JP6736929B2 - Fuel cell paste composition and fuel cell - Google Patents

Fuel cell paste composition and fuel cell Download PDF

Info

Publication number
JP6736929B2
JP6736929B2 JP2016059608A JP2016059608A JP6736929B2 JP 6736929 B2 JP6736929 B2 JP 6736929B2 JP 2016059608 A JP2016059608 A JP 2016059608A JP 2016059608 A JP2016059608 A JP 2016059608A JP 6736929 B2 JP6736929 B2 JP 6736929B2
Authority
JP
Japan
Prior art keywords
fuel cell
catalyst
carbon
platinum
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016059608A
Other languages
Japanese (ja)
Other versions
JP2016192399A (en
Inventor
聡一郎 深川
聡一郎 深川
直幹 出口
直幹 出口
寛人 渡部
寛人 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Publication of JP2016192399A publication Critical patent/JP2016192399A/en
Application granted granted Critical
Publication of JP6736929B2 publication Critical patent/JP6736929B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

本発明は、燃料電池用の触媒ペースト組成物に係り、それらを用いた触媒層及びそれらを具備する触媒電極ならびに電極膜接合体および燃料電池に関する。 The present invention relates to a catalyst paste composition for a fuel cell, a catalyst layer using the same, a catalyst electrode having the catalyst layer, an electrode membrane assembly and a fuel cell.

燃料電池は、電気化学システムを用いて化学エネルギーを電気エネルギーに直接変換できるシステムであり、高効率であるため次世代エネルギーとして期待されている。燃料電池には、ガス燃料としての水素や液体燃料としてのメタノール等を利用する固体高分子形燃料電池や、電子供与微生物を利用する微生物燃料電池等が知られているほか、負極活物質として金属を用いる金属‐空気電池も、金属を負極側に補給することにより放電性能を維持することができるため、広義には燃料電池の1種として捉えることができる。中でも、固体高分子形燃料電池は作動温度が低く、高効率である点から自動車用、定置用、小型モバイル用に活発に開発が進められている。 A fuel cell is a system that can directly convert chemical energy into electric energy by using an electrochemical system, and is expected as a next-generation energy because it has high efficiency. Known fuel cells include polymer electrolyte fuel cells that use hydrogen as a gas fuel and methanol as a liquid fuel, and microbial fuel cells that use electron-donating microorganisms. The metal-air battery using is also capable of maintaining the discharge performance by replenishing the metal on the negative electrode side, and therefore can be broadly regarded as one type of fuel cell. Among them, the polymer electrolyte fuel cell is under active development for automobiles, stationary, and small mobiles because of its low operating temperature and high efficiency.

従来より、これら燃料電池の電極触媒には、正極側活物質である酸素を水もしくは水酸化物イオンへ変換するため、高い酸素還元活性を有する白金や白金合金等を用いる白金系触媒が用いられているが、コスト、資源量、供給安定性の面から、白金系触媒以外の触媒(非白金系触媒と呼ぶ)の開発が求められている。しかし、現状の非白金系触媒の性能は、白金系触媒に比べて十分ではないため、白金の使用量を大幅に低減した触媒や、白金を使用しない非白金系触媒の技術開発が進められている。(非特許文献1、特許文献1〜3など) Conventionally, a platinum-based catalyst using platinum or a platinum alloy having high oxygen reduction activity is used for the electrode catalyst of these fuel cells in order to convert oxygen, which is a positive electrode side active material, into water or hydroxide ion. However, development of catalysts other than platinum-based catalysts (called non-platinum-based catalysts) is required in terms of cost, resource amount, and supply stability. However, the current performance of non-platinum-based catalysts is not sufficient compared to platinum-based catalysts, so technological development of catalysts that significantly reduce the amount of platinum used and non-platinum-based catalysts that do not use platinum has been promoted. There is. (Non-patent document 1, patent documents 1-3, etc.)

そのような非白金系触媒として、例えば、特許文献2では、高分子金属錯体に炭素添加物を混合し熱処理した炭素化物に、窒素をドープした炭素材料が提案されている。このような窒素をドープした炭素材料は、酸素還元活性を有する非白金系触媒として利用することができる。また、特許文献3では、表面処理した炭素材料にイオン交換性官能基をグラフト化反応により導入した炭素材料が、非白金系触媒として使用できることが提案されている。 As such a non-platinum-based catalyst, for example, Patent Document 2 proposes a carbon material in which a carbonized product obtained by mixing a polymer metal complex with a carbon additive and subjecting to heat treatment is doped with nitrogen. Such a nitrogen-doped carbon material can be used as a non-platinum-based catalyst having oxygen reduction activity. Patent Document 3 proposes that a carbon material obtained by introducing an ion-exchange functional group into a surface-treated carbon material by a grafting reaction can be used as a non-platinum-based catalyst.

非白金系触媒は、白金系触媒よりも、経済的でコスト優位性が高いため積極的な開発が進められているが、その性能はまだ十分ではなく、白金系触媒を使用した場合に近い電池性能を得るためには、触媒層の厚みを増加させ、触媒層中の触媒粒子を増加させる必要がある。また、厚みが増加することでガスの透過性が悪化し、電流量の低下や起電力の低下を引き起こしてしまうという問題がある。このような技術課題があるが、これを解決する手段が見出せていなかった。 Non-platinum-based catalysts are being actively developed because they are more economical and more cost-effective than platinum-based catalysts, but their performance is not yet sufficient, and batteries similar to those using platinum-based catalysts are used. In order to obtain performance, it is necessary to increase the thickness of the catalyst layer and increase the number of catalyst particles in the catalyst layer. Further, there is a problem in that the gas permeability deteriorates due to the increase in thickness, which causes a decrease in current amount and a decrease in electromotive force. Although there are such technical problems, no means for solving them has been found.

特開2011−6283号公報JP, 2011-6283, A 特開2008−282725号公報Japanese Patent Laid-Open No. 2008-28725 特開2009−295441号公報JP, 2009-295441, A

SCIENCE(VOL.332、第443〜447頁、2011年)SCIENCE (VOL.332, pp. 443-447, 2011)

本発明が解決しようとする課題は、触媒層のガス拡散性に課題がある非白金系炭素系触媒において、疎水性の炭素材料を添加することで、ガス拡散性の良い燃料電池用触媒層を作製する燃料電池用触媒ペーストを提供することである。また前記燃料電池用触媒ペースト組成物から形成されてなる燃料電池用触媒層を具備する燃料電池用触媒電極ならびに燃料電池用電極膜接合体と、電池性能に優れた燃料電池を提供することである。 The problem to be solved by the present invention is to provide a catalyst layer for a fuel cell having good gas diffusibility by adding a hydrophobic carbon material in a non-platinum-based carbon-based catalyst having a problem in gas diffusivity of the catalyst layer. It is to provide a catalyst paste for a fuel cell to be produced. Another object of the present invention is to provide a fuel cell catalyst electrode comprising a fuel cell catalyst layer formed of the fuel cell catalyst paste composition, a fuel cell electrode membrane assembly, and a fuel cell having excellent cell performance. ..

本発明者らは、前記諸問題を解決するために鋭意研究を重ねた結果、本発明に至った。第一の発明は、非白金系炭素系触媒と、炭素材料と、溶剤と、バインダーを含んでなる燃料電池用触媒ペースト組成物であって、
前記炭素材料の親水度(水を吸着種としたBET比表面積(BETH2O)と、窒素を吸着種としたBET比表面積(BETN2)との比(BETH2O /BETN2))が0.5以下であり、
前記非白金系炭素系触媒の親水度が0.6〜4.9であり、
前記非白金系炭素系触媒に対する前記炭素材料の質量比が0.1〜50質量%であることを特徴とする燃料電池用触媒ペースト組成物に関する。
The present inventors have accomplished the present invention as a result of earnest researches for solving the above problems. A first invention is a catalyst paste composition for a fuel cell, comprising a non-platinum-based carbon catalyst, a carbon material, a solvent, and a binder,
The hydrophilicity of the carbon material (the ratio of the BET specific surface area (BET H2O ) using water as an adsorbing species and the BET specific surface area (BET N2 ) using nitrogen as an adsorbing species (BET H2O /BET N2 )) is 0.5. Is less than
The hydrophilicity of the non-platinum-based carbon-based catalyst is 0.6 to 4.9,
The catalyst paste composition for a fuel cell is characterized in that a mass ratio of the carbon material to the non-platinum-based carbon catalyst is 0.1 to 50 mass %.

第二の発明は、非白金系炭素系触媒の親水度が0.6〜2.5であり、かつ炭素材料のBETN2が100m2/g以上、細孔容積が0.4cm/g以上、かさ密度が0.4g/cm以下であることを特徴とする上記燃料電池用触媒ペースト組成物に関する。 The second invention is that the non-platinum-based carbon catalyst has a hydrophilicity of 0.6 to 2.5, the carbon material has a BET N2 of 100 m 2 /g or more, and a pore volume of 0.4 cm 3 /g or more. Further, the present invention relates to the above catalyst paste composition for fuel cells, which has a bulk density of 0.4 g/cm 3 or less.

第三の発明は、炭素材料の親水度が0.15以下、BETN2が500m2/g以上であることを特徴とする上記燃料電池用触媒ペースト組成物に関する。 A third invention relates to the catalyst paste composition for a fuel cell, wherein the carbon material has a hydrophilicity of 0.15 or less and BET N2 of 500 m 2 /g or more.

第四の発明は、上記燃料電池用触媒ペースト組成物から形成されてなる燃料電池用触媒層に関する。 A fourth invention relates to a fuel cell catalyst layer formed from the above fuel cell catalyst paste composition.

第五の発明は、上記燃料電池用触媒層と導電性支持体とを具備してなる燃料電池用触媒電極に関する。 A fifth aspect of the present invention relates to a fuel cell catalyst electrode comprising the fuel cell catalyst layer and a conductive support.

第六の発明は、固体高分子電解質膜と、上記燃料電池用触媒電極を具備してなる燃料電池用電極膜接合体に関する。 A sixth invention relates to a fuel cell electrode membrane assembly including a solid polymer electrolyte membrane and the fuel cell catalyst electrode.

第七の発明は、上記燃料電池用触媒電極または上記燃料電池用電極膜接合体の少なくとも一方を具備してなる燃料電池に関する。 A seventh invention relates to a fuel cell comprising at least one of the fuel cell catalyst electrode and the fuel cell electrode membrane assembly.

本発明によれば、非白金系炭素系触媒、溶剤、バインダーに疎水性の炭素材料を添加することで、ガス拡散性の良い燃料電池用触媒層を作製する燃料電池用触媒ペーストを提供することが可能となる。また前記燃料電池用触媒ペースト組成物から形成されてなる燃料電池用触媒層を具備する燃料電池用触媒電極ならびに燃料電池用電極膜接合体を得ることで、ガス拡散性の良い電池性能に優れた燃料電池を提供することが可能となる。 According to the present invention, there is provided a catalyst paste for a fuel cell, in which a non-platinum-based carbon catalyst, a solvent, and a hydrophobic carbon material are added to a binder to produce a fuel cell catalyst layer having good gas diffusion properties. Is possible. Further, by obtaining a catalyst electrode for a fuel cell and a fuel cell electrode membrane assembly including a catalyst layer for a fuel cell formed from the catalyst paste composition for a fuel cell, excellent cell performance with good gas diffusivity can be obtained. It becomes possible to provide a fuel cell.

<非白金系炭素系触媒>
非白金系炭素系触媒とは、炭素(C)原子の集合体を主体とした多成分系からなり、それらの構成単位間に物理的・化学的な相互作用(結合)を有し、異種元素、たとえば窒素(N)、ホウ素(B)、リン(P)などのヘテロ原子や卑金属元素が含まれる触媒で、1種または2種以上の、炭素材料または窒素元素および卑金属元素を有する化合物を混合、熱処理して、得ることができ、従来公知のものを使用することができる。
ヘテロ原子と卑金属元素を含有することは、酸素還元活性を有するうえで重要な意味をなす。一般的に非白金系炭素系触媒の場合、その触媒活性点として、炭素材料表面に卑金属元素を中心に、例えば、4個の窒素が平面上に並んだ構造(卑金属−N4構造と呼ぶ)部分における卑金属元素や、炭素材料表面のエッジ部に導入されたヘテロ原子近傍の炭素原子などが挙げられる。
このような非白金系炭素系触媒は、従来公知の白金を担持させた炭素材料と同様に、酸素還元触媒能を有し、燃料電池用電極触媒として好適に使用することができる。非白金系炭素系触媒は、正極、負極の両方に使用することができるが、正極として通常用いられることが多い。
<Non-platinum-based carbon catalyst>
The non-platinum-based carbon-based catalyst is a multi-component system mainly composed of aggregates of carbon (C) atoms, has physical/chemical interactions (bonds) between the constituent units, and is a different element. , A catalyst containing a heteroatom such as nitrogen (N), boron (B), or phosphorus (P) or a base metal element, and mixed with one or more kinds of a carbon material or a compound having a nitrogen element and a base metal element. It can be obtained by heat treatment, and conventionally known materials can be used.
Containing a hetero atom and a base metal element is important for having oxygen reduction activity. Generally, in the case of a non-platinum-based carbon-based catalyst, as a catalytic active point, a structure (referred to as a base metal-N4 structure) in which four nitrogens are arranged on a plane centering on the base metal element on the surface of the carbon material The base metal element in, the carbon atom in the vicinity of the hetero atom introduced at the edge portion of the surface of the carbon material, and the like can be mentioned.
Such a non-platinum-based carbon catalyst has an oxygen reduction catalytic ability like the conventionally known platinum-supported carbon material, and can be suitably used as a fuel cell electrode catalyst. The non-platinum-based carbon catalyst can be used for both the positive electrode and the negative electrode, but it is often used as the positive electrode.

本発明に係る非白金系炭素系触媒においては、窒素やホウ素、リンなどのドープ量(非白金系炭素系触媒中の窒素やホウ素、リンなどの含有量)が、それぞれ0.1〜40モル%であるときに、酸素還元に関して良好な触媒活性を示す。また、窒素とホウ素とを同時にドープしたときには、両者の相互作用により、より一層高い電極活性を示す。また、窒素とホウ素の双方をドープする場合には、原子比(B/N)は、0.2〜0.4、好ましくは0.06〜1.5であり、またモル比((B+N)/C)は、好ましくは0.03〜0.4である。これらの範囲内において、活性の高い非白金系炭素系触媒を得ることができる。 In the non-platinum-based carbon catalyst according to the present invention, the doping amount of nitrogen, boron, phosphorus, etc. (the content of nitrogen, boron, phosphorus, etc. in the non-platinum-based carbon catalyst) is 0.1 to 40 mol, respectively. % Indicates good catalytic activity for oxygen reduction. Further, when nitrogen and boron are simultaneously doped, the interaction between the two shows higher electrode activity. When both nitrogen and boron are doped, the atomic ratio (B/N) is 0.2 to 0.4, preferably 0.06 to 1.5, and the molar ratio ((B+N) /C) is preferably 0.03 to 0.4. Within these ranges, a highly active non-platinum-based carbon catalyst can be obtained.

<非白金系炭素系触媒の製造方法>
非白金系炭素系触媒の製造方法は特に限定されず、炭素材料表面に大環状化合物を担持させ炭化させる方法、大環状化合物と有機材料との混合物を炭化させる方法、大環状化合物を含まない有機材料を炭化させる方法、無機炭素材料由来の炭素粒子を用いる方法など、従来公知の方法を使用できる。好ましい製造方法としては、無機炭素材料由来の炭素粒子と窒素元素および卑金属元素を含有する化合物とを混合後に不活性ガス雰囲気中で熱処理して非白金系炭素系触媒を得る方法である。前記熱処理は、複数の温度で多段階に行ってもよく、また、熱処理工程の後若しくは途中に、酸で洗浄、及び乾燥する工程を含んでも良い。
<Method for producing non-platinum-based carbon catalyst>
The method for producing the non-platinum-based carbon-based catalyst is not particularly limited, and a method of supporting a macrocyclic compound on the surface of the carbon material for carbonization, a method of carbonizing a mixture of the macrocyclic compound and an organic material, an organic material containing no macrocyclic compound Conventionally known methods such as a method of carbonizing a material and a method of using carbon particles derived from an inorganic carbon material can be used. A preferred production method is a method in which carbon particles derived from an inorganic carbon material and a compound containing a nitrogen element and a base metal element are mixed and then heat-treated in an inert gas atmosphere to obtain a non-platinum-based carbon catalyst. The heat treatment may be performed in multiple stages at a plurality of temperatures, and may include a step of washing with acid and drying after or during the heat treatment step.

非白金系炭素系触媒を製造する際に、原料を混合する場合では、原料同士が均一に混合・複合されている方が好ましく、混合法としては、乾式混合及び湿式混合が挙げられる。混合装置としては、以下のような乾式混合装置や湿式混合装置を使用できる。
乾式混合装置としては、例えば、2本ロールや3本ロール等のロールミル、ヘンシェルミキサーやスーパーミキサー等の高速攪拌機、マイクロナイザーやジェットミル等の流体エネルギー粉砕機、アトライター、ホソカワミクロン社製粒子複合化装置「ナノキュア」、「ノビルタ」、「メカノフュージョン」、奈良機械製作所社製粉体表面改質装置「ハイブリダイゼーションシステム」、「メカノマイクロス」、「ミラーロ」等が挙げられる。
乾式混合装置を使用する際には、母体となる原料粉体に他の原料を粉体のまま直接添加してもよいが、より均一な混合物を作製するために、前もって他の原料を少量の溶媒に溶解、又は分散させておき、母体となる原料粉体の凝集粒子を解しながら添加する方法が好ましい。更に、処理効率を上げるために、加温することが好ましい場合もある。
In the case of mixing the raw materials when manufacturing the non-platinum-based carbon-based catalyst, it is preferable that the raw materials are uniformly mixed and compounded. Examples of the mixing method include dry mixing and wet mixing. As the mixing device, the following dry mixing device or wet mixing device can be used.
Examples of the dry mixing device include a roll mill such as a two-roll or three-roll roll, a high-speed agitator such as a Henschel mixer and a supermixer, a fluid energy grinder such as a micronizer and a jet mill, an attritor, and a particle composite made by Hosokawa Micron. Examples of the apparatus include "Nanocure", "Nobilta", "Mechanofusion", powder surface reforming apparatus "Hybridization system", "Mechanomicros", "Millaro" manufactured by Nara Machine Works.
When using a dry-mixing device, other raw materials may be added directly to the raw material powder which is the base material in a powder form, but in order to prepare a more uniform mixture, a small amount of the other raw material may be added in advance. A method is preferred in which it is dissolved or dispersed in a solvent and then added while unraveling the agglomerated particles of the raw material powder that is the matrix. Further, in some cases, heating may be preferable in order to improve the processing efficiency.

原料の中には、常温では固体であるが、融点、軟化点、又はガラス転移温度が100℃未満と低い材料がある。それらの材料を用いる場合、常温で混合するより、加温下で溶融させて混合する方がより均一に混合できる場合もある。 Among the raw materials, there are materials that are solid at room temperature but have a low melting point, softening point, or glass transition temperature of less than 100°C. When using these materials, it may be possible to mix more uniformly by melting and mixing under heating rather than mixing at room temperature.

湿式混合装置としては、例えば、ディスパー、ホモミキサー、若しくはプラネタリーミキサー等のミキサー類;
エム・テクニック社製「クレアミックス」、若しくはPRIMIX社製「フィルミックス」等のホモジナイザー類;
ペイントコンディショナー(レッドデビル社製)、ボールミル、サンドミル(シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(アイリッヒ社製「DCPミル」等)、若しくはコボールミル等のメディア型分散機;
湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS−5」、奈良機械製作所社製「マイクロス」等のメディアレス分散機;
その他ロールミル、ニーダー等が挙げられるが、これらに限定されるものではない。又、湿式混合装置としては、装置からの金属混入防止処理を施したものを用いることが好ましい場合がある。
Examples of the wet mixing device include mixers such as a disper, a homomixer, and a planetary mixer;
Homogenizers such as "Clearmix" manufactured by M Technique Co., Ltd. or "Filmix" manufactured by PRIMIX Co., Ltd.;
Media conditioner such as paint conditioner (manufactured by Red Devil), ball mill, sand mill (“Dyno mill” manufactured by Shinmaru Enterprises, etc.), attritor, pearl mill (“DCP mill” manufactured by Eirich, etc.), or coball mill;
Wet jet mill ("Genus PY" manufactured by Genus, "Starburst" manufactured by Sugino Machine, "Nanomizer" manufactured by Nanomizer, "Clear SS-5" manufactured by M Technique, "Micros" manufactured by Nara Machinery Co., Ltd. "Medialess disperser such as;
Other examples include, but are not limited to, roll mills and kneaders. Further, as the wet mixing device, it may be preferable to use a device which has been subjected to a metal mixing prevention treatment from the device.

例えば、メディア型分散機を使用する場合は、アジテーター及びベッセルがセラミック製又は樹脂製の分散機を使用する方法や、金属製アジテーター及びベッセル表面がタングステンカーバイド溶射又は樹脂コーティング等で処理された分散機を用いることが好ましい。メディアは、ガラスビーズ、又は、ジルコニアビーズ、若しくはアルミナビーズ等のセラミックビーズを用いることが好ましい。また、ロールミルを使用する場合は、セラミック製ロールを用いることが好ましい。分散装置は、1種のみを使用してもよいし、複数種の装置を組み合わせて使用してもよい。また、原料の溶媒への濡れ性、分散性を向上させるために、一般的な親水性官能基を有する分散剤を一緒に添加し、分散、及び混合することができる。 For example, when using a media type disperser, a method in which the agitator and vessel are made of ceramic or resin, or a metal agitator and vessel surface are treated with tungsten carbide spray or resin coating Is preferably used. As the medium, it is preferable to use glass beads or ceramic beads such as zirconia beads or alumina beads. Moreover, when using a roll mill, it is preferable to use a ceramic roll. Only one type of dispersion device may be used, or a plurality of types of devices may be used in combination. Further, in order to improve the wettability and dispersibility of the raw material in the solvent, a general dispersant having a hydrophilic functional group can be added together, dispersed and mixed.

湿式混合する際、各原料が均一に溶解しないケースにおいては、各原料の溶媒への濡れ性、及び分散性を向上させるために、市販の分散剤を一緒に添加し、分散して混合してもよい。 In the case where each raw material is not uniformly dissolved during wet mixing, a commercially available dispersant is added together, dispersed and mixed in order to improve wettability and dispersibility of each raw material in a solvent. Good.

湿式混合の場合、混合前駆体を乾燥させる工程が必要となる。この場合、乾燥装置としては、棚式乾燥機、回転乾燥機、気流乾燥機、噴霧乾燥機、撹拌乾燥機、凍結乾燥機などを好適に使用することが出来る。 In the case of wet mixing, a step of drying the mixed precursor is required. In this case, as the drying device, a shelf dryer, a rotary dryer, a flash dryer, a spray dryer, a stirring dryer, a freeze dryer and the like can be preferably used.

炭素材料と窒素元素および卑金属元素を有する化合物の混合物を熱処理する方法においては、原料となる炭素材料、窒素元素および卑金属元素有する化合物によって異なるが、活性点の構造が安定しやすい観点から加熱温度は500〜1100℃が好ましい。 In the method of heat-treating a mixture of a carbon material and a compound having a nitrogen element and a base metal element, the heating temperature is different from the viewpoint that the structure of the active site is likely to be stable, although it depends on the carbon material as a raw material, the compound having the nitrogen element and the base metal element. 500-1100 degreeC is preferable.

熱処理における雰囲気は、窒素やアルゴン等の不活性ガス雰囲気や、不活性ガスに水素が混合された還元性ガス雰囲気が好ましい。原料をできるだけ不完全燃焼により炭化させ、窒素元素、卑金属元素等を非白金系炭素系触媒表面に残存させる必要性があるためである。また、熱処理における非白金系炭素系触媒中の窒素元素の低減を抑制するために、窒素元素を多量に含むアンモニアガス雰囲気下で熱処理を行うこともできる。 The atmosphere in the heat treatment is preferably an inert gas atmosphere such as nitrogen or argon, or a reducing gas atmosphere in which hydrogen is mixed with an inert gas. This is because it is necessary to carbonize the raw material by incomplete combustion as much as possible to leave nitrogen elements, base metal elements, etc. on the surface of the non-platinum-based carbon catalyst. Further, in order to suppress the reduction of the nitrogen element in the non-platinum-based carbon-based catalyst during the heat treatment, the heat treatment can be performed in an ammonia gas atmosphere containing a large amount of nitrogen element.

また、熱処理は、一定の温度下、1段階で処理を行う方法に限定されない。例えば、分解温度の異なる炭素材料または窒素元素および卑金属元素を有する化合物を2種類以上混合する場合は、各成分の熱分解温度に合わせて、加熱温度の異なる数段階に分けて熱処理を行なうことも可能である。これにより、活性点をより効率的に多く残存させられることがある。 Further, the heat treatment is not limited to the method of performing the treatment in one step at a constant temperature. For example, when two or more kinds of carbon materials having different decomposition temperatures or compounds having a nitrogen element and a base metal element are mixed, heat treatment may be performed in several stages having different heating temperatures according to the thermal decomposition temperature of each component. It is possible. This may allow more active sites to remain more efficiently.

非白金系炭素系触媒の製造方法としては、更に、前記熱処理により得られた非白金系炭素系触媒を酸で洗浄、及び乾燥する工程を含む方法が挙げられる。ここで用いる酸は、前記熱処理により得られた非白金系炭素系触媒の表面に存在する活性点として作用しない卑金属成分を溶出させることができるものであれば特に限定されない。非白金系炭素系触媒との反応性が低く、卑金属成分の溶解力が強い濃塩酸や希硫酸等が好ましい。具体的な洗浄方法としては、ガラス容器内に酸を加え、非白金系炭素系触媒を添加し、分散させながら数時間撹拌させた後、静置し、上澄みを除去する。そして、上澄みの着色が確認されなくなるまで上記方法を繰り返し行い、最後に、ろ過、水洗により酸を除去し、乾燥する方法が挙げられる。触媒活性点としてエッジ部の窒素元素近傍の炭素元素を有する非白金系炭素系触媒は、酸で洗浄することにより、表面の活性点として作用しない卑金属成分が除去され触媒活性が向上するため好ましい場合がある。 Examples of the method for producing a non-platinum-based carbon catalyst include a method including a step of washing the non-platinum-based carbon catalyst obtained by the heat treatment with an acid, and drying. The acid used here is not particularly limited as long as it can elute the base metal component that does not act as an active site present on the surface of the non-platinum-based carbon catalyst obtained by the heat treatment. Concentrated hydrochloric acid, diluted sulfuric acid and the like, which have low reactivity with the non-platinum-based carbon catalyst and have a strong dissolving power for the base metal component, are preferable. As a specific cleaning method, an acid is added to a glass container, a non-platinum-based carbon-based catalyst is added thereto, the mixture is stirred for several hours while being dispersed, and then allowed to stand to remove a supernatant. Then, the above method is repeated until coloring of the supernatant is no longer confirmed, and finally, a method of removing the acid by filtration and washing with water and drying. When the non-platinum-based carbon-based catalyst having a carbon element near the nitrogen element in the edge portion as a catalyst active point is washed with an acid, a base metal component that does not act as an active point on the surface is removed and the catalytic activity is improved. There is.

<炭素材料>
本発明における炭素材料としては、無機材料由来の炭素粒子および/または有機材料を熱処理して得られる炭素粒子であれば特に限定されない。
無機材料由来の炭素粒子としては、カーボンブラック(ファーネスブラック、アセチレンブラック、ケッチェンブラック、ミディアムサーマルカーボンブラック)、活性炭、黒鉛、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン、グラフェンナノプレートレット、ナノポーラスカーボン、炭素繊維等が挙げられる。炭素材料は、種類やメーカーによって、粒子径、形状、BET比表面積、細孔容積、細孔径、かさ密度、DBP吸油量、表面酸塩基度、表面親水度、導電性など様々な物性やコストが異なるため、使用する用途や要求性能に合わせて最適な材料を選択する。
熱処理して炭素粒子となる有機材料としては、熱処理後炭素粒子となる材料であれば特に限定されない。熱処理後の炭素粒子に活性点となるヘテロ元素を含有させるため、予め同へテロ元素を含有する有機材料の使用が好ましい場合がある。具体的な有機材料としては、フェノール系樹脂、ポリイミド系樹脂、ポリアミド系樹脂、ポリアミドイミド系樹脂、ポリアクリロニトリル系樹脂、ポリアニリン系樹脂、フェノールホルムアルデヒド樹脂系樹脂、ポリイミダゾール系樹脂、ポリピロール系樹脂、ポリベンゾイミダゾール系樹脂、メラミン系樹脂、ピッチ、褐炭、ポリカルボジイミド、バイオマス、タンパク質、フミン酸等やそれらの誘導体などが挙げられる。
これら炭素材料は、一種類または二種類以上で用いられる。
<Carbon material>
The carbon material in the present invention is not particularly limited as long as it is a carbon particle derived from an inorganic material and/or a carbon particle obtained by heat-treating an organic material.
Carbon particles derived from inorganic materials include carbon black (furnace black, acetylene black, Ketjen black, medium thermal carbon black), activated carbon, graphite, carbon nanotubes, carbon nanofibers, carbon nanohorns, graphene nanoplatelets, nanoporous carbon, Carbon fiber etc. are mentioned. Carbon materials have various physical properties and costs such as particle size, shape, BET specific surface area, pore volume, pore size, bulk density, DBP oil absorption, surface acidity/basicity, surface hydrophilicity, and conductivity depending on the type and manufacturer. Since it is different, select the most suitable material according to the intended use and required performance.
The organic material that becomes carbon particles by heat treatment is not particularly limited as long as it is a material that becomes carbon particles after heat treatment. It may be preferable to use an organic material containing the same hetero element in advance in order to make the carbon particles after the heat treatment contain a hetero element serving as an active site. Specific organic materials include phenolic resins, polyimide resins, polyamide resins, polyamideimide resins, polyacrylonitrile resins, polyaniline resins, phenol formaldehyde resin resins, polyimidazole resins, polypyrrole resins, poly Examples thereof include benzimidazole-based resin, melamine-based resin, pitch, brown coal, polycarbodiimide, biomass, protein, humic acid, and their derivatives.
These carbon materials are used alone or in combination of two or more.

市販の炭素材料としては、例えば、
ケッチェンブラックEC−300J、及びEC−600JD等のライオン社製ケッチェンブラック;
トーカブラック#4300、#4400、#4500、及び#5500等の東海カーボン社製ファーネスブラック;
プリンテックスL等のデグサ社製ファーネスブラック;
Raven7000、5750、5250、5000ULTRAIII、5000ULT
RA、Conductex SC ULTRA、975 ULTRA、PUER BLACK100、115、及び205等のコロンビヤン社製ファーネスブラック;
#2350、#2400B、#2600B、#30050B、#3030B、#3230B、#3350B、#3400B、及び#5400B等の三菱化学社製ファーネスブラック;
MONARCH1400、1300、900、VulcanXC−72R、及びBlackPearls2000等のキャボット社製ファーネスブラック;
Ensaco250G、Ensaco260G、Ensaco350G、及びSuperP−Li等のTIMCAL社製ファーネスブラック;
デンカブラック、デンカブラックHS−100、FX−35等の電気化学工業社製アセチレンブラック;
VGCF、VGCF−H、VGCF−X等の昭和電工社製カーボンナノチューブ;
名城ナノカーボン社製カーボンナノチューブ;
xGnP−C−750、xGnP−M−5等のXGSciences社製グラフェンナノプレートレット;
Easy−N社製ナノポーラスカーボン;
カイノール炭素繊維、カイノール活性炭繊維などの群栄化学工業社製炭素繊維;
等が挙げられるが、これらに限定されるものではない。
Examples of commercially available carbon materials include, for example,
Ketjen Black, such as EC-300J and EC-600JD, manufactured by Lion Corporation;
Furnace black manufactured by Tokai Carbon Co., such as Toka Black #4300, #4400, #4500, and #5500;
Furnace black manufactured by Degussa, such as Printex L;
Raven 7000, 5750, 5250, 5000 ULTRAIII, 5000 ULT
RAMB, Conductex SC ULTRA, 975 ULTRA, PUER BLACK 100, 115, 205, and other Columbyan furnace blacks;
Furnace black manufactured by Mitsubishi Chemical Corporation, such as #2350, #2400B, #2600B, #30050B, #3030B, #3230B, #3350B, #3400B, and #5400B;
Furnace black manufactured by Cabot, such as MONARCH 1400, 1300, 900, Vulcan XC-72R, and BlackPearls 2000;
Furnace black manufactured by TIMCAL, such as Ensaco250G, Ensaco260G, Ensaco350G, and SuperP-Li;
Denka Black, Denka Black HS-100, FX-35 and other acetylene black manufactured by Denki Kagaku Kogyo Co., Ltd.;
Showa Denko carbon nanotubes such as VGCF, VGCF-H, and VGCF-X;
Carbon nanotube manufactured by Meijo Nano Carbon Co., Ltd.;
xGnP-C-750, xGnP-M-5 and other graphene nanoplatelets manufactured by XGS Sciences;
Easy-N nanoporous carbon;
Carbon fiber manufactured by Gunei Chemical Industry Co., Ltd. such as Kynol carbon fiber and Kynol activated carbon fiber;
However, the present invention is not limited to these.

本明細書において、比表面積とは試料単位質量あたりの表面積のことであり、ガス(N又はHO)吸着法によって求めることができる。解析法はBET法を用い、相対圧(P/P=0.05〜0.3)とガス吸着量のプロットより得られる直線の切片と勾配から、単分子吸着量を求めることで、BET比表面積を算出できる。 In the present specification, the specific surface area means a surface area per unit mass of a sample, and can be determined by a gas (N 2 or H 2 O) adsorption method. The BET method is used as the analysis method, and the amount of adsorbed monomolecule is calculated from the intercept and the slope of the straight line obtained from the plot of the relative pressure (P/P 0 =0.05 to 0.3) and the amount of adsorbed gas. The specific surface area can be calculated.

<親水度>
親水度(BETH2O /BETN2)は、非白金系炭素系触媒及び炭素材料の全表面の親水性の指標である。窒素を吸着種としたBET比表面積(BETN2)を触媒の全表面積とし、水を吸着質としたBET比表面積(BETH2O)を求めることで、非白金系炭素系触媒及び炭素材料の全表面に対する親水面の割合を出すことができる。
<Hydrophilicity>
The hydrophilicity (BET H2O /BET N2 ) is an index of the hydrophilicity of the entire surface of the non-platinum-based carbon catalyst and the carbon material. By determining the BET specific surface area (BET H2O ) using water as the adsorbate, the BET specific surface area (BET N2 ) using nitrogen as the adsorbing species and the total surface area of the non-platinum-based carbon-based catalyst and the carbon material are obtained. The ratio of the hydrophilic surface to the can be obtained.

非白金系炭素系触媒表面の親水度が0.6〜2.5の範囲内にあると、非白金系炭素系触媒表面は十分に親水性であり、高い吸湿性に誘引され、燃料電池の発電に必要なプロトンの伝導性が向上するため、好ましい。 When the hydrophilicity of the non-platinum-based carbon catalyst surface is within the range of 0.6 to 2.5, the non-platinum-based carbon catalyst surface is sufficiently hydrophilic and attracted to high hygroscopicity, and It is preferable because the conductivity of protons required for power generation is improved.

炭素材料表面の親水度が0.5以下、より好ましくは0.15以下であると、炭素材料表面が疎水性であり、反応によって生成した水分子を弾きやすくなることで水によるフラッディングを防ぐため、好ましい。 When the hydrophilicity of the carbon material surface is 0.5 or less, more preferably 0.15 or less, the surface of the carbon material is hydrophobic, and water molecules generated by the reaction are easily repelled to prevent flooding by water. ,preferable.

非白金系炭素系触媒に対する炭素材料の質量比が0.1〜50質量%であると、燃料電池用触媒層内の親水性部と疎水性部とのバランスが良く、触媒へのプロトンの輸送性及び、反応によって生成した水分子の排水性の効率が向上するため、好ましい。 When the mass ratio of the carbon material to the non-platinum-based carbon catalyst is 0.1 to 50 mass %, the hydrophilic part and the hydrophobic part in the catalyst layer for the fuel cell are well balanced, and the protons are transported to the catalyst. And the drainage efficiency of water molecules generated by the reaction are improved, which is preferable.

<細孔容積>
細孔容積が大きいほど空隙率が高く、触媒層でのガスの輸送性が向上するため好ましい。ここで好ましい細孔容積は0.4cm/g以上である。
<Pore volume>
The larger the pore volume, the higher the porosity and the better the gas transportability in the catalyst layer, which is preferable. The preferable pore volume here is 0.4 cm 3 /g or more.

<かさ密度>
かさ密度はJIS M 8811に従い、気乾試料に調整した後に、メスシリンダーに試料を投入し、タッピングした後の試料容積で試料重量を除して求めることができる。かさ密度が0.4g/cm以下であれば、触媒層内の酸素ガスの拡散性が向上するため、好ましい。さらに触媒層内で生成される水をより良く排出することが可能である。
<Bulk density>
The bulk density can be determined according to JIS M 8811 by adjusting the sample to an air-dried sample, introducing the sample into a graduated cylinder, and dividing the sample weight by the sample volume after tapping. When the bulk density is 0.4 g/cm 3 or less, the diffusibility of oxygen gas in the catalyst layer is improved, which is preferable. Furthermore, it is possible to better discharge the water generated in the catalyst layer.

<溶剤>
溶剤としてはエタノール、イソプロピルアルコール、ベンジルアルコール、ターピネオールなどのアルコール系溶剤;アセトニトリル、プロピオニトリルなどのニトリル系溶剤;クロロホルム、ジクロロメタン、クロロベンゼン等のハロゲン系溶剤;ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;アセトン、メチルエチルケトン、シクロヘキサノン、イソホロン等のケトン系溶剤;炭酸ジエチル、炭酸プロピレン等の炭酸エステル系溶剤;ヘキサン、オクタン、トルエン、キシレン等の炭化水素系溶剤;ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,3−ジメチルイミダゾリノン、N−メチルピロリドン、水等を用いることができるがこれに限らない。また、二種類以上の溶剤を混合して用いても良い。
<Solvent>
Examples of the solvent include alcohol solvents such as ethanol, isopropyl alcohol, benzyl alcohol and terpineol; nitrile solvents such as acetonitrile and propionitrile; halogen solvents such as chloroform, dichloromethane and chlorobenzene; ether solvents such as diethyl ether and tetrahydrofuran; Ester-based solvents such as ethyl acetate and butyl acetate; Ketone-based solvents such as acetone, methyl ethyl ketone, cyclohexanone and isophorone; Carbonate-based solvents such as diethyl carbonate and propylene carbonate; Hydrocarbon-based solvents such as hexane, octane, toluene and xylene; Dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidazolinone, N-methylpyrrolidone, water and the like can be used, but are not limited thereto. Further, two or more kinds of solvents may be mixed and used.

バインダーとしてプロトン伝導性ポリマーを使用する場合、主溶剤としては、水または水と親和性が高い溶剤が好ましく、特にアルコールが好適に使用できる。このようなアルコールとしては、例えば、沸点80〜200℃程度の1価のアルコールないし多価アルコールが利用でき、好ましくは炭素数が4以下のアルコール系溶剤が挙げられる。具体的には、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、t−ブタノールなどが挙げられる。アルコールは、1種単独で又は2種以上混合して使用される。これらの1価のアルコールの中でも、2−プロパノール、1−ブタノール及びt−ブタノールが好ましい。多価アルコールとしては具体的には、プロトン伝導性を有する樹脂との相溶性、及び触媒ペーストとした場合の乾燥効率の問題から、例えば、プロピレングリコール、エチレングリコールなどが好ましく、中でもプロピレングリコールが特に好ましい。 When a proton conductive polymer is used as the binder, water or a solvent having a high affinity for water is preferable as the main solvent, and alcohol is particularly preferable. As such an alcohol, for example, a monohydric alcohol or a polyhydric alcohol having a boiling point of about 80 to 200° C. can be used, and an alcohol solvent having 4 or less carbon atoms is preferable. Specific examples include 1-propanol, 2-propanol, 1-butanol, 2-butanol, t-butanol and the like. Alcohol is used alone or in combination of two or more. Among these monohydric alcohols, 2-propanol, 1-butanol and t-butanol are preferable. As the polyhydric alcohol, specifically, from the problems of compatibility with a resin having proton conductivity, and drying efficiency when used as a catalyst paste, for example, propylene glycol, ethylene glycol and the like are preferable, and among them, propylene glycol is particularly preferable. preferable.

<バインダー>
バインダーとしては、従来公知のものを使用することができ、例えば、アクリル樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、フェノキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、ホルムアルデヒド樹脂、シリコン樹脂、フッ素樹脂、カルボキシメチルセルロース等のセルロース樹脂、スチレン−ブタジエンゴムやフッ素ゴム等の合成ゴム、ポリアニリンやポリアセチレン等の導電性樹脂等、ポリフッ化ビニリデン、ポリフッ化ビニル、及びテトラフルオロエチレン等のフッ素原子を含む高分子化合物が挙げられる。又、これらの樹脂の変性物、混合物、又は共重合体でも良く、水溶性の樹脂であっても、水分散型の樹脂であっても良い。これらバインダーは、1種または複数を組み合わせて使用することも出来る。また溶剤の種類よって分散効果があるものを使用しても良い。
燃料電池用触媒層のバインダーとしては、膜中にプロトンを伝導する観点からプロトン伝導性を有するポリマーがより好ましいが、金属−空気電池や微生物燃料電池でもみられるように、液体電解質が使用される場合はこの限りではない。プロトン伝導性ポリマーとしては、親水性官能基を有するバインダーを指し、プロトン伝導度として100%RH、25℃で10−3Scm−1以上を示すものが好ましい。
ここで、親水性官能基としては、スルホ基、カルボキシ基、りん酸基等の酸性官能基、水酸基、アミノ基等の塩基性官能基が挙げられるが、プロトン解離性の観点から、スルホ基、カルボキシ基、りん酸基、及び水酸基がより好ましい。
プロトン伝導性を示すポリマーとしては、スルホ基を導入した、オレフィン系樹脂(ポリスチレンスルホン酸、ポリビニルスルホン酸等)、ポリイミド系樹脂、フェノール樹脂、ポリエーテルケトン系樹脂、ポリベンズイミダゾール系樹脂、及びポリスチレン系樹脂、スチレン・エチレン・ブチレン・スチレン共重合体のスルホン酸ドープ品、パーフルオロスルホン酸系樹脂等のスルホン酸を有する樹脂;
ポリアクリル酸、カルボキシメチルセルロース等のカルボン酸を有する樹脂;
ポリビニルアルコール等の水酸基を有する樹脂;
ポリアリルアミン、ポリジアリルアミン、ポリジアリルジメチルアンモニウム塩、イミダゾール部分で酸と塩形成したポリベンズイミダゾール系樹脂等のアミノ基を有する樹脂;
ポリアクリルアミド、ポリビニルピロリドン、ポリビニルイミダゾール等の、その他の親水性官能基を有する樹脂が挙げられる。特に、パーフルオロスルホン酸系樹脂は、電気陰性度の高いフッ素原子を導入する事で化学的に非常に安定し、スルホ基の解離度が高く、高いプロトン導電性が実現できる。このようなプロトン伝導性ポリマーの具体例としては、デュポン社製の「Nafion」等が挙げられる。通常、プロトン伝導性ポリマーは、ポリマーを5〜30質量%程度含むアルコール水溶液として使用される。アルコールとしては、例えば、メタノール、プロパノール、エタノールジエチルエーテル等が使用される。
また正極側の触媒層において酸素と水素イオンが反応して生じる水、この余剰水の排水という観点から、撥水性のバインダーがより好ましい場合がある。撥水性バインダーとしては、親水性官能基を有さないバインダーを指し、表面張力が水の表面張力(約72dyn/cm)より低いものが好ましい。例えば、フッ素系樹脂や、ポリプロピレン、ポリエチレン等のオレフィン系樹脂、ポリジメチルシロキサン等のシリコン樹脂が使用できる。
<Binder>
As the binder, it is possible to use conventionally known ones, for example, acrylic resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, phenoxy resin, urea resin, melamine resin, alkyd resin, formaldehyde resin, silicone resin, Fluorine resin, cellulose resin such as carboxymethyl cellulose, synthetic rubber such as styrene-butadiene rubber and fluorine rubber, conductive resin such as polyaniline and polyacetylene, etc., containing fluorine atom such as polyvinylidene fluoride, polyvinyl fluoride, and tetrafluoroethylene A high molecular compound is mentioned. Further, it may be a modified product, mixture, or copolymer of these resins, and may be a water-soluble resin or a water-dispersible resin. These binders may be used alone or in combination of two or more. Moreover, you may use what has a dispersion effect depending on the kind of solvent.
As the binder of the catalyst layer for the fuel cell, a polymer having proton conductivity is more preferable from the viewpoint of conducting protons in the membrane, but a liquid electrolyte is used as seen in metal-air cells and microbial fuel cells. This is not the case. The proton conductive polymer refers to a binder having a hydrophilic functional group, and a polymer having a proton conductivity of 100% RH and 10 −3 Scm −1 or more at 25° C. is preferable.
Here, examples of the hydrophilic functional group include a sulfo group, a carboxy group, an acidic functional group such as a phosphoric acid group, a hydroxyl group, and a basic functional group such as an amino group, but from the viewpoint of proton dissociation, a sulfo group, A carboxy group, a phosphate group, and a hydroxyl group are more preferable.
As the polymer having proton conductivity, sulfo group-introduced olefin resin (polystyrene sulfonic acid, polyvinyl sulfonic acid, etc.), polyimide resin, phenol resin, polyether ketone resin, polybenzimidazole resin, and polystyrene are used. -Based resins, sulfonic acid-doped products of styrene/ethylene/butylene/styrene copolymers, resins having sulfonic acid such as perfluorosulfonic acid-based resins;
Resins having carboxylic acids such as polyacrylic acid and carboxymethyl cellulose;
Resin having a hydroxyl group such as polyvinyl alcohol;
A resin having an amino group such as polyallylamine, polydiallylamine, polydiallyldimethylammonium salt, and a polybenzimidazole-based resin formed with an acid at the imidazole moiety;
Resins having other hydrophilic functional groups such as polyacrylamide, polyvinylpyrrolidone, and polyvinylimidazole can be given. In particular, the perfluorosulfonic acid-based resin is chemically very stable by introducing a fluorine atom having a high electronegativity, has a high dissociation degree of a sulfo group, and can realize high proton conductivity. Specific examples of such a proton conductive polymer include “Nafion” manufactured by DuPont. Usually, the proton conductive polymer is used as an aqueous alcohol solution containing about 5 to 30% by mass of the polymer. As the alcohol, for example, methanol, propanol, ethanol diethyl ether or the like is used.
In addition, a water-repellent binder may be more preferable from the viewpoint of water generated by the reaction of oxygen and hydrogen ions in the catalyst layer on the positive electrode side, and drainage of this excess water. The water-repellent binder refers to a binder having no hydrophilic functional group, and preferably has a surface tension lower than that of water (about 72 dyn/cm). For example, a fluorinated resin, an olefin resin such as polypropylene or polyethylene, or a silicon resin such as polydimethylsiloxane can be used.

<燃料電池用触媒ペースト組成物>
本発明の燃料電池用ペースト組成物は、少なくとも非白金系炭素系触媒、炭素材料、溶剤及びバインダーを含有するものである。炭素材料の親水度が0.5以下であり、非白金系炭素系触媒に対する炭素材料の質量比が0.1〜50質量%の範囲内であれば、他の割合は特に限定されるものではなく、広い範囲内で適宜選択される。
<Catalyst paste composition for fuel cell>
The fuel cell paste composition of the present invention contains at least a non-platinum-based carbon-based catalyst, a carbon material, a solvent, and a binder. If the hydrophilicity of the carbon material is 0.5 or less and the mass ratio of the carbon material to the non-platinum-based carbon-based catalyst is within the range of 0.1 to 50 mass %, other ratios are not particularly limited. Instead, it is appropriately selected within a wide range.

<燃料電池用触媒層>
燃料電池用触媒層は、前述の燃料電池用触媒ペースト組成物を導電性支持体(カーボンペーパなど)に直接塗布及び乾燥することにより形成されてもよく、また燃料電池用触媒ペースト組成物をテフロン(登録商標)シート等の剥離可能な転写基材に塗布乾燥したものである。
<Catalyst layer for fuel cell>
The catalyst layer for a fuel cell may be formed by directly applying the catalyst paste composition for a fuel cell described above to a conductive support (carbon paper or the like) and drying the catalyst paste composition for a fuel cell using Teflon. It is applied and dried on a peelable transfer substrate such as a (registered trademark) sheet.

燃料電池用触媒ペースト組成物の塗布方法としては、特に限定されるものではなく、例えば、ナイフコーター、バーコーター、ブレードコーター、スプレー、ディップコーター、スピンコーター、ロールコーター、ダイコーター、カーテンコーター、スクリーン印刷等の一般的な方法を適用できる。 The method for applying the catalyst paste composition for fuel cells is not particularly limited, and examples thereof include knife coater, bar coater, blade coater, spray, dip coater, spin coater, roll coater, die coater, curtain coater, and screen. A general method such as printing can be applied.

塗布した後、乾燥することにより、塗膜(燃料電池用触媒層)が形成される。乾燥温度は、通常40〜120℃程度、好ましくは75〜95℃程度である。また、乾燥時間は、乾燥温度にもよるが、通常5分〜2時間程度、好ましくは30分〜1時間程度である。塗布乾燥後の燃料電池用触媒層の厚みは、10μm以上あると発電性能が良い。 After coating, the coating film (fuel cell catalyst layer) is formed by drying. The drying temperature is usually about 40 to 120°C, preferably about 75 to 95°C. The drying time is usually about 5 minutes to 2 hours, preferably about 30 minutes to 1 hour, although it depends on the drying temperature. The power generation performance is good when the thickness of the fuel cell catalyst layer after coating and drying is 10 μm or more.

上記の燃料電池用触媒層を固体高分子電解質膜に転写する場合の加圧レベルは、転写不良を避けるために、通常0.5〜30MPa程度、好ましくは1〜20MPa程度がよい。また、この加圧操作の際に、加圧面を加熱することがより好ましい。加熱温度は、固体高分子電解質膜の破損、変性等を避けるために、通常200℃以下、好ましくは120〜150℃程度がよい。 The pressure level when transferring the above fuel cell catalyst layer to the solid polymer electrolyte membrane is usually about 0.5 to 30 MPa, preferably about 1 to 20 MPa in order to avoid transfer failure. It is more preferable to heat the pressing surface during this pressing operation. The heating temperature is usually 200° C. or lower, preferably about 120 to 150° C., in order to avoid damage or modification of the solid polymer electrolyte membrane.

<燃料電池用触媒>
本発明における、正極側の燃料電池用触媒層の触媒は、前述のとおり、非白金系炭素系触媒を使用する。一方で、負極側の燃料電池用触媒層に用いられる触媒としては、公知もしくは市販のものを使用することができる。
<Catalyst for fuel cell>
As the catalyst of the fuel cell catalyst layer on the positive electrode side in the present invention, a non-platinum-based carbon-based catalyst is used as described above. On the other hand, as the catalyst used in the fuel cell catalyst layer on the negative electrode side, known or commercially available catalysts can be used.

固体高分子形燃料電池用の触媒としては、触媒粒子が、触媒担持体上に担持してなるものが挙げられる。
触媒粒子としては、水素の酸化を促進するものであれば特に限定されないが、例えば、白金、金、銀、パラジウム、イリジウム、ロジウム、ルテニウム又はこれらの合金が挙げられる。
触媒担持体としては、例えば、炭素粒子、酸化物粒子、窒化物粒子が挙げられる。
炭素粒子としては、上述の非白金炭素系触媒の主構成成分に使用される炭素材料の説明で例示したものと同様のものが挙げられる。
酸化物粒子としては、酸化インジウム、酸化スズ、酸化亜鉛、酸化チタン、シリカ、アルミナ等が挙
げられる。
窒化物粒子としては、例えば、窒化チタン、窒化ジルコニウム、窒化ニオブ、窒化タンタル、窒化クロム、窒化バナジウム等が挙げられる。
Examples of the catalyst for polymer electrolyte fuel cells include catalyst particles supported on a catalyst carrier.
The catalyst particles are not particularly limited as long as they promote the oxidation of hydrogen, and examples thereof include platinum, gold, silver, palladium, iridium, rhodium, ruthenium and alloys thereof.
Examples of the catalyst carrier include carbon particles, oxide particles, and nitride particles.
Examples of the carbon particles include the same as those exemplified in the description of the carbon material used as the main constituent component of the non-platinum carbon-based catalyst.
Examples of the oxide particles include indium oxide, tin oxide, zinc oxide, titanium oxide, silica and alumina.
Examples of the nitride particles include titanium nitride, zirconium nitride, niobium nitride, tantalum nitride, chromium nitride, vanadium nitride and the like.

触媒粒子の触媒担持体上への担持率は特に限定されない。触媒粒子として白金、触媒担持体として炭素粒子を用いた場合は、触媒粒子100質量%に対して、通常1〜70質量%程度までの担持が可能である。 The loading rate of the catalyst particles on the catalyst carrier is not particularly limited. When platinum is used as the catalyst particles and carbon particles are used as the catalyst carrier, the catalyst particles can be usually loaded in an amount of about 1 to 70 mass% with respect to 100 mass% of the catalyst particles.

市販の燃料電池用触媒材しては、例えば、
TEC10E50E、TEC10E70TPM、TEC10V30E、TEC10V50E等の白金担持炭素粒子;
TEC66E50、TEC62E58等の白金−ルテニウム合金担持炭素粒子;
をいずれも田中貴金属工業社より購入することができるが、これらに限定されるものではない。
Examples of commercially available catalyst materials for fuel cells include:
Platinum-supporting carbon particles such as TEC10E50E, TEC10E70TPM, TEC10V30E, TEC10V50E;
Platinum-ruthenium alloy-supporting carbon particles such as TEC66E50 and TEC62E58;
Can be purchased from Tanaka Kikinzoku Kogyo Co., Ltd., but is not limited thereto.

<燃料電池用電極膜接合体>
本発明における燃料電池用電極膜接合体とは、プロトン伝導性の固体高分子電解質膜の片面もしくは両面に、燃料電池用触媒層が密着して形成され、さらに、その片面もしくは両面に、カーボンペーパ等の導電性支持体が密着して具備したものを意味する。
<Fuel cell electrode membrane assembly>
The fuel cell electrode membrane assembly in the present invention is formed by closely adhering a fuel cell catalyst layer to one or both sides of a proton conductive solid polymer electrolyte membrane, and further, to one or both sides thereof, carbon paper. And the like are meant to be provided in close contact with a conductive support.

燃料電池用電極膜接合体の製造方法としては、固体高分子電解質膜の片面もしくは両面に、転写基材上に予め形成された燃料電池用触媒層を転写後、導電性支持体を熱圧着することで燃料電池用電極膜接合体を作製する方法が挙げられる。また、固体高分子電解質膜の片面もしくは両面に、導電性支持体上に予め形成された燃料電池用触媒層を、熱圧着することで燃料電池用電極膜接合体を作製してもよい。 As a method for manufacturing a fuel cell electrode membrane assembly, a fuel cell catalyst layer previously formed on a transfer substrate is transferred onto one or both surfaces of a solid polymer electrolyte membrane, and then a conductive support is thermocompression bonded. Then, a method of producing an electrode membrane assembly for a fuel cell can be mentioned. Further, a fuel cell electrode membrane assembly may be prepared by thermocompression bonding a fuel cell catalyst layer previously formed on a conductive support to one surface or both surfaces of the solid polymer electrolyte membrane.

上述の燃料電池用電極膜接合体において、導電性支持体と燃料電池用触媒層及び固体高分子電解質膜間を熱圧着する場合の、加圧レベルは、通常0.1〜50MPa程度、好ましくは1〜30MPa程度がよい。また、加熱温度としては、固体高分子電解質膜の破損、変性等を避けるために、通常200℃以下、好ましくは120〜150℃程度がよい。 In the above-mentioned fuel cell electrode membrane assembly, the pressure level when thermocompression-bonding the conductive support to the fuel cell catalyst layer and the solid polymer electrolyte membrane is usually about 0.1 to 50 MPa, preferably It is preferably about 1 to 30 MPa. The heating temperature is usually 200° C. or lower, preferably about 120 to 150° C., in order to avoid damage and denaturation of the solid polymer electrolyte membrane.

<固体高分子電解質膜>
固体高分子電解質膜としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂等が挙げられる。電気陰性度の高いフッ素原子を導入する事で化学的に非常に安定し、スルホ基の解離度が高く、高いイオン導電性が実現できる。具体例としてはデュポン社製の「Nafion」、旭硝子社製の「Flemion」、旭化成社製の「Aciplex」、ゴア(Gore)社製の「Gore Select」等が挙げられる。電解質膜の膜厚は、通常20〜250μm程度、好ましくは10〜80μm程度である。
<Solid polymer electrolyte membrane>
Examples of the solid polymer electrolyte membrane include perfluorosulfonic acid-based fluorine ion exchange resins and the like. By introducing a fluorine atom with high electronegativity, it is chemically very stable, the dissociation degree of the sulfo group is high, and high ionic conductivity can be realized. Specific examples include "Nafion" manufactured by DuPont, "Flemion" manufactured by Asahi Glass Co., Ltd., "Aciplex" manufactured by Asahi Kasei Co., Ltd., and "Gore Select" manufactured by Gore. The thickness of the electrolyte membrane is usually about 20 to 250 μm, preferably about 10 to 80 μm.

<導電性支持体>
導電性支持体は、負極又は正極を構成する各種の導電性支持体を使用できるが、固体高分子形燃料電池に代表される多くの燃料電池では、正極側では空気中の酸素を取り入れ、負極側では水素を取り込めるように気体が通過および拡散できるような多孔質または繊維状の支持体であることが好ましい。更に電子の出し入れが必要なため導電性を有する材料を用いらなければならない。好ましくは炭素素材からなるカーボンペーパや、カーボンフェルト、カーボンクロスなどがよい。具体例としては東レ社製の「TGP−H−090」等が挙げられる。これら導電性支持体は、燃料電池ではガス拡散層あるいはGDLとも呼ばれる。
<Conductive support>
As the conductive support, various conductive supports that form the negative electrode or the positive electrode can be used.However, in many fuel cells represented by polymer electrolyte fuel cells, the positive electrode takes in oxygen in the air and On the side, it is preferably a porous or fibrous support through which a gas can pass and diffuse so as to take up hydrogen. Furthermore, since it is necessary to take in and out electrons, a material having conductivity must be used. Carbon paper, carbon felt, carbon cloth and the like made of a carbon material are preferable. Specific examples include "TGP-H-090" manufactured by Toray Industries, Inc. These conductive supports are also called gas diffusion layers or GDLs in fuel cells.

<燃料電池用触媒電極>
本発明における燃料電池用触媒電極は、前述の燃料電池用触媒層が導電性支持体上に形成されたものを意味し、前述の燃料電池用触媒ペースト組成物を導電性支持体に直接塗布及び乾燥することにより形成されてもよく、固体高分子電解質膜上で燃料電池用触媒層と導電性支持体が密着され、燃料電池用電極膜接合体の一部として形成されてもよい。
<Catalyst electrode for fuel cell>
The fuel cell catalyst electrode in the present invention means that the above-mentioned fuel cell catalyst layer is formed on a conductive support, and the above-mentioned fuel cell catalyst paste composition is directly applied to the conductive support and It may be formed by drying, or may be formed as a part of the fuel cell electrode membrane assembly by contacting the catalyst layer for the fuel cell and the conductive support on the solid polymer electrolyte membrane.

<転写基材>
転写基材は燃料電池用触媒ペースト組成物を塗布することで燃料電池用触媒層を形成し、転写基材上にある触媒層をナフィオンなどの固体高分子電解質膜に転写するためのフィルム基材である。転写基材としては、安価で入手が容易な高分子フィルムが好ましく、ポリテトラフルオロエチレン、ポリイミド、ポリエチレンテレフタレート等がより好ましい。具体例としてはテフロン(登録商標)シート等が挙げられる。転写基材の厚さは、取り扱い性及び経済性の観点から、通常6〜100μm程度、好ましくは10〜50μm程度、より好ましくは15〜30μm程度とするのがよい。
<Transfer substrate>
The transfer base material is a film base material for forming a fuel cell catalyst layer by applying a fuel cell catalyst paste composition and transferring the catalyst layer on the transfer base material to a solid polymer electrolyte membrane such as Nafion. Is. The transfer base material is preferably an inexpensive and easily available polymer film, and more preferably polytetrafluoroethylene, polyimide, polyethylene terephthalate or the like. Specific examples include Teflon (registered trademark) sheets and the like. The thickness of the transfer substrate is usually about 6 to 100 μm, preferably about 10 to 50 μm, and more preferably about 15 to 30 μm from the viewpoint of handleability and economy.

<燃料電池>
燃料電池は使用する電解質により、いくつかのタイプに分類することができるが、本発明の燃料電池には、固体高分子形燃料電池、微生物燃料電池、金属‐空気電池が好ましい。
<Fuel cell>
Although the fuel cell can be classified into several types depending on the electrolyte used, a polymer electrolyte fuel cell, a microbial fuel cell, and a metal-air cell are preferable for the fuel cell of the present invention.

<固体高分子形燃料電池>
固体高分子形燃料電池は、固体高分子電解質4を挟むように、対向配置されたセパレータ1、ガス拡散層2、負極触媒層(燃料極)3、正極触媒層(空気極)5、ガス拡散層6、及びセパレータ7とから構成される。
上記セパレータ1、7は、燃料ガス(水素)や酸化剤ガス(酸素)等の反応ガスの供給、排出を行う。そして、負極及び正極触媒層3、5に、ガス拡散層2、6を通じてそれぞれ均一に反応ガスが供給されると、両電極に備えられた触媒と固体高分子電解質4との境界において、気相(反応ガス)、液相(固体高分子電解質膜)、固相(両電極が持つ触媒)の三相界面が形成される。そして、電気化学反応を生じさせることで直流電流が発生する。
<Polymer fuel cell>
The solid polymer fuel cell includes a separator 1, a gas diffusion layer 2, a negative electrode catalyst layer (fuel electrode) 3, a positive electrode catalyst layer (air electrode) 5, and a gas diffusion layer, which are arranged to face each other so as to sandwich a solid polymer electrolyte 4. It is composed of a layer 6 and a separator 7.
The separators 1 and 7 supply and discharge a reaction gas such as a fuel gas (hydrogen) and an oxidant gas (oxygen). Then, when the reaction gas is uniformly supplied to the negative electrode and the positive electrode catalyst layers 3 and 5 through the gas diffusion layers 2 and 6, the gas phase is generated at the boundary between the catalyst provided in both electrodes and the solid polymer electrolyte 4. A three-phase interface of (reaction gas), liquid phase (solid polymer electrolyte membrane), and solid phase (catalyst possessed by both electrodes) is formed. Then, a direct current is generated by causing an electrochemical reaction.

上記電気化学反応において、
正極側:O+4H+4e→2H2
負極側:H→2H+2e
の反応が起こり、負極側で生成されたHイオン(プロトン)は固体高分子電解質4中を正極側に向かって移動し、e(電子)は外部の負荷を通って正極側に移動する。
In the above electrochemical reaction,
Positive electrode side: O 2 +4H + +4e →2H 2 O
Negative electrode side: H 2 →2H + +2e
The H + ion (proton) generated on the negative electrode side moves in the solid polymer electrolyte 4 toward the positive electrode side, and e (electron) moves to the positive electrode side through an external load. ..

一方、正極側では酸化剤ガス中に含まれる酸素と、負極側から移動してきたHイオン及びeとが反応して水が生成される。この結果、上述の燃料電池は、水素と酸素とから直流電力を発生し、水を生成することになる。 On the other hand, on the positive electrode side, oxygen contained in the oxidant gas reacts with H + ions and e that have moved from the negative electrode side to generate water. As a result, the fuel cell described above generates DC power from hydrogen and oxygen to generate water.

負極の燃料源として、水素ガスを使用せず、メタノールやエタノール等の液体燃料を使用する場合がある。この際、メタノールやエタノール等の液体燃料が負極触媒層により酸化され、e−(電子)およびH+イオン(プロトン)が発生し、正極側では上述の水素ガスを使用した燃料電池と同様の反応が生起することで発電することができる。 As a fuel source for the negative electrode, a liquid fuel such as methanol or ethanol may be used instead of hydrogen gas. At this time, a liquid fuel such as methanol or ethanol is oxidized by the negative electrode catalyst layer to generate e− (electrons) and H+ ions (protons), and a reaction similar to that of the fuel cell using hydrogen gas described above is performed on the positive electrode side. It can generate electricity when it occurs.

<燃料電池のセル電圧低下>
理論起電力からのセル電圧低下を分極といい、その大きさを過電圧という。過電圧は3種類あり、活性化過電圧、抵抗過電圧、濃度過電圧がある。活性化過電圧は反応を進行させるために消費される活性化エネルギーの損失分の電圧降下である。抵抗過電圧は構成部材の接触抵抗と電池内部のセパレータ、電極、電解質などを電子やイオンが移動する際に発生する電圧降下である。濃度過電圧は電気化学反応に伴い生じる生成水による触媒層細孔の閉塞(フラッディング)や、反応ガスの濃度低下により、反応部位である触媒表面に反応ガスが到達しにくくなるために生じる電圧降下である。
<Cell voltage drop of fuel cell>
The cell voltage drop from the theoretical electromotive force is called polarization, and its magnitude is called overvoltage. There are three types of overvoltages: activation overvoltage, resistance overvoltage, and concentration overvoltage. The activation overvoltage is a voltage drop corresponding to the loss of activation energy consumed for proceeding the reaction. The resistance overvoltage is a voltage drop that occurs when electrons or ions move through the contact resistance of the constituent members and the separator, electrodes, electrolyte, etc. inside the battery. The concentration overvoltage is a voltage drop that occurs because the reaction gas does not easily reach the catalyst surface, which is the reaction site, due to the clogging (flooding) of the catalyst layer pores caused by the water produced by the electrochemical reaction (flooding) and the decrease in the reaction gas concentration. is there.

<過電圧の分離>
抵抗過電圧は電流遮断法、交流インピーダンス法などにより計測できる。これを補正した出力電力をIR−freeとして報告することが多い。負極側の反応は正極側に比べて非常に速く、IR−freeでのI−V特性は正極側の特性と見なす事が出来る。IR−freeのセル電圧を縦軸、電流密度を対数で表示したものを横軸にしたものがターフェルプロットである。IR−freeのセル電圧は低電流密度領域ではほぼ直線的に低下し、高電流密度領域では徐々にこの直線からずれていく。この直線の傾きをターフェル勾配という。活性化過電圧はIR−freeのセル電圧900mVを基準とし、試験時の対数で表示した電流密度と直線的に低下するセル電圧特性との交点Aにおけるセル電圧差である((1)式)。
<Separation of overvoltage>
The resistance overvoltage can be measured by a current interruption method, an AC impedance method, or the like. The corrected output power is often reported as IR-free. The reaction on the negative electrode side is much faster than that on the positive electrode side, and the IV characteristic in IR-free can be regarded as the characteristic on the positive electrode side. A Tafel plot is obtained by plotting the cell voltage of IR-free on the vertical axis and plotting the current density in logarithm on the horizontal axis. The cell voltage of IR-free decreases almost linearly in the low current density region and gradually deviates from this straight line in the high current density region. The slope of this straight line is called the Tafel slope. The activation overvoltage is the cell voltage difference at the intersection A between the current density expressed in logarithm at the time of the test and the cell voltage characteristic that decreases linearly with reference to the cell voltage of IR-free of 900 mV (equation (1)).


式中、η:活性化過電圧、b:ターフェル勾配、i:試験時の電流密度、i0.9:IR−freeのセル電圧900mV時の電流密度である。
濃度過電圧は(2)式によって算出される。

In the formula, η a is the activation overvoltage, b is the Tafel slope, i is the current density at the time of the test, and i 0.9 is the current density when the cell voltage of IR-free is 900 mV.
The concentration overvoltage is calculated by the equation (2).


式中、η:濃度過電圧、V:IR−freeのセル電圧である。

In the formula, η d is the concentration overvoltage, and V is the cell voltage of IR-free.

<微生物燃料電池>
微生物燃料電池は、微生物が有機物を嫌気分解する代謝活動から生成される電子を回収しつつ有機物の分解を促進させる電池である。負極には、電子供与微生物が保持されており、有機排水中などに含まれる有機物を利用して代謝を行い、e(電子)およびHイオン(プロトン)を発生させる。正極側では発生したe(電子)およびHイオン(プロトン)を利用した酸素還元反応により発電することができる。
微生物燃料電池の構成としては、電子供与微生物が保持された負極となる導電性支持体と、燃料電池用触媒を塗布した正極となる導電性支持体を、有機排水等を含む液槽に差し込んだ一槽型構成や、固体高分子形燃料電池のように、固体高分子膜を利用して、負極槽と正極槽を隔てた二槽型構成でもよい。
正極としては、本発明における燃料電池用触媒ペースト組成物を導電性支持体に塗布した燃料電池用触媒電極、燃料電池用電極膜接合体も好適に使用することができる。
<Microbial fuel cell>
A microbial fuel cell is a battery that promotes the decomposition of organic substances while collecting electrons generated by metabolic activity in which microorganisms anaerobically decompose organic substances. The negative electrode holds an electron-donating microorganism, which metabolizes using an organic substance contained in organic wastewater or the like to generate e (electron) and H + ion (proton). On the positive electrode side, power can be generated by an oxygen reduction reaction using the generated e (electrons) and H + ions (protons).
As the structure of the microbial fuel cell, an electroconductive support serving as a negative electrode holding electron-donating microorganisms and a conductive support serving as a positive electrode coated with a fuel cell catalyst were inserted into a liquid tank containing organic wastewater and the like. A one-tank type structure or a two-tank type structure in which a negative electrode tank and a positive electrode tank are separated by using a solid polymer membrane, such as a solid polymer fuel cell, may be used.
As the positive electrode, a catalyst electrode for a fuel cell in which the catalyst paste composition for a fuel cell of the present invention is applied to a conductive support, or an electrode membrane assembly for a fuel cell can also be preferably used.

<微生物燃料電池用電子供与微生物>
微生物燃料電池用の電子供与微生物としては、Shewanella属、Pseudomonas属、Rhodoferax属、Geobacter属等を用いることができる。
<Electron-donating microorganisms for microbial fuel cells>
Examples of the electron-donating microorganisms for the microbial fuel cell include Shewanella genus, Pseudomonas genus, Rhodoferax genus, and Geobacterium genus.

<金属‐空気電池>
金属‐空気電池は、負極活物質として金属を使用し、発生したe(電子)および金属イオンにより、正極側の酸素還元反応を利用して発電することができ、充放電させることで2次電池としても機能する。
金属‐空気電池の構成としては、負極活物質としての金属を有する負極と、燃料電池用触媒等を塗布した正極となる導電性支持体、前記正極と負極の間で金属イオンの伝導を担う電解質層、及びセパレータよりなる。
正極としては、本発明における燃料電池用触媒ペースト組成物を導電性支持体に塗布した燃料電池用触媒電極、燃料電池用電極膜接合体も好適に使用することができる。
<Metal-air battery>
A metal-air battery uses a metal as a negative electrode active material, and can generate electricity by utilizing an oxygen reduction reaction on the positive electrode side by the generated e (electrons) and metal ions, and can be charged and discharged to generate secondary electricity. It also functions as a battery.
The structure of the metal-air battery includes a negative electrode having a metal as a negative electrode active material, a conductive support serving as a positive electrode coated with a fuel cell catalyst, etc., and an electrolyte responsible for conducting metal ions between the positive electrode and the negative electrode. It consists of a layer and a separator.
As the positive electrode, a catalyst electrode for a fuel cell in which the catalyst paste composition for a fuel cell of the present invention is applied to a conductive support, or an electrode membrane assembly for a fuel cell can also be preferably used.

<金属‐空気電池用負極>
金属‐空気電池用負極は、負極活物質を有する負極槽と接触するように電解質層が配置されている。負極活物質は、通常、伝導するイオンとなる金属元素を有している。上記金属元素としては、例えば、リチウム(Li)、ナトリウム(Na)、亜鉛(Zn)、鉄(Fe)、アルミニウム(Al)、マグネシウム(Mg)、マンガン(Mn)、ケイ素(Si)、チタン(Ti)、クロム(Cr)及びバナジウム(V)などを挙げることができる。中でも、エネルギー密度が高い電池を得ることができるため、Liであることが好ましい。また、金属単体だけでなく、合金や金属酸化物、金属窒化物なども挙げることができるが、これらに限定されるものではなく、金属-空気電池に適用される従来公知のものを適用することができる。
<Negative electrode for metal-air batteries>
The metal-air battery negative electrode has an electrolyte layer disposed so as to come into contact with a negative electrode tank having a negative electrode active material. The negative electrode active material usually has a metal element that becomes a conductive ion. Examples of the metal element include lithium (Li), sodium (Na), zinc (Zn), iron (Fe), aluminum (Al), magnesium (Mg), manganese (Mn), silicon (Si), titanium ( Ti), chromium (Cr), vanadium (V), etc. can be mentioned. Above all, Li is preferable because a battery having a high energy density can be obtained. Further, not only a simple metal but also an alloy, a metal oxide, a metal nitride and the like can be mentioned, but not limited to these, and a conventionally known one applied to a metal-air battery can be applied. You can

<金属‐空気電池用電解質層>
電解質層は、上記の金属-空気電池の正極と負極の間で金属イオンの伝導を行うものである。金属イオンの種類は、上述した負極活物質の種類によって異なり、その形態も金属イオン伝導性が有するものであれば特に限定されるものではない。例えば、水溶液や非水溶液を適用することもできるし、それらをポリマーマトリクスで保持したゲル状高分子電解質や、ポリマー電解質及び無機固体電解質を使用してもよい。また、固体電解質やセパレータを使用して、正極側、負極側で異なる電解液を使用してもよい。
<Metal-air battery electrolyte layer>
The electrolyte layer conducts metal ions between the positive electrode and the negative electrode of the above metal-air battery. The type of metal ion varies depending on the type of the negative electrode active material described above, and the form thereof is not particularly limited as long as it has metal ion conductivity. For example, an aqueous solution or a non-aqueous solution may be applied, or a gel polymer electrolyte holding them in a polymer matrix, or a polymer electrolyte and an inorganic solid electrolyte may be used. Also, different electrolytes may be used on the positive electrode side and the negative electrode side by using a solid electrolyte or a separator.

リチウムイオンの伝導を考えた場合、電解液としては、リチウムを含んだ電解質を水または非水系の溶剤に溶解したものを用いる。
電解質としては、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiCFSO、Li(CFSON、LiCSO、Li(CFSOC、LiI、LiBr、LiCl、LiAlCl、LiHF、LiSCN、又はLiBPh等が挙げられるがこれらに限定されない。
Considering the conduction of lithium ions, an electrolyte solution containing an electrolyte containing lithium dissolved in water or a non-aqueous solvent is used.
As the electrolyte, LiBF 4 , LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiCF 3 SO 3 , Li(CF 3 SO 2 ) 2 N, LiC 4 F 9 SO 3 , Li(CF 3 SO 2 ) 3 C. , LiI, LiBr, LiCl, LiAlCl, LiHF 2 , LiSCN, LiBPh 4 and the like, but are not limited thereto.

非水系の溶剤としては特に限定はされないが、例えば、
エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、及びジエチルカーボネート等のカーボネート類;
γ−ブチロラクトン、γ−バレロラクトン、及びγ−オクタノイックラクトン等のラクトン類;
テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−メトキシエタン、1,2−エトキシエタン、及び
1,2−ジブトキシエタン等のグライム類;
メチルフォルメート、メチルアセテート、及びメチルプロピオネート等のエステル類;
ジメチルスルホキシド、及びスルホラン等のスルホキシド類;並びに、
アセトニトリル等のニトリル類等が挙げられる。又これらの溶剤は、それぞれ単独で使用しても良いが、2種以上を混合して使用しても良い。
The non-aqueous solvent is not particularly limited, for example,
Carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethylmethyl carbonate, and diethyl carbonate;
Lactones such as γ-butyrolactone, γ-valerolactone, and γ-octanoic lactone;
Glymes such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2-methoxyethane, 1,2-ethoxyethane, and 1,2-dibutoxyethane;
Esters such as methyl formate, methyl acetate, and methyl propionate;
Sulfoxides such as dimethyl sulfoxide and sulfolane; and
Examples thereof include nitriles such as acetonitrile. Further, these solvents may be used alone or in combination of two or more kinds.

さらに上記電解液を、ポリマーマトリクスに保持しゲル状とした高分子電解質とする場合、ポリマーマトリクスとしては、ポリアルキレンオキシドセグメントを有するアクリレート系樹脂、ポリアルキレンオキシドセグメントを有するポリホスファゼン系樹脂、及びポリアルキレンオキシドセグメントを有するポリシロキサン等が挙げられるがこれらに限定されない。 Further, when the above electrolytic solution is a polymer electrolyte which is held in a polymer matrix and is in the form of gel, the polymer matrix includes an acrylate resin having a polyalkylene oxide segment, a polyphosphazene resin having a polyalkylene oxide segment, and a polyphosphazene resin. Examples thereof include, but are not limited to, polysiloxane having an alkylene oxide segment.

<金属‐空気電池用セパレータ>
セパレータとしては、例えば、ポリエチレン不織布、ポリプロピレン不織布、ポリアミド不織布及びそれらに親水性処理を施したものが挙げられるが、特にこれらに限定されるものではない。
<Metal-air battery separator>
Examples of the separator include polyethylene non-woven fabric, polypropylene non-woven fabric, polyamide non-woven fabric, and those obtained by subjecting them to hydrophilic treatment, but are not particularly limited thereto.

以下に、燃料電池の性能を評価する方法の一例を示す。燃料電池用電極膜接合体を5cm角の試料とし、その両側からガス漏えい防止のため、ガスケットを2枚、次いでセパレータとしてグラファイトプレート2枚ではさみ、更に両側から集電板を2枚装着して単セルとして作製する。正極(空気極)側から加湿した酸素ガスを供給し、負極(燃料極)側から加湿した水素ガスを供給して電池特性を測定する。 The following is an example of a method for evaluating the performance of a fuel cell. The fuel cell electrode membrane assembly was used as a 5 cm square sample, and two gaskets were inserted from both sides to prevent gas leakage, then two graphite plates were sandwiched as separators, and two current collector plates were attached from both sides. It is produced as a single cell. The humidified oxygen gas is supplied from the positive electrode (air electrode) side, and the humidified hydrogen gas is supplied from the negative electrode (fuel electrode) side to measure the cell characteristics.

なお、本発明における触媒ペースト組成物、触媒層、触媒電極の用途は、上述の燃料電池に限定するものではなく、排ガス浄化、水処理浄化等にも用いることが可能である。 The use of the catalyst paste composition, the catalyst layer, and the catalyst electrode in the present invention is not limited to the above fuel cell, and can be used for exhaust gas purification, water treatment purification and the like.

以下に、本発明を実施例に基づいて説明するが、本発明はこれによって限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto.

<非白金系炭素系触媒の合成>
非白金系炭素系触媒の分析は以下の測定機器を使用した。
・BET比表面積;窒素吸着量測定(日本ベル社製 BELSORP−mini)、水蒸気吸着量測定(日本ベル社製 BELSORP−18)
窒素吸着量測定は、非白金系炭素系触媒を前処理150℃、4時間行い脱水させ、液体窒素温度(−196℃)における窒素吸着量を測定した。窒素吸着量から窒素吸着等温線を求め、BET法にてBET比表面積(BETN2)を算出した。
水蒸気吸着量測定は非白金系炭素系触媒を真空中で前処理150℃、4時間行い脱水させ、25℃における水蒸気吸着量を測定した。水蒸気吸着量から水蒸気等温線を求め、BET法にてBET比表面積(BETH2O)を算出した。
<Synthesis of non-platinum-based carbon catalyst>
The following measuring instruments were used for the analysis of the non-platinum-based carbon catalyst.
BET specific surface area; nitrogen adsorption amount measurement (BELSORP-mini manufactured by Bell Japan Ltd.), water vapor adsorption amount measurement (BELSORP-18 manufactured by Bell Japan Ltd.)
The nitrogen adsorption amount was measured by pretreating the non-platinum-based carbon-based catalyst at 150° C. for 4 hours for dehydration, and measuring the nitrogen adsorption amount at the liquid nitrogen temperature (−196° C.). A nitrogen adsorption isotherm was obtained from the nitrogen adsorption amount, and the BET specific surface area (BET N2 ) was calculated by the BET method.
The water vapor adsorption amount was measured by pretreating the non-platinum-based carbon-based catalyst in vacuum at 150° C. for 4 hours for dehydration and measuring the water vapor adsorption amount at 25° C. The water vapor isotherm was determined from the water vapor adsorption amount, and the BET specific surface area (BET H2O ) was calculated by the BET method.

[製造例1:非白金系炭素系触媒(X1)]
グラフェンナノプレートレット(XGscience社製、xGnP−C−750)とコバルトフタロシアニン(東京化成社製)を、質量比1/1で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合し、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、800℃で2時間熱処理を行い、非白金炭素系触媒(X1)を得た。親水度は1.8であった。
[Production Example 1: Non-platinum-based carbon catalyst (X1)]
Graphene nanoplatelets (XGscience, xGnP-C-750) and cobalt phthalocyanine (Tokyo Kasei) are weighed at a mass ratio of 1/1, and dry-mixed by a particle compounding device Mechanofusion (Hosokawa Micron). And a mixture was obtained. The above mixture was filled in an alumina crucible and heat-treated at 800° C. for 2 hours in a nitrogen atmosphere in an electric furnace to obtain a non-platinum carbon-based catalyst (X1). The hydrophilicity was 1.8.

[製造例2:非白金系炭素系触媒(X2)]
グラフェンナノプレートレット(XGscience社製、xGnP−C−750)とコバルトフタロシアニン(東京化成社製)を、質量比1/1で秤量し、粒子複合化装置メカノフュージョン(ホソカワミクロン社製)にて乾式混合し、混合物を得た。上記混合物を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、400℃で2時間熱処理を行い、非白金系炭素系触媒(X2)を得た。親水度は4.9であった。
[Production Example 2: Non-platinum-based carbon catalyst (X2)]
Graphene nanoplatelets (XGscience, xGnP-C-750) and cobalt phthalocyanine (Tokyo Kasei) are weighed at a mass ratio of 1/1, and dry-mixed by a particle compositing device Mechanofusion (Hosokawa Micron). And a mixture was obtained. The above mixture was filled in an alumina crucible and heat-treated at 400° C. for 2 hours in a nitrogen atmosphere in an electric furnace to obtain a non-platinum-based carbon catalyst (X2). The hydrophilicity was 4.9.

[製造例3:非白金系炭素系触媒(X3)]
鉄フタロシアニン(山陽色素社製)とケッチェンブラック(ライオン社製、EC−600JD)を、質量比1/1で秤量し、乳鉢にて乾式混合を行い前駆体とした。上記前駆体粉末を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、700℃で2時間熱処理を行い、得られた炭化物を乳鉢にて粉砕し非白金系炭素系触媒(X3)を得た。親水度は3.7であった。
[Production Example 3: Non-platinum-based carbon catalyst (X3)]
Iron phthalocyanine (manufactured by Sanyo Dye Co., Ltd.) and Ketjen Black (manufactured by Lion Corp., EC-600JD) were weighed at a mass ratio of 1/1 and dry-mixed in a mortar to prepare a precursor. The precursor powder was filled in an alumina crucible and heat-treated at 700° C. for 2 hours in a nitrogen atmosphere in an electric furnace, and the obtained carbide was crushed in a mortar to obtain a non-platinum-based carbon catalyst (X3). Obtained. The hydrophilicity was 3.7.

[製造例4:非白金系炭素系触媒(X4)]
フェノール樹脂(群栄化学社製、PSM−4326)と鉄フタロシアニン(山陽色素社製)を質量比3.3/1で秤量し、アセトン中で湿式混合した。上記混合物を減圧留去した後、乳鉢で粉砕し、前駆体とした。上記前駆体粉末をアルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、600℃で2時間熱処理を行い、炭素焼結体(1)を得た。上記炭素焼結体(1)を濃塩酸中でリスラリーし、静置させ、炭素燒結体沈殿後、上澄み液を除去した。上記操作を上澄みの着色がなくなるまで、繰り返し行い、ろ過、水洗、乾燥した後、乳鉢で粉砕し、アルミナ製るつぼに充填、電気炉にてアンモニア雰囲気下、800℃で1時間熱処理し、炭素焼結体(2)を得た。上記炭素焼結体(2)を濃塩酸中でリスラリーし、静置させ、炭素焼結体沈殿後、上澄み液を除去した。上記操作を上澄みの着色がなくなるまで、繰り返し行った後、ろ過、水洗、乾燥し、乳鉢で粉砕し、非白金系炭素系触媒(X4)を得た。親水度は2.1であった。
[Production Example 4: Non-platinum-based carbon catalyst (X4)]
Phenol resin (PSM-4326 manufactured by Gunei Chemical Co., Ltd.) and iron phthalocyanine (manufactured by Sanyo Dye Co., Ltd.) were weighed at a mass ratio of 3.3/1 and wet-mixed in acetone. After the above mixture was distilled off under reduced pressure, it was ground in a mortar to obtain a precursor. The precursor powder was filled in an alumina crucible and heat-treated at 600° C. for 2 hours in a nitrogen atmosphere in an electric furnace to obtain a carbon sintered body (1). The carbon sintered body (1) was reslurried in concentrated hydrochloric acid and allowed to stand, and after precipitation of the carbon sintered body, the supernatant liquid was removed. The above operation is repeated until the supernatant is no longer colored, filtered, washed with water and dried, then crushed in a mortar, filled in an alumina crucible, and heat-treated at 800° C. for 1 hour in an ammonia furnace in an electric furnace, followed by carbon firing. A solid (2) was obtained. The carbon sintered body (2) was reslurried in concentrated hydrochloric acid and allowed to stand, and after the carbon sintered body was precipitated, the supernatant liquid was removed. The above operation was repeated until the supernatant was no longer colored, then filtered, washed with water, dried, and ground in a mortar to obtain a non-platinum-based carbon catalyst (X4). The hydrophilicity was 2.1.

[製造例5:非白金系炭素系触媒(X5)]
ポリビニルピリジン(PVP、アルドリッチ社製)をジメチルホルムアミドに溶解させ、PVPに対して質量比2/1の塩化鉄六水和物を加え、室温で24時間攪拌し、ポリビニルピリジン鉄錯体を得た。上記ポリビニルピリジンとケッチェンブラック(ライオン社製、EC−600JD)を、質量比1/1で秤量し、乳鉢にて乾式混合を行い前駆体とした。上記前駆体粉末を、アルミナ製るつぼに充填し、電気炉にて窒素雰囲気下、800℃で2時間熱処理を行い、得られた炭化物を乳鉢にて粉砕し非白金系炭素系触媒(X5)を得た。親水度は1.9であった
[Production Example 5: Non-platinum-based carbon catalyst (X5)]
Polyvinylpyridine (PVP, manufactured by Aldrich) was dissolved in dimethylformamide, iron chloride hexahydrate in a mass ratio of 2/1 with respect to PVP was added, and the mixture was stirred at room temperature for 24 hours to obtain a polyvinylpyridine iron complex. The above-mentioned polyvinyl pyridine and Ketjen black (EC-600JD manufactured by Lion Corp.) were weighed at a mass ratio of 1/1 and dry-mixed in a mortar to obtain a precursor. The above precursor powder was filled in an alumina crucible and heat-treated at 800° C. for 2 hours in a nitrogen atmosphere in an electric furnace, and the obtained carbide was crushed in a mortar to obtain a non-platinum-based carbon catalyst (X5). Obtained. Hydrophilicity was 1.9

<炭素材料>
表1に炭素材料の特性を示す。
炭素材料の分析は以下の測定機器を使用した。
・BET比表面積、細孔容積の測定;窒素吸着量測定(日本ベル社製 BELSORP−mini)、水蒸気吸着量測定(日本ベル社製 BELSORP−18)
窒素吸着量測定は、炭素材料を前処理150℃、4時間行い脱水させ、液体窒素温度(−196℃)における窒素吸着量を測定した。窒素吸着量から窒素吸着等温線を求め、BET法にてBET比表面積及びBJH法にて細孔容積を算出した。
水蒸気吸着量測定は炭素材料を真空中で前処理150℃、4時間行い脱水させ、25℃における水蒸気吸着量を測定した。水蒸気吸着量から水蒸気等温線を求め、BET法にてBET比表面積(BETH2O)を算出した。
かさ密度はJIS M 8811に従い、気乾試料に調整した後に、メスシリンダーに試料を投入し、タッピングした後の試料容積で試料重量を除して求めた。
<Carbon material>
Table 1 shows the characteristics of the carbon material.
The following measuring instruments were used for the analysis of the carbon material.
-Measurement of BET specific surface area and pore volume; measurement of nitrogen adsorption amount (BELSORP-mini manufactured by Bell Japan Ltd.), measurement of adsorption amount of water vapor (BELSORP-18 manufactured by Bell Japan Ltd.)
The nitrogen adsorption amount was measured by pretreating the carbon material at 150° C. for 4 hours for dehydration, and measuring the nitrogen adsorption amount at the liquid nitrogen temperature (−196° C.). A nitrogen adsorption isotherm was obtained from the nitrogen adsorption amount, and the BET specific surface area was calculated by the BET method and the pore volume was calculated by the BJH method.
The water vapor adsorption amount was measured by pretreating the carbon material in vacuum at 150° C. for 4 hours for dehydration, and measuring the water vapor adsorption amount at 25° C. The water vapor isotherm was determined from the water vapor adsorption amount, and the BET specific surface area (BET H2O ) was calculated by the BET method.
The bulk density was determined according to JIS M 8811 by adjusting the sample to an air-dried sample, placing the sample in a graduated cylinder, and dividing the sample weight by the sample volume after tapping.



炭素材料(1):ケッチェンブラック(ライオン社製、EC−300J)
炭素材料(2):グラフェンナノプレートレット(XGscience社製、xGnP−C−750)
炭素材料(3):アセチレンブラック(電気化学工業社製、デンカブラックHS−100)
炭素材料(4):製造例6で作製


Carbon material (1): Ketjen Black (Lion Co., EC-300J)
Carbon material (2): Graphene nanoplatelet (XGscience, xGnP-C-750)
Carbon material (3): Acetylene black (Denka Black HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.)
Carbon material (4): produced in Production Example 6

[製造例6:炭素材料(4)<改質ケッチェンブラックの合成>]
ケッチェンブラック(ライオン社製、EC−300J)を、無水酢酸(200ml)と96%硫酸(10ml)から調整した酢酸スルホネート溶液に室温で加え、70℃にて6時間撹拌することによりスルホン化させた炭素材料(4)を得た。
[Production Example 6: Carbon Material (4) <Synthesis of Modified Ketjen Black>]
Ketjen Black (manufactured by Lion Corporation, EC-300J) was added to an acetic acid sulfonate solution prepared from acetic anhydride (200 ml) and 96% sulfuric acid (10 ml) at room temperature, and sulfonated by stirring at 70° C. for 6 hours. A carbon material (4) was obtained.

<燃料電池用触媒ペースト組成物の調製>
[実施例1−a]
非白金系炭素系触媒(X1)を10.0質量%と、炭素材料(1)を3.0質量%と、溶剤として超純水30質量%、1−プロパノール30質量%と、バインダーとして20質量%ナフィオン(Nafion(登録商標))分散溶液(デュポン社製、CStypeDE2020)27質量%を添加し、ディスパー(プライミクス社製、T.Kホモディスパー)にて攪拌混合し、本発明の燃料電池用触媒ペースト組成物(1)(固形分濃度18.4質量%)を調製した。
<Preparation of catalyst paste composition for fuel cell>
[Example 1-a]
The non-platinum-based carbon-based catalyst (X1) is 10.0% by mass, the carbon material (1) is 3.0% by mass, 30% by mass of ultrapure water as a solvent, 30% by mass of 1-propanol, and 20 as a binder. 27% by mass of a mass% Nafion (Nafion (registered trademark)) dispersion solution (manufactured by DuPont, CStypeDE2020) was added, and the mixture was stirred and mixed with a disper (manufactured by Primix Co., Ltd., TK homodisper) for use in the fuel cell of the present invention. A catalyst paste composition (1) (solid content concentration 18.4 mass%) was prepared.

[実施例2−a〜実施例14−a、比較例1−a〜8−a]
非白金系炭素系触媒(X1)と炭素材料(1)の種類と組成を、表2の様に変更した以外は、実施例1と同様にして燃料電池用触媒ペースト組成物(2)〜(22)を調製した。
[Example 2-a to Example 14-a, Comparative Examples 1-a to 8-a]
Fuel cell catalyst paste compositions (2) to () in the same manner as in Example 1 except that the types and compositions of the non-platinum-based carbon catalyst (X1) and the carbon material (1) were changed as shown in Table 2. 22) was prepared.


<正極用燃料電池用触媒層の作製>
[実施例1−b正極用燃料電池用触媒層(1)の作製]
燃料電池用触媒ペースト組成物(1)を、ドクターブレードにより、乾燥後の非白金系炭素系触媒の目付け量が2mg/cmになるようにテフロン(登録商標)フィルム上に塗布し、大気雰囲気下、95℃で60分間乾燥することにより、本発明の正極用燃料電池用触媒層(1)を作製した。正極用燃料電池用触媒層(1)の膜厚は膜厚計(Nikon社製 デジマイクロMH−15)を用いて計測した。
<Preparation of Fuel Cell Catalyst Layer for Positive Electrode>
[Example 1-b Preparation of positive electrode fuel cell catalyst layer (1)]
The catalyst paste composition for a fuel cell (1) was coated on a Teflon (registered trademark) film with a doctor blade so that the basis weight of the non-platinum-based carbon catalyst after drying was 2 mg/cm 2 , and the atmosphere was exposed to air. The catalyst layer (1) for a fuel cell for a positive electrode of the present invention (1) was prepared by drying at 95° C. for 60 minutes. The film thickness of the positive electrode fuel cell catalyst layer (1) was measured using a film thickness meter (Digimicro MH-15 manufactured by Nikon).

[実施例2−b〜実施例16−b、比較例1−b〜比較例8−b]
燃料電池用触媒ペースト組成物(1)の代わりに、燃料電池用触媒ペースト組成物(2)〜(22)に変更、もしくは乾燥後の非白金系炭素系触媒の目付け量を変更した以外は、実施例1と同様にして、それぞれ、表3に示す正極用燃料電池用触媒層(2)〜(24)を作製した。正極用燃料電池用触媒層(2)〜(24)の膜厚は膜厚計(Nikon社製 デジマイクロMH−15)を用いて計測した。
[Example 2-b to Example 16-b, Comparative Example 1-b to Comparative Example 8-b]
Instead of the catalyst paste composition for fuel cell (1), the catalyst paste compositions for fuel cell (2) to (22) were changed, or the basis weight of the non-platinum-based carbon catalyst after drying was changed. In the same manner as in Example 1, the cathode fuel cell catalyst layers (2) to (24) shown in Table 3 were produced. The film thickness of the positive electrode fuel cell catalyst layers (2) to (24) was measured using a film thickness meter (Digimicro MH-15 manufactured by Nikon).

<負極用燃料電池用触媒層の作製>
ここでは、燃料電池用電極膜接合体の作製に使用する負極用燃料電池用触媒層の作製方法について以下に述べる。
白金触媒担持カーボン4質量%(田中貴金属社製、白金量46%)、溶剤として1―プロパノール56質量%、および水20質量%をディスパー(プライミクス、TKホモディスパー)にて撹拌混合することで触媒ペースト組成物(固形分濃度4%)を調製した。次いで、20質量%ナフィオン(Nafion(登録商標))分散溶液(デュポン社製、CStypeDE2020)20質量%を添加し、ディスパー(プライミクス製、T.Kホモディスパー)にて撹拌混合することで触媒インキ(固形分濃度8%)を作製した。得られた触媒インキを白金触媒担持カーボンの目付け量が0.46mg/cmになるようにテフロン(登録商標)フィルム上に塗布し、大気雰囲気中70℃の条件で15分間乾燥することにより、負極用燃料電池用触媒層を作製した。
<Preparation of Fuel Cell Catalyst Layer for Negative Electrode>
Here, the method for producing the anode fuel cell catalyst layer for use in producing the fuel cell electrode membrane assembly is described below.
Platinum catalyst-supporting carbon 4% by mass (Tanaka Kikinzoku Co., Ltd., platinum amount 46%), 1-propanol 56% by mass as a solvent, and water 20% by mass by stirring and mixing with a disper (primics, TK homodisper). A paste composition (solid content concentration 4%) was prepared. Then, 20 mass% of 20 mass% Nafion (Nafion (registered trademark)) dispersion solution (manufactured by DuPont, CStypeDE2020) was added, and the mixture was stirred and mixed with a disper (manufactured by Primex, TK homodisper) to obtain a catalyst ink ( A solid content concentration of 8%) was prepared. The obtained catalyst ink was applied onto a Teflon (registered trademark) film so that the basis weight of platinum catalyst-carrying carbon would be 0.46 mg/cm 2 , and dried in an air atmosphere at 70° C. for 15 minutes. A catalyst layer for a fuel cell for a negative electrode was produced.

<燃料電池用電極膜接合体の作製>
[燃料電池用電極膜接合体(1)の作製]
実施例1−bで作製した正極用燃料電池用触媒層(1)と、負極用燃料電池用触媒層とを、それぞれ固体高分子電解質膜(Nafion212、デュポン社製、膜厚50μm)の両面に密着して、150℃、5MPaの条件で狭持した後、テフロン(登録商標)フィルムを剥離した。次いで、更に両側から燃料電池用電極(東レ社製カーボンペーパ基材TGP−H−090)を密着させ、本発明の燃料電池用電極膜接合体(電極/触媒層/固体高分子電解質膜/触媒層/電極)(1)を作製した。
<Production of fuel cell electrode membrane assembly>
[Preparation of Fuel Cell Electrode Membrane Assembly (1)]
The positive electrode fuel cell catalyst layer (1) produced in Example 1-b and the negative electrode fuel cell catalyst layer were formed on both sides of a solid polymer electrolyte membrane (Nafion212, manufactured by DuPont, film thickness 50 μm), respectively. After closely adhering and sandwiching them under the conditions of 150° C. and 5 MPa, the Teflon (registered trademark) film was peeled off. Then, a fuel cell electrode (carbon paper base material TGP-H-090 manufactured by Toray Industries, Inc.) is further adhered from both sides, and the fuel cell electrode membrane assembly of the present invention (electrode/catalyst layer/solid polymer electrolyte membrane/catalyst). Layer/electrode) (1) was prepared.

得られた燃料電池用電極膜接合体(1)を2.5cm角の試料とし、その両側からガスケット2枚、次いでグラファイトプレートであるセパレータ2枚ではさみ、更に両側から集電板を2枚装着して燃料電池(単セル)として作製した。 The obtained fuel cell electrode membrane assembly (1) was used as a 2.5 cm square sample, and two gaskets were sandwiched from both sides, then two graphite plate separators were sandwiched, and two current collector plates were attached from both sides. Then, a fuel cell (single cell) was produced.

[燃料電池用電極膜接合体(2)〜(24)の作製]
燃料電池用電極膜接合体(1)と同様に、正極用燃料電池用触媒層(1)の代わりに、正極用燃料電池用触媒層(2)〜(24)に変更した以外は、実施例1と同様にして、それぞれ、本発明の燃料電池用電極膜接合体(2)〜(24)を作製した。
[Production of Fuel Cell Electrode Membrane Assembly (2) to (24)]
Similar to the fuel cell electrode membrane assembly (1), except that the positive electrode fuel cell catalyst layer (1) was replaced with the positive electrode fuel cell catalyst layers (2) to (24). In the same manner as in 1, the fuel cell electrode membrane assemblies (2) to (24) of the present invention were produced.

得られた燃料電池用電極膜接合体(2)〜(24)を2.5cm角の試料とし、その両側からガスケット2枚、次いでグラファイトプレートであるセパレータ2枚ではさみ、更に両側から集電板を2枚装着して燃料電池(単セル)として作製した。 The obtained fuel cell electrode membrane assemblies (2) to (24) were used as 2.5 cm square samples, and two gaskets were sandwiched from both sides thereof, then two graphite plate separators were sandwiched between them, and further current collector plates were disposed from both sides. Was attached to prepare a fuel cell (single cell).

<燃料電池用触媒層の評価>
正極用燃料電池用触媒層(1)〜(24)から得られた燃料電池用電極膜接合体(1)〜(24)を用いて作製した燃料電池の発電試験を行うことにより、正極用燃料電池用触媒層を評価した。
測定はAutoPEMシリーズ「PEFC評価システム」東陽テクニカ社製で実施した。燃料電池運転条件として、温度80℃、相対湿度100%の条件下で、負極側に水素を300ml/minで流し、正極側に酸素を300ml/minで流して発電試験を実施した。結果を表3に示す。
<Evaluation of catalyst layer for fuel cell>
By carrying out a power generation test of a fuel cell prepared using the fuel cell electrode membrane assemblies (1) to (24) obtained from the positive electrode fuel cell catalyst layers (1) to (24), the positive electrode fuel is obtained. The catalyst layer for batteries was evaluated.
The measurement was carried out by AutoPEM series "PEFC evaluation system" manufactured by Toyo Technica. As a fuel cell operating condition, under a condition of a temperature of 80° C. and a relative humidity of 100%, hydrogen was flowed at 300 ml/min on the negative electrode side, and oxygen was flowed at 300 ml/min on the positive electrode side to carry out a power generation test. The results are shown in Table 3.



表3に示すように非白金系炭素系触媒に対する炭素材料の質量比が0.1〜50質量%を添加した実施例は最大出力密度も良好であった。さらに親水度が0.15以下、BETN2が500m/g以上の炭素材料を添加した実施例1〜4は1A/cmでの濃度過電圧が低く、ガス拡散性が良好であり、最大出力密度も良好であった。これは疎水性で大きい比表面積を持つ炭素材料を触媒層に含有することで、フラッディングの抑制によりガス拡散性が向上したためと推察した。一方、比較例1〜4は濃度過電圧が高く、最大出力密度が良好となるものは得られなかった。


As shown in Table 3, in the examples in which the mass ratio of the carbon material to the non-platinum-based carbon-based catalyst was 0.1 to 50 mass%, the maximum power density was also good. Further, in Examples 1 to 4 in which a carbon material having a hydrophilicity of 0.15 or less and BET N2 of 500 m 2 /g or more was added, the concentration overvoltage at 1 A/cm 2 was low, the gas diffusibility was good, and the maximum output was The density was also good. It is speculated that this is because the inclusion of a hydrophobic carbon material having a large specific surface area in the catalyst layer improved gas diffusivity by suppressing flooding. On the other hand, Comparative Examples 1 to 4 had high concentration overvoltages and could not provide good maximum output density.

<燃料電池用触媒電極の作製>
以下では、導電性支持体に本発明の燃料電池触媒ペースト組成物を直接塗工して燃料電池用触媒電極を作製する方法について例示する。
<Preparation of catalyst electrode for fuel cell>
Hereinafter, a method for directly applying the fuel cell catalyst paste composition of the present invention to a conductive support to prepare a fuel cell catalyst electrode will be exemplified.

[実施例17]
燃料電池用触媒ペースト組成物(1)を、ドクターブレードにより、乾燥後の非白金系炭素系触媒の目付け量が2mg/cmになるように導電性支持体として炭素繊維からなるカーボンペーパ基材(TGP−H−090、東レ社製)上に塗布し、大気雰囲気中95℃、60分間乾燥して、正極用燃料電池用触媒電極(1)を作製した。
[Example 17]
A carbon paper base material comprising carbon fibers as a conductive support so that the basis weight of the non-platinum-based carbon catalyst after drying the catalyst paste composition (1) for a fuel cell may be 2 mg/cm 2 with a doctor blade. (TGP-H-090, manufactured by Toray Industries, Inc.) and dried in an air atmosphere at 95° C. for 60 minutes to prepare a catalyst electrode (1) for a fuel cell for a positive electrode.

<燃料電池(単セル)の作製>
正極用燃料電池用触媒電極(1)(カーボンペーパ上に燃料電池用触媒ペースト組成物が固着)と負極用燃料電池用触媒層とを、それぞれ固体高分子電解質膜(Nafion212、デュポン社製、膜厚50μm)の両面に密着して、150℃、5MPaの条件で狭持した後、テフロン(登録商標)フィルムを剥離した。次いで、更に負極側から燃料電池用電極(東レ社製カーボンペーパ基材TGP−H−090)を密着させ、本発明の燃料電池用電極膜接合体(電極/触媒層/固体高分子電解質膜/触媒層/電極)(25)を作製した。
<Fabrication of fuel cell (single cell)>
A positive electrode fuel cell catalyst electrode (1) (a fuel cell catalyst paste composition adhered to carbon paper) and a negative electrode fuel cell catalyst layer were respectively formed into a solid polymer electrolyte membrane (Nafion212, manufactured by DuPont, membrane). The film was adhered to both sides of a thickness of 50 μm and sandwiched under the conditions of 150° C. and 5 MPa, and then the Teflon (registered trademark) film was peeled off. Then, a fuel cell electrode (carbon paper base material TGP-H-090 manufactured by Toray Industries, Inc.) was further adhered from the negative electrode side, and the fuel cell electrode membrane assembly of the present invention (electrode/catalyst layer/solid polymer electrolyte membrane/ A catalyst layer/electrode) (25) was prepared.

<燃料電池(単セル)発電試験>
実施例1−bと同様の方法にて発電特性を測定したところ、最大出力密度0.40W/cm、開放電圧0.81V、1A/cmでの濃度過電圧0.06Vであった。
<Fuel cell (single cell) power generation test>
When the power generation characteristics were measured by the same method as in Example 1-b, the maximum output density was 0.40 W/cm 2 , the open circuit voltage was 0.81 V, and the concentration overvoltage was 0.06 V at 1 A/cm 2 .

<微生物燃料電池>
以下では、本発明の燃料電池用触媒ペースト組成物より作製した触媒電極を用いて、微生物燃料電池を作製する方法ついて例示する。
<Microbial fuel cell>
Hereinafter, a method for producing a microbial fuel cell by using the catalyst electrode produced from the catalyst paste composition for a fuel cell of the present invention will be exemplified.

[実施例18 微生物燃料電池用電解槽の調製]
非白金系炭素系触媒(X3)を10.0質量%と、炭素材料(1)を3.0質量%と、溶剤としてトルエン81.6質量%と、バインダーとしポリジメチルシロキサン5.4質量%を添加し、ディスパー(プライミクス社製、T.Kホモディスパー)にて攪拌混合し、燃料電池用触媒ペースト組成物(23)(固形分濃度18.4質量%)を調製した。
燃料電池用触媒ペースト組成物(23)を、ドクターブレードにより、乾燥後の非白金系炭素系触媒の目付け量が2mg/cmになるように導電性支持体として炭素繊維からなるカーボンペーパ基材(TGP−H−090、東レ社製)上に塗布し、大気雰囲気中95℃、60分間乾燥して、正極用燃料電池用触媒電極(2)を作製した。
30mLの容量を持つ電解槽内で、電子供与微生物として、Shewanella oneidenis MR−1(単一培養、10cells/mL)と水田土壌の混合液を30℃で3日間嫌気的に培養した後、電解質溶液としてKHPO/KHPO(pH7.0)の緩衝溶液を使用し、栄養基質としてグルコースを含む生活廃水を2.0gCOD/L/日(COD;化学的酸素要求量)を連続的に流入させた。負極の導電性支持体として、カーボンクロスを、正極としては正極用燃料電池用触媒電極(2)をそれぞれ電解槽へ挿入した。
[Example 18: Preparation of electrolytic cell for microbial fuel cell]
10.0 mass% of non-platinum-based carbon-based catalyst (X3), 3.0 mass% of carbon material (1), 81.6 mass% of toluene as a solvent, and 5.4 mass% of polydimethylsiloxane as a binder. Was added, and the mixture was stirred and mixed with a disper (manufactured by Primix Co., Ltd., TK Homo Disper) to prepare a catalyst paste composition (23) for fuel cells (solid content concentration 18.4 mass %).
Using a catalyst blade composition for a fuel cell (23) with a doctor blade, a carbon paper substrate comprising carbon fibers as a conductive support so that the basis weight of the non-platinum-based carbon catalyst after drying is 2 mg/cm 2. (TGP-H-090, manufactured by Toray Industries, Inc.), and dried in an air atmosphere at 95° C. for 60 minutes to prepare a cathode fuel cell catalyst electrode (2).
After anaerobically culturing a mixed solution of Shewanella oneidenis MR-1 (single culture, 10 5 cells/mL) and paddy soil as an electron-donating microorganism in an electrolytic cell having a capacity of 30 mL at 30° C. for 3 days, A buffer solution of K 2 HPO 4 /KH 2 PO 4 (pH 7.0) was used as an electrolyte solution, and 2.0 g COD/L/day (COD; chemical oxygen demand) of domestic wastewater containing glucose as a nutrient substrate was used. It was made to flow continuously. Carbon cloth was inserted into the electrolytic cell as the negative electrode conductive support, and the positive electrode fuel cell catalyst electrode (2) was inserted into the electrolytic cell as the positive electrode.

[比較例9 微生物燃料電池用電解槽の調製]
非白金系炭素系触媒(X3)を10.0質量%と、炭素材料(4)を3.0質量%と、溶剤としてトルエン81.6質量%と、バインダーとしポリジメチルシロキサン5.4質量%を添加し、ディスパー(プライミクス社製、T.Kホモディスパー)にて攪拌混合し、燃料電池用触媒ペースト組成物(24)(固形分濃度18.4質量%)を調製した。
正極として燃料電池用触媒ペースト組成物(24)をドクターブレードにより、乾燥後の非白金系炭素系触媒の目付け量が2mg/cmになるように導電性支持体として炭素繊維からなるカーボンペーパ基材(TGP−H−090、東レ社製)上に塗布し、大気雰囲気中95℃、60分間乾燥して、作製した正極用燃料電池用触媒電極(3)を用いた以外は実施例18と同様にして、微生物燃料電池用電解槽を作製した。
[Comparative Example 9 Preparation of Electrolytic Cell for Microbial Fuel Cell]
Non-platinum-based carbon-based catalyst (X3) 10.0% by mass, carbon material (4) 3.0% by mass, toluene 81.6% by mass as a solvent, polydimethylsiloxane 5.4% by mass as a binder. Was added and mixed by stirring with a disper (manufactured by Primix Corporation, TK Homo Disper) to prepare a fuel cell catalyst paste composition (24) (solid content concentration 18.4 mass %).
A carbon paper group comprising carbon fibers as a conductive support so that the basis weight of the non-platinum-based carbon catalyst after drying the catalyst paste composition (24) for a fuel cell as a positive electrode (24) with a doctor blade may be 2 mg/cm 2. Material (TGP-H-090, manufactured by Toray Industries, Inc.) and dried in an air atmosphere at 95° C. for 60 minutes, and the produced cathode electrode for a fuel cell for a positive electrode was used as in Example 18. Similarly, an electrolytic cell for a microbial fuel cell was produced.

(微生物燃料電池の発電試験)
ポテンショ・ガルバノスタット(VersaSTAT3、Princeton Applied Research社製)を用いて電流−電圧測定を行い、評価したところ、実施例18は約0.29W/m2であったのに対し、比較例9では、約0.15W/m2であった。
(Power generation test of microbial fuel cell)
Current-voltage measurement was performed using a potentio-galvanostat (VersaSTAT3, manufactured by Princeton Applied Research) and evaluated. In Example 18, the result was about 0.29 W/m 2 , whereas in Comparative Example 9, It was about 0.15 W/m 2 .

<金属‐空気電池>
以下では、本発明の燃料電池用触媒ペースト組成物より作製した触媒電極を用いて、金属‐空気電池を作製する方法ついて例示する。
<Metal-air battery>
Hereinafter, a method for producing a metal-air battery using a catalyst electrode produced from the catalyst paste composition for a fuel cell of the present invention will be exemplified.

[実施例19 空気電池用評価セルの作製]
非白金系炭素系触媒(X3)を10.0質量%と、炭素材料(1)を3.0質量%と、溶剤としてN−メチルピロリドン81.6質量%と、バインダーとしてポリフッ化ビニリデン5.4質量%を添加し、ディスパー(プライミクス社製、T.Kホモディスパー)にて攪拌混合し、燃料電池用触媒ペースト組成物(25)(固形分濃度18.4質量%)を調製した。
燃料電池用触媒ペースト組成物(25)を、ドクターブレードにより、乾燥後の非白金系炭素系触媒の目付け量が2mg/cmになるように導電性支持体として炭素繊維からなるカーボンペーパ基材(TGP−H−090、東レ社製)上に塗布し、大気雰囲気中95℃、60分間乾燥して、正極用燃料電池用触媒電極(4)を作製した。
Li箔上へ、非水系電解液(1M LiPF、エチレンカーボネート/ジエチルカーボネート=1/1、体積比)を含ませたセパレータ(多孔質ポリプロピレンフィルム)、固体電解質(オハラ社製、LiCGC Plate 1inch×150μmt)を配置し、アルミラミネートフィルムにて固定した。この際、固体電解質側のアルミラミネートフィルムを16mm角の大きさに切り抜き、固体電解質の露出面を作製し、空気電池用負極電極を作製した。
空気電池用負極電極の固体電解質上に、水性電解液として、1MのLiCl水溶液を含浸した不織布を、次いで、正極用燃料電池用触媒電極(4)を配置し、アルミラミネートフィルムにより固定、熱圧着することで、空気電池用評価セルを得た。
Example 19 Production of Evaluation Cell for Air Battery
4. Non-platinum-based carbon-based catalyst (X3) 10.0% by mass, carbon material (1) 3.0% by mass, N-methylpyrrolidone 81.6% by mass as a solvent, and polyvinylidene fluoride 5. 4% by mass was added, and the mixture was stirred and mixed with Disper (manufactured by Primix Co., Ltd., TK Homodisper) to prepare a fuel cell catalyst paste composition (25) (solid content concentration 18.4% by mass).
The catalyst paper paste composition (25) for a fuel cell is coated with a doctor blade so that the basis weight of the non-platinum-based carbon catalyst after drying is 2 mg/cm 2 , and a carbon paper substrate made of carbon fiber as a conductive support. (TGP-H-090, manufactured by Toray Industries, Inc.) and dried in an air atmosphere at 95° C. for 60 minutes to prepare a cathode fuel cell catalyst electrode (4).
A separator (porous polypropylene film) in which a non-aqueous electrolyte solution (1M LiPF 6 , ethylene carbonate/diethyl carbonate=1/1, volume ratio) was included on a Li foil, a solid electrolyte (manufactured by OHARA, LiCGC Plate 1inch×) 150 μmt) was placed and fixed with an aluminum laminate film. At this time, the aluminum laminate film on the solid electrolyte side was cut into a size of 16 mm square to form an exposed surface of the solid electrolyte, and a negative electrode for an air battery was prepared.
A non-woven fabric impregnated with a 1 M LiCl aqueous solution as an aqueous electrolytic solution is placed on the solid electrolyte of the negative electrode for the air battery, and then the positive electrode fuel cell catalyst electrode (4) is arranged, fixed by an aluminum laminate film, and thermocompression bonded. By doing so, an evaluation cell for an air battery was obtained.

[比較例10 空気電池用評価セルの作製]
非白金系炭素系触媒(X3)を10.0質量%と、炭素材料(4)を3.0質量%と、溶剤としてN−メチルピロリドン81.6質量%と、バインダーとしてポリフッ化ビニリデン5.4質量%を添加し、ディスパー(プライミクス社製、T.Kホモディスパー)にて攪拌混合し、燃料電池用触媒ペースト組成物(26)(固形分濃度18.4質量%)を調製した。
燃料電池用触媒ペースト組成物(26)を、ドクターブレードにより、乾燥後の非白金系炭素系触媒の目付け量が2mg/cmになるように導電性支持体として炭素繊維からなるカーボンペーパ基材(TGP−H−090、東レ社製)上に塗布し、大気雰囲気中95℃、60分間乾燥して、正極用燃料電池用触媒電極(5)を作製した。
正極用燃料電池用触媒電極(4)の代わりに、正極用燃料電池用触媒電極(5)を用いた以外は、実施例19と同様にして空気電池用評価セルを得た。
[Comparative Example 10 Production of evaluation cell for air battery]
4. Non-platinum-based carbon-based catalyst (X3) 10.0% by mass, carbon material (4) 3.0% by mass, N-methylpyrrolidone 81.6% by mass as a solvent, and polyvinylidene fluoride 5. 4% by mass was added, and the mixture was stirred and mixed with a disper (manufactured by PRIMIX Corporation, TK Homodisper) to prepare a catalyst paste composition (26) for fuel cells (solid content concentration 18.4% by mass).
A carbon paper base material comprising carbon fiber as a conductive support so that the basis weight of the non-platinum-based carbon catalyst after drying the catalyst paste composition (26) for a fuel cell may be 2 mg/cm 2 with a doctor blade. (TGP-H-090, manufactured by Toray Industries, Inc.) and dried in an air atmosphere at 95°C for 60 minutes to prepare a catalyst electrode (5) for a fuel cell for a positive electrode.
An evaluation cell for an air battery was obtained in the same manner as in Example 19 except that the cathode fuel cell catalyst electrode (4) was used in place of the cathode fuel cell catalyst electrode (4).

(空気電池の特性評価:容量維持率)
得られた空気電池評価セルを用いて、2.0―4.8Vのカット電圧、0.5mA/cmの電流密度の条件で、3サイクルの慣らし運転を行った。その後、同条件にて、30サイクルの充放電テストを行うことで、容量維持率を求めたところ、容量維持率95.7%であったのに対して比較例10では容量維持率70.3%であった。
(Characteristic evaluation of air battery: capacity retention rate)
Using the obtained air battery evaluation cell, a 3-cycle break-in operation was performed under the conditions of a cut voltage of 2.0 to 4.8 V and a current density of 0.5 mA/cm 2 . After that, when the capacity retention rate was determined by performing a 30-cycle charge/discharge test under the same conditions, the capacity retention rate was 95.7%, whereas in Comparative Example 10, the capacity retention rate was 70.3%. %Met.

[実施例20 マグネシウム空気一次電池用評価セルの作製]
負極としてMg板、正極として正極用燃料電池用触媒電極(4)を使用し、両極でセパレータ(不織布)を挟み込み固定し、マグネシウム空気一次電池評価用セルを得た。
[Example 20: Production of evaluation cell for magnesium-air primary battery]
Using a Mg plate as a negative electrode and a positive electrode fuel cell catalyst electrode (4) as a positive electrode, a separator (nonwoven fabric) was sandwiched and fixed between both electrodes to obtain a magnesium-air primary battery evaluation cell.

[比較例11 マグネシウム空気一次電池用評価セルの作製]
正極用燃料電池用触媒電極(4)の代わりに、正極用燃料電池用触媒電極(5)を用いた以外は、実施例20と同様にしてマグネシウム空気一次電池評価用セルを得た。
[Comparative Example 11 Preparation of evaluation cell for magnesium-air primary battery]
A magnesium air primary battery evaluation cell was obtained in the same manner as in Example 20, except that the cathode fuel cell catalyst electrode (4) was used in place of the cathode fuel cell catalyst electrode (4).

<マグネシウム空気一次電池の特性評価:開放電圧、放電容量>
得られたマグネシウム空気一次電池評価用セルのセパレータに電解液(20%塩化ナトリウム水溶液)を浸し、構成セルの開放電圧(OCV)と放電容量を充放電評価装置により測定した。実施例20では、開放電圧が1.7V、放電容量が1412mAh/gであったのに対して、比較例11では、開放電圧が1.2V、放電容量が755mAh/gであった。
<Characteristic evaluation of magnesium-air primary battery: open circuit voltage, discharge capacity>
The electrolytic solution (20% sodium chloride aqueous solution) was immersed in the separator of the obtained magnesium-air primary battery evaluation cell, and the open-circuit voltage (OCV) and discharge capacity of the constituent cells were measured by a charge-discharge evaluation device. In Example 20, the open circuit voltage was 1.7 V and the discharge capacity was 1412 mAh/g, whereas in Comparative Example 11, the open circuit voltage was 1.2 V and the discharge capacity was 755 mAh/g.

本発明の燃料電池用触媒ペースト組成物を用いて作製される燃料電池用触媒層及び触媒電極は、微生物燃料電池や金属-空気電池などの液体電解質を用いる燃料電池においても、炭素材料がガス拡散路として機能するため、非白金系炭素系触媒上の活性点への酸素供給量が増加し、性能向上に繋がったものと推察される。 The catalyst layer and the catalyst electrode for a fuel cell produced by using the catalyst paste composition for a fuel cell of the present invention have a carbon material gas diffusion even in a fuel cell using a liquid electrolyte such as a microbial fuel cell or a metal-air cell. Since it functions as a channel, the amount of oxygen supplied to the active sites on the non-platinum-based carbon-based catalyst increases, and it is speculated that this has led to improved performance.

本発明の燃料電池用触媒ペースト組成物を用いて作製される燃料電池用触媒層及び触媒電極は、反応によって生成された水によるフラッディングが起こりにくく、ガス拡散性が良好であるため最大出力密度が向上しているものと推察される。加えて、微生物燃料電池や金属-空気電池などの液体電解質を用いる燃料電池においても、炭素材料がガス拡散路として機能し、好適に適用できることがわかった。 The fuel cell catalyst layer and the catalyst electrode produced using the fuel cell catalyst paste composition of the present invention are less likely to be flooded by water generated by the reaction, and have a good gas diffusibility, and thus have a maximum power density. It is presumed that it is improving. In addition, it was found that the carbon material functions as a gas diffusion path and can be suitably applied to a fuel cell using a liquid electrolyte such as a microbial fuel cell and a metal-air cell.

図1は、燃料電池の構造の模式図である。FIG. 1 is a schematic diagram of the structure of a fuel cell.

1 セパレータ
2 ガス拡散層
3 負極触媒層(燃料極)
4 固体高分子電解質
5 正極触媒層(空気極)
6 ガス拡散層
7 セパレータ
1 separator 2 gas diffusion layer 3 negative electrode catalyst layer (fuel electrode)
4 Solid polymer electrolyte 5 Positive electrode catalyst layer (air electrode)
6 Gas diffusion layer 7 Separator

Claims (7)

非白金系炭素系触媒と、炭素材料と、溶剤と、バインダーを含んでなる燃料電池用触媒ペースト組成物であって、
前記炭素材料の親水度(水を吸着種としたBET比表面積(BETH2O)と、窒素を吸着種としたBET比表面積(BETN2)との比(BETH2O /BETN2))が0.5以下であり、
前記非白金系炭素系触媒の親水度が0.6〜4.9であり、
前記非白金系炭素系触媒に対する前記炭素材料の質量比が0.1〜50質量%であることを特徴とする燃料電池用触媒ペースト組成物。
A catalyst paste composition for a fuel cell, comprising a non-platinum-based catalyst, a carbon material, a solvent, and a binder,
The hydrophilicity of the carbon material (the ratio of the BET specific surface area (BET H2O ) using water as an adsorbing species and the BET specific surface area (BET N2 ) using nitrogen as an adsorbing species (BET H2O /BET N2 )) is 0.5. Is less than
The hydrophilicity of the non-platinum-based carbon-based catalyst is 0.6 to 4.9,
A catalyst paste composition for a fuel cell, wherein the mass ratio of the carbon material to the non-platinum-based carbon catalyst is 0.1 to 50 mass %.
非白金系炭素系触媒の親水度が0.6〜2.5であり、かつ炭素材料のBETN2が100m2/g以上、細孔容積が0.4cm/g以上、かさ密度が0.4g/cm以下であることを特徴とする請求項1記載の燃料電池用触媒ペースト組成物。 The non-platinum-based carbon-based catalyst has a hydrophilicity of 0.6 to 2.5, the carbon material has a BET N2 of 100 m 2 /g or more, a pore volume of 0.4 cm 3 /g or more, and a bulk density of 0. The catalyst paste composition for a fuel cell according to claim 1, wherein the composition is 4 g/cm 3 or less. 炭素材料の親水度が0.15以下、BETN2が500m2/g以上であることを特徴とする
請求項1または2記載の燃料電池用触媒ペースト組成物。
The catalyst paste composition for a fuel cell according to claim 1 or 2, wherein the carbon material has a hydrophilicity of 0.15 or less and BET N2 of 500 m 2 /g or more.
請求項1〜3いずれか記載の燃料電池用触媒ペースト組成物から形成されてなる燃料電池用触媒層。 A fuel cell catalyst layer formed from the fuel cell catalyst paste composition according to claim 1. 請求項4記載の燃料電池用触媒層と導電性支持体とを具備してなる燃料電池用触媒電極。 A catalyst electrode for a fuel cell, comprising the catalyst layer for a fuel cell according to claim 4 and a conductive support. 固体高分子電解質膜と、請求項5記載の燃料電池用触媒電極を具備してなる燃料電池用電極膜接合体。 A fuel cell electrode membrane assembly comprising the solid polymer electrolyte membrane and the fuel cell catalyst electrode according to claim 5. 請求項5記載の燃料電池用触媒電極または請求項6記載の燃料電池用電極膜接合体の少なくとも一方を具備してなる燃料電池。 A fuel cell comprising at least one of the fuel cell catalyst electrode according to claim 5 and the fuel cell electrode membrane assembly according to claim 6.
JP2016059608A 2015-03-30 2016-03-24 Fuel cell paste composition and fuel cell Active JP6736929B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015070093 2015-03-30
JP2015070093 2015-03-30

Publications (2)

Publication Number Publication Date
JP2016192399A JP2016192399A (en) 2016-11-10
JP6736929B2 true JP6736929B2 (en) 2020-08-05

Family

ID=57245690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016059608A Active JP6736929B2 (en) 2015-03-30 2016-03-24 Fuel cell paste composition and fuel cell

Country Status (1)

Country Link
JP (1) JP6736929B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6921485B2 (en) 2016-05-27 2021-08-18 日清紡ホールディングス株式会社 Battery cathode, composition for battery cathode catalyst layer and battery
KR101926966B1 (en) 2017-03-09 2018-12-07 국방과학연구소 Manufacturing method of graphene quantum dots-phthalocyanine complex for electrochemical catalyst and graphene quantum dots-phthalocyanine complex using the same
JP7293624B2 (en) * 2017-11-30 2023-06-20 東洋インキScホールディングス株式会社 Catalyst for positive electrode of enzyme battery, electrode paste composition for positive electrode of enzyme battery, and use thereof
JP7318294B2 (en) * 2018-07-02 2023-08-01 東洋インキScホールディングス株式会社 Carbon material for anode electrode, composition, electrode, and biofuel cell using the same
JP7367333B2 (en) * 2019-04-23 2023-10-24 東洋インキScホールディングス株式会社 Media monitoring system
JP7198238B2 (en) * 2020-03-19 2022-12-28 株式会社東芝 Electrode catalyst layer for carbon dioxide electrolysis cell, and electrolysis cell and electrolysis device for carbon dioxide electrolysis comprising the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3565077B2 (en) * 1999-02-19 2004-09-15 松下電器産業株式会社 Electrode for fuel cell and method for producing the same
JP4062133B2 (en) * 2003-03-12 2008-03-19 トヨタ自動車株式会社 Method for producing gas diffusion layer of membrane-electrode assembly, membrane-electrode assembly, and fuel cell
JP4923518B2 (en) * 2005-10-31 2012-04-25 株式会社エクォス・リサーチ Cathode electrode for fuel cell
JP4960000B2 (en) * 2006-03-30 2012-06-27 新日本製鐵株式会社 Gas diffusion electrode for fuel cell and fuel cell
JP2010092814A (en) * 2008-10-10 2010-04-22 Nippon Shokubai Co Ltd Electrode catalyst for polymer electrolyte fuel cell
JP5297786B2 (en) * 2008-12-16 2013-09-25 株式会社キャタラー Anode catalyst layer of polymer electrolyte fuel cell
JP2012212661A (en) * 2011-03-23 2012-11-01 Toppan Printing Co Ltd Electrode catalyst layer for fuel cell, manufacturing method of electrode catalyst layer, membrane electrode assembly for fuel cell, and solid polymer fuel cell
JP6244936B2 (en) * 2013-01-30 2017-12-13 東洋インキScホールディングス株式会社 Carbon catalyst and method for producing the same, and catalyst ink and fuel cell using the carbon catalyst
JP6186959B2 (en) * 2013-07-05 2017-08-30 東洋インキScホールディングス株式会社 Method for producing catalyst ink, catalyst ink, catalyst electrode, fuel cell, and air cell

Also Published As

Publication number Publication date
JP2016192399A (en) 2016-11-10

Similar Documents

Publication Publication Date Title
Meng et al. Iron-chelated hydrogel-derived bifunctional oxygen electrocatalyst for high-performance rechargeable Zn–air batteries
JP6736929B2 (en) Fuel cell paste composition and fuel cell
Sun et al. Graphene–Co 3 O 4 nanocomposite as an efficient bifunctional catalyst for lithium–air batteries
CN104094460B (en) Electrode catalyst layer for fuel cell
Wang et al. Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc–air batteries
US7175930B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
JP6354393B2 (en) Aqueous catalyst paste composition for fuel cell and fuel cell
JP6350092B2 (en) Carbon catalyst for microbial fuel cell and method for producing the same, catalyst ink, and microbial fuel cell
CN105228741B (en) Catalyst, and electrode catalyst layer, membrane electrode assembly, and fuel cell using same
US20040110051A1 (en) Sulfonated conducting polymer-grafted carbon material for fuel cell applications
KR20050012747A (en) Proton conductive carbon material
JP6244936B2 (en) Carbon catalyst and method for producing the same, and catalyst ink and fuel cell using the carbon catalyst
EP2824741B1 (en) Electrolyte membrane electrode assembly
US7195834B2 (en) Metallized conducting polymer-grafted carbon material and method for making
CN108780900B (en) Carbon powder for fuel cell, and catalyst, electrode catalyst layer, membrane electrode assembly, and fuel cell using same
Shintani et al. Performance of practical-sized membrane-electrode assemblies using titanium nitride-supported platinum catalysts mixed with acetylene black as the cathode catalyst layer
He et al. Boosting the electrocatalytic performance of carbon nanotubes toward V (V)/V (IV) reaction by sulfonation treatment
JP6186959B2 (en) Method for producing catalyst ink, catalyst ink, catalyst electrode, fuel cell, and air cell
Chen et al. In situ, facile synthesis of La 0.8 Sr 0.2 MnO 3/nitrogen-doped graphene: A high-performance catalyst for rechargeable Li-O 2 batteries
CN113140739A (en) Fuel cell gas diffusion layer, preparation method thereof, membrane electrode assembly and fuel cell
JP5065289B2 (en) Fuel cell electrode with reduced amount of noble metal and solid polymer fuel cell having the same
JP6464734B2 (en) Aqueous catalyst paste composition for fuel cell and fuel cell
KR101851939B1 (en) CATALYST FOR FEMFC HAVING DOUBLE LAYER STRUCTURE OF Pt-C/Pt-TiO2 AND MEMBRANE ELECTRODE ASSEMBLY COMPRISING THE SAME
WO2004107359A1 (en) Metallized conducting polymer-grafted carbon material and method for making
CN114583192A (en) Electrode-forming composition, electrode, method for producing electrode, membrane-electrode assembly, and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6736929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350