JP2017183115A - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP2017183115A
JP2017183115A JP2016069550A JP2016069550A JP2017183115A JP 2017183115 A JP2017183115 A JP 2017183115A JP 2016069550 A JP2016069550 A JP 2016069550A JP 2016069550 A JP2016069550 A JP 2016069550A JP 2017183115 A JP2017183115 A JP 2017183115A
Authority
JP
Japan
Prior art keywords
solid electrolyte
lithium ion
particles
layer
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016069550A
Other languages
Japanese (ja)
Other versions
JP6719254B2 (en
Inventor
藤井 雄一
Yuichi Fujii
雄一 藤井
松岡 直樹
Naoki Matsuoka
直樹 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016069550A priority Critical patent/JP6719254B2/en
Publication of JP2017183115A publication Critical patent/JP2017183115A/en
Application granted granted Critical
Publication of JP6719254B2 publication Critical patent/JP6719254B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion battery incorporating a crystalline oxide-based inorganic solid electrolyte having enhanced ion conductivity.SOLUTION: The lithium ion battery includes a positive electrode, a negative electrode, and a solid electrolyte layer. The solid electrolyte layer has a structure in which crystalline oxide-based inorganic solid electrolyte particles are arranged in a single layer. At least a part of the surface of the inorganic solid electrolyte particle is coated with an amorphous compound having lithium ion conductivity.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン電池に関するものである。   The present invention relates to a lithium ion battery.

リチウムイオン二次電池は、軽量、高エネルギー及び長寿命であることが大きな特徴であり、例えばノートブックコンピューター、携帯電話、デジタルカメラ、ビデオカメラ等の携帯用電子機器の電源として広範囲に用いられている。また、低環境負荷社会への移行に伴い、ハイブリッド型電気自動車(Hybrid Electric Vehicle:HEV)及びプラグインHEV(Plug−in Hybrid Electric Vehicle:PHEV)の電源、更には住宅用蓄電システム等の電力貯蔵分野においても注目されている。   Lithium ion secondary batteries are characterized by their light weight, high energy, and long life, and are widely used as power sources for portable electronic devices such as notebook computers, mobile phones, digital cameras, and video cameras. Yes. In addition, with the transition to a low environmental impact society, power sources for hybrid electric vehicles (HEVs) and plug-in HEVs (Plug-in Hybrid Electric Vehicles: PHEVs), as well as power storage for residential power storage systems, etc. It is also attracting attention in the field.

ところで、従来、リチウムイオン二次電池の電解質には、リチウム塩を有機溶媒に溶解した有機電解液が用いられており、漏液に伴う安全性の懸念があった。
電解液の代わりに固体電解質を用いることで、正極材、電解質および負極材をすべて固体とした全固体電池は、可燃性の電解液が不要になり安全性が飛躍的に向上した技術として提案されている。
全固体電池に用いる固体電解質としては、例えば、高いリチウムイオン伝導性から硫化物系材料を用いた技術の開示がある。しかしながら、硫化物系材料は化学的安定性に乏しく、大気暴露において硫化水素が発生したり、硫化物系固体電解質と正極材とを直接接触させた場合、境界面に、リチウムの存在しない、厚さ数ナノメートルの「欠乏層」が出現し、出力特性が著しく低下したりするなどの課題がある。さらに、硫化物系固体電解質は柔軟性を有するため、加圧により粒子間の界面抵抗を減らして高いリチウムイオン伝導性を得ているが、加圧の際に短絡が発生しやすい。そのため、一定厚み以上を確保する必要があり、固体電解質層を薄くして活物質充てん量を増やすことで電池としての電気容量を増やす観点から問題があった。
Conventionally, an organic electrolytic solution in which a lithium salt is dissolved in an organic solvent has been used as an electrolyte of a lithium ion secondary battery, and there has been a concern about safety associated with leakage.
By using a solid electrolyte instead of an electrolyte, all-solid-state batteries in which the positive electrode material, electrolyte, and negative electrode material are all solid have been proposed as a technology that dramatically improves safety by eliminating the need for flammable electrolytes. ing.
As a solid electrolyte used for an all solid state battery, for example, there is a disclosure of a technique using a sulfide-based material because of high lithium ion conductivity. However, sulfide-based materials have poor chemical stability, and when hydrogen sulfide is generated by exposure to the atmosphere or when a sulfide-based solid electrolyte and a positive electrode material are brought into direct contact with each other, there is no lithium on the interface. There are problems such as the appearance of a “deficient layer” of several nanometers, and a significant reduction in output characteristics. Furthermore, since the sulfide-based solid electrolyte has flexibility, the interfacial resistance between particles is reduced by pressurization to obtain high lithium ion conductivity, but a short circuit is likely to occur during pressurization. Therefore, it is necessary to ensure a certain thickness or more, and there is a problem from the viewpoint of increasing the electric capacity of the battery by thinning the solid electrolyte layer and increasing the active material filling amount.

上記課題に対して、リチウムイオン伝導性を有し、化学的に安定なガーネット型酸化物、LISICON型の酸化物など金属酸化物系の材料を固体電解質として用いる試みがなされている。しかしながら、酸化物系材料は柔軟性に乏しく加工が難しいため、硫化物系固体電解質のように加圧操作により粒界の抵抗を減少させてイオン伝導性を高めることは困難である。さらに、酸化物系材料は脆性材料であるため加工性に劣り、固体電解質層を薄くすることが難しく、そのため、全固体電池として活物質の充てん量を増やし電池としての電気容量を増やすことが困難であった。   In order to solve the above problems, attempts have been made to use a metal oxide-based material such as a garnet-type oxide and a LISICON-type oxide having lithium ion conductivity and chemically stable as a solid electrolyte. However, since oxide-based materials have poor flexibility and are difficult to process, it is difficult to increase the ion conductivity by reducing the resistance of grain boundaries by pressurizing operation like sulfide-based solid electrolytes. Furthermore, since the oxide-based material is a brittle material, it is inferior in workability, and it is difficult to make the solid electrolyte layer thin. Therefore, it is difficult to increase the filling amount of the active material as an all solid battery and increase the electric capacity as a battery. Met.

上記したような、無機固体電解質の課題を解決するために、絶縁性の高分子を用いて無機固体電解質粒子を結着し、高いイオン伝導性と優れた加工性を得る試みがなされている。例えば特許文献1には、ポリエチレン、ポリプロピレン、スチレンブタジエンゴム、ネオプレンゴム、シリコンゴムの群から選ばれるいずれか一種以上の可塑性材料で無機固体電解質の粒子を結着した固体電解質の技術の開示がある。また、特許文献1に示されるような粒子1個の厚さからなる層を電極間の短絡を発生させずに製造することは困難であるために、特許文献2では、ホッピングサイトを高密度に有する高分子を用いることで、複数個の粒子が層の厚さ方向に充填されていてもイオン伝導経路が遮断されることが無く電極間の短絡発生が少ない技術の開示がある。   In order to solve the problems of the inorganic solid electrolyte as described above, attempts have been made to bind inorganic solid electrolyte particles using an insulating polymer to obtain high ion conductivity and excellent workability. For example, Patent Document 1 discloses a technique of a solid electrolyte in which inorganic solid electrolyte particles are bound with one or more plastic materials selected from the group consisting of polyethylene, polypropylene, styrene butadiene rubber, neoprene rubber, and silicon rubber. . In addition, since it is difficult to manufacture a layer having a thickness of one particle as shown in Patent Document 1 without causing a short circuit between the electrodes, in Patent Document 2, the hopping sites are made dense. There is a disclosure of a technique in which the use of a polymer has a small number of short circuits between electrodes without blocking the ion conduction path even when a plurality of particles are filled in the thickness direction of the layer.

特開昭63−78405号公報JP-A-63-78405 特開2001−297796号公報Japanese Patent Laid-Open No. 2001-29779

前記したように、化学的安定性の高い結晶性酸化物系無機固体電解質の層を、加工性を維持しつつ、薄い層として得て、全固体リチウムイオン電池を作動させる技術はこれまでに無く、安全性の高い酸化物系無機固体電解質を用いた全固体リチウムイオン電池を得る技術が望まれていた。
本発明はこのような従来の実情に鑑みて提案されたものであり、本発明が解決しようとする課題は、イオン伝導性を高めた酸化物系固体電解質を組み込んだリチウムイオン電池を提供することである。
As described above, there has never been a technique for operating an all-solid-state lithium ion battery by obtaining a crystalline oxide-based inorganic solid electrolyte layer having high chemical stability as a thin layer while maintaining processability. Therefore, a technique for obtaining an all-solid-state lithium ion battery using a highly safe oxide-based inorganic solid electrolyte has been desired.
The present invention has been proposed in view of such conventional circumstances, and a problem to be solved by the present invention is to provide a lithium ion battery incorporating an oxide-based solid electrolyte with improved ion conductivity. It is.

本発明者らは、上記課題を解決すべく鋭意研究し、実験を重ねた。その結果、結晶性酸化物系無機固体電解質粒子が一層に配列した構造を有し、かつ、粒子界面にリチウムイオン伝導性を有する非晶性化合物が被覆された固体電解質層を用いることで、安全性が高く固体電解質層を薄くでき、これにより電池としての高い電気容量を有する全固体リチウムイオン電池が得られることを見出し、本発明を成すに至ったものである。
すなわち、本発明は以下のとおりのものである。
[1]
正極と負極と固体電解質層とを備え、
前記固体電解質層は、結晶性酸化物系無機固体電解質粒子が一層に配列した構造を有し、かつ、前記無機固体電解質粒子の表面の少なくとも一部が、リチウムイオン伝導性を有する非晶性化合物で被覆されていることを特徴とするリチウムイオン電池。
[2]
前記固体電解質層がシート状である、[1]に記載のリチウムイオン電池。
[3]
リチウムイオン伝導性を有する非晶性化合物が正極活物質と結晶性酸化物系無機固体電解質粒子の間、および負極活物質と結晶性酸化物系無機固体電解質粒子の間の両方に存在する、[1]または[2]に記載のリチウムイオン電池。
[4]
結晶性酸化物系無機固体電解質粒子が一層に配列した構造を有し、かつ、前記無機固体電解質粒子の表面の少なくとも一部が、リチウムイオン伝導性を有する非晶性化合物で被覆されていることを特徴とする、リチウムイオン電池用の固体電解質。
The present inventors diligently researched and repeated experiments to solve the above problems. As a result, the use of a solid electrolyte layer having a structure in which crystalline oxide-based inorganic solid electrolyte particles are arranged in a single layer and coated with an amorphous compound having lithium ion conductivity at the particle interface is safe. Thus, the present inventors have found that an all-solid lithium ion battery having a high electric capacity and a thin solid electrolyte layer can be obtained, thereby having a high electric capacity as a battery.
That is, the present invention is as follows.
[1]
A positive electrode, a negative electrode, and a solid electrolyte layer;
The solid electrolyte layer has a structure in which crystalline oxide inorganic solid electrolyte particles are arranged in a single layer, and at least a part of the surface of the inorganic solid electrolyte particles has an amorphous compound having lithium ion conductivity Lithium ion battery characterized by being coated with.
[2]
The lithium ion battery according to [1], wherein the solid electrolyte layer has a sheet shape.
[3]
An amorphous compound having lithium ion conductivity is present both between the positive electrode active material and the crystalline oxide-based inorganic solid electrolyte particle, and between the negative electrode active material and the crystalline oxide-based inorganic solid electrolyte particle, [ The lithium ion battery according to [1] or [2].
[4]
The crystalline oxide inorganic solid electrolyte particles have a structure arranged in a single layer, and at least a part of the surface of the inorganic solid electrolyte particles is coated with an amorphous compound having lithium ion conductivity. A solid electrolyte for a lithium ion battery.

本発明に係る形態を有する固体電解質層を用いることにより、安全性と高い電池容量を有する全固体リチウムイオン電池を提供することができる。   By using the solid electrolyte layer having the form according to the present invention, an all-solid lithium ion battery having safety and high battery capacity can be provided.

本実施形態におけるリチウムイオン二次電池の一例を概略的に示す断面図である。It is sectional drawing which shows roughly an example of the lithium ion secondary battery in this embodiment.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。尚、本明細書において「〜」を用いて記載される範囲は、その前後に記載される数値を含むものである。   Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made within the scope of the invention. In addition, the range described using "-" in this specification includes the numerical value described before and behind that.

図1は、本実施形態におけるリチウムイオン電池の一例を示す概略断面図である。
このリチウムイオン電池(リチウムイオン二次電池)100は、固体電解質層110と、その固体電解質層110を両側から挟む正極140および負極150と、さらにそれらの積層体を挟む正極集電体160(正極の外側に配置)と、負極集電体170(負極の外側に配置)と、それらを収容する電池外装180とを備える。
そして本発明のリチウムイオン電池100では、固体電解質層110が、結晶性酸化物系無機固体電解質粒子120が一層に配列した構造を有し、かつ前記粒子120の表面の少なくとも一部が、リチウムイオン伝導性を有する非晶性化合物130で被覆されていることを特徴とする。
本発明では、固体電解質層を、結晶性酸化物系無機固体電解質粒子が一層に配列した構造を有し、かつ、粒子表面にリチウムイオン伝導性を有する非晶性化合物が被覆されたものとすることで、安全性が高く固体電解質層を薄くでき、これにより電池としての高い電気容量を有する全固体リチウムイオン電池を実現することができる。
FIG. 1 is a schematic cross-sectional view showing an example of a lithium ion battery in the present embodiment.
The lithium ion battery (lithium ion secondary battery) 100 includes a solid electrolyte layer 110, a positive electrode 140 and a negative electrode 150 that sandwich the solid electrolyte layer 110 from both sides, and a positive electrode current collector 160 (positive electrode) that sandwiches the laminate. ), A negative electrode current collector 170 (arranged outside the negative electrode), and a battery exterior 180 that accommodates them.
In the lithium ion battery 100 of the present invention, the solid electrolyte layer 110 has a structure in which the crystalline oxide inorganic solid electrolyte particles 120 are arranged in a single layer, and at least a part of the surface of the particles 120 is made of lithium ions. It is characterized by being coated with an amorphous compound 130 having conductivity.
In the present invention, the solid electrolyte layer has a structure in which crystalline oxide inorganic solid electrolyte particles are arranged in a single layer, and the surface of the particles is coated with an amorphous compound having lithium ion conductivity. Thus, the solid electrolyte layer can be thinned with high safety, and thereby, an all solid lithium ion battery having a high electric capacity as a battery can be realized.

[正極]
正極は、正極活物質を含み、必要に応じて導電助剤、バインダー、イオン伝導性を高めるための無機固体電解質、高分子ゲル電解質、高分子電解質、添加剤などを含めることができる。
正極活物質としては、一般的なリチウムイオン電池に用いられる正極活物質を用いることができる。具体的には、層状岩塩型正極材料であるLiCoOなどのLi−Co複合酸化物、LiNiOなどのLi−Ni複合酸化物、これらから派生したニッケル系化合物LiNi(Co、Al)O、三元系化合物LiNi1/3Mn1/3Co1/3、ニッケルマンガン系化合物であるLiNi0.5Mn0.5、リチウム過剰系化合物LiMnO−LiMO(M=Co、Ni、Mn)、スピネル型正極材料であるLiMn、LiMn1.5Ni0.5、オリビン系正極材料であるLiFeO、LiMnPO、LiMSiO(Mは遷移金属)、LiMPOF(Mは遷移金属)、高容量系正極材料である酸化バナジウム系、硫黄系の正極材を用いることができる。
[Positive electrode]
The positive electrode contains a positive electrode active material, and can contain a conductive assistant, a binder, an inorganic solid electrolyte for increasing ion conductivity, a polymer gel electrolyte, a polymer electrolyte, an additive, and the like as necessary.
As the positive electrode active material, a positive electrode active material used in a general lithium ion battery can be used. Specifically, Li—Co composite oxides such as LiCoO 2 that are layered rock salt type positive electrode materials, Li—Ni composite oxides such as LiNiO 2 , nickel-based compounds derived from these, LiNi (Co, Al) O 2 , Ternary compound LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNi 0.5 Mn 0.5 O 2 which is a nickel manganese compound, lithium-excess compound Li 2 MnO 3 —LiMO 2 (M = Co, Ni, Mn), LiMn 2 O 4 , which is a spinel type cathode material, LiMn 1.5 Ni 0.5 O 4 , LiFeO 2 which is an olivine-based cathode material, LiMnPO 4 , Li 2 MSiO 4 (M is a transition metal) ), LiMPO 4 F (M is a transition metal), a high-capacity positive electrode material such as a vanadium oxide-based or sulfur-based positive electrode material can be used.

正極は、リチウムイオン二次電池の正極として作用するものであれば特に限定されず、例えば、下記のようにして得られる。
先ず、上記正極活物質を、必要に応じて用いられる他の成分(例えば導電助剤、バインダー等)とともに混合した正極合剤を溶剤に分散させて正極合剤含有ペーストを調製する。次いで、この正極合剤含有ペーストを正極集電体に塗布し、乾燥して正極合剤層を形成し、更に必要に応じて加圧して厚みを調整することにより、正極が作製される。
正極の作製にあたって、必要に応じて用いられる導電助剤としては、例えば、グラファイト;アセチレンブラック及びケッチェンブラックに代表されるカーボンブラック;炭素繊維等が挙げられる。導電助剤の数平均粒子径(一次粒子径)は、好ましくは10nm〜10μm、より好ましくは20nm〜1μmである。
バインダーとしては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリアクリル酸、スチレンブタジエンゴム、フッ素ゴム等が挙げられる。
A positive electrode will not be specifically limited if it acts as a positive electrode of a lithium ion secondary battery, For example, it is obtained as follows.
First, a positive electrode mixture-containing paste is prepared by dispersing a positive electrode mixture obtained by mixing the positive electrode active material together with other components (for example, a conductive additive, a binder, etc.) used as necessary in a solvent. Next, this positive electrode mixture-containing paste is applied to a positive electrode current collector, dried to form a positive electrode mixture layer, and further pressurized to adjust the thickness as necessary to produce a positive electrode.
Examples of the conductive aid used as necessary in the production of the positive electrode include graphite; carbon black typified by acetylene black and ketjen black; carbon fiber and the like. The number average particle diameter (primary particle diameter) of the conductive assistant is preferably 10 nm to 10 μm, more preferably 20 nm to 1 μm.
Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyacrylic acid, styrene butadiene rubber, and fluorine rubber.

前記正極合剤含有ペースト中の固形分濃度は、好ましくは30〜80質量%であり、より好ましくは40〜70質量%である。
前記正極集電体は、例えば、アルミニウム箔、ステンレス箔等の金属箔により構成される。これらの材料にカーボンコートが施されたもの、これらの材料をメッシュ状に加工されたものでもよい。
必要であれば、固体電解質とのリチウムイオン伝導性を保つためにリチウムイオン伝導性を有する物質で粒子間を満たす方法を用いることができる。リチウムイオン伝導性を有する物質としては、例えば、非晶質のリチウムイオン伝導性を有する物質を用いることができ、非晶質のリチウムイオン伝導性を有する物質としては、ポリマー電解質、非晶質でリチウムイオン伝導性を有する無機化合物を用いることができる。
The solid content concentration in the positive electrode mixture-containing paste is preferably 30 to 80% by mass, more preferably 40 to 70% by mass.
The positive electrode current collector is made of a metal foil such as an aluminum foil or a stainless steel foil. These materials may be carbon coated or those materials processed into a mesh shape.
If necessary, a method of filling the space between the particles with a substance having lithium ion conductivity can be used in order to maintain lithium ion conductivity with the solid electrolyte. As the substance having lithium ion conductivity, for example, an amorphous substance having lithium ion conductivity can be used. As the substance having amorphous lithium ion conductivity, a polymer electrolyte, an amorphous substance can be used. An inorganic compound having lithium ion conductivity can be used.

[負極]
負極としては、リチウムイオン二次電池の負極として作用するものであれば特に限定されず、公知のものを用いることができる。
負極は、負極活物質としてリチウムイオンを吸蔵及び放出することが可能な材料及び金属リチウムからなる群より選ばれる1種以上の材料を含有することが好ましい。そのような材料としては、金属リチウム、リチウムと合金を形成することが可能な元素を含む材料等の金属材料の他;
例えば、アモルファスカーボン(ハードカーボン)、人造黒鉛、天然黒鉛、黒鉛、熱分解炭素、コークス、ガラス状炭素、有機高分子化合物の焼成体、メソカーボンマイクロビーズ、炭素繊維、活性炭、グラファイト、炭素コロイド、カーボンブラックに代表される炭素材料が挙げられる。これらのうち、コークスとしては、例えば、ピッチコークス、ニードルコークス、石油コークス等が挙げられる。有機高分子化合物の焼成体とは、フェノール樹脂、フラン樹脂等の高分子材料を適当な温度で焼成して炭素化したものである。炭素材料には、炭素以外にも、O、B、P、N、S、SiC、BC等を含有する異種化合物が含まれていてもよい。異種化合物の含有量としては、負極活物質の全体に対して、0〜10質量%であることが好ましい。前記リチウムと合金を形成することが可能な金属材料は、金属又は半金属の単体であっても合金であっても化合物であってもよく、また、これらの1種又は2種以上の相を少なくとも一部に有するようなものであってもよい。
負極活物質の数平均粒子径(一次粒子径)は、好ましくは0.1μm〜100μm、より好ましくは1μm〜10μmである。
[Negative electrode]
As a negative electrode, if it acts as a negative electrode of a lithium ion secondary battery, it will not specifically limit, A well-known thing can be used.
The negative electrode preferably contains at least one material selected from the group consisting of a material capable of inserting and extracting lithium ions as a negative electrode active material and metallic lithium. Such materials include metal lithium, metal materials such as a material containing an element capable of forming an alloy with lithium, and the like;
For example, amorphous carbon (hard carbon), artificial graphite, natural graphite, graphite, pyrolytic carbon, coke, glassy carbon, organic polymer compound fired body, mesocarbon microbead, carbon fiber, activated carbon, graphite, carbon colloid, Examples thereof include carbon materials typified by carbon black. Among these, examples of the coke include pitch coke, needle coke, and petroleum coke. The fired body of an organic polymer compound is obtained by firing and polymerizing a polymer material such as phenol resin or furan resin at an appropriate temperature. In addition to carbon, the carbon material may contain a heterogeneous compound containing O, B, P, N, S, SiC, B 4 C, or the like. As content of a different compound, it is preferable that it is 0-10 mass% with respect to the whole negative electrode active material. The metal material capable of forming an alloy with lithium may be a single metal or a semimetal, an alloy, or a compound, and one or more of these phases may be combined. It may be at least partly.
The number average particle diameter (primary particle diameter) of the negative electrode active material is preferably 0.1 μm to 100 μm, more preferably 1 μm to 10 μm.

負極は、例えば、下記のようにして得られる。
先ず、上記負極活物質を、必要に応じて用いられる他の成分(例えば導電助剤、バインダー等)とともに混合した負極合剤を溶剤に分散させて負極合剤含有ペーストを調製する。次いで、この負極合剤含有ペーストを負極集電体に塗布し、乾燥して負極合剤層を形成し、更に必要に応じて加圧して厚みを調整することにより、負極を作製する。
ここで、負極合剤含有ペースト中の固形分濃度は、好ましくは30〜80質量%であり、より好ましくは40〜70質量%である。負極集電体は、例えば、銅箔、ニッケル箔、ステンレス箔等の金属箔により構成される。
負極の作製にあたって、必要に応じて用いられる導電助剤としては、例えば、グラファイト;アセチレンブラック及びケッチェンブラックに代表されるカーボンブラック;炭素繊維等が挙げられる。導電助剤の数平均粒子径(一次粒子径)は、好ましくは0.1μm〜100μm、より好ましくは1μm〜10μmである。バインダーとしては、例えば、PVDF、PTFE、ポリアクリル酸、スチレンブタジエンゴム、フッ素ゴム等が挙げられる。
必要であれば、固体電解質とのリチウムイオン伝導性を保つために、リチウムイオン伝導性を有する物質で粒子間を満たす方法を用いることができる。リチウムイオン伝導性を有する物質としては、例えば、非晶質のリチウムイオン伝導性を有する物質を用いることができ、非晶質のリチウムイオン伝導性を有する物質としては、ポリマー電解質、非晶質でリチウムイオン伝導性を有する無機化合物を用いることができる。
A negative electrode is obtained as follows, for example.
First, a negative electrode mixture-containing paste is prepared by dispersing a negative electrode mixture prepared by mixing the negative electrode active material together with other components (for example, a conductive additive, a binder, etc.) used as necessary in a solvent. Next, this negative electrode mixture-containing paste is applied to a negative electrode current collector, dried to form a negative electrode mixture layer, and further pressurized to adjust the thickness as necessary to produce a negative electrode.
Here, the solid content concentration in the negative electrode mixture-containing paste is preferably 30 to 80% by mass, and more preferably 40 to 70% by mass. The negative electrode current collector is made of a metal foil such as a copper foil, a nickel foil, or a stainless steel foil.
Examples of the conductive aid used as necessary in the production of the negative electrode include graphite; carbon black typified by acetylene black and ketjen black; carbon fiber and the like. The number average particle diameter (primary particle diameter) of the conductive assistant is preferably 0.1 μm to 100 μm, more preferably 1 μm to 10 μm. Examples of the binder include PVDF, PTFE, polyacrylic acid, styrene butadiene rubber, and fluorine rubber.
If necessary, in order to maintain lithium ion conductivity with the solid electrolyte, a method of filling between the particles with a substance having lithium ion conductivity can be used. As the substance having lithium ion conductivity, for example, an amorphous substance having lithium ion conductivity can be used. As the substance having amorphous lithium ion conductivity, a polymer electrolyte, an amorphous substance can be used. An inorganic compound having lithium ion conductivity can be used.

[固体電解質層]
本発明の固体電解質層は、結晶性酸化物系無機固体電解質粒子が一層に配列した構造を有し、かつ、粒子表面の少なくとも一部にリチウムイオン伝導性を有する非晶性化合物が被覆されたものとする。
なお、以下の説明では、「結晶性酸化物系無機固体電解質粒子」を「固体電解質粒子」あるいは単に「粒子」等と記す場合もある。
固体電解質粒子は、リチウムイオン伝導性を有する結晶性酸化物系無機固体電解質であればいずれのものも用いることができる。例えばγ−LiPO型酸化物、逆蛍石型酸化物、NASICON型酸化物、ペロブスカイト型酸化物、ガーネット型酸化物が用いられ、NASICON型酸化物であるLi1.3Ti1.7(PO、ペロブスカイト型酸化物であるLa2/3−xLi3xTiO、ガーネット型酸化物であるLiLaZr12が好ましく用いられる。イオン伝導性を高める目的、化学的な安定性を高める目的、加工性を高める目的で、上記基本結晶構造に対して置換、ドープにより元素を置換した結晶性酸化物系固体電解質粒子も用いることができる。好ましくはNASICON型酸化物Li1.3Ti1.7(PO、ガーネット型酸化物LiLaZr12が用いられ、最も好ましくはガーネット型酸化物の元素置換体Li6.25Al0.25LaZr12、LiLaZr2−xNb12(0<X<0.95)、LiLaZr2−xTa12(0<X<0.95)が用いられる。
[Solid electrolyte layer]
The solid electrolyte layer of the present invention has a structure in which crystalline oxide inorganic solid electrolyte particles are arranged in a single layer, and at least a part of the particle surface is coated with an amorphous compound having lithium ion conductivity. Shall.
In the following description, “crystalline oxide inorganic solid electrolyte particles” may be referred to as “solid electrolyte particles” or simply “particles”.
As the solid electrolyte particles, any crystalline oxide inorganic solid electrolyte having lithium ion conductivity can be used. For example, γ-LiPO 4 type oxide, reverse fluorite type oxide, NASICON type oxide, perovskite type oxide and garnet type oxide are used, and the NASICON type oxide Li 1.3 Ti 1.7 (PO 4 ) 3 , La 2 / 3-x Li 3x TiO 3 which is a perovskite oxide, and Li 7 La 3 Zr 2 O 12 which is a garnet oxide are preferably used. For the purpose of increasing ion conductivity, improving chemical stability, and improving workability, crystalline oxide solid electrolyte particles in which the above basic crystal structure is substituted or element is substituted by doping may be used. it can. Preferably, NASICON type oxide Li 1.3 Ti 1.7 (PO 4 ) 3 and garnet type oxide Li 3 La 7 Zr 2 O 12 are used, and most preferably element substitution product Li 6 of garnet type oxide . 25 Al 0.25 La 3 Zr 2 O 12, Li 7 La 3 Zr 2-x Nb x O 12 (0 <X <0.95), Li 7 La 3 Zr 2-x Ta x O 12 (0 <X <0.95) is used.

結晶性酸化物系無機固体電解質粒子の形状としては球形、不定形いずれも用いることができる。結晶性酸化物系無機固体電解質粒子は、高いイオン伝導性を確保するために高い密度が好ましく、各結晶性酸化物系無機固体電解質の相対密度が80〜100%のものが用いられる。好ましくは相対密度90〜100%のものが用いられ、最も好ましくは相対密度95〜100%のものが用いられる。ここで相対密度とは、液体置換法、ガス置換法等の一般的な測定法で求めた試料の「真密度」を実測密度としてXRD測定法等から求めた格子定数値から得られた理論密度から、
相対密度(%)=(試料実測密度/理論密度)×100
により求められる。相対密度を80%以上とすることで、結晶粒子中の粒界に由来する抵抗やボイドに由来する抵抗が低減して、粒子自身のリチウムイオン伝導性が向上する。100%以下とすることで、粒子の粒界やボイドを低減させるための高い温度での加熱、高い圧力での圧縮になどの煩雑な操作の負荷を減らすことができる。
As the shape of the crystalline oxide-based inorganic solid electrolyte particles, either spherical or irregular shapes can be used. The crystalline oxide inorganic solid electrolyte particles preferably have a high density in order to ensure high ion conductivity, and those having a relative density of 80 to 100% of each crystalline oxide inorganic solid electrolyte are used. Those having a relative density of 90 to 100% are preferably used, and those having a relative density of 95 to 100% are most preferably used. Here, the relative density is a theoretical density obtained from a lattice constant value obtained from an XRD measurement method or the like using the “true density” of the sample obtained by a general measurement method such as a liquid substitution method or a gas substitution method as an actual measurement density. From
Relative density (%) = (sample actual density / theoretical density) × 100
Is required. By setting the relative density to 80% or more, the resistance derived from the grain boundaries in the crystal grains and the resistance derived from the voids are reduced, and the lithium ion conductivity of the grains themselves is improved. By setting it to 100% or less, it is possible to reduce the burden of complicated operations such as heating at a high temperature for reducing grain boundaries and voids of particles and compression at a high pressure.

粒子が一層に配列した構造とは、その単一の粒子が層の厚み方向に1つ、層内方向に多数が配列した構造を意味するが、粒子が割れて複数の粒子となって存在したり、比較的扁平な粒子が重なったりする等、層の厚み方向の粒子が1つでない場合も、層内方向の全粒子数に対して最大で15%以下存在してもよく、5%以下存在することが好ましい。
固体電解質層は粒子が一層に配列した構造であれば良く、粒子同士は固着していても独立した状態で存在していても用いることもできる。独立した状態で存在した場合の粒子間の空間は何もない状態で用いることができるが、必要に応じてデンドライト生成に伴う電池短絡を防ぐために、非晶性の絶縁物、例えば絶縁性の樹脂等で満たして用いることもできる。粒子同士が固着した状態としてはシート状として用いることができる。シート状とは、例えば、長さおよび幅に比較して極めて薄い平面状のことをいう。通常、厚さ0.2mm以上のものをシート状、それ未満をフィルム状というが、本明細書では両方を含めてシート状とする。粒子同士の固着は、非晶質の樹脂、無機化合物などを用いることができる。
また、本発明の電解質層を用いることにより、セルの厚みは同じで電解質層を薄くすれば電極活物質を多く詰め込めるようになり、電池としての電気容量を高めることができる。
The structure in which particles are arranged in a single layer means a structure in which one single particle is arranged in the thickness direction of the layer and a large number of particles are arranged in the direction of the layer. Even when the number of particles in the thickness direction of the layer is not one, such as when relatively flat particles overlap, the maximum number of particles in the in-layer direction may be 15% or less, and 5% or less Preferably it is present.
The solid electrolyte layer may have a structure in which particles are arranged in a single layer, and the particles may be used even if they are fixed or exist in an independent state. The space between particles when present in an independent state can be used without any space, but if necessary, an amorphous insulator such as an insulating resin can be used to prevent battery short-circuiting due to dendrite formation. Etc., and can be used. As a state where the particles are fixed to each other, it can be used as a sheet. The sheet shape means, for example, an extremely thin planar shape as compared with the length and width. In general, a sheet having a thickness of 0.2 mm or more is referred to as a sheet, and a film having a thickness of less than 0.2 mm is referred to as a film. For fixing the particles, an amorphous resin, an inorganic compound, or the like can be used.
Further, by using the electrolyte layer of the present invention, if the cell thickness is the same and the electrolyte layer is made thinner, more electrode active material can be packed, and the electric capacity as a battery can be increased.

粒子を一層に配列させる方法としては、例えば、粘着層の上に粒子を載せ、粘着層に固定されていない粒子を除去することにより、粒子が一層に配列した構造とすることができる。粘着層としては、粘着テープ、基板の上に除去が容易なグリース等を塗布したものも用いられる。粘着層に固定されていない粒子の除去方法としては、粒子の載った粘着層ごと反転させることにより、固定されていない粒子を落下させて除去する方法、気体の噴射等により、粘着層に固定されていない粒子を吹き飛ばして除去する方法などを用いることができる。一層に配列させた粒子層の固定化方法としては、例えば、樹脂を用いてホットメルトで固定化する方法、溶媒に溶解させた樹脂を粒子層に塗布するキャストによる方法を用いることができる。イオン伝導性非晶性化合物をあらかじめ結晶性酸化物系無機固体電解質粒子に被覆し、粒子を一層に配列させた後、熱処理等により固定化させることもできる。短絡が生じなければ、結晶性酸化物系無機固体電解質粒子は必ずしも粒子同士が結着している必要はなく、例えば正極または負極に単粒子層が形成された形態においても用いることができる。   As a method for arranging the particles in a single layer, for example, a structure in which the particles are arranged in a single layer can be obtained by placing the particles on the adhesive layer and removing the particles not fixed to the adhesive layer. As the adhesive layer, an adhesive tape or a substrate coated with easily removable grease or the like is also used. As a method for removing particles that are not fixed to the adhesive layer, the entire adhesive layer on which particles are placed is reversed, the particles that are not fixed are dropped and removed. For example, a method of removing particles by blowing them off can be used. As a method for fixing the particle layer arranged in a single layer, for example, a method of fixing by hot melt using a resin, or a method of casting in which a resin dissolved in a solvent is applied to the particle layer can be used. The ion-conductive amorphous compound may be coated on the crystalline oxide-based inorganic solid electrolyte particles in advance, and the particles may be arranged in a single layer, and then fixed by heat treatment or the like. If short circuit does not occur, the crystalline oxide inorganic solid electrolyte particles do not necessarily have to be bound to each other, and can be used, for example, in a form in which a single particle layer is formed on the positive electrode or the negative electrode.

一層に配列させた粒子層を、樹脂を用いて固定化することで、固体電解質層は可撓性を有するシート状となり、電池の変形にも追従することができる。
なお、一層に配列させた粒子層を、樹脂を用いて固定化する場合、固体電解質層のリチウムイオン伝導性を確保するために、シートの両側に粒子が露出している必要がある。粒子が樹脂で被覆されている場合、エッチング法等を用いて粒子を露出させることができる。
By fixing the particle layer arranged in one layer using a resin, the solid electrolyte layer becomes a flexible sheet, and can follow the deformation of the battery.
In addition, when fixing the particle layer arranged in one layer using resin, in order to ensure the lithium ion conductivity of a solid electrolyte layer, it is necessary to expose the particle | grains on both sides of a sheet | seat. When the particles are coated with a resin, the particles can be exposed using an etching method or the like.

結晶性酸化物系無機固体電解質粒子のサイズは平均粒子径5〜100μmの粒子が用いられ、好ましくは平均粒子径10〜80μmが用いられ、20〜50μmの粒子が最も好ましく用いられる。粒子径を5μm以上とすることで、固体電解質層の物理的強度が高まり加工時の短絡を防ぐことができる。粒子径を100μm以下とすることで、正極および負極間の十分なリチウムイオン伝導性が得られるようになる。
固体電解質層の固体電解質単粒子による面内被覆率は、単位単粒子層面積の内、粒子で占める面積の比率で表される。被覆率は50〜98%の範囲で用いられ、好ましくは60〜90%の範囲で用いられる。被覆率50%以上とすることで、単位単粒子層面積当たりのリチウムイオン伝導性を十分高めることができ、被覆率98%以下とすることで膜に柔軟性を与え、脆化による膜の破損を防ぐことができる。
As the size of the crystalline oxide inorganic solid electrolyte particles, particles having an average particle size of 5 to 100 μm are used, preferably an average particle size of 10 to 80 μm is used, and particles of 20 to 50 μm are most preferably used. By setting the particle diameter to 5 μm or more, the physical strength of the solid electrolyte layer is increased, and a short circuit during processing can be prevented. By setting the particle diameter to 100 μm or less, sufficient lithium ion conductivity between the positive electrode and the negative electrode can be obtained.
The in-plane coverage by the solid electrolyte single particles of the solid electrolyte layer is represented by the ratio of the area occupied by the particles in the unit single particle layer area. The coverage is used in the range of 50 to 98%, preferably in the range of 60 to 90%. By setting the coverage to 50% or more, the lithium ion conductivity per unit single particle layer area can be sufficiently increased, and by setting the coverage to 98% or less, the film is given flexibility and the film is damaged due to embrittlement. Can be prevented.

[リチウムイオン伝導性を有する非晶性化合物での被覆]
本発明では、固体電解質層の粒子の表面の少なくとも一部が、リチウムイオン伝導性を有する非晶性化合物が被覆された状態で用いることができる。粒子表面は粒子界面であることが好ましい。「粒子界面」とは、結晶性酸化物系無機固体電解質粒子の粒子同士が接する面、結晶性酸化物系無機固体電解質粒子と負極および正極が接する面を指す。結晶性酸化物系無機固体粒子の表面に対する、リチウムイオン伝導性を有する非晶質化合物の被覆率は5〜100%で用いられ、10〜80%が好ましく用いられる。5%以上とすることで、結晶性酸化物系無機固体電解質粒子と正極および負極との十分なリチウムイオン伝導性が得られるようになり、100%以下とすることで、結晶性酸化物系無機固体電解質粒子の結着性が高まり、短絡を防ぐことができるようになる。リチウムイオン伝導性を有する非晶質化合物の被覆に際しては、結晶性酸化物系無機固体電解質粒子が一層に配列した構造を安定に保つために、同時に絶縁性の非晶質化合物が結晶性酸化物系無機固体電解質粒子に被覆されていても構わない。
リチウムイオン伝導性を有する非晶性化合物は、結晶性酸化物系無機固体電解質粒子の負極活物質との界面に存在すれば良く、結晶性酸化物系無機固体電解質粒子と負極活物質の界面、および結晶性酸化物系無機固体電解質粒子と正極活物質の界面の両方に存在することがさらに好ましい。
[Coating with an amorphous compound having lithium ion conductivity]
In the present invention, at least a part of the surface of the particles of the solid electrolyte layer can be used in a state where the amorphous compound having lithium ion conductivity is coated. The particle surface is preferably a particle interface. The “particle interface” refers to a surface where the particles of crystalline oxide inorganic solid electrolyte particles are in contact with each other, and a surface where the crystalline oxide inorganic solid electrolyte particles are in contact with the negative electrode and the positive electrode. The coverage of the amorphous compound having lithium ion conductivity on the surface of the crystalline oxide-based inorganic solid particles is 5 to 100%, preferably 10 to 80%. By setting it to 5% or more, sufficient lithium ion conductivity between the crystalline oxide inorganic solid electrolyte particles and the positive electrode and the negative electrode can be obtained. By setting it to 100% or less, the crystalline oxide inorganic The binding property of the solid electrolyte particles is increased, and a short circuit can be prevented. When coating an amorphous compound having lithium ion conductivity, in order to maintain a stable structure in which crystalline oxide-based inorganic solid electrolyte particles are arranged in a single layer, an insulating amorphous compound is simultaneously added to the crystalline oxide. The inorganic solid electrolyte particles may be coated.
The amorphous compound having lithium ion conductivity may be present at the interface between the crystalline oxide inorganic solid electrolyte particles and the negative electrode active material, and the interface between the crystalline oxide inorganic solid electrolyte particles and the negative electrode active material, More preferably, it is present both at the interface between the crystalline oxide-based inorganic solid electrolyte particles and the positive electrode active material.

結晶性酸化物系無機固体電解質粒子は、あらかじめイオン伝導性を有する非晶性の化合物を被覆させてから一層に配列させても良いし、一層に配列させた後、被覆させても良い。被覆の方法は、非晶性化合物がポリマー電解質であれば、溶剤で溶かしたポリマー溶液を用いて結晶性酸化物系無機固体電解質粒子に塗布した後、加熱、減圧等により溶剤を除去して被覆する方法、加熱によりポリマーを軟化させ圧着等により粒子に被覆する方法を用いることができる。非晶性化合物がゲルポリマーであればカーボネート系の電解液、モノマー、重合開始剤を混合した溶液を結晶性酸化物系無機固体電解質粒子に塗布し、熱等により重合を開始させゲルポリマーを被覆することができる。非晶性化合物が無機化合物であれば加圧、圧着により被覆する方法、スパッタ等の方法で被覆する方法を用いることができる。   The crystalline oxide-based inorganic solid electrolyte particles may be arranged in one layer after being coated with an amorphous compound having ion conductivity in advance, or may be coated after being arranged in one layer. If the amorphous compound is a polymer electrolyte, the coating is applied to the crystalline oxide inorganic solid electrolyte particles using a polymer solution dissolved in a solvent, and then the solvent is removed by heating, decompression, etc. And a method of softening the polymer by heating and coating the particles by pressure bonding or the like can be used. If the amorphous compound is a gel polymer, apply a solution containing carbonate-based electrolyte, monomer, and polymerization initiator to the crystalline oxide-based inorganic solid electrolyte particles, start polymerization by heat, etc., and cover the gel polymer can do. If the amorphous compound is an inorganic compound, a method of coating by pressure or pressure bonding, or a method of coating by sputtering or the like can be used.

リチウムイオン伝導性を有する非晶性化合物としては、リチウムイオン伝導性を有する非晶性の化合物であれば有機物でも無機物でもいずれも用いることができる。有機物のリチウムイオン伝導性を有する非晶性化合物としては、ポリマー電解質、ゲルポリマー電解質が用いられる。ポリマー電解質としては、リチウム塩として例えばLiBr、LiCl、LiI、LiSCN、LiBF、LiAsF、LiClO、CHCOOLi、CFCOOLi、LiCFSO、LiPF、LiN(CFSO、LiC(CFSOを含んだポリエチレンオキシド、ポリプロピレンオキシド、ポリフッ化ビニリデン、ポリアクリロニトリルなどのポリマーを用いることができる。ゲルポリマー電解質としては、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、ポリエチレンオキシド(PEO)等のポリマーと、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等のカーボネート類とを組み合わせたものを用いることができる。好ましくは、ポリマー電解質としてリチウム塩にLiClO、LiN(CFSOを用いたポリエチレンオキシドが用いられる。非晶性無機化合物としては酸化物系ガラス、硫化物ガラス、アモルファス薄膜などが用いられ、酸化物ガラスとしては42.5LiO・57.5B、40LiO・60SiO、60LiO・40SiO、50LiO・50Nb、39LiO・13B・48SiO、60LiPO・40LiF、70LiPO・30LiCl、67LiPO・33LiBr、67LiPO・33LiI、67LiPO・33LiSO、硫化物ガラスとしては50LiS・50GeS、50LiS・50SiS、60LiS・30SiS・10Al、37LiS・18P・45LiI、30LiS・26B・44LiI、30LiS・21SiS・9B・40LiI、57LiS・38SiS・5LiSiO、アモルファス薄膜としてLi3.6Si0.60.4、Li3.40.6Si0.4、Li3.3PO3.90.37(LIPON)を用いることができる。特に好ましくは、ポリマー電解質として、溶剤としてDMCを用い、リチウム塩としてLiPFを用い、多官能アクリレート重合開始剤を用いてゲル化させたゲルポリマー、ポリマー電解質として、リチウム塩としてLiClO、LiN(CFSOを用いたポリエチレンオキシド、非晶性無機化合物としてLIPONを用いることができる。 As the amorphous compound having lithium ion conductivity, any organic or inorganic substance can be used as long as it is an amorphous compound having lithium ion conductivity. As the amorphous compound having organic lithium ion conductivity, a polymer electrolyte or a gel polymer electrolyte is used. As the polymer electrolyte, for example, LiBr, LiCl, LiI, LiSCN, LiBF 4 , LiAsF 6 , LiClO 4 , CH 3 COOLi, CF 3 COOLi, LiCF 3 SO 3 , LiPF 6 , LiN (CF 3 SO 2 ) 2 as a lithium salt. Polymers such as polyethylene oxide, polypropylene oxide, polyvinylidene fluoride, and polyacrylonitrile containing LiC (CF 3 SO 2 ) 3 can be used. Examples of the gel polymer electrolyte include polymers such as polyvinylidene fluoride (PVdF), polyacrylonitrile (PAN), and polyethylene oxide (PEO), for example, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl A combination of carbonates such as carbonate (DEC) and ethyl methyl carbonate (EMC) can be used. Preferably, polyethylene oxide using LiClO 4 or LiN (CF 3 SO 2 ) 2 as a lithium salt is used as a polymer electrolyte. As the amorphous inorganic compound, oxide-based glass, sulfide glass, amorphous thin film, or the like is used. As the oxide glass, 42.5Li 2 O · 57.5B 2 O 3 , 40Li 2 O · 60SiO 2 , 60Li 2 is used. O · 40SiO 2, 50Li 2 O · 50Nb 2 O 5, 39Li 2 O · 13B 2 O 3 · 48SiO 2, 60LiPO 3 · 40LiF, 70LiPO 3 · 30LiCl, 67LiPO 3 · 33LiBr, 67LiPO 3 · 33LiI, 67LiPO 3 · 33Li 2 SO 4, sulfide as a glass 50Li 2 S · 50GeS 2, 50Li 2 S · 50SiS 2, 60Li 2 S · 30SiS 2 · 10Al 2 S 3, 37Li 2 S · 18P 2 S 5 · 45LiI, 30Li 2 S · 26B 2 S 3 · 44LiI, 30Li S · 21SiS 2 · 9B 2 S 3 · 40LiI, 57Li 2 S · 38SiS 2 · 5Li 4 SiO 4, Li 3.6 Si 0.6 P 0.4 O 4 as an amorphous thin film, Li 3.4 V 0.6 Si 0.4 O 4 , Li 3.3 PO 3.9 N 0.37 (LIPON) can be used. Particularly preferably, the polymer electrolyte is a gel polymer using DMC as a solvent, LiPF 6 as a lithium salt, and gelled using a polyfunctional acrylate polymerization initiator, and the polymer electrolyte is LiClO 4 , LiN ( Polyethylene oxide using CF 3 SO 2 ) 2 and LIPON can be used as the amorphous inorganic compound.

<電池の作製方法>
本実施形態におけるリチウムイオン二次電池は、上述の正極、負極、及び固体電解質粒子を用いて、公知の方法により作製される。例えば、正極と負極と固体電解質粒子層とを介在させた積層体とする態様、該積層体を交互に積層した複数の正極と負極との間に電子伝導体が介在する、多層構造の積層体に構成する態様等によって、電極積層体を構成する。次いで、該電極積層体を電池ケース(外装)内に収容して、封印することによって、本実施形態のリチウムイオン電池を作製することができる。
電池作製時に0.1〜4000kgf/cmの圧力を正極および負極の対向する面に対して加圧することが好ましく、さらに好ましくは0.1〜100kgf/cmの圧力で加圧することが好ましく、0.5〜15kgf/cmの圧力で加圧することが最も好ましい。圧力を0.1kgf/cm以上とすることで電極活物質と固体電解質粒子の接触状態が良くなり電池特性が向上する。圧力を4000kgf/cm以下とすることで電池内部損傷による短絡を防ぐことができる。電池は電池作製時の加圧状態を維持して作動させることもできるが充放電特性に問題が無ければ加圧の無い状態で作動させることもできる。
本実施形態のリチウムイオン二次電池の形状は、特に限定されず、例えば、円筒形、楕円形、角筒型、ボタン形、コイン形、扁平形、ラミネート形等が好適に採用される。
また、本実施形態の固体電解質は、上述したようなリチウムイオン二次電池だけでなく、その他の電池にも適用可能である。
以上、本発明を実施するための形態について説明したが、本発明は上記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。
<Production method of battery>
The lithium ion secondary battery in the present embodiment is produced by a known method using the above-described positive electrode, negative electrode, and solid electrolyte particles. For example, a multilayer structure in which a positive electrode, a negative electrode, and a solid electrolyte particle layer are interposed, and a multilayer structure in which an electron conductor is interposed between a plurality of positive electrodes and negative electrodes that are alternately stacked. The electrode laminated body is configured according to the configuration or the like. Next, the electrode laminate is accommodated in a battery case (exterior) and sealed, whereby the lithium ion battery of this embodiment can be produced.
It is preferable to apply a pressure of 0.1 to 4000 kgf / cm 2 to the opposing surfaces of the positive electrode and the negative electrode at the time of producing the battery, more preferably pressurizing with a pressure of 0.1 to 100 kgf / cm 2 , Most preferably, pressurization is performed at a pressure of 0.5 to 15 kgf / cm 2 . When the pressure is 0.1 kgf / cm 2 or more, the contact state between the electrode active material and the solid electrolyte particles is improved, and the battery characteristics are improved. By setting the pressure to 4000 kgf / cm 2 or less, a short circuit due to internal damage of the battery can be prevented. The battery can be operated while maintaining the pressurized state at the time of battery production, but can also be operated without pressure if there is no problem with the charge / discharge characteristics.
The shape of the lithium ion secondary battery of the present embodiment is not particularly limited, and, for example, a cylindrical shape, an elliptical shape, a rectangular tube shape, a button shape, a coin shape, a flat shape, a laminate shape, and the like are suitably employed.
Further, the solid electrolyte of the present embodiment is applicable not only to the lithium ion secondary battery as described above but also to other batteries.
As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said embodiment. The present invention can be variously modified without departing from the gist thereof.

以下、本発明の効果を確認するために行った実施例および比較例について説明する。
[実施例1]
<単粒子膜の成膜>
結晶性酸化物系無機粒子として、豊島製作所製NASICON型酸化物であるLi1.3Ti1.7(PO(LATP)を用い、リチウムイオン伝導性を有する非晶性化合物として、ポリエチレンオキシド(PEO)とLiClOを組み合わせた化合物を用いて成膜した。
ステンレス平滑基板上に、水溶性の粘着テープ(3M製 Water Soluble Adhesive 水溶性テープ)を粘着面が上になるように、3cm×3cmの広さで張り付けた。あらかじめ38〜45μmの目開きでふるい分けにより分級したLATP粒子を粘着テープの粘着面上に載せ、ステンレス基板ごと反転させることで、粘着テープに固定化されていない余剰粒子を除去した。さらにLATP粒子を粘着テープに載せ反転させることで余剰粒子を除去する操作を数回繰り返し、単粒子が配列した状態とした。
Examples and comparative examples performed for confirming the effects of the present invention will be described below.
[Example 1]
<Deposition of single particle film>
As crystalline oxide-based inorganic particles, Li 1.3 Ti 1.7 (PO 4 ) 3 (LATP), which is a NASICON type oxide manufactured by Toshima Seisakusho, is used as an amorphous compound having lithium ion conductivity. A film was formed using a compound in which ethylene oxide (PEO) and LiClO 4 were combined.
On a stainless steel smooth substrate, a water-soluble adhesive tape (3M Water Soluble Adhesive water-soluble tape) was attached in an area of 3 cm × 3 cm so that the adhesive surface was on top. LATP particles classified by sieving with an opening of 38 to 45 μm in advance were placed on the adhesive surface of the adhesive tape, and the entire stainless steel substrate was inverted to remove excess particles that were not fixed to the adhesive tape. Furthermore, the operation of removing excess particles by placing LATP particles on an adhesive tape and inverting it was repeated several times, and single particles were arranged.

日本ゼオン製ポリシクロオレフィン(COP)をデカリンに溶解し8wt%COP溶液を調製した。次いでCOP溶液を単粒子が配列した面に、表面が覆う量滴下し、MIKASA社製スピンコーターを用いて300rpm、60secの条件でスピンコートを実施した。コート終了後、アズワン製ホットスターラーを用いてステンレス基板ごと90℃で20分加熱した。同上のスピンコートおよび加熱操作を4回繰り返し単粒子膜と粘着テープが一体化した膜を得た。次いで単粒子膜と粘着テープが一体化した膜を100mlのエタノールが入ったビーカーへ入れ十分浸した。次いでビーカーを水浴上で65℃に加熱し、粘着テープを溶解させたところ、単粒子膜が分離した。得られた単粒子膜を80℃条件において減圧下、一晩乾燥させ片面が粒子の露出した単粒子膜とした。   A polycycloolefin (COP) manufactured by Nippon Zeon was dissolved in decalin to prepare an 8 wt% COP solution. Next, the COP solution was dropped onto the surface on which the single particles were arranged so as to cover the surface, and spin coating was performed using a spin coater manufactured by MIKASA under the conditions of 300 rpm and 60 sec. After the coating, the stainless steel substrate was heated at 90 ° C. for 20 minutes using an AS ONE hot stirrer. The same spin coating and heating operations were repeated 4 times to obtain a film in which the single particle film and the adhesive tape were integrated. Next, the membrane in which the single particle membrane and the adhesive tape were integrated was placed in a beaker containing 100 ml of ethanol and sufficiently immersed. Next, when the beaker was heated to 65 ° C. on a water bath to dissolve the adhesive tape, the single particle film was separated. The obtained single particle film was dried overnight under reduced pressure at 80 ° C. to obtain a single particle film with one side exposed.

<単粒子膜の表面露出操作>
得られた片面が粒子の露出した単粒子膜を、(株)モリエンジニアリングMPC−600装置のチャンバー内に、固体電解質粒子表面が露出していない面を上側として入れ、基板温度40℃、酸素ガス流量100CCM、RF出力100Wとしてプラズマ処理を10分間行った。処理後の膜をチャンバーから取り出し、固体電解質粒子両面が表面に露出した単粒子の配列した膜とした。
<Surface exposure operation of single particle film>
The obtained single particle film with one side exposed particle is placed in the chamber of Mori Engineering MPC-600 Co., Ltd. with the surface where the solid electrolyte particle surface is not exposed as the upper side, substrate temperature of 40 ° C., oxygen gas Plasma treatment was performed for 10 minutes at a flow rate of 100 CCM and an RF output of 100 W. The membrane after the treatment was taken out of the chamber to obtain a membrane in which single particles were arranged with both surfaces of the solid electrolyte particles exposed on the surface.

<単粒子膜の被覆率測定>
得られた膜のSEM観察
SEM観察
装置:KEYENCE社製 VE−9800
加速電圧:1.2KV
スポット径:6(装置の設定値)
真空度:3Pa
検出器:二次電子検出器
導電性両面テープを用いて試料を試料台に固定し、非蒸着の条件下、200倍の倍率にてエッチングを行っていない面を観察した。装置付属のソフトウエアで、粒子が占める面積を算出し、全体の面積で割り返すことで、単粒子膜の粒子の占める割合を算出し粒子の被覆率とした。視野を変えて同様の計算を3回繰り返し、平均を算出したところ、79.1%の被覆率となった。
<Measurement of coverage of single particle film>
SEM observation of the obtained film SEM observation apparatus: VE-9800 manufactured by KEYENCE Corporation
Acceleration voltage: 1.2KV
Spot diameter: 6 (set value of the device)
Degree of vacuum: 3Pa
Detector: Secondary electron detector A sample was fixed to a sample stage using a conductive double-sided tape, and the surface not etched at a magnification of 200 times was observed under non-deposition conditions. The area occupied by the particles was calculated by software attached to the apparatus, and by dividing by the total area, the ratio of the particles of the single particle film was calculated to obtain the particle coverage. The same calculation was repeated three times while changing the field of view, and the average was calculated. As a result, the coverage was 79.1%.

<リチウムイオン伝導性非晶性化合物の被覆>
両面が粒子の露出した結晶性酸化物単粒子膜を、リチウムイオン伝導性の非晶性化合物で被覆するために、得られた単粒子膜を、ポリエチレンオキシド(PEO)とLiClOを組み合わせた化合物で被覆した。
アルドリッチ製Poly(ethylene oxide), average Mv 〜4,000,000と関東化学製LiClOを、ユニットモル比率で15:1(PEOの酸素モル:LiClOのLiモル)になるようにアルドリッチ製アセトニトリルに溶解し、10wt%ポリマー溶液を調製した。次いで、露点を−70℃に保ったドライルームにおいて、単粒子膜のエッチングを行った面にポリマー液を少量滴下し、徐々に減圧し室温で乾燥させる操作を、Mitutoyo 457−401型厚み計で測定し5μmの厚みでPEOの被覆された単粒子膜が得られるまで繰り返した。上記SEM装置を用いて観察した結果、単粒子膜のPEO塗布面はPEOにより覆われており、粒子の露出は無いことを確認した。
<Coating of lithium ion conductive amorphous compound>
Compound obtained by combining polyethylene oxide (PEO) and LiClO 4 in order to coat a crystalline oxide single particle film with exposed particles on both sides with a lithium ion conductive amorphous compound Coated with.
Aldrich Poly (ethylene oxide), average Mv ˜4,000,000 and Kanto Chemical LiClO 4 were mixed at a unit molar ratio of 15: 1 (oxygen mole of PEO: Li mole of LiClO 4 ). And a 10 wt% polymer solution was prepared. Next, in a dry room where the dew point was kept at -70 ° C, an operation of dropping a small amount of polymer liquid onto the surface of the etched single particle film, gradually reducing the pressure and drying at room temperature was performed with a Mitutoyo 457-401 thickness gauge. The measurement was repeated until a single particle film having a thickness of 5 μm and coated with PEO was obtained. As a result of observation using the SEM apparatus, it was confirmed that the PEO-coated surface of the single particle film was covered with PEO, and no particles were exposed.

<電池評価>
(1)正極形成
PEOを塗布した単粒子膜14mm×20mmに、正極形成を行った。バナジウムアルコキサイド(トリイソプロポキシバナジウムオキサイド)を脱水エタノールに溶解して13wt%の溶液を調製した。次いで上記PEOで被覆した単粒子膜を、PEOを塗布していない面を上面としてガラス基板上へ載せ、調製したバナジウムアルコキサイド溶液を滴下後、水を滴下して加水分解した。その後室温で乾燥させた後、80℃、10時間乾燥を実施した。活物質の重量は0.50mg/cmであった。
(2)評価用電池の作製
電池は負極としてリチウム金属を用い、その上にリチウム金属とPEO被覆面が接し、バナジウム正極が上面になるように単粒子膜を載せ、これらをアルミラミネート外装に入れ、充放電が可能なように正極板、負極板に電源接続用のタブを取り付け密封した。平面板で正極および負極側を挟み込み1kg/cmに相当する圧力で加圧した。
(3)充放電容量の評価
全固体電池について、下記の手順に従って特定の放電電流における放電容量を測定し、電気容量をそれぞれ評価した。
測定は、アスカ電子(株)製の充放電装置ACD−01(商品名)及びヤマト科学(株)製の恒温槽IN−804(商品名)を用いて行った。
リチウムイオン二次電池について、電流値0.0028mA(0.01C Rate)において定電流放電を行って2.0Vに到達するまでの電気容量を求め、初回放電容量とした。前記放電後、電流値0.028mA(0.01C Rate)にて、4.0Vまで定電流充電を行なった。引き続き電流値0.0028mA(0.01C Rate)において定電流放電を行い2.0Vに到達するまでの電気容量を求め0.0028mA(0.01C Rate)にて4.0Vに到達するまで充電を行い、計6回充放電を繰り返した。
初回放電容量、6回目放電容量、容量維持率を示す。
容量維持率=[6回目放電容量]/[1回目放電容量]×100
初回充電容量は60mAh/gであり、6回目放電容量は58mAh/gであり、容量維持率は96.7%であった。
<Battery evaluation>
(1) Positive electrode formation A positive electrode was formed on a single particle film 14 mm x 20 mm coated with PEO. Vanadium alkoxide (triisopropoxy vanadium oxide) was dissolved in dehydrated ethanol to prepare a 13 wt% solution. Subsequently, the single particle film coated with PEO was placed on a glass substrate with the surface not coated with PEO as the upper surface, and the prepared vanadium alkoxide solution was dropped, followed by hydrolysis by dropping water. Then, after drying at room temperature, drying was performed at 80 ° C. for 10 hours. The weight of the active material was 0.50 mg / cm 2 .
(2) Preparation of battery for evaluation The battery uses lithium metal as the negative electrode, and a single particle film is placed thereon so that the lithium metal and the PEO-coated surface are in contact with each other, and the vanadium positive electrode is on the upper surface. Then, a tab for connecting the power source was attached to the positive electrode plate and the negative electrode plate so that charging and discharging were possible. The positive electrode and negative electrode sides were sandwiched between flat plates and pressurized with a pressure corresponding to 1 kg / cm 2 .
(3) Evaluation of charge / discharge capacity For all solid state batteries, the discharge capacity at a specific discharge current was measured according to the following procedure, and the electric capacity was evaluated.
The measurement was performed using a charge / discharge device ACD-01 (trade name) manufactured by Asuka Electronics Co., Ltd. and a thermostatic chamber IN-804 (trade name) manufactured by Yamato Scientific Co., Ltd.
The lithium ion secondary battery was subjected to constant current discharge at a current value of 0.0028 mA (0.01 C Rate), and the electric capacity until reaching 2.0 V was determined as the initial discharge capacity. After the discharge, constant current charging was performed up to 4.0 V at a current value of 0.028 mA (0.01 C Rate). Subsequently, a constant current discharge is performed at a current value of 0.0028 mA (0.01 C Rate) to obtain an electric capacity until reaching 2.0 V, and charging is performed until it reaches 4.0 V at 0.0028 mA (0.01 C Rate). The charge and discharge were repeated a total of 6 times.
The initial discharge capacity, the sixth discharge capacity, and the capacity retention rate are shown.
Capacity retention rate = [6th discharge capacity] / [1st discharge capacity] × 100
The initial charge capacity was 60 mAh / g, the sixth discharge capacity was 58 mAh / g, and the capacity retention rate was 96.7%.

[実施例2]
実施例1のリチウムイオン伝導性を有する非晶性化合物の被覆にPEOに組み合わせる塩にLiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)を用い、ユニットモル比を17:1(PEOの酸素モル:LiTFSIのLiモル)となる条件の化合物を用いること以外は同じ操作を行い、電池を作製し、評価を行ったところ初回充電容量は65mAh/gであり、6回目放電容量は62mAh/gであり、容量維持率は95.4%であった。
[実施例3]
<LiPONの被覆>
実施例1記載と同様の方法で作製した固体電解質粒子の表面の一部が膜の両面に露出した単粒子膜の表面に、RFスパッタ装置を用いて非晶質LIPONの被覆を行った。単粒子膜のエッチングを行った面を上側にして下記条件でLIPON膜の成膜を行った。膜厚は500nmであり、LIPONを成膜した面のXRDを測定したところ2θ=22°〜26°付近にハローパターンが見られ、LIPONは、非晶質であることを確認した。
RFスパッタ条件
ガス:N
圧力:1.0Pa
ターゲット:LiPO
ターゲット−基盤距離:6cm
Rf出力:30w
成膜時間:300min
<電池評価>
(1)正極形成
LiPONを被覆した単粒子膜14mm×20mmに対して正極形成を行った。方法は、実施例1記載の正極形成方法と同じ方法で行い、正極はLIPONを被覆していない面に形成した。活物質重量は0.51mg/cmであった。
(2)評価用電池の作製
負極は14mm×20mmのリチウム板を用い、リチウム板に上記単粒子膜をLIPON膜が接するように載せ、これらをアルミラミネート外装に入れ充放電が可能なように正極板、負極板に電源接続用のタブを取り付け密封した。平面板で正極および負極側を挟み込み1kg/cmに相当する圧力で加圧した。
(3)充放電容量の評価
実施例1と同様の評価を行い、初回放電容量は、51mAh/g、6回目放電容量は47mAh/g、容量維持率は92.2%であった。
[Example 2]
LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) was used as the salt combined with PEO for coating the amorphous compound having lithium ion conductivity of Example 1, and the unit molar ratio was 17: 1 (oxygen mole of PEO: LiTFSI). The same operation was performed except that a compound under the condition of Li mol) was prepared, and a battery was produced and evaluated. As a result, the initial charge capacity was 65 mAh / g, and the sixth discharge capacity was 62 mAh / g. The capacity retention rate was 95.4%.
[Example 3]
<Coating with LiPON>
The surface of the single particle film in which part of the surface of the solid electrolyte particles produced by the same method as described in Example 1 was exposed on both sides of the film was coated with amorphous LIPON using an RF sputtering apparatus. The LIPON film was formed under the following conditions with the surface of the single particle film etched upward. The film thickness was 500 nm, and the XRD of the surface on which LIPON was formed was measured. As a result, a halo pattern was observed in the vicinity of 2θ = 22 ° to 26 °, and LIPON was confirmed to be amorphous.
RF sputtering condition gas: N 2
Pressure: 1.0Pa
Target: Li 3 PO 4
Target-base distance: 6cm
Rf output: 30w
Deposition time: 300 min
<Battery evaluation>
(1) Positive electrode formation A positive electrode was formed on a single particle film 14 mm × 20 mm coated with LiPON. The method was the same as the positive electrode forming method described in Example 1, and the positive electrode was formed on the surface not coated with LIPON. The active material weight was 0.51 mg / cm 2 .
(2) Preparation of battery for evaluation The negative electrode uses a 14 mm x 20 mm lithium plate. The single particle film is placed on the lithium plate so that the LIPON film is in contact, and these are placed in an aluminum laminate sheath so that charging and discharging are possible. A tab for power supply connection was attached to the plate and the negative electrode plate and sealed. The positive electrode and negative electrode sides were sandwiched between flat plates and pressurized with a pressure corresponding to 1 kg / cm 2 .
(3) Evaluation of charge / discharge capacity The same evaluation as in Example 1 was performed, the initial discharge capacity was 51 mAh / g, the sixth discharge capacity was 47 mAh / g, and the capacity retention rate was 92.2%.

[実施例4]
結晶性酸化物系無機固体電解質粒子としてLi6.25Al0.25LaZr12(LLZO)を用い、リチウムイオン伝導性を有する非晶性化合物として、ゲルポリマー用いてリチウムイオン電池を作製した。
(1)LLZO単粒子膜の成膜
結晶性酸化物系無機固体電解質粒子としてLLZOを用いて単粒子膜を成膜した。ステンレス平滑基板上に、水溶性の粘着テープ(3M製 Water Soluble Adhesive 水溶性テープ)を粘着面が上になるように、3cm×3cmの広さで張り付けた。あらかじめ38〜45μmの目開きでふるい分けにより分級したLLZO粒子を粘着テープの粘着面上に載せ、ステンレス基板ごと反転させることで、粘着テープに固定化されていない余剰粒子を除去した。さらにLLZO粒子を粘着テープに載せ反転させることで余剰粒子を除去する操作を数回繰り返し、単粒子が配列した状態とした。
日本ゼオン製ポリシクロオレフィン(COP)をデカリンに溶解し8wt%COP溶液を調製した。次いでCOP溶液を単粒子が配列した面に、表面が覆う量滴下し、MIKASA社製スピンコーターを用いて300rpm、60secの条件でスピンコートを実施した。コート終了後、アズワン製ホットスターラーを用いてステンレス基板ごと90℃で20分加熱した。同上のスピンコートおよび加熱操作を4回繰り返し単粒子膜と粘着テープが一体化した膜を得た。次いで単粒子膜と粘着テープが一体化した膜を100mlのエタノールが入ったビーカーへ入れ十分浸した。次いでビーカーを水浴上で65℃に加熱し、粘着テープを溶解させたところ、単粒子膜が分離した。得られた単粒子膜を80℃条件において減圧下、一晩乾燥させ片面が露出した単粒子膜とした。
単粒子膜の表面露出操作は実施例1記載と同様の操作を行い、固体電解質粒子の表面が膜の両面に露出した単粒子膜を得た。
(2)負極上へのゲルポリマーの形成
LiPFを1mol/L含み、EC:EMC比率が3:7(vol/vol%)であるキシダ化学製電解液92.8重量%とモノマーとして多官能性アクリレート(ジペンタエリスリトールヘキサアクリレート)7重量%と重合開始剤として化薬アクゾ株式会社製パーカドックス16を0.2重量%含んだポリマー液を調製した。次いでリチウム金属板の上に20μm厚みのポリエチレン微多孔膜を載せて上部から上記ポリマー液を滴下してポリエチレン微多孔膜が液を保持できる量を添加した。次いでリチウム金属板およびポリマー液を含んだポリエチレン微多孔膜ごと100℃、20分の条件で加熱し、ポリマー液の重合を行った。加熱操作後はポリマー液を含んだポリエチレン微多孔膜のポリマー液は重合しておりゲル状になっていることを確認した。
(3)正極形成
14mm×20mmのアルミニウム板に正極形成を行った。バナジウムアルコキサイド(トリイソプロポキシバナジウムオキサイド)を脱水エタノールに溶解して13wt%の溶液を調製した。次いでアルミニウム基板上へ調製したバナジウムアルコキサイド溶液を滴下後、水を滴下して加水分解した。その後室温で乾燥させた後、80℃、10時間乾燥を実施した。活物質の重量は0.50mg/cmであった。
(4)評価用電池の作製
上記リチウム金属板上にゲル電解質を形成させた負極上に単粒子膜をゲル電解質と接するように載せ、その上に上記正極板を正極物質と単粒子膜が接するように重ねた。これらをアルミラミネート外装に入れ充放電が可能なように正極板、負極板に電源接続用のタブを取り付け密封した。平面板で正極および負極側を挟み込み1kg/cmに相当する圧力で加圧した。
(5)充放電容量の評価
実施例1と同様の方法により充放電の評価を実施した。初充放電容量は54mAh/gであり、6回目の放電容量は49mAh/g、容量維持率は90.7%であった。
[実施例5]
実施例2記載の単粒子膜を成膜後、実施例2記載と同様の方法によりエッチングを行っていない面にもLiTFSIを含んだPEOが5μmの厚みで被覆し、単粒子膜の両面にLiTFSIを含んだPEOが被覆された単粒子膜を成膜した。この膜を用いること以外は同様の方法を用いて充放電容量の評価を行ったところ初充放電容量は85mAh/gであり、6回目の放電容量は78mAh/g、容量維持率は91.8%であった。
[Example 4]
Li 6.25 Al 0.25 La 3 Zr 2 O 12 (LLZO) is used as a crystalline oxide-based inorganic solid electrolyte particle, and a lithium ion battery is formed using a gel polymer as an amorphous compound having lithium ion conductivity. Produced.
(1) Formation of LLZO Single Particle Film A single particle film was formed using LLZO as the crystalline oxide inorganic solid electrolyte particles. On a stainless steel smooth substrate, a water-soluble adhesive tape (3M Water Soluble Adhesive water-soluble tape) was attached in an area of 3 cm × 3 cm so that the adhesive surface was on top. The LLZO particles classified by sieving with 38 to 45 μm openings were placed on the pressure-sensitive adhesive surface of the pressure-sensitive adhesive tape and inverted together with the stainless steel substrate to remove excess particles not fixed to the pressure-sensitive adhesive tape. Furthermore, the operation of removing excess particles by placing the LLZO particles on an adhesive tape and inverting it was repeated several times to obtain a state where single particles were arranged.
A polycycloolefin (COP) manufactured by Nippon Zeon was dissolved in decalin to prepare an 8 wt% COP solution. Next, the COP solution was dropped onto the surface on which the single particles were arranged so as to cover the surface, and spin coating was performed using a spin coater manufactured by MIKASA under the conditions of 300 rpm and 60 sec. After the coating, the stainless steel substrate was heated at 90 ° C. for 20 minutes using an AS ONE hot stirrer. The same spin coating and heating operations were repeated 4 times to obtain a film in which the single particle film and the adhesive tape were integrated. Next, the membrane in which the single particle membrane and the adhesive tape were integrated was placed in a beaker containing 100 ml of ethanol and sufficiently immersed. Next, when the beaker was heated to 65 ° C. on a water bath to dissolve the adhesive tape, the single particle film was separated. The obtained single particle film was dried overnight under reduced pressure at 80 ° C. to obtain a single particle film with one surface exposed.
The surface exposure operation of the single particle film was the same as that described in Example 1 to obtain a single particle film in which the surfaces of the solid electrolyte particles were exposed on both surfaces of the film.
(2) Formation of gel polymer on negative electrode 92.8% by weight of electrolyte solution manufactured by Kishida Chemical Co., Ltd. containing 1 mol / L of LiPF 6 and EC: EMC ratio of 3: 7 (vol / vol%) as a monomer A polymer solution containing 7% by weight of a functional acrylate (dipentaerythritol hexaacrylate) and 0.2% by weight of Perkadox 16 manufactured by Kayaku Akzo Corporation as a polymerization initiator was prepared. Next, a polyethylene microporous film having a thickness of 20 μm was placed on the lithium metal plate, and the above polymer solution was dropped from above to add an amount capable of holding the liquid by the polyethylene microporous membrane. Next, the polyethylene metal microporous film containing the lithium metal plate and the polymer solution was heated at 100 ° C. for 20 minutes to polymerize the polymer solution. After the heating operation, it was confirmed that the polymer liquid of the polyethylene microporous membrane containing the polymer liquid was polymerized and gelled.
(3) Positive electrode formation Positive electrode formation was performed on a 14 mm x 20 mm aluminum plate. Vanadium alkoxide (triisopropoxy vanadium oxide) was dissolved in dehydrated ethanol to prepare a 13 wt% solution. Subsequently, the vanadium alkoxide solution prepared on the aluminum substrate was dropped, and then water was added dropwise for hydrolysis. Then, after drying at room temperature, drying was performed at 80 ° C. for 10 hours. The weight of the active material was 0.50 mg / cm 2 .
(4) Preparation of battery for evaluation The single particle film is placed on the negative electrode in which the gel electrolyte is formed on the lithium metal plate so as to be in contact with the gel electrolyte, and the positive electrode material and the single particle film are in contact with the positive electrode plate thereon. Overlapped so that. These were put in an aluminum laminate exterior and a power supply tab was attached to the positive electrode plate and the negative electrode plate so that charging and discharging were possible and sealed. The positive electrode and negative electrode sides were sandwiched between flat plates and pressurized with a pressure corresponding to 1 kg / cm 2 .
(5) Evaluation of charge / discharge capacity Charge / discharge was evaluated in the same manner as in Example 1. The initial charge / discharge capacity was 54 mAh / g, the sixth discharge capacity was 49 mAh / g, and the capacity retention rate was 90.7%.
[Example 5]
After forming the single particle film described in Example 2, the surface not etched by the same method as described in Example 2 was coated with PEO containing LiTFSI at a thickness of 5 μm, and both surfaces of the single particle film were LiTFSI. A single particle film coated with PEO containing was formed. When the charge / discharge capacity was evaluated using the same method except that this film was used, the initial charge / discharge capacity was 85 mAh / g, the sixth discharge capacity was 78 mAh / g, and the capacity retention rate was 91.8. %Met.

[比較例1]
固体電解質層において、結晶性酸化物系無機粒子を非晶性化合物で被覆していないことだけが異なり、実施例1の条件で充放電評価を行ったところ、電気容量が得られず電池として作動しないことを確認した。
[Comparative Example 1]
In the solid electrolyte layer, the only difference is that the crystalline oxide-based inorganic particles are not coated with an amorphous compound, and the charge / discharge evaluation was performed under the conditions of Example 1. Confirmed not to.

[比較例2]
<複粒子層膜>
結晶性酸化物系無機粒子として豊島製作所製NASICON型酸化物であるLi1.3Ti1.7(PO(LATP)を用い、リチウムイオン伝導性を有する非晶性化合物としてポリエチレンオキシド(PEO)とLiClOを組み合わせた化合物を用いて成膜した。
ステンレス平滑基板上に水溶性の粘着テープ(3M製 Water−Soluble Wave Solder Tape 5414)を、粘着面が上になるように2cmの広さで張り付け、あらかじめ38〜45μmの目開きでふるい分けにより分級したLATP粒子を粒子層が約100μmの厚みになるように載せ、表面を平滑にした。
日本ゼオン製ポリシクロオレフィン(COP)をデカリンに溶解し8wt%COP溶液を調製した。次いでCOP溶液を粒子が配列した面に表面が覆う量滴下し、MIKASA社製スピンコーターを用いて300rpm、60secの条件でスピンコートを実施した。コート終了後、アズワン製ホットスターラーを用いてステンレス基板ごと90℃で20分加熱した。同上のスピンコートおよび加熱操作を4回繰り返し、複数の粒子膜と粘着テープが一体化した膜を得た。次いで、複数の粒子膜と粘着テープが一体化した膜を、100mlのエタノールが入ったビーカーへ入れ十分浸した。次いでビーカーを水浴上で65℃に加熱し粘着テープを溶解させたところ複数粒子膜が分離した。得られた複数粒子膜を80℃条件において減圧下、一晩乾燥させ片面が露出した複数粒子膜とした。
<複粒子膜の表面露出操作>
実施例1と同様の方法を用いてエッチングを行い、粒子層の両面が露出した膜を形成した。
<正極形成、評価用電池の作製、放電容量の評価>
実施例と同様の方法を用いて正極形成、評価用電池の作製、放電容量の評価を行ったところ、初放電容量20mAh/gが得られ、6サイクル目は放電容量が得られなかった。
各実施例および比較例の電池の評価結果を表1にまとめて示す。
[Comparative Example 2]
<Double particle layer film>
Li 1.3 Ti 1.7 (PO 4 ) 3 (LATP), a NASICON type oxide manufactured by Toshima Seisakusho, was used as the crystalline oxide-based inorganic particles, and polyethylene oxide ( A film was formed using a compound in which PEO) and LiClO 4 were combined.
A water-soluble adhesive tape (3M Water-Soluble Wave Solder Tape 5414) is pasted on a stainless steel smooth substrate with an area of 2 cm 2 so that the adhesive surface is on top, and classified by sieving with an opening of 38 to 45 μm in advance. The prepared LATP particles were placed so that the particle layer had a thickness of about 100 μm, and the surface was smoothed.
A polycycloolefin (COP) manufactured by Nippon Zeon was dissolved in decalin to prepare an 8 wt% COP solution. Next, the COP solution was dropped in an amount covering the surface on which the particles were arranged, and spin coating was performed using a spin coater manufactured by MIKASA under the conditions of 300 rpm and 60 sec. After the coating, the stainless steel substrate was heated at 90 ° C. for 20 minutes using an AS ONE hot stirrer. The above spin coating and heating operation were repeated four times to obtain a film in which a plurality of particle films and an adhesive tape were integrated. Next, the membrane in which the plurality of particle membranes and the adhesive tape were integrated was placed in a beaker containing 100 ml of ethanol and sufficiently immersed. Next, when the beaker was heated to 65 ° C. on a water bath to dissolve the adhesive tape, a multi-particle film was separated. The obtained multiple particle film was dried overnight under reduced pressure at 80 ° C. to obtain a multiple particle film with one surface exposed.
<Surface exposure operation of double particle film>
Etching was performed using the same method as in Example 1 to form a film in which both surfaces of the particle layer were exposed.
<Positive electrode formation, production of battery for evaluation, evaluation of discharge capacity>
When the positive electrode was formed, the evaluation battery was produced, and the discharge capacity was evaluated using the same method as in the example, an initial discharge capacity of 20 mAh / g was obtained, and no discharge capacity was obtained in the sixth cycle.
Table 1 summarizes the evaluation results of the batteries of the examples and comparative examples.

Figure 2017183115
Figure 2017183115

表1から明らかなように、結晶性酸化物系無機固体電解質粒子を非晶性化合物で被覆しなかった比較例1では電池として作動せず、固体電解質層を複粒子膜とした比較例2では、十分な放電容量が得られなかった。これに対し、結晶性酸化物系無機固体電解質粒子を一層に配列し、かつ、粒子の表面をリチウムイオン伝導性を有する非晶性化合物で被覆した実施例の電池では、いずれも高い初期放電容量が得られ、60サイクル充放電を繰り返しても高い容量を維持することができた。   As is apparent from Table 1, Comparative Example 1 in which the crystalline oxide-based inorganic solid electrolyte particles were not coated with the amorphous compound did not operate as a battery, and in Comparative Example 2 in which the solid electrolyte layer was a double particle film. A sufficient discharge capacity could not be obtained. In contrast, in the batteries of Examples in which crystalline oxide inorganic solid electrolyte particles are arranged in a single layer and the surface of the particles is coated with an amorphous compound having lithium ion conductivity, all have a high initial discharge capacity. And a high capacity could be maintained even after 60 cycles of charge and discharge.

本発明のリチウムイオン電池は、高い電池容量を有するものとなり、例えばノートブックコンピューター、携帯電話、デジタルカメラ、ビデオカメラ等の携帯用電子機器の電源として広範囲に適用可能である。   The lithium ion battery of the present invention has a high battery capacity and can be widely applied as a power source for portable electronic devices such as notebook computers, mobile phones, digital cameras, video cameras, and the like.

100 リチウムイオン二次電池
110 固体電解質層
120 結晶性酸化物系無機固体電解質粒子
130 リチウムイオン伝導性を有する非晶性化合物
140 正極
150 負極
160 正極集電体
170 負極集電体
180 外装
DESCRIPTION OF SYMBOLS 100 Lithium ion secondary battery 110 Solid electrolyte layer 120 Crystalline oxide type inorganic solid electrolyte particle 130 Amorphous compound having lithium ion conductivity 140 Positive electrode 150 Negative electrode 160 Positive electrode current collector 170 Negative electrode current collector 180 Exterior

Claims (4)

正極と負極と固体電解質層とを備え、
前記固体電解質層は、結晶性酸化物系無機固体電解質粒子が一層に配列した構造を有し、かつ、前記無機固体電解質粒子の表面の少なくとも一部が、リチウムイオン伝導性を有する非晶性化合物で被覆されていることを特徴とするリチウムイオン電池。
A positive electrode, a negative electrode, and a solid electrolyte layer;
The solid electrolyte layer has a structure in which crystalline oxide inorganic solid electrolyte particles are arranged in a single layer, and at least a part of the surface of the inorganic solid electrolyte particles has an amorphous compound having lithium ion conductivity Lithium ion battery characterized by being coated with.
前記固体電解質層がシート状である、請求項1に記載のリチウムイオン電池。   The lithium ion battery according to claim 1, wherein the solid electrolyte layer has a sheet shape. リチウムイオン伝導性を有する非晶性化合物が正極活物質と結晶性酸化物系無機固体電解質粒子の間、および負極活物質と結晶性酸化物系無機固体電解質粒子の間の両方に存在する、請求項1または2に記載のリチウムイオン電池。   An amorphous compound having lithium ion conductivity is present both between the positive electrode active material and the crystalline oxide-based inorganic solid electrolyte particle, and between the negative electrode active material and the crystalline oxide-based inorganic solid electrolyte particle. Item 3. The lithium ion battery according to Item 1 or 2. 結晶性酸化物系無機固体電解質粒子が一層に配列した構造を有し、かつ、前記無機固体電解質粒子の表面の少なくとも一部が、リチウムイオン伝導性を有する非晶性化合物で被覆されていることを特徴とする、リチウムイオン電池用の固体電解質。   The crystalline oxide inorganic solid electrolyte particles have a structure arranged in a single layer, and at least a part of the surface of the inorganic solid electrolyte particles is coated with an amorphous compound having lithium ion conductivity. A solid electrolyte for a lithium ion battery.
JP2016069550A 2016-03-30 2016-03-30 Lithium ion battery Active JP6719254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069550A JP6719254B2 (en) 2016-03-30 2016-03-30 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069550A JP6719254B2 (en) 2016-03-30 2016-03-30 Lithium ion battery

Publications (2)

Publication Number Publication Date
JP2017183115A true JP2017183115A (en) 2017-10-05
JP6719254B2 JP6719254B2 (en) 2020-07-08

Family

ID=60007080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069550A Active JP6719254B2 (en) 2016-03-30 2016-03-30 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP6719254B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093403A1 (en) * 2017-11-13 2019-05-16 株式会社村田製作所 All-solid battery
US10483585B2 (en) * 2014-01-22 2019-11-19 Schott Ag Ion-conducting glass ceramic having garnet-like crystal structure
WO2020067017A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Thread battery and thread battery with connector
JP2020136125A (en) * 2019-02-21 2020-08-31 時空化学株式会社 Polymer ceramic composite electrolyte membrane
JPWO2020189635A1 (en) * 2019-03-18 2020-09-24
GB2601779A (en) * 2020-12-10 2022-06-15 Daimler Ag Electrolyte material with LiPON-coated particles, battery cell, and method for manufacturing the electrolyte material
JP2023513361A (en) * 2020-09-09 2023-03-30 蜂巣能源科技股▲ふん▼有限公司 Electrolyte material and method of preparation and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337971A (en) * 1989-07-03 1991-02-19 Yuasa Battery Co Ltd Thin battery
JP2002042876A (en) * 2000-07-25 2002-02-08 Kyocera Corp Lithium battery
WO2007015409A1 (en) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. Solid electrolyte sheet
JP2010033876A (en) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd Polymer-coated solid electrolyte and all-solid secondary battery using the same
JP2015088391A (en) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 Solid electrolyte, method for manufacturing solid electrolyte, and lithium ion battery
JP2016009626A (en) * 2014-06-25 2016-01-18 株式会社オハラ Composite solid electrolyte body

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337971A (en) * 1989-07-03 1991-02-19 Yuasa Battery Co Ltd Thin battery
JP2002042876A (en) * 2000-07-25 2002-02-08 Kyocera Corp Lithium battery
WO2007015409A1 (en) * 2005-08-02 2007-02-08 Idemitsu Kosan Co., Ltd. Solid electrolyte sheet
JP2010033876A (en) * 2008-07-29 2010-02-12 Idemitsu Kosan Co Ltd Polymer-coated solid electrolyte and all-solid secondary battery using the same
JP2015088391A (en) * 2013-10-31 2015-05-07 セイコーエプソン株式会社 Solid electrolyte, method for manufacturing solid electrolyte, and lithium ion battery
JP2016009626A (en) * 2014-06-25 2016-01-18 株式会社オハラ Composite solid electrolyte body

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10899648B2 (en) 2014-01-22 2021-01-26 Schott Ag Ion-conducting glass ceramic having garnet-like crystal structure
US10483585B2 (en) * 2014-01-22 2019-11-19 Schott Ag Ion-conducting glass ceramic having garnet-like crystal structure
JPWO2019093403A1 (en) * 2017-11-13 2020-06-18 株式会社村田製作所 All solid state battery
JP6992818B2 (en) 2017-11-13 2022-01-13 株式会社村田製作所 All solid state battery
WO2019093403A1 (en) * 2017-11-13 2019-05-16 株式会社村田製作所 All-solid battery
CN111213276A (en) * 2017-11-13 2020-05-29 株式会社村田制作所 All-solid-state battery
JP7243734B2 (en) 2018-09-27 2023-03-22 株式会社村田製作所 Yarn battery and Yarn battery with connector
WO2020067017A1 (en) * 2018-09-27 2020-04-02 株式会社村田製作所 Thread battery and thread battery with connector
JPWO2020067017A1 (en) * 2018-09-27 2021-08-30 株式会社村田製作所 Thread battery and thread battery with connector
JP2020136125A (en) * 2019-02-21 2020-08-31 時空化学株式会社 Polymer ceramic composite electrolyte membrane
JPWO2020189635A1 (en) * 2019-03-18 2020-09-24
WO2020189635A1 (en) * 2019-03-18 2020-09-24 日榮新化株式会社 Adhesive film
JP7461659B2 (en) 2019-03-18 2024-04-04 日榮新化株式会社 Adhesive Film
JP2023513361A (en) * 2020-09-09 2023-03-30 蜂巣能源科技股▲ふん▼有限公司 Electrolyte material and method of preparation and use thereof
JP7473660B2 (en) 2020-09-09 2024-04-23 蜂巣能源科技股▲ふん▼有限公司 Electrolyte materials and methods for their preparation and use
GB2601779A (en) * 2020-12-10 2022-06-15 Daimler Ag Electrolyte material with LiPON-coated particles, battery cell, and method for manufacturing the electrolyte material
WO2022122309A1 (en) * 2020-12-10 2022-06-16 Mercedes-Benz Group AG ELECTROLYTE MATERIAL WITH LiPON-COATED PARTICLES, BATTERY CELL, AND METHOD FOR MANUFACTURING THE ELECTROLYTE MATERIAL

Also Published As

Publication number Publication date
JP6719254B2 (en) 2020-07-08

Similar Documents

Publication Publication Date Title
JP6450030B2 (en) Multi-layer polymer electrolyte and all-solid-state battery including the same
JP6719254B2 (en) Lithium ion battery
US10608289B2 (en) Method of manufacturing secondary battery electrode containing PTC material and electrode manufactured thereby
EP3043406B1 (en) Solid-state batteries and methods for fabrication
CN110651389B (en) Lithium secondary battery
JP3661945B2 (en) Positive electrode for secondary battery and secondary battery provided with the same
US20150188195A1 (en) Method for producing all-solid-state battery, and all-solid-state battery
CN110574191B (en) Method for forming lithium metal and inorganic material composite thin film, and method for prelithiating negative electrode of lithium secondary battery using the same
KR102024889B1 (en) Semi-Interpenetrating Polymer Networks Polymer Electrolyte and All-Solid-State Battery comprising The Same
US20110223487A1 (en) Electrochemical cell with sintered cathode and both solid and liquid electrolyte
KR102340319B1 (en) Lithium metal anode structure, electrochemical device including the same, and manufacturing method of the lithium metal anode structure
US20210104748A1 (en) Lithium secondary battery
JP2007005073A (en) Positive electrode material, battery, and manufacturing method of positive electrode material
KR20200102613A (en) Electrochemical device and its manufacturing method
JP6965932B2 (en) Electrodes for power storage devices and their manufacturing methods
CN111213213B (en) Solid electrolyte composition, solid electrolyte-containing sheet, all-solid-state secondary battery, and method for producing solid electrolyte-containing sheet and all-solid-state secondary battery
KR102170100B1 (en) Battery Cell Comprising Electrode Assembly Including Gelation Electrolyte Component in Pores of Separator
JP6815381B2 (en) A battery cell containing a gelled electrolyte component in the pores of the separation membrane that constitutes the electrode assembly.
KR20130126583A (en) Non-aqueous electrolyte secondary battery
JP2017168388A (en) Lithium ion battery
JP5113393B2 (en) Negative electrode active material for all solid-state polymer battery, method for producing the same, and all solid-state polymer battery
CN115191047A (en) Collector, electricity storage element, and electricity storage module
KR20200049671A (en) Electrolytes comprising two or more layers that each layer has a different ionic conductivity and lithium secondary batteries comprising the same
CN114784372A (en) Preparation method of composite solid electrolyte
WO2020241837A1 (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200616

R150 Certificate of patent or registration of utility model

Ref document number: 6719254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150