、混合物を乾燥した後、乾燥した混合物を解砕して得られる。   Although it does not specifically limit as a method to obtain granulated powder, After drying a mixture by a conventionally well-known method, it obtains by crushing the dried mixture.

乾燥処理の温度および時間としては、好ましくは室温〜200℃程度で、5〜60分間である。   The temperature and time for the drying treatment are preferably about room temperature to 200 ° C. and 5 to 60 minutes.

必要に応じて、造粒粉には、潤滑剤を添加することができる。造粒粉に潤滑剤を添加した後、5〜60分間混合することが望ましい。   If necessary, a lubricant can be added to the granulated powder. After adding the lubricant to the granulated powder, it is desirable to mix for 5 to 60 minutes.

成形体を得る方法としては、特に限定されるものではないが、従来公知の方法により、所望する形状のキャビティを有する成形金型を用い、そのキャビティ内に混合物または造粒粉を充填し、所定の成形温度および所定の成形圧力でその混合物を圧縮成形することが好ましい。   The method for obtaining the molded body is not particularly limited, but a conventionally known method is used to form a mold having a cavity having a desired shape, and the mixture or granulated powder is filled into the cavity. The mixture is preferably compression-molded at a molding temperature and a predetermined molding pressure.

圧縮成形における成形条件は特に限定されず、軟磁性合金粉末の形状および寸法や、圧粉磁芯の形状、寸法および密度などに応じて適宜決定すればよい。たとえば、通常、最大圧力は100〜1000MPa程度、好ましくは400〜800MPa程度とし、最大圧力に保持する時間は0.5秒間〜1分間程度とする。   The molding conditions in the compression molding are not particularly limited, and may be appropriately determined according to the shape and size of the soft magnetic alloy powder, the shape, size, and density of the dust core. For example, the maximum pressure is usually about 100 to 1000 MPa, preferably about 400 to 800 MPa, and the time for maintaining the maximum pressure is about 0.5 seconds to 1 minute.

なお、成形圧力が低すぎると、成形による高密度化および高透磁率化を図り難くなる共に、十分な機械的強度が得られにくい傾向にある。一方、成形時の成形圧が高すぎると、圧力印加効果が飽和する傾向にあるとともに、製造コストが増加して生産性および経済性が損なわれ得る傾向にあり、また、成形金型が劣化し易くなり耐久性が低下する傾向にある。   If the molding pressure is too low, it is difficult to achieve high density and high magnetic permeability by molding, and it is difficult to obtain sufficient mechanical strength. On the other hand, if the molding pressure at the time of molding is too high, the pressure application effect tends to saturate, the manufacturing cost tends to increase and productivity and economy tend to be impaired, and the molding die deteriorates. It tends to be easy and the durability tends to decrease.

成形温度は、特に限定されないが、通常、室温〜200℃程度が好ましい。なお、成形時の成形温度を上げるほど成形体の密度は上がる傾向にあるが、高すぎると軟磁性合金粒子の酸化が促進されて、得られる圧粉磁芯の性能が劣化する傾向にあり、また、製造コストが増加して生産性および経済性が損なわれ得る。   The molding temperature is not particularly limited, but is usually preferably about room temperature to 200 ° C. In addition, the density of the compact tends to increase as the molding temperature at the time of molding increases, but if it is too high, the oxidation of the soft magnetic alloy particles is promoted, and the performance of the resulting dust core tends to deteriorate, In addition, the manufacturing cost may increase and productivity and economy may be impaired.

成形後に得られる成形体を熱処理する方法は、特に限定されないが、成形により任意の形状に成形された成形体を、アニール炉を用いて所定の温度で熱処理することにより行うことが好ましい。   The method of heat-treating the molded body obtained after molding is not particularly limited, but it is preferable to heat-treat the molded body formed into an arbitrary shape by molding at a predetermined temperature using an annealing furnace.

熱処理時の処理温度は、特に限定されないが、700〜1000℃程度が好ましく、より好ましくは800°C〜1000°C、特に好ましくは800〜900℃である。熱処理時の処理温度が低すぎると、Pを含むCr酸化膜4が形成されにくくなると共に、Pを含む粒界6を形成することが困難になり、絶縁性の向上を図ることが困難になる。また、熱処理温度が高すぎると、合金粒子2が酸化し、絶縁性が低下する傾向にある。   Although the processing temperature at the time of heat processing is not specifically limited, About 700-1000 degreeC is preferable, More preferably, it is 800 degreeC-1000 degreeC, Most preferably, it is 800-900 degreeC. If the treatment temperature during the heat treatment is too low, it becomes difficult to form the Cr oxide film 4 containing P, and it becomes difficult to form the grain boundaries 6 containing P, and it is difficult to improve the insulation. . On the other hand, if the heat treatment temperature is too high, the alloy particles 2 are oxidized and the insulating property tends to be lowered.

熱処理工程は、酸素含有雰囲気下にて行うことが好ましい。ここで、酸素含有雰囲気とは、特に限定されるものではないが、大気雰囲気(通常、20.95%の酸素を含む)、または、アルゴンや窒素等の不活性ガスとの混合雰囲気等が挙げられる。好ましくは大気雰囲気下である。酸素含有雰囲気下で熱処理することで、Pを含むCr酸化膜4を形成しやすくなると共に、Pを含む粒界6を形成しやすくなる。   The heat treatment step is preferably performed in an oxygen-containing atmosphere. Here, the oxygen-containing atmosphere is not particularly limited, and examples thereof include an air atmosphere (usually containing 20.95% oxygen) or a mixed atmosphere with an inert gas such as argon or nitrogen. It is done. Preferably, it is under atmospheric atmosphere. By performing the heat treatment in an oxygen-containing atmosphere, it becomes easy to form the Cr oxide film 4 containing P and to easily form the grain boundary 6 containing P.

また、このようにして得られた圧粉磁芯は、成形密度が5.50g/cm以上であることが好ましい。成形密度が5.50g/cm以上に、高密度化された圧粉磁芯は、高透磁率、高強度、高コア抵抗、低コアロスといった各種性能においても優れる傾向にある。 The dust core thus obtained preferably has a molding density of 5.50 g / cm 3 or more. A dust core that has been densified to a molding density of 5.50 g / cm 3 or more tends to be excellent in various performances such as high magnetic permeability, high strength, high core resistance, and low core loss.

以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何ら限定されるものではなく、本発明の範囲内において種々なる態様で改変しても良い。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, You may modify | change in various aspects within the scope of the present invention.

たとえば、上述した実施形態では、混合物または造粒粉を圧粉成形することで磁芯(圧粉磁芯)を製造しているが、上記混合物をシート状成形して積層することにより磁芯を製造してもよい。また、乾式成形の他、湿式成形、押出成形などにより成形体を得てもよい。   For example, in the above-described embodiment, a magnetic core (powder magnetic core) is manufactured by compacting a mixture or granulated powder, but the magnetic core is formed by stacking the mixture into a sheet shape. It may be manufactured. In addition to dry molding, a molded body may be obtained by wet molding, extrusion molding, or the like.

また、上述した実施形態では、本実施形態に係る磁芯を、コイル型電子部品として用いるが、特に制限されることはなく、モーター、スイッチング電源、DC−DCコンバーター、トランス、チョークコイル等の各種電子部品の磁心としても好適に用いることができる。中でも、携帯用DC−DCコンバーターとしてより好適である。   In the above-described embodiment, the magnetic core according to this embodiment is used as a coil-type electronic component. However, the magnetic core is not particularly limited, and various types such as a motor, a switching power supply, a DC-DC converter, a transformer, and a choke coil are used. It can also be suitably used as a magnetic core for electronic components. Especially, it is more suitable as a portable DC-DC converter.

さらに、上述した実施形態では、磁芯を本発明に係る圧粉成形磁性体で構成しているが、磁芯以外にも、電子部品の素体本体や、その他の成形体を、本発明に係る圧粉成形磁性体で構成してもよい。   Furthermore, in embodiment mentioned above, although the magnetic core is comprised with the compacting | molding magnetic body which concerns on this invention, the element | base_body main body of an electronic component and another molded object other than a magnetic core are used for this invention. You may comprise the powder compacting magnetic body which concerns.

以下、実施例により発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

(実施例1)
[軟磁性合金粉末の調製]
まず、Fe単体、Cr単体およびSi単体のインゴット、チャンク(塊)、またはショット(粒子)を準備した。次にそれらをFe89.5質量%、Si6.5質量%およびCr4.0質量%の組成となるように混合して、水アトマイズ装置内に配置されたルツボに収容した。次いで、不活性雰囲気中、ルツボ外部に設けたワークコイルを用いて、ルツボを高周波誘導により1600℃以上まで加熱し、ルツボ中のインゴット、チャンクまたはショットを溶融、混合して融液を得た。
Example 1
[Preparation of soft magnetic alloy powder]
First, ingots, chunks, or shots (particles) of simple Fe, simple Cr, and simple Si were prepared. Next, they were mixed so as to have a composition of 89.5 mass% Fe, 6.5 mass% Si, and 4.0 mass% Cr, and accommodated in a crucible disposed in a water atomizer. Next, using a work coil provided outside the crucible in an inert atmosphere, the crucible was heated to 1600 ° C. or higher by high frequency induction, and the ingot, chunk or shot in the crucible was melted and mixed to obtain a melt.

次いで、ルツボに設けられたノズルから、ルツボ内の融液を噴出すると同時に、噴出した融液に高圧(50MPa)水流を衝突させて急冷することにより、Fe−Si−Cr系粒子からなる軟磁性合金粉末(平均粒径;50μm)を作製した。   Next, the melt in the crucible is ejected from a nozzle provided in the crucible, and at the same time, a high-pressure (50 MPa) water flow is collided with the melt and rapidly cooled, thereby soft magnets composed of Fe-Si-Cr-based particles. Alloy powder (average particle size: 50 μm) was prepared.

得られた軟磁性合金粉末を、蛍光X線分析法により組成分析した結果、仕込み組成と一致していることが確認できた。また、軟磁性合金粉末に含まれるリンの含有量の調整は、軟磁性合金粉末の作製時に、原料を溶融、混合する際に、鉄単体の原料に含まれるリンの量を調整することで行った。   As a result of analyzing the composition of the obtained soft magnetic alloy powder by fluorescent X-ray analysis, it was confirmed that it was consistent with the charged composition. In addition, the phosphorus content contained in the soft magnetic alloy powder is adjusted by adjusting the amount of phosphorus contained in the raw material of the iron simple substance when the raw material is melted and mixed during the production of the soft magnetic alloy powder. It was.

[圧粉磁芯の作製]
得られた軟磁性合金粉末100重量部に対し、シリコーン樹脂(東レダウコーニングシリコン(株)製:SR2414LV)6重量部を添加し、これらを加圧ニーダにより室温で30分間混合した。次いで、混合物を空気中において150℃で20分間乾燥した。乾燥後の磁性粉末に、それらの軟磁性合金粉末100重量部に対し、潤滑剤としてステアリン酸亜鉛(日東化成製:ジンクステアレート)0.5重量部を添加し、Vミキサーにより10分間混合した。
[Production of dust core]
6 parts by weight of a silicone resin (manufactured by Toray Dow Corning Silicon Co., Ltd .: SR2414LV) was added to 100 parts by weight of the obtained soft magnetic alloy powder, and these were mixed with a pressure kneader at room temperature for 30 minutes. The mixture was then dried in air at 150 ° C. for 20 minutes. To 100 parts by weight of the soft magnetic alloy powder, 0.5 parts by weight of zinc stearate (manufactured by Nitto Kasei: zinc stearate) as a lubricant was added to the dried magnetic powder and mixed for 10 minutes by a V mixer. .

続いて、得られた混合物を、5mm×5mm×10mmの角形サンプルに成形し、成形体を作製した。なお、成形圧は600MPaとした。加圧後の成形体を800°Cで60分間、大気中で熱処理することにより、圧粉成形磁性体から成る磁芯(圧粉磁心)を得た。   Then, the obtained mixture was shape | molded to the square sample of 5 mm x 5 mm x 10 mm, and the molded object was produced. The molding pressure was 600 MPa. The pressed compact was heat-treated in the atmosphere at 800 ° C. for 60 minutes to obtain a magnetic core (dust core) made of the compacted magnetic body.

[各種評価]
<粒界の観察>
まず、圧粉磁芯を切断した。この切断面について、走査透過型電子顕微鏡(STEM)により観察し、軟磁性体合金粒子2と粒界6との判別を行った。また、Cr,O,P,SiについてはEDS解析で、それぞれ粒子2の表面および粒界6における存在を確認した。
[Various evaluations]
<Observation of grain boundaries>
First, the dust core was cut. This cut surface was observed with a scanning transmission electron microscope (STEM), and the soft magnetic alloy particles 2 and the grain boundaries 6 were discriminated. Further, the presence of Cr, O, P, and Si at the surface of the particle 2 and the grain boundary 6 was confirmed by EDS analysis, respectively.

<初期透磁率(μi)>
圧粉磁芯サンプルに、銅線ワイヤを10ターン巻きつけ、LCRメーター(ヒューレットパッカード 4284A)を使用して、初期透磁率μiを測定した。測定条件としては、測定周波数1MHz、測定温度23℃、測定レベル0.4A/mとした。
<Initial permeability (μi)>
A copper wire was wound around the dust core sample for 10 turns, and an initial magnetic permeability μi was measured using an LCR meter (Hewlett Packard 4284A). The measurement conditions were a measurement frequency of 1 MHz, a measurement temperature of 23 ° C., and a measurement level of 0.4 A / m.

<絶縁抵抗(IR)>
圧粉磁芯サンプルに、High Resistance Meter (Agilent 4339B)を使用して、50Vの条件で絶縁抵抗IRを求めた。
<Insulation resistance (IR)>
The insulation resistance IR was calculated | required on the conditions of 50V using High Resistance Meter (Agilent 4339B) for the dust core sample.

<評価>
圧粉磁心に含まれるリン(P)の含有量を、0.003質量%(30ppm)から0.011質量%(110ppm)まで変化させて、初期透磁率と絶縁抵抗の変化を調べた結果を図2に示す。
<Evaluation>
The content of phosphorus (P) contained in the dust core was changed from 0.003 mass% (30 ppm) to 0.011 mass% (110 ppm), and the results of investigating changes in initial permeability and insulation resistance were as follows. As shown in FIG.

図2に示すように、リン(P)の含有量を、0.004質量%(40ppm)から0.010質量%(100ppm)とすることで、IRが格別に向上し、しかも、μiの劣化が少ないことが確認できた。リン(P)の含有量が、0.004質量%(40ppm)未満では、絶縁抵抗が低すぎて好ましくなく、リン(P)の含有量が、0.010質量%(100ppm)よりも多いと、μiの低下率が20%以上となり好ましくない。   As shown in FIG. 2, the IR content is significantly improved by reducing the phosphorus (P) content from 0.004 mass% (40 ppm) to 0.010 mass% (100 ppm), and the deterioration of μi. It was confirmed that there was little. When the phosphorus (P) content is less than 0.004 mass% (40 ppm), the insulation resistance is too low, which is not preferable, and when the phosphorus (P) content is more than 0.010 mass% (100 ppm). , Μi is not preferable because the decrease rate of μi is 20% or more.

また、リン(P)の含有量が、0.004質量%(40ppm)から0.010質量%(100ppm)である圧粉磁芯サンプルを切断し、この切断面について、走査透過型電子顕微鏡(STEM)により観察し、Cr,O,P,SiについてはEDS解析を行った結果、STEM画像である図1に示すように、合金粒子2の表面には、リンを含むCr酸化膜4が形成してあり、粒界6にもリンが含まれていることを確認した。   Moreover, the powder magnetic core sample whose content of phosphorus (P) is 0.004 mass% (40 ppm) to 0.010 mass% (100 ppm) is cut, and the scanning transmission electron microscope ( As a result of performing EDS analysis on Cr, O, P, and Si, as shown in FIG. 1 which is a STEM image, a Cr oxide film 4 containing phosphorus is formed on the surface of the alloy particle 2. It was confirmed that the grain boundaries 6 also contained phosphorus.

(比較例1)
熱処理温度を500°Cとした以外は、実施例1と同様にして、圧粉磁芯サンプルを作成し、同様な測定を行った。合金粒子の表面には、リンを含むCr酸化膜が観察されず、また、粒界にも、リンは観察されなかった。また、リンの含有量が40〜100ppmでも、図2に示すように、絶縁抵抗の増加は観察されなかった。熱処理温度が低いために、合金粒子の表面には、リンを含むCr酸化膜が観察されず、また、粒界にも、リンは観察されず、絶縁抵抗の増大が観察されなかったと考えられる。
(Comparative Example 1)
A dust core sample was prepared in the same manner as in Example 1 except that the heat treatment temperature was 500 ° C., and the same measurement was performed. No Cr oxide film containing phosphorus was observed on the surface of the alloy particles, and no phosphorus was observed at the grain boundaries. Moreover, even if phosphorus content was 40-100 ppm, as shown in FIG. 2, the increase in insulation resistance was not observed. Since the heat treatment temperature is low, a Cr oxide film containing phosphorus is not observed on the surface of the alloy particles, and phosphorus is not observed at the grain boundaries, and it is considered that an increase in insulation resistance is not observed.

(実施例2)
バインダ樹脂として、非シリコーン系樹脂である(ナガセケムテックス(株)製造:DENATITE XNR 4338)を用いた以外は、実施例1と同様な圧粉磁芯サンプルを作成し、同様な測定を行った。実施例1と同様な結果が得られた。
(Example 2)
A dust core sample similar to that of Example 1 was prepared and the same measurement was performed except that non-silicone resin (manufactured by Nagase ChemteX Corp .: DENATEITE XNR 4338) was used as the binder resin. . The same results as in Example 1 were obtained.

2… 軟磁性合金粒子
4… リンを含む
6… Cr酸化膜
2 ... Soft magnetic alloy particles 4 ... Phosphorus-containing 6 ... Cr oxide film

Claims (4)

Fe−Si−Cr系軟磁性合金で構成される合金粒子を含む圧粉成形磁性体であって、
リンが40〜100ppm含まれ、
前記合金粒子の表面には、リンを含むCr酸化膜が形成してあることを特徴とする圧粉成形磁性体。
A compacted magnetic body comprising alloy particles composed of a Fe-Si-Cr soft magnetic alloy,
Contains 40-100 ppm phosphorus,
A compacted magnetic body, wherein a Cr oxide film containing phosphorus is formed on the surface of the alloy particles.
Fe−Si−Cr系軟磁性合金で構成される合金粒子を含む圧粉成形磁性体であって、
リンが40〜100ppm含まれ、
前記合金粒子相互間の粒界には、リンが含まれていることを特徴とする圧粉成形磁性体。
A compacted magnetic body comprising alloy particles composed of a Fe-Si-Cr soft magnetic alloy,
Contains 40-100 ppm phosphorus,
A powder compacted magnetic body, wherein grain boundaries between the alloy particles contain phosphorus.
請求項1または2に記載の圧粉成形磁性体から構成されることを特徴とする磁芯。   A magnetic core comprising the compacted magnetic material according to claim 1. 請求項3に記載の磁芯を有することを特徴とするコイル型電子部品。   A coil-type electronic component comprising the magnetic core according to claim 3.
JP2016072833A 2016-03-31 2016-03-31 Compacted magnetic body, magnetic core and coil type electronic parts Active JP6620643B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016072833A JP6620643B2 (en) 2016-03-31 2016-03-31 Compacted magnetic body, magnetic core and coil type electronic parts
KR1020170029663A KR20170113094A (en) 2016-03-31 2017-03-08 Powder pressed magnetic body, magnetic core, and coil-type electronic component
CN201710161574.0A CN107275030B (en) 2016-03-31 2017-03-17 Powder-molded magnetic body, magnetic core, and coil-type electronic component
KR1020180161140A KR102040207B1 (en) 2016-03-31 2018-12-13 Powder pressed magnetic body, magnetic core, and coil-type electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016072833A JP6620643B2 (en) 2016-03-31 2016-03-31 Compacted magnetic body, magnetic core and coil type electronic parts

Publications (2)

Publication Number Publication Date
JP2017183655A true JP2017183655A (en) 2017-10-05
JP6620643B2 JP6620643B2 (en) 2019-12-18

Family

ID=60006452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016072833A Active JP6620643B2 (en) 2016-03-31 2016-03-31 Compacted magnetic body, magnetic core and coil type electronic parts

Country Status (3)

Country Link
JP (1) JP6620643B2 (en)
KR (2) KR20170113094A (en)
CN (1) CN107275030B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200061147A (en) * 2018-11-23 2020-06-02 한국과학기술연구원 Quenched powder core and methods for making same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7145610B2 (en) * 2017-12-27 2022-10-03 Tdk株式会社 Laminated coil type electronic component
US20220336128A1 (en) * 2019-09-26 2022-10-20 Tdk Corporation Soft magnetic alloy powder, soft magnetic sintered body, and coil-type electronic component

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303006A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Method of manufacturing dust core and dust core
JP2007027320A (en) * 2005-07-14 2007-02-01 Sumitomo Electric Ind Ltd Soft magnetic material, method of manufacturing the same and dust core
JP2008189950A (en) * 2007-02-01 2008-08-21 Sumitomo Electric Ind Ltd Method for manufacturing soft magnetic powder, method for manufacturing soft magnetic material, method for manufacturing powder magnetic core, soft magnetic powder, soft magnetic material and powder magnetic core
JP2008288525A (en) * 2007-05-21 2008-11-27 Mitsubishi Steel Mfg Co Ltd Sintered soft magnetic powder molding
JPWO2013121901A1 (en) * 2012-02-17 2015-05-11 Tdk株式会社 Soft magnetic powder magnetic core
JP2016012688A (en) * 2014-06-30 2016-01-21 住友電気工業株式会社 Powder-compact magnetic core, and coil part
WO2016010099A1 (en) * 2014-07-16 2016-01-21 日立金属株式会社 Method for producing magnetic core, magnetic core, and coil component using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395365C (en) * 2002-12-24 2008-06-18 杰富意钢铁株式会社 Fe-cr-si based non-oriented electromagnetic steel sheet and process for producing the same
JP4044591B1 (en) 2006-09-11 2008-02-06 株式会社神戸製鋼所 Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
US8366837B2 (en) * 2009-03-09 2013-02-05 Panasonic Corporation Powder magnetic core and magnetic element using the same
JP6191855B2 (en) * 2013-03-05 2017-09-06 大同特殊鋼株式会社 Soft magnetic metal powder and high frequency powder magnetic core

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005303006A (en) * 2004-04-12 2005-10-27 Sumitomo Electric Ind Ltd Method of manufacturing dust core and dust core
JP2007027320A (en) * 2005-07-14 2007-02-01 Sumitomo Electric Ind Ltd Soft magnetic material, method of manufacturing the same and dust core
JP2008189950A (en) * 2007-02-01 2008-08-21 Sumitomo Electric Ind Ltd Method for manufacturing soft magnetic powder, method for manufacturing soft magnetic material, method for manufacturing powder magnetic core, soft magnetic powder, soft magnetic material and powder magnetic core
JP2008288525A (en) * 2007-05-21 2008-11-27 Mitsubishi Steel Mfg Co Ltd Sintered soft magnetic powder molding
JPWO2013121901A1 (en) * 2012-02-17 2015-05-11 Tdk株式会社 Soft magnetic powder magnetic core
JP2016012688A (en) * 2014-06-30 2016-01-21 住友電気工業株式会社 Powder-compact magnetic core, and coil part
WO2016010099A1 (en) * 2014-07-16 2016-01-21 日立金属株式会社 Method for producing magnetic core, magnetic core, and coil component using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, H., ET AL.: ""Crystallization kinetics and magnetic properties of FeSiCr amorphous alloy powder cores"", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 385, JPN6019022091, 1 July 2015 (2015-07-01), NL, pages 326 - 330, ISSN: 0004054563 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200061147A (en) * 2018-11-23 2020-06-02 한국과학기술연구원 Quenched powder core and methods for making same
KR102155563B1 (en) 2018-11-23 2020-09-14 한국과학기술연구원 Quenched powder core and methods for making same

Also Published As

Publication number Publication date
CN107275030B (en) 2019-12-27
KR20180134832A (en) 2018-12-19
JP6620643B2 (en) 2019-12-18
CN107275030A (en) 2017-10-20
KR102040207B1 (en) 2019-11-04
KR20170113094A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP2014143286A (en) Soft magnetic material composition, method for producing the same, magnetic core, and coil type electronic component
JP2014216495A (en) Soft magnetic material composition, magnetic core, coil type electronic component, and process of manufacturing compact
JP5650928B2 (en) SOFT MAGNETIC MATERIAL, MOLDED BODY, DUST CORE, ELECTRONIC COMPONENT, SOFT MAGNETIC MATERIAL MANUFACTURING METHOD, AND DUST CORE MANUFACTURING METHOD
JP6382487B2 (en) Magnetic core and coil type electronic components
TWI578338B (en) Powder core and its manufacturing method
KR102040207B1 (en) Powder pressed magnetic body, magnetic core, and coil-type electronic component
TWI578339B (en) Soft magnetic composition, method of manufacturing the same, magnetic core, and coil type electronic component
JP4826093B2 (en) Ferrite, electronic component and manufacturing method thereof
JP4618557B2 (en) Soft magnetic alloy compact and manufacturing method thereof
JP6179245B2 (en) SOFT MAGNETIC COMPOSITION AND METHOD FOR PRODUCING THE SAME, MAGNETIC CORE, AND COIL TYPE ELECTRONIC COMPONENT
KR101626659B1 (en) Soft magnetic material composition and manufacturing method thereof, magnetic core, and, coil type electronic component
US20230307178A1 (en) Soft magnetic body, magnetic core, and electronic component
JP7128445B2 (en) Soft magnetic compositions, cores, and coil-type electronic components
JP2010080978A (en) Soft magnetic alloy powder and powder magnetic core
JP2006183121A (en) Iron based powder for powder magnetic core and powder magnetic core using the same
JP7334835B2 (en) Soft magnetic compositions, cores, and coil-type electronic components
JP7052648B2 (en) Soft magnetic composition, core, and coiled electronic components
JP2015043375A (en) Soft magnetic material composition, manufacturing method thereof, magnetic core, and coil-type electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R150 Certificate of patent or registration of utility model

Ref document number: 6620643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150