JP2017183088A - Electrode paste composition for air-cee, positive electrode material for air cell and air cell - Google Patents

Electrode paste composition for air-cee, positive electrode material for air cell and air cell Download PDF

Info

Publication number
JP2017183088A
JP2017183088A JP2016068783A JP2016068783A JP2017183088A JP 2017183088 A JP2017183088 A JP 2017183088A JP 2016068783 A JP2016068783 A JP 2016068783A JP 2016068783 A JP2016068783 A JP 2016068783A JP 2017183088 A JP2017183088 A JP 2017183088A
Authority
JP
Japan
Prior art keywords
resin
paste composition
electrode paste
air
air battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016068783A
Other languages
Japanese (ja)
Other versions
JP6743454B2 (en
Inventor
直幹 出口
Naoki Deguchi
直幹 出口
寛人 渡部
Hiroto Watabe
寛人 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2016068783A priority Critical patent/JP6743454B2/en
Publication of JP2017183088A publication Critical patent/JP2017183088A/en
Application granted granted Critical
Publication of JP6743454B2 publication Critical patent/JP6743454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrode paste composition having good dispersibility and excellent coatability, by dispersing a conductive carbon material (A) and/or an oxygen reduction catalyst (B) composing the positive electrode layer of an air-cell, by using a water-soluble resin type dispersant (C).SOLUTION: In an electrode paste composition for air-cell containing a conductive carbon material (A) and/or an oxygen reduction catalyst (B), a water-soluble resin type dispersant (C), and an aqueous liquid medium (D), the water-soluble resin type dispersant (C) is one kind or more of resin selected from a group consisting of a resin having a basic functional group, a resin having an acid functional group, a resin having a basic functional group and an acid functional group, and a nonionic resin.SELECTED DRAWING: None

Description

本発明は、空気電池用電極ペースト組成物及び、空気電池用正極材料及び空気電池に関する。   The present invention relates to an electrode paste composition for an air battery, a positive electrode material for an air battery, and an air battery.

現在、開発が進められている空気電池は、負極活物質に金属、正極活物質に空気中の酸素を利用し、発電、蓄電するエネルギーシステムである。正極側の活物質が空気中の酸素を使用できるため、電池内部に正極活物質を充填する必要が無いため、他の従来電池と比べて、エネルギー密度を高く出来る特長がある。
そのため、例えば、補聴器用の軽く高容量な電池として亜鉛空気一次電池がすでに広く普及しており、また、電池の高容量化が必要な車載用のバッテリーとしてリチウム空気二次電池の研究開発が精力的に行われている。
Currently developed air batteries are energy systems that generate and store electricity by using metal as a negative electrode active material and oxygen in the air as a positive electrode active material. Since the active material on the positive electrode side can use oxygen in the air, it is not necessary to fill the inside of the battery with the positive electrode active material. Therefore, there is a feature that the energy density can be increased as compared with other conventional batteries.
Therefore, for example, zinc-air primary batteries are already widely used as light and high-capacity batteries for hearing aids, and lithium-air secondary batteries are actively researched and developed as on-vehicle batteries that require high capacity batteries. Has been done.

空気電池は、負極金属の種類、充電の有無、作動環境等によって構成が変わるため、使用される部材の種類や要求特性も多種多様なものとなる。しかしながら、空気中の酸素を還元する機能を持つ正極層に関しては、一次電池、二次電池によらず共通する部材であることに加え、材料によって電池の電圧や容量が大きく左右するため盛んに研究がされている。   Since the structure of an air battery varies depending on the type of negative electrode metal, the presence / absence of charging, the operating environment, and the like, the types of members used and the required characteristics vary. However, as for the positive electrode layer that has the function of reducing oxygen in the air, in addition to being a common member regardless of the primary battery and secondary battery, the voltage and capacity of the battery greatly depend on the material, so active research Has been.

正極層の改良による出力向上のため、これまでに様々な対策が取られてきた。例えば、カーボンナノチューブにNをドープした正極材料の使用(特許文献1)や、正極層を触媒層と液密通気層とを積層構造にし、触媒層に炭素粒子と触媒粒子の他に親水性粒子を含有する多孔層の使用等が報告されている(特許文献2)。しかしながら、これらの報告では、正極材に使われる材料種の分散が十分ではなく、特に炭素材料は凝集を引き起こしやすいため、正極層全体への導通パスの形成や、酸素分子の膜全体への拡散が阻害され、起電力や電流量の低下を引き起こしてしまうという問題があった。また、ポリビニルアルコールと活性炭の混合物を吹き付け、正極体反応面との付着性を向上させる報告がされている(特許文献3)。しかしながら、この報告では膜中に導電性の低い活性炭のみを使用しているため膜の抵抗が高く正極反応に必要な電子の導通パスが充分確保できないことに加え、ポリビニルアルコールの分子量が600程度と低く、立体障害等による分散効果は低いため活性炭を分散安定化させることは難しく、不均一な膜となり、高い電池性能を発現することは困難という問題があった。   Various measures have been taken so far to improve output by improving the positive electrode layer. For example, the use of a positive electrode material in which carbon nanotubes are doped with N (Patent Document 1), the positive electrode layer has a laminated structure of a catalyst layer and a liquid-tight ventilation layer, and the catalyst layer has hydrophilic particles in addition to carbon particles and catalyst particles. There have been reports of the use of a porous layer containing Pt (Patent Document 2). However, in these reports, the material type used for the positive electrode material is not sufficiently dispersed, and carbon materials are particularly prone to agglomeration, so that a conduction path is formed throughout the positive electrode layer and oxygen molecules are diffused throughout the film. Has been hindered, causing a decrease in electromotive force and current amount. In addition, it has been reported that a mixture of polyvinyl alcohol and activated carbon is sprayed to improve adhesion to the positive electrode reaction surface (Patent Document 3). However, in this report, only activated carbon with low conductivity is used in the film, so that the resistance of the film is high and a sufficient electron conduction path necessary for the positive electrode reaction cannot be secured, and the molecular weight of polyvinyl alcohol is about 600. The dispersion effect due to steric hindrance and the like is low, so that it is difficult to stabilize the dispersion of the activated carbon, resulting in a non-uniform film and high battery performance.

特開2015−220036号公報Japanese Patent Laying-Open No. 2015-220036 特開2015−79577号公報Japanese Patent Application Laid-Open No. 2015-79579 特開平10-326631号公報Japanese Patent Laid-Open No. 10-326631

本発明が解決しようとする課題は、空気電池の正極層を構成する導電性炭素材料(A)及び/又は酸素還元触媒(B)を、水溶性樹脂型分散剤(C)を用いて分散し、空気電池用電極ペースト組成物を作製することで、分散性が良好であり、優れた塗工性を備えた電極ペースト組成物を提供することである。また、本発明の電極ペースト組成物を用いることにより、塗工した際の電極の塗工ムラやピンホールの発生がきわめて少ない空気電池用正極材料と、それを具有する電池性能に優れた空気電池を提供することである。   The problem to be solved by the present invention is to disperse the conductive carbon material (A) and / or the oxygen reduction catalyst (B) constituting the positive electrode layer of the air battery using the water-soluble resin type dispersant (C). By preparing an electrode paste composition for an air battery, an electrode paste composition having good dispersibility and excellent coating properties is provided. Further, by using the electrode paste composition of the present invention, a positive electrode material for an air battery that has very little electrode coating unevenness and pinholes when applied, and an air battery having the battery performance having the same Is to provide.

本発明者らは、前記諸問題を解決するために鋭意研究を重ねた結果、本発明に至った。
すなわち本発明は、導電性炭素材料(A)及び/又は酸素還元触媒(B)と、水溶性樹脂型分散剤(C)と、水性液状媒体(D)とを含有してなる空気電池用電極ペースト組成物であって、
水溶性樹脂型分散剤(C)が、塩基性官能基を有する樹脂、酸性官能基を有する樹脂、塩基性官能基および酸性官能基を有する樹脂並びにノニオン性樹脂からなる群から選ばれる一種以上の樹脂である空気電池用電極ペースト組成物に関する。
又、本発明は、水溶性樹脂型分散剤(C)が、ポリビニル系樹脂である上記空気電池用電極ペースト組成物に関する。
As a result of intensive studies to solve the above problems, the present inventors have reached the present invention.
That is, the present invention provides an electrode for an air battery comprising a conductive carbon material (A) and / or an oxygen reduction catalyst (B), a water-soluble resin type dispersant (C), and an aqueous liquid medium (D). A paste composition comprising:
The water-soluble resin type dispersant (C) is one or more selected from the group consisting of a resin having a basic functional group, a resin having an acidic functional group, a resin having a basic functional group and an acidic functional group, and a nonionic resin. It is related with the electrode paste composition for air batteries which is resin.
Moreover, this invention relates to the said electrode paste composition for air batteries whose water-soluble resin type dispersing agent (C) is polyvinyl resin.

又、本発明は、水溶性樹脂型分散剤(C)が、ノニオン性樹脂である上記空気電池用電極ペースト組成物に関する。   Moreover, this invention relates to the said electrode paste composition for air batteries whose water-soluble resin type dispersing agent (C) is nonionic resin.

又、本発明は、導電性炭素材料(A)が、カーボンブラック、グラフェン系炭素材料およびカーボンナノチューブからなる群から選ばれる一種以上の炭素材料である上記空気電池用電極ペースト組成物に関する。   The present invention also relates to the above electrode paste composition for an air battery, wherein the conductive carbon material (A) is one or more carbon materials selected from the group consisting of carbon black, graphene-based carbon materials, and carbon nanotubes.

又、本発明は、酸素還元触媒(B)が、担持金属触媒、酸化物系触媒及び非白金系炭素触媒からなる群から選ばれる一種以上の酸素還元触媒である上記空気電池用電極ペースト組成物に関する。   The present invention also provides the above electrode paste composition for an air battery, wherein the oxygen reduction catalyst (B) is one or more oxygen reduction catalysts selected from the group consisting of a supported metal catalyst, an oxide catalyst and a non-platinum carbon catalyst. About.

又、本発明は、更に、バインダーを含んでなる上記空気電池用電極ペースト組成物に関する。   Moreover, this invention relates to the said electrode paste composition for air batteries which further contains a binder.

又、本発明は、更に、支持電解質塩を含んでなる上記空気電池用電極ペースト組成物に関する。   Moreover, this invention relates to the said electrode paste composition for air batteries which contains a supporting electrolyte salt further.

又、本発明は、上記組成物を使用して形成される空気電池用正極材料に関する。   Moreover, this invention relates to the positive electrode material for air batteries formed using the said composition.

又、本発明は、上記組成物又は、上記正極材料を使用して形成される空気電池に関する。   Moreover, this invention relates to the air battery formed using the said composition or the said positive electrode material.

本発明によれば、空気電池の正極層を構成する導電性炭素材料(A)及び/又は酸素還元触媒(B)を、水溶性樹脂型分散剤(C)を用いて分散し、空気電池用電極ペースト組成物を作製することで、分散性が良好であり、優れた塗工性を備えた電極ペースト組成物を提供することが可能となるため、塗工した際の電極の塗工ムラやピンホールの発生がきわめて少ない空気電池用正極材料と、それを具有する空気電池を得ることが可能となる。従って、電池性能に優れた空気電池を提供することが可能となる。   According to the present invention, the conductive carbon material (A) and / or the oxygen reduction catalyst (B) constituting the positive electrode layer of the air battery is dispersed using the water-soluble resin type dispersant (C), and the air battery is used. By preparing an electrode paste composition, it is possible to provide an electrode paste composition that has good dispersibility and excellent coating properties. It is possible to obtain a positive electrode material for an air battery with very few pinholes and an air battery having the material. Therefore, it is possible to provide an air battery having excellent battery performance.

以下、詳細に本発明について説明する。尚、本明細書では、「空気電池用電極ペースト組成物」を、「電極ペースト組成物」あるいは「ペースト組成物」ということがある。また、「樹脂」を「重合体」ということがある。   Hereinafter, the present invention will be described in detail. In the present specification, the “electrode paste composition for an air battery” may be referred to as an “electrode paste composition” or a “paste composition”. Further, “resin” is sometimes referred to as “polymer”.

<空気電池用電極ペースト組成物>
本発明の電極ペースト組成物は、導電性炭素材料(A)及び/又は酸素還元触媒(B)と、水溶性樹脂型分散剤(C)、水性液状媒体(D)を含み、さらにバインダー、必要に応じて、支持電解質塩を含む。
導電性炭素材料(A)及び/又は酸素還元触媒(B)と、水溶性樹脂型分散剤(C)、水性液状媒体(D)、バインダー、支持電解質塩の割合は、特に限定されるものではなく、広い範囲内で適宜選択され得る。
<Air electrode electrode paste composition>
The electrode paste composition of the present invention includes a conductive carbon material (A) and / or an oxygen reduction catalyst (B), a water-soluble resin type dispersant (C), and an aqueous liquid medium (D), and further includes a binder. Depending on the case, a supporting electrolyte salt is included.
The proportions of the conductive carbon material (A) and / or the oxygen reduction catalyst (B), the water-soluble resin dispersant (C), the aqueous liquid medium (D), the binder, and the supporting electrolyte salt are not particularly limited. And can be appropriately selected within a wide range.

水溶性樹脂型分散剤(C)の含有量は、電極ペースト組成物中の導電性炭素材料(A)及び/又は酸素還元触媒(B)に対し、0.1〜40質量%、好ましくは1〜5質量%である。この範囲の含有量とすることにより、導電性炭素材料(A)及び/又は酸素還元触媒(B)の分散安定性を十分に達成できると同時に、導電性炭素材料(A)及び/又は酸素還元触媒(B)の凝集を効果的に防止でき、かつ電極ペースト組成物を塗工、乾燥後も、膜表面への水溶性樹脂型分散剤(C)の析出を防止できる。   The content of the water-soluble resin type dispersant (C) is 0.1 to 40% by mass, preferably 1 with respect to the conductive carbon material (A) and / or the oxygen reduction catalyst (B) in the electrode paste composition. ˜5 mass%. By setting the content in this range, the dispersion stability of the conductive carbon material (A) and / or the oxygen reduction catalyst (B) can be sufficiently achieved, and at the same time, the conductive carbon material (A) and / or oxygen reduction. Aggregation of the catalyst (B) can be effectively prevented, and precipitation of the water-soluble resin type dispersant (C) on the film surface can be prevented even after the electrode paste composition is applied and dried.

また、水溶性液状媒体(D)は、電極ペースト組成物を100質量%としたとき、60〜99質量部%、好ましくは65〜95質量%である。   The water-soluble liquid medium (D) is 60 to 99 parts by mass, preferably 65 to 95% by mass, when the electrode paste composition is 100% by mass.

このような電極ペースト組成物は、種々の方法で得ることができる。
導電性炭素材料(A)及び/又は酸素還元触媒(B)と、水溶性樹脂型分散剤(C)とバインダーと水性液状媒体(D)とを含有する、電極ペースト組成物の場合を例にとって説明する。
例えば、
(X−1) 導電性炭素材料(A)及び/又は酸素還元触媒(B)と水溶性樹脂型分散剤(C)と水性液状媒体(D)とを含有する導電性炭素材料(A)及び/又は酸素還元触媒(B)の水性分散体を得、該水性分散体にバインダーとを加え、電極ペースト組成物を得ることができる。
(X−2) 導電性炭素材料(A)及び/又は酸素還元触媒(B)と水溶性樹脂型分散剤(C)とバインダーと水性液状媒体(D)と含有する導電性炭素材料(A)及び/又は酸素還元触媒(B)の水性分散体を得、電極ペースト組成物を得ることができる。
(X−3) 水溶性樹脂型分散剤(C)とバインダーと水性液状媒体(D)とを含有する溶液を得、さらに導電性炭素材料(A)及び/又は酸素還元触媒(B)を加え、電極ペースト組成物を得ることができる。
Such an electrode paste composition can be obtained by various methods.
Taking the case of an electrode paste composition containing a conductive carbon material (A) and / or an oxygen reduction catalyst (B), a water-soluble resin dispersant (C), a binder and an aqueous liquid medium (D) as an example explain.
For example,
(X-1) Conductive carbon material (A) containing conductive carbon material (A) and / or oxygen reduction catalyst (B), water-soluble resin type dispersant (C), and aqueous liquid medium (D) and An aqueous dispersion of the oxygen reduction catalyst (B) can be obtained, and a binder can be added to the aqueous dispersion to obtain an electrode paste composition.
(X-2) Conductive carbon material (A) and / or oxygen reduction catalyst (B), water-soluble resin type dispersant (C), binder and aqueous liquid medium (D) containing conductive carbon material (A) And / or the aqueous dispersion of an oxygen reduction catalyst (B) can be obtained, and an electrode paste composition can be obtained.
(X-3) A solution containing the water-soluble resin type dispersant (C), the binder, and the aqueous liquid medium (D) is obtained, and the conductive carbon material (A) and / or the oxygen reduction catalyst (B) is further added. An electrode paste composition can be obtained.

<導電性炭素材料(A)>
本発明における導電性炭素材料(A)としては、導電性を有し、本発明でいうところの酸素還元活性を有さない炭素材料であれば特に限定されるものではないが、グラファイト、カーボンブラック、導電性炭素繊維(カーボンナノチューブ、カーボンナノファイバー、カーボンファイバー)、フラーレン等を単独で、もしくは2種類以上併せて使用することができる。導電性、入手の容易さ、およびコスト面から、カーボンブラックの使用が好ましい。
<Conductive carbon material (A)>
The conductive carbon material (A) in the present invention is not particularly limited as long as it is a carbon material that has conductivity and does not have the oxygen reduction activity in the present invention. , Conductive carbon fibers (carbon nanotubes, carbon nanofibers, carbon fibers), fullerenes and the like can be used alone or in combination of two or more. From the viewpoint of conductivity, availability, and cost, it is preferable to use carbon black.

カーボンブラックとしては、気体もしくは液体の原料を反応炉中で連続的に熱分解し製造するファーネスブラック、特にエチレン重油を原料としたケッチェンブラック、原料ガスを燃焼させて、その炎をチャンネル鋼底面にあて急冷し析出させたチャンネルブラック、ガスを原料とし燃焼と熱分解を周期的に繰り返すことにより得られるサーマルブラック、特にアセチレンガスを原料とするアセチレンブラックなどの各種のものを単独で、もしくは2種類以上併せて使用することができる。また、通常行われている酸化処理されたカーボンブラックや、中空カーボン等も使用できる。   Carbon black is a furnace black produced by continuously pyrolyzing a gas or liquid raw material in a reactor, especially ketjen black using ethylene heavy oil as a raw material. Channel black that has been rapidly cooled and precipitated, thermal black obtained by periodically repeating combustion and thermal decomposition using gas as a raw material, and particularly various types such as acetylene black using acetylene gas as a raw material, or 2 More than one type can be used in combination. Ordinarily oxidized carbon black, hollow carbon and the like can also be used.

カーボンの酸化処理は、カーボンを空気中で高温処理したり、硝酸や二酸化窒素、オゾン等で二次的に処理したりすることより、例えばフェノール基、キノン基、カルボキシル基、カルボニル基の様な酸素含有極性官能基をカーボン表面に直接導入(共有結合)する処理であり、カーボンの分散性を向上させるために一般的に行われている。しかしながら、官能基の導入量が多くなる程カーボンの導電性が低下することが一般的であるため、酸化処理をしていないカーボンの使用が好ましい。   The oxidation treatment of carbon is performed by treating carbon at a high temperature in the air or by secondary treatment with nitric acid, nitrogen dioxide, ozone, etc., for example, such as phenol group, quinone group, carboxyl group, carbonyl group. This is a treatment for directly introducing (covalently bonding) an oxygen-containing polar functional group to the carbon surface, and is generally performed to improve the dispersibility of carbon. However, since it is common for the conductivity of carbon to fall, so that the introduction amount of a functional group increases, it is preferable to use the carbon which has not been oxidized.

用いるカーボンブラックの比表面積は、値が大きいほど、カーボンブラック粒子どうしの接触点が増えるため、電極の内部抵抗を下げるのに有利となる。具体的には、窒素の吸着量から求められる比表面積(BET)で、20m2/g以上、1500m2/g以下、好ましくは50m2/g以上、1500m2/g以下、更に好ましくは100m2/g以上、
1500m2/g以下のものを使用することが望ましい。比表面積が20m2/gを下回るカーボンブラックを用いると、十分な導電性を得ることが難しくなる場合があり、1500m2/gを超えるカーボンブラックは、市販材料での入手が困難となる場合がある。
As the specific surface area of the carbon black used increases, the number of contact points between the carbon black particles increases, which is advantageous in reducing the internal resistance of the electrode. Specifically, the specific surface area (BET) determined from the amount of nitrogen adsorbed is 20 m 2 / g or more and 1500 m 2 / g or less, preferably 50 m 2 / g or more and 1500 m 2 / g or less, more preferably 100 m 2. / G or more,
It is desirable to use a thing of 1500 m < 2 > / g or less. If carbon black having a specific surface area of less than 20 m 2 / g is used, it may be difficult to obtain sufficient conductivity, and carbon black of more than 1500 m 2 / g may be difficult to obtain from commercially available materials. is there.

また、用いるカーボンブラックの粒径は、一次粒子径で0.005〜1μmが好ましく、特に、0.01〜0.2μmが好ましい。ただし、ここでいう一次粒子径とは、電子顕微鏡などで測定された粒子径を平均したものである。   Further, the particle size of the carbon black to be used is preferably 0.005 to 1 μm, particularly preferably 0.01 to 0.2 μm in terms of primary particle size. However, the primary particle diameter here is an average of the particle diameters measured with an electron microscope or the like.

導電性炭素材料(A)の電極ペースト組成物中の分散粒径は、0.03μm以上、5μm以下に微細化することが望ましい。炭素材料の分散粒径が0.03μm未満の組成物は、その作製が難しい場合がある。又、炭素材料の分散粒径が5μmを超える組成物を用いた場合には、電極ペースト塗膜の材料分布のバラつき、抵抗分布のバラつき等の不具合が生じる場合がある。
ここでいう分散粒径とは、体積粒度分布において、粒子径の細かいものからその粒子の体積割合を積算していったときに、50%となるところの粒子径(D50)であり、一般的な粒度分布計、例えば、動的光散乱方式の粒度分布計(日機装社製「マイクロトラックUPA」)等で測定される。
The dispersed particle size of the conductive carbon material (A) in the electrode paste composition is desirably refined to 0.03 μm or more and 5 μm or less. A composition having a carbon material having a dispersed particle size of less than 0.03 μm may be difficult to produce. In addition, when a composition having a dispersed particle diameter of the carbon material exceeding 5 μm is used, problems such as variations in the material distribution of the electrode paste coating film and variations in the resistance distribution may occur.
The dispersed particle size referred to here is a particle size (D50) that is 50% when the volume ratio of the particles is integrated from the fine particle size distribution in the volume particle size distribution. A particle size distribution meter such as a dynamic light scattering type particle size distribution meter ("Microtrack UPA" manufactured by Nikkiso Co., Ltd.).

市販のカーボンブラックとしては、例えば、トーカブラック#4300、#4400、#4500、#5500等(東海カーボン社製、ファーネスブラック)、プリンテックスL等(デグサ社製、ファーネスブラック)、Raven7000、5750、5250、5000ULTRAIII、5000ULTRA等、Conductex SC ULTRA
、Conductex 975 ULTRA等、PUER BLACK100、115、2
05等(コロンビヤン社製、ファーネスブラック)、#2350、#2400B、#2600B、#3050B、#3030B、#3230B、#3350B、#3400B、#5400B等(三菱化学社製、ファーネスブラック)、MONARCH1400、1300、900、VulcanXC−72R、BlackPearls2000等(キャボット社製、ファーネスブラック)、Ensaco250G、Ensaco260G、Ensaco350G、SuperP−Li(TIMCAL社製)、ケッチェンブラックEC−300J、EC−600JD(アクゾ社製)、デンカブラック、デンカブラックHS−100、FX−35(電気化学工業社製、アセチレンブラック)等、グラファイトとしては、例えば人造黒鉛や燐片状黒鉛、塊状黒鉛、土状黒鉛などの天然黒鉛が挙げられるが、これらに限定されるものではなく、2種以上を組み合わせて用いても良い。
Examples of commercially available carbon black include Toka Black # 4300, # 4400, # 4500, # 5500 (Tokai Carbon Co., Furnace Black), Printex L and the like (Degussa Co., Furnace Black), Raven 7000, 5750, 5250, 5000 ULTRA III, 5000 ULTRA, etc., Conductex SC ULTRA
, Conductex 975 ULTRA, etc., PUER BLACK100, 115, 2
05, etc. (Colombian, Furnace Black), # 2350, # 2400B, # 2600B, # 3050B, # 3030B, # 3230B, # 3350B, # 3400B, # 5400B, etc. (Mitsubishi Chemical Corporation, Furnace Black), MONARCH1400, 1300, 900, Vulcan XC-72R, BlackPearls 2000, etc. (Cabot, Furnace Black), Ensaco 250G, Ensaco 260G, Ensaco 350G, SuperP-Li (manufactured by TIMCAL), Ketjen Black EC-300J, EC-600JD (manufactured by Akzo) Examples of graphite such as Denka Black, Denka Black HS-100, FX-35 (manufactured by Denki Kagaku Kogyo Co., Ltd., acetylene black) include artificial graphite and flake black , Massive graphite, there may be mentioned natural graphite such as earthy graphite, is not limited thereto, it may be used in combination of two or more.

導電性炭素繊維としては石油由来の原料から焼成して得られるものが良いが、植物由来の原料からも焼成して得られるものも用いることができる。例えば石油由来の原料で製造される昭和電工社製のVGCFなどを挙げることができる。   As the conductive carbon fibers, those obtained by firing from petroleum-derived raw materials are preferable, but those obtained by firing from plant-derived raw materials can also be used. For example, VGCF manufactured by Showa Denko Co., Ltd. manufactured with petroleum-derived raw materials can be mentioned.

<酸素還元触媒(B)>
本発明における酸素還元触媒(B)は、本発明でいうところの酸素還元活性を有していれば、特に限定されるものではないが、担持金属触媒、酸化物系触媒、非白金系炭素触媒、を単独で、もしくは2種類以上併せて使用することができる。
酸素還元触媒は酸素還元能、導電性、比表面積、細孔容積、細孔径、表面親水度、粒子径など物性が大きく異なるため、使用する用途における要求性能やコスト等に合った最適な材料が選択される。
<Oxygen reduction catalyst (B)>
The oxygen reduction catalyst (B) in the present invention is not particularly limited as long as it has the oxygen reduction activity referred to in the present invention, but is not limited to a supported metal catalyst, an oxide catalyst, a non-platinum carbon catalyst. , Can be used alone or in combination of two or more.
Oxygen reduction catalysts differ greatly in physical properties such as oxygen reduction ability, conductivity, specific surface area, pore volume, pore diameter, surface hydrophilicity, particle diameter, etc. Selected.

本発明でいうところの酸素還元活性を有しているとは、気体状態、若しくは液中溶解状態の酸素分子を電気化学的に還元する機能を有することであり、酸素が飽和した酸性水溶液中にて回転ディスク電極法によるリニアスイープボルタメトリーを測定したとき、酸素還元反応電位(ORR電位)が0.5V(vsRHE;可逆水素電極)以上であることを意味する。ORR電位は、酸素が飽和した酸性水溶液中、2000rpm回転で、電流密度が−10μA/cm2時の電位とした。ORR電位は、その電圧が高いほど、酸素還元触媒(B)上での酸素分子の吸着や解離が起こりやすいことを意味し、反応に必要な活性化エネルギーを下げることができるため、反応におけるエネルギーロスを低減できる。そのため、空気電池用正極材には導電性炭素材料(A)だけなく、酸素還元触媒(B)も併用した方が好ましい場合がある。 The term “having oxygen reduction activity” as used in the present invention means that it has a function of electrochemically reducing oxygen molecules in a gaseous state or a dissolved state in a liquid, and in an acidic aqueous solution saturated with oxygen. When the linear sweep voltammetry by the rotating disk electrode method is measured, it means that the oxygen reduction reaction potential (ORR potential) is 0.5 V (vsRHE; reversible hydrogen electrode) or more. The ORR potential was a potential at a rotation speed of 2000 rpm and a current density of −10 μA / cm 2 in an acidic aqueous solution saturated with oxygen. The ORR potential means that the higher the voltage, the easier the adsorption and dissociation of oxygen molecules on the oxygen reduction catalyst (B), and the activation energy required for the reaction can be lowered. Loss can be reduced. Therefore, it may be preferable to use not only the conductive carbon material (A) but also the oxygen reduction catalyst (B) for the positive electrode material for the air battery.

酸素還元触媒(B)としては、特に限定されるものではないが、担持金属触媒、酸化物系触媒、非白金系炭素触媒が好ましい。酸素還元触媒は酸素還元能、導電性、比表面積、細孔容積、細孔径、表面親水度、粒子径など物性が大きく異なるため、使用する用途における要求性能やコスト等に合った最適な材料が選択される。   The oxygen reduction catalyst (B) is not particularly limited, but a supported metal catalyst, an oxide catalyst, and a non-platinum carbon catalyst are preferable. Oxygen reduction catalysts differ greatly in physical properties such as oxygen reduction ability, conductivity, specific surface area, pore volume, pore diameter, surface hydrophilicity, particle diameter, etc. Selected.

担持金属触媒としては、触媒となる金属としては、白金を始めとする貴金属元素やそれら以外の卑金属元素が使用される。触媒作用の高さから、白金、パラジウム、ロジウム、金等の貴金属が好ましく、また有効比表面積を増やすためにナノ粒子や合金化されて使用される場合がある。担体としては、炭素材料、酸化物、高分子等の材料が使用することができるが、電極としての機能を考慮すると導電性の炭素材料の使用が好ましい場合がある。   As the supported metal catalyst, noble metal elements such as platinum and other base metal elements are used as the catalyst metal. From the viewpoint of high catalytic action, noble metals such as platinum, palladium, rhodium, and gold are preferable, and nanoparticles and alloys may be used in order to increase the effective specific surface area. As the carrier, a material such as a carbon material, an oxide, or a polymer can be used. However, in consideration of the function as an electrode, it may be preferable to use a conductive carbon material.

酸化物系触媒としては、主成分として、遷移金属及び酸素元素を含有した酸化物粒子であり、従来公知のものを使用することができる。酸化物粒子の結晶構造や形状、粒子径の制御、酸素欠陥の導入、窒素などの異種元素のドープ、微粒径化などが、酸素の吸着能や電子伝導性等の触媒特性を向上させることに効果が有り、高い酸素還元能を発現するために重要な意味を成す。酸化物を構成する元素としては、Zr、Ta、Ti、Nb、V、Fe、Mn、Co、Ni、Cu、Zn、Cr、W、及びMoからなる群より選択された少なくとも1種の遷移金属を含む酸化物を使用することが好ましい。   As the oxide catalyst, oxide particles containing a transition metal and an oxygen element as main components, and conventionally known ones can be used. Crystal structure and shape of oxide particles, control of particle size, introduction of oxygen defects, doping of different elements such as nitrogen, and fine particle size improve catalyst properties such as oxygen adsorption capacity and electron conductivity. It is effective for producing high oxygen reducing ability. The element constituting the oxide is at least one transition metal selected from the group consisting of Zr, Ta, Ti, Nb, V, Fe, Mn, Co, Ni, Cu, Zn, Cr, W, and Mo. It is preferable to use an oxide containing.

非白金系炭素触媒(以下、炭素系触媒材料またはCACともいう)とは、炭素(C)原子の集合体を主体とした多成分系からなり、それらの構成単位間に物理的・化学的な相互作用(結合)を有し、異種元素、たとえばN、B、Pなどのヘテロ原子や卑金属元素が含まれる触媒材料で、1種または2種以上の、炭素材料または窒素元素および卑金属元素を有する化合物を混合、熱処理して、得ることができ、従来公知のものを使用することができる。ここでいう卑金属元素とは、遷移金属元素のうち貴金属元素(ルテニウム、ロジウム、パラジウム、銀、オスミウム、イリジウム、白金、金)を除く金属元素であり、卑金属元素としては、コバルト、鉄、ニッケル、マンガン、銅、チタン、バナジウム、クロム、亜鉛、スズ、アルミニウム、マグネシウムから選ばれる一種以上を含有することが好ましい。
ヘテロ原子と卑金属元素を含有することは、酸素還元活性を有するうえで重要な意味をなす。一般的に炭素系触媒材料の場合、その触媒活性点として、炭素材料表面に卑金属元素を中心に、例えば、4個の窒素が平面上に並んだ構造(卑金属−N4構造と呼ぶ)部分における卑金属元素や、炭素材料表面のエッジ部に導入されたヘテロ原子近傍の炭素原子などが挙げられる。
A non-platinum-based carbon catalyst (hereinafter also referred to as a carbon-based catalyst material or CAC) is composed of a multi-component system mainly composed of aggregates of carbon (C) atoms. A catalytic material that has an interaction (bonding) and contains a heterogeneous element such as a heteroatom such as N, B, or P, or a base metal element, and has one or more kinds of carbon material, nitrogen element, and base metal element. The compound can be obtained by mixing and heat treatment, and conventionally known compounds can be used. Base metal elements here are metal elements excluding noble metal elements (ruthenium, rhodium, palladium, silver, osmium, iridium, platinum, gold) among transition metal elements, and base metal elements include cobalt, iron, nickel, It is preferable to contain one or more selected from manganese, copper, titanium, vanadium, chromium, zinc, tin, aluminum, and magnesium.
The inclusion of a heteroatom and a base metal element is important for having oxygen reduction activity. In general, in the case of a carbon-based catalyst material, as a catalytic active point, for example, a base metal in a structure (called a base metal-N4 structure) in which four nitrogen atoms are arranged on a plane centering on a base metal element on the surface of the carbon material. Examples include elements and carbon atoms in the vicinity of heteroatoms introduced into the edge of the carbon material surface.

これら酸素還元触媒(B)自体に導電性を示さない場合では、導電性炭素材料(A)と併用する方が好ましい場合がある。   When the oxygen reduction catalyst (B) itself does not exhibit conductivity, it may be preferable to use it together with the conductive carbon material (A).

<水溶性樹脂型分散剤(C)>
本発明において使用する水溶性樹脂型分散剤(C)は、導電性炭素材料(A)及び/又は酸素還元触媒(B)に対して分散剤として有効に機能し、その凝集を緩和することができる。水溶性樹脂型分散剤(C)は、導電性炭素材料(A)及び/又は酸素還元触媒(B)に対して凝集を緩和する効果が得られれば特に限定されるものではないが、導電性炭素材料(A)及び/又は酸素還元触媒(B)の分散性、塗工適性などを考慮するとポリビニル系樹脂が好ましく、中でもノニオン性樹脂が更に好ましい。
<Water-soluble resin type dispersant (C)>
The water-soluble resin type dispersant (C) used in the present invention effectively functions as a dispersant for the conductive carbon material (A) and / or the oxygen reduction catalyst (B), and can reduce the aggregation. it can. The water-soluble resin type dispersant (C) is not particularly limited as long as it has an effect of relaxing aggregation with respect to the conductive carbon material (A) and / or the oxygen reduction catalyst (B). In view of the dispersibility and coating suitability of the carbon material (A) and / or the oxygen reduction catalyst (B), a polyvinyl resin is preferable, and a nonionic resin is more preferable.

本発明におけるポリビニル系樹脂とは、後述するビニル基を有する重合性単量体を重合することで得られる樹脂の総称である。   The polyvinyl resin in the present invention is a general term for resins obtained by polymerizing a polymerizable monomer having a vinyl group, which will be described later.

塩基性官能基を有する樹脂としては、環状を含むアミノ基およびアミノ基の一部あるいは全て中和した骨格や4級アンモニウム塩を含有し、
ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、メチルエチルアミノエチル(メタ)アクリレート、ジメチルアミノスチレン、ジエチルアミノスチレン等の重合性単量体の単独重合物、または他の重合性単量体との共重合物およびそれらの酸中和物が挙げられる。
The resin having a basic functional group includes a cyclic amino group, a partially or completely neutralized skeleton and a quaternary ammonium salt,
Homopolymers of polymerizable monomers such as dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, methylethylaminoethyl (meth) acrylate, dimethylaminostyrene, diethylaminostyrene, or other polymerizable monomers And their acid neutralized products.

酸性官能基を有する樹脂としては、カルボキシル基、スルホ基、リン酸基およびそれらを一部あるいは全てを中和した骨格を含有し、
マレイン酸、フマル酸、イタコン酸、シトラコン酸、アクリル酸、メタクリル酸、クロトン酸、けい皮酸等のカルボキシル基を有する重合性単量体や、
ビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリロイルオキシエチルスルホン酸、イソプレンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、アリルオキシベンゼンスルホン酸等のスルホ基を有する重合性単量体、
モノ(2−アクリロイルオキシエチル)アシッドホスフェート、モノ(2−メタクリロイルオキシエチル)アシッドホスフェート、ジフェニル(2−アクリロイルオキシエチル)ホスフェート、ジフェニル(2−メタクリロイルオキシエチル)ホスフェート、フェニル(2−アクリロイルオキシエチル)ホスフェート、アシッド・ホスホオキシエチルメタクリレート、メタクロイル・オキシエチルアシッドホスフェート・モノエタノールアミン塩、3−クロロ−2−アシッド・ホスホオキシプロピルメタクリレート、アシッド・ホスホオキシポリオキシエチレングリコールモノメタクリレート、アシッド・ホスホオキシポリオキシプロピレングリコールメタクリレート、(メタ)アクリロイルオキシエチルアシッドホスフェート、(メタ)アクリロイルオキシプロピルアシッドホスフェート、(メタ)アクリロイルオキシ−2−ヒドロキシプロピルアシッドホスフェート、(メタ)アクリロイルオキシ−3−ヒドロキシプロピルアシッドホスフェート、(メタ)アクリロイルオキシ−3−クロロ−2−ヒドロキシプロピルアシッドホスフェート、アリルアルコールアシッドホスフェート等のリン酸基を有する重合性単量体の単独重合物、または他の重合性単量体との共重合物およびそれらのアルカリ中和物が挙げられる。
The resin having an acidic functional group contains a carboxyl group, a sulfo group, a phosphoric acid group and a skeleton obtained by neutralizing part or all of them,
Polymerizable monomers having a carboxyl group such as maleic acid, fumaric acid, itaconic acid, citraconic acid, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid,
Sulfos such as vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acryloyloxyethyl sulfonic acid, isoprene sulfonic acid, 2- (meth) acrylamido-2-methylpropane sulfonic acid, allyloxybenzene sulfonic acid A polymerizable monomer having a group,
Mono (2-acryloyloxyethyl) acid phosphate, mono (2-methacryloyloxyethyl) acid phosphate, diphenyl (2-acryloyloxyethyl) phosphate, diphenyl (2-methacryloyloxyethyl) phosphate, phenyl (2-acryloyloxyethyl) Phosphate, acid phosphooxyethyl methacrylate, methacryloyl oxyethyl acid phosphate monoethanolamine salt, 3-chloro-2-acid phosphooxypropyl methacrylate, acid phosphooxypolyoxyethylene glycol monomethacrylate, acid phosphooxypoly Oxypropylene glycol methacrylate, (meth) acryloyloxyethyl acid phosphate, (meth) acrylate Liloyloxypropyl acid phosphate, (meth) acryloyloxy-2-hydroxypropyl acid phosphate, (meth) acryloyloxy-3-hydroxypropyl acid phosphate, (meth) acryloyloxy-3-chloro-2-hydroxypropyl acid phosphate, Examples include homopolymers of polymerizable monomers having a phosphate group such as allyl alcohol acid phosphate, copolymers with other polymerizable monomers, and alkali neutralized products thereof.

塩基性官能基及び酸性官能基を有する樹脂としては、前記塩基性骨格と前記酸性骨格を共に含有するものを意味し、スチレン−マレイン酸−N,N−ジメチルアミノエチル(メタ)アクリレートの共重合物などが挙げられる。   The resin having a basic functional group and an acidic functional group means a resin containing both the basic skeleton and the acidic skeleton, and is a copolymer of styrene-maleic acid-N, N-dimethylaminoethyl (meth) acrylate. Such as things.

ノニオン性樹脂は、前記塩基性官能基を有する樹脂、酸性官能基を有する樹脂、塩基性官能基及び酸性官能基を有する樹脂以外の水溶性樹脂であり、ポリビニルピロリドン、ポリビニルアルコール、ポリアクリルアミド、ポリ−N−ビニルアセトアミド、ポリアルキレングリコールなどが挙げられる。   Nonionic resin is a water-soluble resin other than the resin having the basic functional group, the resin having an acidic functional group, the resin having the basic functional group and the acidic functional group, and includes polyvinyl pyrrolidone, polyvinyl alcohol, polyacrylamide, -N-vinylacetamide, polyalkylene glycol, etc. are mentioned.

また、ノニオン性樹脂は、次に例示する複数の重合性単量体から構成される共重合体でも良い。   The nonionic resin may be a copolymer composed of a plurality of polymerizable monomers exemplified below.

芳香環を有する重合性単量体としては、スチレン、α−メチルスチレンもしくはベンジル(メタ)アクリレートを例示出来る。   Examples of the polymerizable monomer having an aromatic ring include styrene, α-methylstyrene, and benzyl (meth) acrylate.

鎖式飽和炭化水素基を有する重合性単量体としては、具体的に例示すると、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート等の炭素数1〜22のアルキル(メタ)アクリレートがあり、好ましくは炭素数2〜12、さらに好ましくは炭素数2〜8のアルキル基を有するアルキル基含有アクリレートまたは対応するメタクリレートが挙げられる。これらのアルキル基は分岐してもよく、具体例としては、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、ターシャリーブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、2−ブチルヘキシル(メタ)アクリレート等が挙げられる。
また、酢酸ビニル、酪酸ビニル、プロピオン酸ビニル、ヘキサン酸ビニル、カプリル酸ビニル、ラウリル酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル等、脂肪酸ビニル化合物が挙げられる。
更に、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン等、α−オレフィン化合物が挙げられる。
Specific examples of the polymerizable monomer having a chain saturated hydrocarbon group include 1 carbon atom such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. There are ˜22 alkyl (meth) acrylates, preferably an alkyl group-containing acrylate having a C 2-12 alkyl group, more preferably a C 2-8 alkyl group, or a corresponding methacrylate. These alkyl groups may be branched, and specific examples include isopropyl (meth) acrylate, isobutyl (meth) acrylate, tertiary butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-butylhexyl (meth) ) Acrylate and the like.
Moreover, fatty acid vinyl compounds such as vinyl acetate, vinyl butyrate, vinyl propionate, vinyl hexanoate, vinyl caprylate, vinyl laurate, vinyl palmitate, vinyl stearate and the like can be mentioned.
Furthermore, α-olefin compounds such as 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene and the like can be mentioned.

環状飽和炭化水素基を有する重合性単量体としては、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、トリメチルシクロヘキシル(メタ)アクリレート、1−アダマンチル(メタ)アクリレート等が挙げられる。   Examples of polymerizable monomers having a cyclic saturated hydrocarbon group include isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate, trimethylcyclohexyl (meth) acrylate, and 1-adamantyl (meth) acrylate. Etc.

ポリオキシアルキレン構造を有する重合性単量体としては、ジエチレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等、末端に水酸基を有し、ポリオキシアルキレン鎖を有するモノアクリレートまたはモノメタアクリレート等、メトキシエチレングリコール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート等、末端にアルコキシ基を有し、ポリオキシアルキレン鎖を有するモノアクリレートまたは対応するモノメタアクリレートがある。また、アルキルビニルエーテル化合物としては、ブチルビニルエーテル、エチルビニルエーテル等が挙げられる。
また、グリシジル(メタ)クリレート、テトラヒドロフルフリル(メタ)アクリレート等のように環式化合物を用いても良い。
Examples of the polymerizable monomer having a polyoxyalkylene structure include diethylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate, and polypropylene glycol mono (meth) acrylate, which have a hydroxyl group at the terminal and have a polyoxyalkylene chain. Having mono- or monomethacrylate, methoxyethylene glycol (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, etc. There are monoacrylates with oxyalkylene chains or the corresponding monomethacrylates. Examples of the alkyl vinyl ether compound include butyl vinyl ether and ethyl vinyl ether.
Further, a cyclic compound such as glycidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, or the like may be used.

水酸基を有する重合性単量体としては、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、4−ヒドロキシブチル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、4−ヒドロキシスチレン、ビニルアルコール、アリルアルコール等が挙げられる。
また、ビニルアルコールの誘導体である重合性単量体としては、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル等のビニルエステルが例示できる。これらのビニルエステルを共重合し、得られた共重合体を水酸化ナトリウムなどにより鹸化することで、水酸基を形成できる。
Examples of the polymerizable monomer having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, glycerol mono (meth) acrylate, 4-hydroxystyrene, Examples include vinyl alcohol and allyl alcohol.
Examples of the polymerizable monomer that is a derivative of vinyl alcohol include vinyl esters such as vinyl acetate, vinyl propionate, and vinyl versatate. A hydroxyl group can be formed by copolymerizing these vinyl esters and saponifying the obtained copolymer with sodium hydroxide or the like.

窒素含有の重合性単量体としては、N−ビニル−2−ピロリドン、(メタ)アクリルアミド、N−ビニルアセトアミド、N−メチロール(メタ)アクリルアミド、N−メトキシメチル−(メタ)アクリルアミド等のモノアルキロール(メタ)アクリルアミド、N,N−ジ(メチロール)アクリルアミド、N−メチロール−N−メトキシメチル(メタ)アクリルアミド、N,N−ジ(メトキシメチル)アクリルアミド等を例示できる。   Examples of nitrogen-containing polymerizable monomers include monoalkyls such as N-vinyl-2-pyrrolidone, (meth) acrylamide, N-vinylacetamide, N-methylol (meth) acrylamide, and N-methoxymethyl- (meth) acrylamide. Examples thereof include roll (meth) acrylamide, N, N-di (methylol) acrylamide, N-methylol-N-methoxymethyl (meth) acrylamide, N, N-di (methoxymethyl) acrylamide and the like.

更にその他の単量体としては、パーフルオロメチルメチル(メタ)アクリレート、パーフルオロエチルメチル(メタ)アクリレート、2−パーフルオロブチルエチル(メタ)アクリレート、2−パーフルオロヘキシルエチル(メタ)アクリレート等の炭素数1〜20のパーフルオロアルキル基を有するパーフルオロアルキルアルキル(メタ)アクリレート類;
パーフルオロブチルエチレン、パーフルオロヘキシルエチレン、パーフルオロオクチルエチレン、パーフルオロデシルエチレン等のパーフルオロアルキル、アルキレン類等のパーフルオロアルキル基含有ビニルモノマー、ビニルトリクロルシラン、ビニルトリス(βメトキシエトキシ)シラン、ビニルトリエトキシシラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン等のシラノール基含有ビニル化合物及びその誘導体などを挙げることができ、これらの群から複数用いることができる。
Furthermore, as other monomers, perfluoromethylmethyl (meth) acrylate, perfluoroethylmethyl (meth) acrylate, 2-perfluorobutylethyl (meth) acrylate, 2-perfluorohexylethyl (meth) acrylate, etc. Perfluoroalkyl alkyl (meth) acrylates having a C 1-20 perfluoroalkyl group;
Perfluoroalkyl such as perfluorobutylethylene, perfluorohexylethylene, perfluorooctylethylene, perfluorodecylethylene, and perfluoroalkyl group-containing vinyl monomers such as alkylene, vinyltrichlorosilane, vinyltris (βmethoxyethoxy) silane, vinyl Examples thereof include silanol group-containing vinyl compounds such as triethoxysilane and γ- (meth) acryloxypropyltrimethoxysilane and derivatives thereof, and a plurality of them can be used from these groups.

エチニル化合物としては、アセチレン、エチニルベンゼン、エチニルトルエン、1−エチニル−1−シクロヘキサノール等が挙げられる。これらは単独もしくは2種類以上を併用して使用することもできる。   Examples of the ethynyl compound include acetylene, ethynylbenzene, ethynyltoluene, 1-ethynyl-1-cyclohexanol and the like. These can be used alone or in combination of two or more.

水溶性樹脂型分散剤(C)は、上記に記載したポリビニル系樹脂以外にもポリウレタン系、ポリエステル系、ポリエーテル系、カルボキシメチルセルロース等のセルロース樹脂、ホルマリン縮合物、シリコーン系、及びこれらの複合系ポリマー等が挙げられる。更に、これらの水溶性樹脂型分散剤(C)は2種類以上を併用してもよい。   The water-soluble resin type dispersant (C) is not limited to the above-described polyvinyl resins, but also polyurethane resins, polyester resins, polyether resins, carboxymethyl cellulose and other cellulose resins, formalin condensates, silicone resins, and composites thereof. Examples thereof include polymers. Furthermore, two or more of these water-soluble resin type dispersants (C) may be used in combination.

市販の水溶性樹脂型分散剤(C)としては、例えば、Disperbyk−180、183、184、185、187、190、191、192、193、194、198、199、2010、2012、2015、2090、2091、2095、2096等(ビックケミー社製)、SOLSPERSE20000、27000、40000、41090、44000、46000、47000、64000、65000、66000等(日本ルーブリゾール社製)、フローレンG−700AMP、G−700DMEA、WK−13E、GW−1500、GW−1640等(共栄社化学社製)、BorchiRGen1350、0851、1253、SN95、WNS等(松尾産業社製)、TEGODispers650、651、652、655、660C、715W、740W、750W、752W、755W、760W等(巴工業社製)、ポリビニルピロリドンPVP−K30、K85、K90等(ISPジャパン社製)、エスレックBL−1、BL−2、BL−5、BL−10、BL−1H、BL−2H、BL−S、BM−S、BM−1、BM−2、BM−5、BH−A、BX−1、BX−3、BX−5等(積水化学社製)、カルボキシメチルセルロースCMC1105、1110、1130、1140、1170、1190、1205、1210、1240、1250等 (ダイセル化学工業社製)が挙げられるが、これらに限定されるものではない。   Examples of commercially available water-soluble resin type dispersants (C) include Disperbyk-180, 183, 184, 185, 187, 190, 191, 192, 193, 194, 198, 199, 2010, 2012, 2015, 2090, 2091, 2095, 2096, etc. (manufactured by Big Chemie), SOLSPERSE 20000, 27000, 40000, 41090, 44000, 46000, 47000, 64000, 65000, 66000, etc. (manufactured by Nihon Lubrizol), Floren G-700AMP, G-700DMEA, WK -13E, GW-1500, GW-1640, etc. (manufactured by Kyoeisha Chemical Co., Ltd.), Borchi® Gen 1350, 0851, 1253, SN95, WNS, etc. (manufactured by Matsuo Sangyo Co., Ltd.), TEGO Dispers 650, 651, 652, 655, 660C, 715W, 740W, 750W, 752W, 755W, 760W, etc. (manufactured by Sakai Kogyo Co., Ltd.), polyvinylpyrrolidone PVP-K30, K85, K90, etc. (manufactured by ISP Japan), ESREC BL-1, BL-2, BL -5, BL-10, BL-1H, BL-2H, BL-S, BM-S, BM-1, BM-2, BM-5, BH-A, BX-1, BX-3, BX-5 Etc. (manufactured by Sekisui Chemical Co., Ltd.), carboxymethyl cellulose CMC1105, 1110, 1130, 1140, 1170, 1190, 1205, 1210, 1240, 1250, etc. (manufactured by Daicel Chemical Industries, Ltd.), but are not limited thereto. .

なお、水溶性樹脂型分散剤(C)の質量平均分子量は、導電性炭素材料(A)及び/又は酸素還元触媒(B)の分散性が良好な点から、3000以上、500000未満であり、好ましくは5000以上、400000未満である。   In addition, the mass average molecular weight of the water-soluble resin type dispersant (C) is 3000 or more and less than 500000 from the viewpoint of good dispersibility of the conductive carbon material (A) and / or the oxygen reduction catalyst (B). Preferably it is 5000 or more and less than 400,000.

<水性液状媒体(D)>
本発明に使用する水性液状媒体としては、水を使用することが好ましいが、必要に応じて、例えば、導電性支持体への塗工性向上のために、水と相溶する液状媒体を使用しても良い。
水と相溶する液状媒体としては、アルコール類、グリコール類、セロソルブ類、アミノアルコール類、アミン類、ケトン類、カルボン酸アミド類、リン酸アミド類、スルホキシド類、カルボン酸エステル類、リン酸エステル類、エーテル類、ニトリル類等が挙げられ、水と相溶する範囲で使用しても良い。アルコール類としては、例えば、沸点80〜200℃程度の1価のアルコールないし多価アルコールが利用でき、好ましくは炭素数が4以下のアルコール系溶剤が挙げられる。具体的には、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノール等が挙げられる。これらの1価のアルコールの中でも、2−プロパノール、1−ブタノール及びt−ブタノールが好ましい。多価アルコールとしては具体的には、プロピレングリコール、エチレングリコール等が好ましく、中でもプロピレングリコールが特に好ましい。
<Aqueous liquid medium (D)>
As the aqueous liquid medium used in the present invention, it is preferable to use water, but if necessary, for example, a liquid medium compatible with water is used to improve the coating property to the conductive support. You may do it.
Liquid media compatible with water include alcohols, glycols, cellosolves, amino alcohols, amines, ketones, carboxylic acid amides, phosphoric acid amides, sulfoxides, carboxylic acid esters, and phosphoric acid esters , Ethers, nitriles and the like, and may be used as long as they are compatible with water. As the alcohol, for example, a monohydric alcohol or a polyhydric alcohol having a boiling point of about 80 to 200 ° C. can be used, and preferably an alcohol solvent having 4 or less carbon atoms. Specific examples include 1-propanol, 2-propanol, 1-butanol, 2-butanol, and t-butanol. Among these monohydric alcohols, 2-propanol, 1-butanol and t-butanol are preferable. Specific examples of the polyhydric alcohol include propylene glycol and ethylene glycol, and propylene glycol is particularly preferable.

<バインダー>
本発明におけるバインダーとは、導電性炭素材料(A)及び/又は酸素還元触媒(B)などの粒子を結着させるために使用されるものであり、それら粒子を溶媒中へ分散させる効果は小さいものである。
バインダーとしては、従来公知のものを使用することができ、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、スチレン−ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等、ポリフッ化ビニリデン、ポリフッ化ビニル、及びテトラフルオロエチレン等のフッ素原子を含む高分子化合物が挙げられる。又、これらの樹脂の変性物、混合物、又は共重合体でも良く、水溶性の樹脂であっても、水分散型の樹脂であっても良い。これらバインダーは、1種または複数を組み合わせて使用することも出来る。
<Binder>
The binder in the present invention is used for binding particles such as the conductive carbon material (A) and / or the oxygen reduction catalyst (B), and the effect of dispersing the particles in the solvent is small. Is.
As the binder, conventionally known binders can be used. For example, acrylic resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, formaldehyde resin, silicon resin, Examples thereof include fluorine resins, synthetic rubbers such as styrene-butadiene rubber and fluorine rubber, conductive resins such as polyaniline and polyacetylene, and polymer compounds containing fluorine atoms such as polyvinylidene fluoride, polyvinyl fluoride, and tetrafluoroethylene. Further, a modified product, a mixture, or a copolymer of these resins may be used, which may be a water-soluble resin or a water-dispersed resin. These binders can be used alone or in combination.

また、水性液状媒体(D)を使用する場合、一般的に水性エマルションとも呼ばれるバインダーも使用できる。水性エマルションとは、バインダー樹脂が水中で溶解せずに、微粒子の状態で分散されているものである。   Moreover, when using an aqueous liquid medium (D), the binder generally called an aqueous emulsion can also be used. The aqueous emulsion is one in which the binder resin is dispersed in the form of fine particles without being dissolved in water.

使用するエマルションは特に限定されないが、(メタ)アクリル系エマルション、ニトリル系エマルション、ウレタン系エマルション、ジエン系エマルション(SBRなど)、フッ素系エマルション(PVDFやPTFEなど)等が挙げられる。   The emulsion to be used is not particularly limited, and examples thereof include (meth) acrylic emulsions, nitrile emulsions, urethane emulsions, diene emulsions (such as SBR), and fluorine emulsions (such as PVDF and PTFE).

<分散機・混合機>
本発明の電極ペースト組成物を得る際に用いられる装置としては、顔料分散等に通常用いられている分散機、混合機が使用できる。
<Disperser / Mixer>
As an apparatus used when obtaining the electrode paste composition of the present invention, a disperser or a mixer that is usually used for pigment dispersion or the like can be used.

例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;エム・テクニック社製「クレアミックス」、若しくはPRIMIX社「フィルミックス」等のホモジナイザー類;ペイントシェーカー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS−5」、若しくは奈良機械社製「MICROS」等のメディアレス分散機;または、その他ロールミル等が挙げられるが、これらに限定されるものではない。また、分散機としては、分散機からの金属混入防止処理を施したものを用いることが好ましい。   For example, mixers such as dispersers, homomixers, or planetary mixers; homogenizers such as “Clairemix” manufactured by M Technique, or “Fillmix” manufactured by PRIMIX; paint shaker (manufactured by Red Devil), ball mill, sand mill (Shinmaru Enterprises "Dynomill", etc.), Attritor, Pearl Mill (Eirich "DCP Mill", etc.), or Coball Mill, etc .; Media type dispersers; Wet Jet Mill (Genus, "Genus PY", Sugino Media-less dispersers such as “Starburst” manufactured by Machine, “Nanomizer” manufactured by Nanomizer, etc., “Claire SS-5” manufactured by M Technique, or “MICROS” manufactured by Nara Machinery; or other roll mills, etc. These are mentioned The present invention is not limited. Moreover, as the disperser, it is preferable to use a disperser that has been subjected to a metal contamination prevention treatment from the disperser.

例えば、メディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面をタングステンカーバイド溶射や樹脂コーティング等の処理をした分散機を用いることが好ましい。そして、メディアとしては、ガラスビーズ、または、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。また、ロールミルを使用する場合についても、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用しても良いし、複数種の装置を組み合わせて使用しても良い。   For example, when using a media-type disperser, a disperser in which the agitator and vessel are made of a ceramic or resin disperser, or the surface of the metal agitator and vessel is treated with tungsten carbide spraying or resin coating. Is preferably used. As the media, it is preferable to use glass beads, ceramic beads such as zirconia beads or alumina beads. Moreover, also when using a roll mill, it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination.

<空気電池用正極層>
空気電池用正極層は、導電性支持体(カーボンペーパなど)に前記電極ペースト組成物の直接塗布し、乾燥することにより形成される。
電極ペースト組成物の塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、ブレードコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。
<Positive electrode layer for air battery>
The positive electrode layer for an air battery is formed by directly applying the electrode paste composition onto a conductive support (such as carbon paper) and drying it.
The method for applying the electrode paste composition is not particularly limited, and examples thereof include a knife coater, a bar coater, a blade coater, a spray, a dip coater, a spin coater, a roll coater, a die coater, a curtain coater, and screen printing. General methods can be applied.

塗布した後、乾燥することにより、塗膜(空気電池用触媒層)が形成される。乾燥温度は、通常40〜200℃程度、好ましくは70〜120℃程度である。また、乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは30分〜1時間程度である。   A coating film (catalyst layer for an air battery) is formed by drying after coating. A drying temperature is about 40-200 degreeC normally, Preferably it is about 70-120 degreeC. The drying time is usually about 5 minutes to 2 hours, preferably about 30 minutes to 1 hour, although it depends on the drying temperature.

<導電性支持体>
導電性支持体は、特に限定されないが、金属空気電池では、正極側では空気中の酸素を取り込めるように気体が通過および拡散できるような多孔質または繊維状の支持体であることが好ましい。更に電子の出し入れが必要なため、導電性を有する材料を用いらなければならない。好ましくは炭素素材からなるカーボンペーパや、カーボンフェルト、カーボンクロスなどがよい。具体例としては東レ社製の「TGP−H−090」等が挙げられる。これら導電性支持体は、ガス拡散層あるいはGDLとも呼ばれる。
<Conductive support>
The conductive support is not particularly limited, but in a metal-air battery, a porous or fibrous support that allows gas to pass and diffuse so that oxygen in the air can be taken in on the positive electrode side is preferable. In addition, since electrons need to be taken in and out, a conductive material must be used. Carbon paper made of carbon material, carbon felt, carbon cloth, etc. are preferable. Specific examples include “TGP-H-090” manufactured by Toray Industries, Inc. These conductive supports are also called gas diffusion layers or GDLs.

<金属空気電池>
金属空気電池は、負極活物質として金属を使用し、発生したe-(電子)および金属イオンにより、正極側の酸素還元反応を利用して発電することができ、充放電させることで2次電池としても機能する。
金属空気電池の構成としては、負極活物質としての金属を有する負極と、空気電池用電極ペースト組成物等を塗布した正極となる導電性支持体、前記正極と負極の間で金属イオンの伝導を担う電解質層、及びセパレータよりなる。
正極としては、本発明における空気電池用電極ペースト組成物を好適に使用することができる。
<Metal-air battery>
A metal-air battery uses a metal as a negative electrode active material, and can generate electric power by using an oxygen reduction reaction on the positive electrode side by the generated e (electrons) and metal ions. Also works.
The configuration of the metal-air battery includes a negative electrode having a metal as a negative electrode active material, a conductive support serving as a positive electrode coated with an electrode paste composition for an air battery, and conduction of metal ions between the positive electrode and the negative electrode. It consists of an electrolyte layer and a separator.
As a positive electrode, the electrode paste composition for air batteries in this invention can be used conveniently.

<負極材料>
負極としては、金属単体又は合金から成る金属材料を使用できる。負極として使用できる金属材料は、例えばLi、Na、Mg、Al、S i 、Ca、T i 、V、C r、M n、Feなどを挙げることができ、これらの金属担体及び合金を適用することもできる。しかしながら、これらに限定されるものではなく、空気電池に適用される従来公知の材料を用いることができる。
<Negative electrode material>
As the negative electrode, a metal material made of a single metal or an alloy can be used. Examples of the metal material that can be used as the negative electrode include Li, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, and the like, and these metal carriers and alloys are applied. You can also. However, the material is not limited to these, and a conventionally known material applied to an air battery can be used.

<電解質層>
電解質層は、上記の金属-空気電池の正極と負極の間で金属イオンの伝導を行うものである。金属イオンの種類は、上述した負極活物質の種類によって異なり、その形態も金属イオン伝導性が有するものであれば特に限定されるものではない。例えば、水溶液や非水溶液を適用することもできるし、それらをポリマーマトリクスで保持したゲル状高分子電解質や、ポリマー電解質及び無機固体電解質を使用してもよい。また、固体電解質やセパレータを使用して、正極側、負極側で異なる電解液を使用してもよい。
<Electrolyte layer>
The electrolyte layer conducts metal ions between the positive electrode and the negative electrode of the metal-air battery. The type of metal ion varies depending on the type of the negative electrode active material described above, and the form thereof is not particularly limited as long as it has metal ion conductivity. For example, an aqueous solution or a non-aqueous solution can be applied, or a gel polymer electrolyte in which they are held by a polymer matrix, a polymer electrolyte, and an inorganic solid electrolyte may be used. Further, different electrolytes may be used on the positive electrode side and the negative electrode side using a solid electrolyte or a separator.

<支持電解質塩>
支持電解質塩には従来公知のものを用いることができる。支持電解質塩としては、所望のイオン電導性を有すれば問題なく、塩化カリウム、塩化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム等が使用でき、それらの水溶液、非水溶液が好適に使用できる。
<Supporting electrolyte salt>
Conventionally known electrolyte electrolyte salts can be used. As the supporting electrolyte salt, potassium chloride, sodium chloride, potassium hydroxide, sodium carbonate, sodium hydrogen carbonate and the like can be used without any problem as long as they have desired ionic conductivity, and aqueous solutions and non-aqueous solutions thereof can be preferably used. .

特に、リチウムイオンの伝導を考えた場合、電解液としては、リチウムを含んだ支持電解質塩を水または非水系の溶剤に溶解したものを用いる。
支持電解質塩としては、LiBF4、LiClO4、LiPF6、LiAsF6、LiSbF6、LiCF3SO3、Li(CF3SO22N、LiC49SO3、Li(CF3SO23C、LiI、LiBr、LiCl、LiAlCl、LiHF2、LiSCN、又はLiBPh4(ただし、Phはフェニル基である。)等が挙げられるがこれらに限定されない。
In particular, when considering conduction of lithium ions, an electrolytic solution in which a supporting electrolyte salt containing lithium is dissolved in water or a non-aqueous solvent is used.
As the supporting electrolyte salt, LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , Li (CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 3 C, LiI, LiBr, LiCl, LiAlCl, LiHF 2 , LiSCN, or LiBPh 4 (where Ph is a phenyl group) and the like are exemplified, but not limited thereto.

非水系の溶剤としては特に限定はされないが、例えば、
エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等のカーボネート類;
γ−ブチロラクトン、γ−バレロラクトン、及びγ−オクタノイックラクトン等のラクトン類;
テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−メトキシエタン、1,2−エトキシエタン、及び
1,2−ジブトキシエタン等のグライム類;
メチルフォルメート、メチルアセテート、及びメチルプロピオネート等のエステル類;
ジメチルスルホキシド、及びスルホラン等のスルホキシド類;並びに、
アセトニトリル等のニトリル類等が挙げられる。又これらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。
The non-aqueous solvent is not particularly limited.
Carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate;
Lactones such as γ-butyrolactone, γ-valerolactone, and γ-octanoic lactone;
Glymes such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1,2-dibutoxyethane;
Esters such as methyl formate, methyl acetate, and methyl propionate;
Sulfoxides such as dimethyl sulfoxide and sulfolane; and
Nitriles such as acetonitrile are exemplified. These solvents may be used alone or in combination of two or more.

さらに上記電解液を、ポリマーマトリクスに保持しゲル状とした高分子電解質とする場合、ポリマーマトリクスとしては、ポリアルキレンオキシドセグメントを有するアクリレート系樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン系樹脂、及びポリアルキレンオキシドセグメントを有するポリシロキサン等が挙げられるがこれらに限定されない。   Furthermore, when the electrolyte solution is a polymer electrolyte held in a polymer matrix and made into a gel, the polymer matrix includes an acrylate resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polyelectrolyte. Examples include, but are not limited to, a polysiloxane having an alkylene oxide segment.

<セパレータ>
セパレータとしては、空気電池に使用する従来公知の材料を用いることができる。具体
的には、液状の電解質としては、例えば、ポリエチレン繊維、ポリプロピレン繊維、ガラス繊維、樹脂不織布、ガラス不織布、濾紙等を用いることができる。
<Separator>
A conventionally well-known material used for an air battery can be used as a separator. Specifically, as the liquid electrolyte, for example, polyethylene fiber, polypropylene fiber, glass fiber, resin nonwoven fabric, glass nonwoven fabric, filter paper, and the like can be used.

以下に、本発明を実施例に基づいて説明するが、本発明はこれによって限定されるものではない。なお、実施例及び比較例中、特に断りの無い限り、「部」とは「質量部」、「%」とは「質量%」を意味する。   Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto. In Examples and Comparative Examples, unless otherwise specified, “part” means “part by mass” and “%” means “% by mass”.

(合成例1)
ガス導入管、温度計、コンデンサー、攪拌機を備えた反応容器に、n−ブタノール200.0部を仕込み、窒素ガスで置換した。反応容器内を110℃に加熱して、スチレン60.0部、アクリル酸140.0部、および重合開始剤としてV−601(和光純薬工業社製)12.0部の混合物を2時間かけて滴下し、重合反応を行った。滴下終了後、さらに110℃で3時間反応させた後、V−601(和光純薬工業社製)0.6部を添加し、さらに110℃で1時間反応を続けて、共重合体溶液を得た。さらに、水を400部添加して水性化した後、100℃まで加熱し、ブタノールを水と共沸させてブタノールを留去した。水で希釈し、不揮発分20%の水性樹脂型分散剤(1)の水溶液を得た。
(合成例2)
ガス導入管、温度計、コンデンサー、攪拌機を備えた反応容器に、n−ブタノール200.0部を仕込み、窒素ガスで置換した。反応容器内を110℃に加熱して、スチレン100.0部、アクリル酸60.0部、ジメチルアミノエチルメタクリレート40.0部、および重合開始剤としてV−601(和光純薬工業社製)12.0部の混合物を2時間かけて滴下し、重合反応を行った。滴下終了後、さらに110℃で3時間反応させた後、V−601(和光純薬製)0.6部を添加し、さらに110℃で1時間反応を続けて、共重合体溶液を得た。さらに、室温まで冷却した後、ジメチルアミノエタノール74.2部添加し中和した。これは、共重合体中のカルボキシル基を100%中和する量である。さらに、水を400部添加して水性化した後、100℃まで加熱し、ブタノールを水と共沸させてブタノールを留去した。
水で希釈し、不揮発分20%の水性樹脂型分散剤(2)の水溶液を得た。
(Synthesis Example 1)
A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 200.0 parts of n-butanol and replaced with nitrogen gas. The reaction vessel was heated to 110 ° C., and a mixture of 60.0 parts of styrene, 140.0 parts of acrylic acid, and 12.0 parts of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) as a polymerization initiator was taken over 2 hours. Then, the polymerization reaction was carried out. After completion of the dropwise addition, the mixture was further reacted at 110 ° C. for 3 hours, 0.6 parts of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the reaction was further continued at 110 ° C. for 1 hour to obtain a copolymer solution. Obtained. Furthermore, after adding 400 parts of water and making it aqueous, it heated to 100 degreeC, butanol was azeotroped with water, and butanol was distilled off. Dilution with water gave an aqueous solution of an aqueous resin dispersant (1) having a nonvolatile content of 20%.
(Synthesis Example 2)
A reaction vessel equipped with a gas introduction tube, a thermometer, a condenser, and a stirrer was charged with 200.0 parts of n-butanol and replaced with nitrogen gas. The inside of the reaction vessel was heated to 110 ° C., and 100.0 parts of styrene, 60.0 parts of acrylic acid, 40.0 parts of dimethylaminoethyl methacrylate, and V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) 12 as a polymerization initiator. 0.0 part of the mixture was added dropwise over 2 hours to carry out the polymerization reaction. After completion of the dropwise addition, the mixture was further reacted at 110 ° C. for 3 hours, 0.6 parts of V-601 (manufactured by Wako Pure Chemical Industries, Ltd.) was added, and the reaction was further continued at 110 ° C. for 1 hour to obtain a copolymer solution. . Further, after cooling to room temperature, 74.2 parts of dimethylaminoethanol was added for neutralization. This is an amount that neutralizes 100% of the carboxyl groups in the copolymer. Furthermore, after adding 400 parts of water and making it aqueous, it heated to 100 degreeC, butanol was azeotroped with water, and butanol was distilled off.
Dilution with water gave an aqueous solution of an aqueous resin dispersant (2) having a nonvolatile content of 20%.

<非白金系炭素触媒(CAC)>
[製造例1]
グラフェンナノプレートレットxGnP−C−750(XGscience社製)と鉄フタロシアニン P−26(山陽色素社製)を、質量比1/0.5(グラフェンナノプレートレット/鉄フタロシアニン)となるようにそれぞれ秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合を行い、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、800℃で2時間熱処理を行い、非白金系炭素触媒(CAC1)を得た。
<Non-platinum carbon catalyst (CAC)>
[Production Example 1]
Graphene nanoplatelets xGnP-C-750 (manufactured by XGscience) and iron phthalocyanine P-26 (manufactured by Sanyo Dye) are weighed so that the mass ratio is 1 / 0.5 (graphene nanoplatelets / iron phthalocyanine). Then, dry mixing was performed with a particle composite apparatus Mechanofusion (manufactured by Hosokawa Micron Corporation) to obtain a mixture. The mixture was filled in an alumina crucible and heat-treated at 800 ° C. for 2 hours in a nitrogen atmosphere in an electric furnace to obtain a non-platinum carbon catalyst (CAC1).

[製造例2]
ケッチェンブラックEC−300J(ライオン社製)と鉄フタロシアニン P−26(山陽色素社製)を、質量比1/0.5(ケッチェンブラック/鉄フタロシアニン)となるようにそれぞれ秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合を行い、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、800℃で2時間熱処理を行い、非白金系炭素触媒(CAC2)を得た。
[Production Example 2]
Ketjen Black EC-300J (manufactured by Lion) and iron phthalocyanine P-26 (manufactured by Sanyo Dye) were weighed so that the mass ratio would be 1 / 0.5 (Ketjen black / iron phthalocyanine). Dry mixing was performed using a chemical device Mechanofusion (manufactured by Hosokawa Micron Corporation) to obtain a mixture. The above mixture was filled in an alumina crucible and heat-treated at 800 ° C. for 2 hours in a nitrogen atmosphere in an electric furnace to obtain a non-platinum carbon catalyst (CAC2).

<ORR活性評価>
以下のようにして、上記で得られたCACのORR(酸化還元反応)活性評価を実施し、酸素還元活性を有することを確認した。
1.インキ化
CAC0.01gを秤量し、バインダーとして、20質量%ナフィオン分散溶液(和光純薬工業社製、DE2020CStype)を0.02g、分散溶媒として、純水を0.02g、エタノール1.31g、ブタノール0.13gを添加した後、超音波(45kHz)で15分間分散処理を行ない評価用インキを作製した。
2.作用電極の作製
回転電極(グラッシーカーボン電極の半径0.15cm)表面を鏡面に研磨した後、電極表面に上記評価用インキ7.5μLを滴下し、1500rpmにてスピンコートしながら自然乾燥することにより作用電極を作製した。
3.リニアスイープボルタメトリー(LSV)測定
上記で作製した作用電極と、対極(白金)、参照電極(可逆水素電極RHE)が取り付けられた電解槽に電解液(0.5M硫酸水溶液)を入れ、電解液中に酸素を十分にバブリングした後、作用電極を2000rpmで回転させながら、+1.2V(vsRHE)から+0.05V(vsRHE)の走査範囲でLSV測定を行なった。
(電解液中に窒素でバブリングを行なった後、酸素雰囲気下での測定と同走査範囲でLSV測定を行なった数値をバックグランドとした。)
ORR活性電位は、電流密度は−10μA/cm2到達時点の電位を読み取り、可逆水素電極(RHE)を基準とした電位に換算して算出した。
上記CACのORR活性電位は、0.8V(vsRHE)であったことから、酸素還元活性を有することを確認した。
<ORR activity evaluation>
As described below, the ORR (oxidation-reduction reaction) activity of the CAC obtained above was evaluated and confirmed to have oxygen reduction activity.
1. Inking 0.01g of CAC was weighed and 0.02g of 20% by weight Nafion dispersion solution (DE2020CStype, manufactured by Wako Pure Chemical Industries, Ltd.) was used as a binder, 0.02g of pure water, 1.31g of ethanol, butanol as a dispersion solvent After adding 0.13 g, dispersion treatment was performed with ultrasonic waves (45 kHz) for 15 minutes to prepare an evaluation ink.
2. Preparation of working electrode After polishing the surface of the rotating electrode (glassy carbon electrode radius 0.15 cm) to a mirror surface, 7.5 μL of the ink for evaluation above is dropped on the electrode surface and dried naturally by spin coating at 1500 rpm. A working electrode was prepared.
3. Linear sweep voltammetry (LSV) measurement An electrolytic solution (0.5 M sulfuric acid aqueous solution) is placed in an electrolytic cell equipped with the working electrode prepared above, a counter electrode (platinum), and a reference electrode (reversible hydrogen electrode RHE). After sufficiently bubbling oxygen therein, LSV measurement was performed in a scanning range of +1.2 V (vs RHE) to +0.05 V (vs RHE) while rotating the working electrode at 2000 rpm.
(After bubbling with nitrogen in the electrolytic solution, the value obtained by performing LSV measurement in the same scanning range as the measurement in an oxygen atmosphere was used as the background.)
The ORR active potential was calculated by reading the potential when the current density reached −10 μA / cm 2 and converting it to a potential based on the reversible hydrogen electrode (RHE).
Since the ORR active potential of the CAC was 0.8 V (vs RHE), it was confirmed to have oxygen reduction activity.

<電極ペースト組成物の調製>
[実施例1〜22]
表1に示す組成に従い、ガラス瓶に各種水性液状媒体(D)と水溶性樹脂型分散剤(C)を仕込み、次に、導電性炭素材料(A)と酸素還元触媒(B)の合計が10部となるよう各比率で加え、又、バインダーとして60質量%PTFE水分散溶液(三井・デュポンフロロケミカル社製、60%ポリテトラフルオロエチレン水系分散体;31−J)を5.0部加え、さらにメディアとしてジルコニアビーズを添加した後に、ペイントシェーカーで分散し、電極ペースト組成物(1)〜(22)をそれぞれ作製した。
<Preparation of electrode paste composition>
[Examples 1 to 22]
According to the composition shown in Table 1, various aqueous liquid media (D) and a water-soluble resin type dispersant (C) are charged into a glass bottle, and then the total of the conductive carbon material (A) and the oxygen reduction catalyst (B) is 10 In addition, 5.0 parts of a 60 mass% PTFE aqueous dispersion (Mitsui / DuPont Fluorochemical Co., Ltd., 60% polytetrafluoroethylene aqueous dispersion; 31-J) was added as a binder. Furthermore, after adding zirconia beads as a medium, it was dispersed with a paint shaker to prepare electrode paste compositions (1) to (22), respectively.

[比較例1〜4]
表1に示す組成に従い、ガラス瓶に各種水性液状媒体(D)を仕込み、導電性炭素材料(A)と酸素還元触媒(B)の合計が10部となるよう各比率で加え、又、バインダーとして60質量%PTFE水分散溶液(三井・デュポンフロロケミカル社製、60%ポリテトラフルオロエチレン水系分散体;31−J)を5.0部加え、さらにメディアとしてジルコニアビーズを添加した後に、ペイントシェーカーで分散し、電極ペースト組成物(23)〜(26)をそれぞれ作製した。
[Comparative Examples 1-4]
According to the composition shown in Table 1, various aqueous liquid media (D) are charged into a glass bottle and added in various proportions so that the total of the conductive carbon material (A) and the oxygen reduction catalyst (B) is 10 parts. After adding 5.0 parts of 60 mass% PTFE aqueous dispersion (Mitsui / DuPont Fluorochemical Co., Ltd., 60% polytetrafluoroethylene aqueous dispersion; 31-J), and further adding zirconia beads as a medium, a paint shaker was used. Dispersed to prepare electrode paste compositions (23) to (26), respectively.

Figure 2017183088
Figure 2017183088

表1において、水/IPA=1/1とは、水とイソプロピルアルコールを質量比で同量混合した、混合溶剤を表す。水/BuOH=4/1、水/PGM=1/1に関しても同様である。   In Table 1, water / IPA = 1/1 represents a mixed solvent in which water and isopropyl alcohol are mixed in the same amount at a mass ratio. The same applies to water / BuOH = 4/1 and water / PGM = 1/1.

<空気電池用正極層の作製> <Preparation of positive electrode layer for air battery>

実施例1〜22の電極ペースト組成物(1)〜(22)と、比較例1〜4、の電極ペースト組成物(23)〜(26)を、ドクターブレードにより、導電性支持体として炭素繊維からなるカーボンペーパ基材(TGP−H−090、東レ社製)上に塗布した後、大気雰囲気中95℃、60分間乾燥し、空気電池用正極層(1)〜(26)を作製した。   The electrode paste compositions (1) to (22) of Examples 1 to 22 and the electrode paste compositions (23) to (26) of Comparative Examples 1 to 4 are carbon fibers as a conductive support using a doctor blade. After coating on a carbon paper base material (TGP-H-090, manufactured by Toray Industries, Inc.), it was dried in an air atmosphere at 95 ° C. for 60 minutes to prepare air battery positive electrode layers (1) to (26).

<塗工性評価>
空気電池用正極は、下記に示す塗工性評価によって評価した。空気電用正極を、ビデオマイクロスコープVHX−900(キーエンス社製)にて500倍で観察し、塗工ムラ(ムラ:正極層の濃淡により評価)およびピンホール(正極層が塗布されていない欠陥の有無により評価)について、下記の基準で判定した。評価結果を表2に示す。
<Coating property evaluation>
The positive electrode for an air battery was evaluated by the coating property evaluation shown below. The positive electrode for aeroelectricity was observed with a video microscope VHX-900 (manufactured by Keyence Corporation) at a magnification of 500 times, and coating unevenness (unevenness: evaluated by the density of the positive electrode layer) and pinholes (defects where the positive electrode layer was not applied) The evaluation was made according to the following criteria. The evaluation results are shown in Table 2.

(ムラ)
○:正極層の濃淡が確認されない(良好)。
△:正極層の濃淡が2〜3箇所あるが極めて微小領域である(実用上問題ない)。
×:正極層の濃淡が多数確認される、または濃淡の縞の長さが5mm以上のもの1個以上(不良)。
(ピンホ−ル)
○:ピンホールが1つも確認されない(良好)。
△:ピンホールが2〜3個あるが極めて微小である(不良)。
×:ピンホールが多数確認される、または直径1mm以上のピンホールが1個以上(極めて不良)。
(village)
○: The density of the positive electrode layer is not confirmed (good).
Δ: There are 2 to 3 shades of the positive electrode layer, but it is a very small region (no problem in practical use).
X: A large number of shades of the positive electrode layer are confirmed, or one or more of the stripes having a length of 5 mm or more (defective).
(Pinhole)
○: No pinholes are confirmed (good).
Δ: There are 2 to 3 pinholes but they are very small (defect).
X: Many pinholes are confirmed, or one or more pinholes having a diameter of 1 mm or more (very poor).

Figure 2017183088
Figure 2017183088

<空気電池特性評価>
以下では、本発明の電極ペースト組成物より作製した正極を用いて、金属‐空気電池を作製する方法及び、特性評価について例示する。
<Air battery characteristics evaluation>
Below, it demonstrates about the method of producing a metal-air battery using the positive electrode produced from the electrode paste composition of this invention, and characteristic evaluation.

<マグネシウム空気一次電池用セルの作製>
負極としてMg板、正極として空気電池用正極層(1)〜(26)を使用し、両極でセパレータ(不織布)を挟み込み固定し、マグネシウム空気一次電池評価用セルを得た。
<Manufacture of cell for magnesium air primary battery>
Using a Mg plate as the negative electrode and positive electrode layers (1) to (26) for the air battery as the positive electrode, a separator (nonwoven fabric) was sandwiched and fixed between the two electrodes to obtain a magnesium air primary battery evaluation cell.

<マグネシウム空気一次電池の特性評価:開放電圧、放電容量>
得られたマグネシウム空気一次電池評価用セルのセパレータに電解液(20%塩化ナトリウム水溶液)を浸し、構成セルの開放電圧(OCV)と放電容量を充放電評価装置(ポテンショスタット)により測定した。正極に空気電池用正極層(1)〜(22)を使用したものでは、開放電圧が1.5〜2.0V、放電容量が1100〜1500mAh/gであったのに対し、空気電池用正極層(23)〜(26)では、開放電圧が1.1〜1.3V、放電容量が500〜900mAh/gであった。
<Characteristic evaluation of magnesium air primary battery: open circuit voltage, discharge capacity>
The electrolytic solution (20% aqueous sodium chloride solution) was immersed in the separator of the obtained magnesium-air primary battery evaluation cell, and the open circuit voltage (OCV) and discharge capacity of the constituent cells were measured with a charge / discharge evaluation apparatus (potentiostat). In the case where the positive electrode layers (1) to (22) for the air battery were used as the positive electrode, the open circuit voltage was 1.5 to 2.0 V and the discharge capacity was 1100 to 1500 mAh / g, whereas the positive electrode for the air battery In the layers (23) to (26), the open circuit voltage was 1.1 to 1.3 V, and the discharge capacity was 500 to 900 mAh / g.

<リチウム空気二次電池用評価セルの作製>
Li箔上へ、非水系電解液(1M LiPF6、エチレンカーボネート/ジエチルカーボネート=1/1、体積比)を含ませたセパレータ(多孔質ポリプロピレンフィルム)、固体電解質(オハラ社製、LiCGC Plate 1inch×150μmt)を配置し、アルミラミネートフィルムにて固定した。この際、固体電解質側のアルミラミネートフィルムを16mm角の大きさに切り抜き、固体電解質の露出面を作製し、空気電池用負極電極を作製した。
空気二次電池用負極電極の固体電解質上に、水性電解液として、1MのLiCl水溶液を含浸した不織布を、次いで、空気電池用正極層(1)〜(26)を配置し、アルミラミネートフィルムにより固定、熱圧着することで、リチウム空気二次電池用評価セルを得た。
<Preparation of evaluation cell for lithium-air secondary battery>
Separator (porous polypropylene film) containing a non-aqueous electrolyte solution (1M LiPF 6 , ethylene carbonate / diethyl carbonate = 1/1, volume ratio) on a Li foil, solid electrolyte (manufactured by OHARA, LiCGC Plate 1 inch × 150 μmt), and fixed with an aluminum laminate film. At this time, the aluminum laminate film on the solid electrolyte side was cut to a size of 16 mm square to produce an exposed surface of the solid electrolyte, and a negative electrode for an air battery was produced.
On the solid electrolyte of the negative electrode for the air secondary battery, a non-woven fabric impregnated with a 1M LiCl aqueous solution as an aqueous electrolyte is placed, and then the positive electrode layers (1) to (26) for the air battery are disposed. The evaluation cell for lithium air secondary batteries was obtained by fixing and thermocompression bonding.

<リチウム空気二次電池の特性評価:容量維持率>
得られたリチウム空気二次電池評価セルを用いて、2.0―4.8Vのカットオフ電圧、0.5mA/cm2の電流密度の条件で、3サイクルの慣らし運転を行った。その後、同条件にて、30サイクルの充放電テストを行うことで、容量保持率(1サイクル目の放電容量に対する30サイクル目の放電容量の百分率)を求めたところ、空気電池用正極層(1)〜(22)では容量維持率91〜95.5%であるのに対し、空気電池用正極層(23)〜(26)では容量維持率35〜65%であった。
<Characteristic evaluation of lithium-air secondary battery: Capacity maintenance ratio>
Using the obtained lithium-air secondary battery evaluation cell, a three-cycle break-in operation was performed under the conditions of a cut-off voltage of 2.0 to 4.8 V and a current density of 0.5 mA / cm 2 . Thereafter, a capacity retention rate (percentage of the discharge capacity at the 30th cycle with respect to the discharge capacity at the 1st cycle) was determined by performing a charge / discharge test of 30 cycles under the same conditions. ) To (22) had a capacity retention rate of 91 to 95.5%, whereas the positive electrode layers for air cells (23) to (26) had a capacity retention rate of 35 to 65%.

上述のように、実施例に比べ比較例で作製した空気電池用正極層では、いずれも高い電池特性を示した。実施例では、電極ペーストの分散性が著しく向上したことで、塗工ムラやピンホールが改善され、空気電池の反応に必要な酸素が正極層全体に供給出来たことに加え、酸素還元の反応場となる炭素材料や酸素還元触媒の反応表面積を増やすことが出来たために、電池特性が向上したと考えられる。   As described above, in the positive electrode layer for an air battery manufactured in the comparative example as compared with the example, all showed high battery characteristics. In the examples, the dispersibility of the electrode paste was remarkably improved, so that coating unevenness and pinholes were improved, and oxygen necessary for the reaction of the air battery could be supplied to the entire positive electrode layer, in addition to the oxygen reduction reaction. It is thought that the battery characteristics were improved because the reaction surface area of the carbon material and oxygen reduction catalyst used as the field could be increased.

Claims (9)

導電性炭素材料(A)及び/又は酸素還元触媒(B)と、水溶性樹脂型分散剤(C)と、水性液状媒体(D)とを含有してなる空気電池用電極ペースト組成物であって、
水溶性樹脂型分散剤(C)が、塩基性官能基を有する樹脂、酸性官能基を有する樹脂、塩基性官能基および酸性官能基を有する樹脂並びにノニオン性樹脂からなる群から選ばれる一種以上の樹脂である空気電池用電極ペースト組成物。
An air battery electrode paste composition comprising a conductive carbon material (A) and / or an oxygen reduction catalyst (B), a water-soluble resin-type dispersant (C), and an aqueous liquid medium (D). And
The water-soluble resin type dispersant (C) is one or more selected from the group consisting of a resin having a basic functional group, a resin having an acidic functional group, a resin having a basic functional group and an acidic functional group, and a nonionic resin. The electrode paste composition for air batteries which is resin.
水溶性樹脂型分散剤(C)が、ポリビニル系樹脂である請求項1記載の空気電池用電極ペースト組成物。   The electrode paste composition for an air battery according to claim 1, wherein the water-soluble resin type dispersant (C) is a polyvinyl resin. 水溶性樹脂型分散剤(C)が、ノニオン性樹脂である請求項1または2記載の空気電池用電極ペースト組成物。   The electrode paste composition for an air battery according to claim 1 or 2, wherein the water-soluble resin type dispersant (C) is a nonionic resin. 導電性炭素材料(A)が、カーボンブラック、グラフェン系炭素材料およびカーボンナノチューブからなる群から選ばれる一種以上の炭素材料である請求項1〜3いずれか記載の空気電池用電極ペースト組成物。   The electrode paste composition for an air battery according to any one of claims 1 to 3, wherein the conductive carbon material (A) is one or more carbon materials selected from the group consisting of carbon black, graphene-based carbon materials, and carbon nanotubes. 酸素還元触媒(B)が、担持金属触媒、酸化物系触媒及び非白金系炭素触媒からなる群から選ばれる一種以上の酸素還元触媒である請求項1〜4いずれか記載の空気電池用電極ペースト組成物。   5. The electrode paste for an air battery according to claim 1, wherein the oxygen reduction catalyst (B) is one or more oxygen reduction catalysts selected from the group consisting of a supported metal catalyst, an oxide-based catalyst, and a non-platinum-based carbon catalyst. Composition. 更に、バインダーを含んでなる請求項1〜5いずれか記載の空気電池用電極ペースト組成物。 The electrode paste composition for an air battery according to any one of claims 1 to 5, further comprising a binder. 更に、支持電解質塩を含んでなる請求項1〜6いずれか記載の空気電池用電極ペースト組成物。 The electrode paste composition for an air battery according to any one of claims 1 to 6, further comprising a supporting electrolyte salt. 請求項1〜7いずれか記載の組成物を使用して形成される空気電池用正極材料。 The positive electrode material for air batteries formed using the composition in any one of Claims 1-7. 請求項1〜7いずれか記載の組成物又は、請求項8記載の正極材料を使用して形成される空気電池。 The air battery formed using the composition in any one of Claims 1-7, or the positive electrode material of Claim 8.
JP2016068783A 2016-03-30 2016-03-30 Electrode paste composition for air battery, positive electrode material for air battery, and air battery Active JP6743454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016068783A JP6743454B2 (en) 2016-03-30 2016-03-30 Electrode paste composition for air battery, positive electrode material for air battery, and air battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016068783A JP6743454B2 (en) 2016-03-30 2016-03-30 Electrode paste composition for air battery, positive electrode material for air battery, and air battery

Publications (2)

Publication Number Publication Date
JP2017183088A true JP2017183088A (en) 2017-10-05
JP6743454B2 JP6743454B2 (en) 2020-08-19

Family

ID=60006218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068783A Active JP6743454B2 (en) 2016-03-30 2016-03-30 Electrode paste composition for air battery, positive electrode material for air battery, and air battery

Country Status (1)

Country Link
JP (1) JP6743454B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025975A1 (en) * 2010-08-23 2012-03-01 トヨタ自動車株式会社 Air electrode, metal-air battery, and method for producing air electrode for metal-air battery
JP2014042910A (en) * 2012-08-01 2014-03-13 Toyo Ink Sc Holdings Co Ltd Carbon catalyst granular body, production method of carbon catalyst granular body, and catalyst ink and fuel cell using the carbon catalyst granular body
JP2015005392A (en) * 2013-06-20 2015-01-08 東洋インキScホールディングス株式会社 Composition for current collector coating for catalyst electrode, current collector with coat layer, catalyst electrode, fuel battery, and air battery
JP2015015163A (en) * 2013-07-05 2015-01-22 東洋インキScホールディングス株式会社 Method for manufacturing catalyst ink, catalyst ink, catalyst electrode, fuel battery, and air battery
JP2015028932A (en) * 2013-07-05 2015-02-12 東洋インキScホールディングス株式会社 Aqueous catalyst paste composition for fuel batteries, and fuel battery
JP2015092437A (en) * 2013-11-08 2015-05-14 東洋インキScホールディングス株式会社 Composition for fuel battery electrode formation, and fuel battery arranged by use thereof
JP2015093223A (en) * 2013-11-11 2015-05-18 東洋インキScホールディングス株式会社 Oxide based non-platinum catalyst granules, manufacturing method of oxide based non-platinum catalyst granules, and catalyst ink and fuel cell using the oxide based non-platinum catalyst granules

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012025975A1 (en) * 2010-08-23 2012-03-01 トヨタ自動車株式会社 Air electrode, metal-air battery, and method for producing air electrode for metal-air battery
JP2014042910A (en) * 2012-08-01 2014-03-13 Toyo Ink Sc Holdings Co Ltd Carbon catalyst granular body, production method of carbon catalyst granular body, and catalyst ink and fuel cell using the carbon catalyst granular body
JP2015005392A (en) * 2013-06-20 2015-01-08 東洋インキScホールディングス株式会社 Composition for current collector coating for catalyst electrode, current collector with coat layer, catalyst electrode, fuel battery, and air battery
JP2015015163A (en) * 2013-07-05 2015-01-22 東洋インキScホールディングス株式会社 Method for manufacturing catalyst ink, catalyst ink, catalyst electrode, fuel battery, and air battery
JP2015028932A (en) * 2013-07-05 2015-02-12 東洋インキScホールディングス株式会社 Aqueous catalyst paste composition for fuel batteries, and fuel battery
JP2015092437A (en) * 2013-11-08 2015-05-14 東洋インキScホールディングス株式会社 Composition for fuel battery electrode formation, and fuel battery arranged by use thereof
JP2015093223A (en) * 2013-11-11 2015-05-18 東洋インキScホールディングス株式会社 Oxide based non-platinum catalyst granules, manufacturing method of oxide based non-platinum catalyst granules, and catalyst ink and fuel cell using the oxide based non-platinum catalyst granules

Also Published As

Publication number Publication date
JP6743454B2 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
JP5935820B2 (en) Conductive composition, current collector with base layer for power storage device, electrode for power storage device, and power storage device
JP6354393B2 (en) Aqueous catalyst paste composition for fuel cell and fuel cell
CN107706427B (en) Positive electrode for metal-air battery, metal-air battery including the same, and method of preparing positive electrode for metal-air battery
JP6109525B2 (en) Emulsion binder for forming nickel-metal hydride secondary battery electrode and composite ink for forming nickel-hydrogen secondary battery electrode
JP6736929B2 (en) Fuel cell paste composition and fuel cell
CN116621164A (en) Fibrous carbon nanohorn aggregate and preparation method thereof
JP2014203555A (en) Composition for secondary battery electrode formation, method for manufacturing the same, secondary battery electrode, and secondary battery
JP6182995B2 (en) Composition for current collector coating for catalyst electrode, current collector with coat layer, catalyst electrode, fuel cell and air cell
WO2014129313A1 (en) Conductive composition, collector with base layer for electricity storage devices, electrode for electricity storage devices, and electricity storage device
JP6727266B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP2019029074A (en) Composition for forming enzyme battery positive electrode, positive electrode for enzyme battery, and enzyme battery
JP2014135275A (en) Composition for forming electricity storage device electrode, electricity storage device electrode, and electricity storage device
JP6809135B2 (en) Coating composition, separator with coat layer, current collector plate with coat layer and fuel cell
JP6314491B2 (en) Secondary battery electrode forming composition, secondary battery electrode and secondary battery
JP6727263B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP6186959B2 (en) Method for producing catalyst ink, catalyst ink, catalyst electrode, fuel cell, and air cell
WO2017177960A1 (en) Electrolyte solution, battery, and battery pack
JP2018166086A (en) Electrode paste composition for enzyme battery cathode, electrode for enzyme battery cathode, and enzyme electrode battery
JP6727264B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
JP6464734B2 (en) Aqueous catalyst paste composition for fuel cell and fuel cell
JP6743454B2 (en) Electrode paste composition for air battery, positive electrode material for air battery, and air battery
JP2020021629A (en) Carbon black dispersion composition for battery and use thereof
JP7547759B2 (en) Composition for forming fuel cell electrode, and electrode and fuel cell made using the same
KR102506439B1 (en) Positive electrode for metal air battery, metal air battery including the same, and method of preparing the positive electrode for metal air battery
JP2020177734A (en) Method for manufacturing electrode catalyst layer for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200713

R151 Written notification of patent or utility model registration

Ref document number: 6743454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250