JP2017181851A - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
JP2017181851A
JP2017181851A JP2016070326A JP2016070326A JP2017181851A JP 2017181851 A JP2017181851 A JP 2017181851A JP 2016070326 A JP2016070326 A JP 2016070326A JP 2016070326 A JP2016070326 A JP 2016070326A JP 2017181851 A JP2017181851 A JP 2017181851A
Authority
JP
Japan
Prior art keywords
substrate
electrode
modulation region
optical
light modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016070326A
Other languages
Japanese (ja)
Other versions
JP6728888B2 (en
Inventor
徳一 宮崎
Tokuichi Miyazaki
徳一 宮崎
加藤 圭
Kei Kato
圭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2016070326A priority Critical patent/JP6728888B2/en
Publication of JP2017181851A publication Critical patent/JP2017181851A/en
Application granted granted Critical
Publication of JP6728888B2 publication Critical patent/JP6728888B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an optical modulator whose size increase can be suppressed.SOLUTION: An optical modulator includes: a substrate 1 with an electro-optical effect; a first optical modulation region M1 for modulating the phase polarization or the quadrature amplitude to modulate the light with a wavelength of λ1 and a second optical modulation region M2 for modulating the phase polarization or the quadrature amplitude to modulate the light with a wavelength of λ2, which are formed on the substrate 1; an electrode (control electrode 3) for the modulation, which is provided in the optical modulation regions M1 and M2; and an external substrate 21 where a wiring circuit to be electrically connected to the electrode is formed. The optical modulation region M1 and the optical modulation region M2 are disposed in parallel in the width direction of the substrate 1, and the external substrate 21 is disposed right above the substrate 1. The electrode and the wiring circuit are electrically connected in a portion where the substrate 1 and the substrate 21 face each other.SELECTED DRAWING: Figure 2

Description

本発明は、光変調器に関し、特に、2波長集積型などの高集積型変調器の構造に関する。   The present invention relates to an optical modulator, and more particularly to a structure of a highly integrated modulator such as a two-wavelength integrated type.

光通信システムの高速化、大容量化が進む中で、それに使用される光変調器の高性能化、高密度化が進んでいる。また、光変調器の小型化の要請に伴い、光変調器を構成する基板の小型化も進められている。しかしながら、光変調器の高性能化、高密度化と小型化とは相反する要求であるため、これらを両立するための工夫が求められている。   As the speed and capacity of optical communication systems are increasing, the performance and density of optical modulators used therein are increasing. In addition, with the demand for miniaturization of optical modulators, miniaturization of substrates constituting the optical modulators is also being promoted. However, high performance, high density, and miniaturization of optical modulators are contradictory requirements, and a device for achieving both of these is required.

このような光変調器に関し、以下のような発明が提案されている。
例えば、特許文献1には、光導波路と、光導波路に電気信号が印加される複数の電極が設けられる導波路基板と、導波路基板に隣接して配置される中継基板と、中継基板と反対側に配置される終端基板とがキャリア基板に搭載される光変調器が開示されている。この光変調器では、複数の電極は、中継基板から導波路基板を介して終端基板へ延在する第1の配線部と、第1の配線部から延び且つ終端基板上でそれぞれ分岐した第2の配線部とを有している。また、第2の配線部のうち、分岐した一方の配線部には、キャパシタ及び終端抵抗が設けられ、分岐した他方の配線部は、バイアス抵抗を介してキャリア基板の配線に接続され、導波路基板の下を通過して中継基板上のバイアス調整用のDC電極まで延在している。
The following invention is proposed regarding such an optical modulator.
For example, Patent Document 1 discloses an optical waveguide, a waveguide substrate provided with a plurality of electrodes to which an electrical signal is applied to the optical waveguide, a relay substrate disposed adjacent to the waveguide substrate, and opposite to the relay substrate. An optical modulator is disclosed in which a termination substrate disposed on the side is mounted on a carrier substrate. In this optical modulator, the plurality of electrodes includes a first wiring portion extending from the relay substrate to the termination substrate via the waveguide substrate, and a second wiring extending from the first wiring portion and branched on the termination substrate. Wiring part. In addition, a capacitor and a terminating resistor are provided in one of the second wiring portions branched, and the other branched wiring portion is connected to the wiring of the carrier substrate via a bias resistor, and the waveguide It passes under the substrate and extends to the DC electrode for bias adjustment on the relay substrate.

特開2015−55840号公報Japanese Patent Laying-Open No. 2015-55840

近年、2波長集積型などの高集積型光変調器が開発されている。図1には、従来の2波長集積型DP−QPSK(Dual Polarization - Quadrature Phase Shift Keying)変調器の構成例を示してある。同図の光変調器は、波長λ1の光波が入力される光変調領域M1と、波長λ1とは異なる波長λ2の光波が入力される光変調領域M2とを有し、これら光変調領域M1,M2は互いに独立して動作するように構成される。   In recent years, highly integrated optical modulators such as a two-wavelength integrated type have been developed. FIG. 1 shows a configuration example of a conventional dual wavelength integrated DP-QPSK (Dual Polarization-Quadrature Phase Shift Keying) modulator. The optical modulator shown in the figure has an optical modulation region M1 to which an optical wave having a wavelength λ1 is input, and an optical modulation region M2 to which an optical wave having a wavelength λ2 different from the wavelength λ1 is input. M2 are configured to operate independently of each other.

光変調領域M1,M2の各々は、電気光学効果を有する基板1上に、光導波路2と、光導波路2を伝搬する光波を制御するための制御電極3と、光導波路2を伝搬する光波を検出するための受光素子4とを備えている。制御電極3は、高周波信号(変調信号)が印加されるRF電極3aや、DC電圧(バイアス電圧)が印加されるDC電極3b,3cなどで構成される。   Each of the light modulation regions M1 and M2 has an optical waveguide 2, a control electrode 3 for controlling a light wave propagating through the optical waveguide 2, and a light wave propagating through the optical waveguide 2 on a substrate 1 having an electro-optic effect. And a light receiving element 4 for detection. The control electrode 3 includes an RF electrode 3a to which a high frequency signal (modulation signal) is applied, and DC electrodes 3b and 3c to which a DC voltage (bias voltage) is applied.

各光変調領域M1,M2の光導波路2は、マッハツェンダー型導波路を入れ子型に多重に配置した構造となっており、これに相応して多数の制御電極3や受光素子4が設けられている。同図では、光変調領域M1,M2のそれぞれに、4つのRF電極3aと、6つのDC電極3b,3cと、2つの受光素子4を設けてある。
光変調領域M1の下流には偏波合成部5が配置されており、メインとなるマッハツェンダー型導波路の出力側アーム部を伝搬する光波を偏波合成部5で合成して、光ファイバ6に出力する。光変調領域M2についても同様である。偏波合成部5は、空間光学系を用いて偏波合成を行う構造のものや、光導波路を用いて偏波合成を行う構造のものなどがある。
The optical waveguide 2 in each of the light modulation regions M1 and M2 has a structure in which Mach-Zehnder type waveguides are arranged in a nested manner, and a number of control electrodes 3 and light receiving elements 4 are provided accordingly. Yes. In the figure, four RF electrodes 3a, six DC electrodes 3b and 3c, and two light receiving elements 4 are provided in each of the light modulation regions M1 and M2.
A polarization beam combiner 5 is disposed downstream of the light modulation region M1, and the light wave propagating through the output side arm portion of the main Mach-Zehnder type waveguide is combined by the polarization beam combiner 5 to produce the optical fiber 6 Output to. The same applies to the light modulation region M2. The polarization combining unit 5 includes a structure that performs polarization combining using a spatial optical system and a structure that performs polarization combining using an optical waveguide.

上記のように、高集積型光変調器では、多数の制御電極や受光素子を配置した基板(チップ)が用いられる。このため、それらの部品に接続する電気線(不図示)の配線(取り回し)が増大し、基板サイズが大型化してしまうという問題があった。
また、終端基板などの外部基板をチップの側部に隣接させて配置する構造であり、チップだけでなく外部基板も配置できる平面領域が必要であったことから、光変調器サイズが大型化しやすい傾向にあった。
As described above, a highly integrated optical modulator uses a substrate (chip) on which a large number of control electrodes and light receiving elements are arranged. For this reason, there has been a problem that the wiring (managing) of electric wires (not shown) connected to these components increases and the substrate size increases.
In addition, the structure is such that an external substrate such as a termination substrate is disposed adjacent to the side of the chip, and a plane area in which not only the chip but also the external substrate can be disposed is required, so that the size of the optical modulator is likely to increase. There was a trend.

本発明が解決しようとする課題は、上記のような問題を解決し、光変調器サイズの大型化を抑制することが可能な光変調器を提供することである。   The problem to be solved by the present invention is to provide an optical modulator capable of solving the above-described problems and suppressing an increase in the size of the optical modulator.

上記課題を解決するため、本発明の光変調器は、以下のような技術的特徴を有する。
(1) 電気光学効果を有する基板と、前記基板に形成された、第1の波長の光を変調する位相偏波変調又は直交振幅変調のための第1の光変調領域、及び、第2の波長の光を変調する位相偏波変調又は直交振幅変調のための第2の光変調領域と、前記第1の光変調領域及び前記第2の光変調領域に設けられた、変調のための電極と、前記電極と電気的に接続される配線回路が形成された外部基板とを有する光変調器において、前記第1の光変調領域と前記第2の光変調領域は前記基板の幅方向に並列に配置され、前記外部基板は前記基板の直上に配置され、前記電極と前記配線回路とは前記基板と前記外部基板とが対向し合う部分で電気的に接続されることを特徴とする。
In order to solve the above problems, the optical modulator of the present invention has the following technical features.
(1) a substrate having an electro-optic effect, a first light modulation region formed on the substrate for phase polarization modulation or quadrature amplitude modulation for modulating light of a first wavelength, and second A second light modulation region for phase polarization modulation or quadrature amplitude modulation for modulating light of a wavelength, and an electrode for modulation provided in the first light modulation region and the second light modulation region And an external substrate on which a wiring circuit electrically connected to the electrode is formed, wherein the first light modulation region and the second light modulation region are parallel to the width direction of the substrate. The external substrate is disposed immediately above the substrate, and the electrode and the wiring circuit are electrically connected at a portion where the substrate and the external substrate face each other.

(2) 上記(1)に記載の光変調器において、前記第1の光変調領域及び前記第2の光変調領域には、DC電極とRF電極とがそれぞれ形成され、前記第1の光変調領域及び前記第2の光変調領域で、前記基板の長さ方向における前記DC電極と前記RF電極との配置順が異なることを特徴とする。 (2) In the optical modulator according to (1), a DC electrode and an RF electrode are formed in the first light modulation region and the second light modulation region, respectively, and the first light modulation region is formed. The arrangement order of the DC electrode and the RF electrode in the length direction of the substrate is different between the region and the second light modulation region.

(3) 上記(1)又は(2)に記載の光変調器において、前記第1の光変調領域及び前記第2の光変調領域は、前記基板の長さ方向にずらして配置されることを特徴とする。 (3) In the optical modulator according to (1) or (2), the first light modulation region and the second light modulation region are arranged so as to be shifted in the length direction of the substrate. Features.

本発明の光変調器は、第1の光変調領域と第2の光変調領域が基板の幅方向に並列に配置され、外部基板が基板の直上に配置され、基板上の電極と外部基板上の配線回路とは基板と外部基板とが対向し合う部分で電気的に接続されるため、光変調器サイズの大型化を抑制することが可能な光変調器を提供することができる。   In the light modulator of the present invention, the first light modulation region and the second light modulation region are disposed in parallel in the width direction of the substrate, the external substrate is disposed immediately above the substrate, the electrode on the substrate and the external substrate Since the wiring circuit is electrically connected at the portion where the substrate and the external substrate face each other, an optical modulator capable of suppressing an increase in the size of the optical modulator can be provided.

従来の2波長集積型DP−QPSK変調器の構成例を示す平面図である。It is a top view which shows the structural example of the conventional 2 wavelength integrated DP-QPSK modulator. 本発明の第1実施例に係る光変調器を説明する平面図である。It is a top view explaining the optical modulator which concerns on 1st Example of this invention. 本発明の第1実施例に係る光変調器を説明する側面図である。It is a side view explaining the optical modulator which concerns on 1st Example of this invention. 本発明の第1実施例における各終端部の構造を示す拡大平面図である。It is an enlarged plan view which shows the structure of each termination | terminus part in 1st Example of this invention. 本発明の第2実施例における各終端部の配置を示す平面図である。It is a top view which shows arrangement | positioning of each termination | terminus part in 2nd Example of this invention. 本発明の第2実施例における外部基板の変形例を示す平面図である。It is a top view which shows the modification of the external substrate in 2nd Example of this invention. 本発明の第3実施例に係る光変調器を説明する平面図である。It is a top view explaining the optical modulator which concerns on 3rd Example of this invention. 本発明の第4実施例に係る光変調器を説明する平面図である。It is a top view explaining the optical modulator which concerns on 4th Example of this invention.

以下、本発明に係る光変調器について詳細に説明する。
本発明に係る光変調器は、例えば図2に示すように、電気光学効果を有する基板1と、基板1に形成された、波長λ1の光を変調する位相偏波変調又は直交振幅変調のための第1の光変調領域M1、及び、波長λ2の光を変調する位相偏波変調又は直交振幅変調のための第2の光変調領域M2と、光変調領域M1,M2に設けられた、変調のための電極(制御電極3)と、該電極と電気的に接続される配線回路が形成された外部基板21とを有する。光変調領域M1と光変調領域M2は基板1の幅方向に並列に配置され、外部基板21は基板1の直上に配置され、電極と配線回路とは基板1と外部基板21とが対向し合う部分で電気的に接続される。光変調領域M1,M2は必ずしも同じ基板1に形成する必要はなく、それぞれ別の基板に形成してもよい。
Hereinafter, the optical modulator according to the present invention will be described in detail.
The optical modulator according to the present invention is, for example, as shown in FIG. 2 for a substrate 1 having an electro-optic effect and phase polarization modulation or quadrature amplitude modulation that is formed on the substrate 1 and modulates light of wavelength λ1. The first light modulation region M1, the second light modulation region M2 for phase polarization modulation or quadrature amplitude modulation for modulating the light of wavelength λ2, and the modulation provided in the light modulation regions M1 and M2 Electrode (control electrode 3) and an external substrate 21 on which a wiring circuit electrically connected to the electrode is formed. The light modulation region M1 and the light modulation region M2 are arranged in parallel in the width direction of the substrate 1, the external substrate 21 is disposed immediately above the substrate 1, and the substrate 1 and the external substrate 21 face each other with the electrodes and the wiring circuit. Electrically connected at the part. The light modulation regions M1 and M2 are not necessarily formed on the same substrate 1, and may be formed on different substrates.

基板1としては、石英、半導体など光導波路を形成できる基板であれば良く、特に、電気光学効果を有する基板である、LiNbO(ニオブ酸リチウム),LiTaO(タンタル酸リチウム)又はPLZT(ジルコン酸チタン酸鉛ランタン)のいずれかの単結晶などを用いた基板が好適に利用可能である。 The substrate 1 may be any substrate that can form an optical waveguide such as quartz or semiconductor, and in particular, is a substrate having an electro-optic effect, such as LiNbO 3 (lithium niobate), LiTaO 3 (lithium tantalate) or PLZT (zircon). A substrate using any single crystal of lead lanthanum titanate) can be suitably used.

基板1に形成する光導波路2は、例えば、LiNbO基板(LN基板)上にチタン(Ti)などの高屈折率物質を熱拡散することにより形成される。また、光導波路となる部分の両側に溝を形成したリブ型光導波路や光導波路部分を凸状としたリッジ型導波路も利用可能である。また、PLC等の異なる導波路基板に光導波路を形成し、これらの導波路基板を貼り合せ集積した光回路にも、本発明を適用することが可能である。 The optical waveguide 2 formed on the substrate 1 is formed, for example, by thermally diffusing a high refractive index material such as titanium (Ti) on a LiNbO 3 substrate (LN substrate). Further, a rib-type optical waveguide in which grooves are formed on both sides of a portion that becomes an optical waveguide and a ridge-type waveguide in which the optical waveguide portion is convex can be used. Further, the present invention can also be applied to an optical circuit in which optical waveguides are formed on different waveguide substrates such as PLC and these waveguide substrates are bonded and integrated.

基板1には、光導波路2を伝搬する光波を制御するための制御電極3が設けられる。制御電極3としては、変調電極を構成するRF電極3aやこれを取り巻く接地電極(不図示)、DC電圧を印加するDC電極3b、3cなどがある。これら制御電極3は、基板表面に、Ti・Auの電極パターンを形成し、金メッキ方法などにより形成することが可能である。さらに、必要に応じて光導波路形成後の基板表面に誘電体SiO等のバッファ層を設けることも可能である。 The substrate 1 is provided with a control electrode 3 for controlling a light wave propagating through the optical waveguide 2. The control electrode 3 includes an RF electrode 3a constituting a modulation electrode, a ground electrode (not shown) surrounding the modulation electrode, and DC electrodes 3b and 3c for applying a DC voltage. These control electrodes 3 can be formed by forming a Ti / Au electrode pattern on the substrate surface and using a gold plating method or the like. Furthermore, a buffer layer such as a dielectric SiO 2 can be provided on the substrate surface after the formation of the optical waveguide, if necessary.

本発明に係る光変調器の主な特徴は、外部基板21が基板1の直上に配置され、基板1の電極と外部基板21の配線回路とがこれら基板の対向し合う部分で電気的に接続されることである。以下、実施例を参照して詳細に説明する。本明細書では、基板の長さ方向を「X方向」とし、基板の幅方向を「Y方向」とする。X方向は光波の進行方向(図中の矢印Xの方向)に対応し、これに直交する方向(図中の矢印Yの方向)がY方向となる。なお、光変調器の概略的な構成は、図1を参照して説明した従来の光変調器と同様である。   The main feature of the optical modulator according to the present invention is that the external substrate 21 is disposed immediately above the substrate 1, and the electrodes of the substrate 1 and the wiring circuit of the external substrate 21 are electrically connected at the facing portions of these substrates. It is to be done. Hereinafter, a detailed description will be given with reference to examples. In this specification, the length direction of the substrate is “X direction”, and the width direction of the substrate is “Y direction”. The X direction corresponds to the traveling direction of the light wave (the direction of the arrow X in the figure), and the direction orthogonal to this (the direction of the arrow Y in the figure) is the Y direction. The schematic configuration of the optical modulator is the same as that of the conventional optical modulator described with reference to FIG.

図2は、本発明の第1実施例に係る光変調器を説明する平面図であり、図3は、その側面図である。また、図4は、第1実施例における各終端部の構造を示す拡大平面図である。
本例の光変調器は、基板1上に、波長λ1の光を変調する位相偏波変調又は直交振幅変調のための第1の光変調領域M1と、波長λ2の光を変調する位相偏波変調又は直交振幅変調のための第2の光変調領域M2とが形成されている。光変調領域M1,M2は、Y方向(基板の幅方向)に並列に配置される。
光変調領域M1,M2には、制御電極3として、RF電極3aやDC電極3b、3cなどが配置される。同図では、8つのRF電極3aがY方向に並列に配置され、8つのDC電極3bがY方向に並列に配置され、4つのDC電極3cがY方向に並列に配置されている。
FIG. 2 is a plan view for explaining an optical modulator according to the first embodiment of the present invention, and FIG. 3 is a side view thereof. FIG. 4 is an enlarged plan view showing the structure of each terminal portion in the first embodiment.
The optical modulator of this example has a first optical modulation region M1 for phase polarization modulation or quadrature amplitude modulation for modulating light of wavelength λ1, and phase polarization for modulating light of wavelength λ2, on a substrate 1. A second light modulation region M2 for modulation or quadrature amplitude modulation is formed. The light modulation regions M1 and M2 are arranged in parallel in the Y direction (substrate width direction).
In the light modulation regions M1 and M2, as the control electrode 3, an RF electrode 3a, DC electrodes 3b and 3c, and the like are arranged. In the figure, eight RF electrodes 3a are arranged in parallel in the Y direction, eight DC electrodes 3b are arranged in parallel in the Y direction, and four DC electrodes 3c are arranged in parallel in the Y direction.

基板1の直上には、高周波信号の終端部を構成する配線回路を集積した終端基板である外部基板21が、全てのRF電極3aに少なくとも一部が重なるように配置される。外部基板21は、RF電極3aと外部基板21の配線回路とを基板1に対向する部分で電気的に接続できるように構成される。
すなわち、外部基板21の下面(基板1側の面)の各RF電極3aに対応する位置に、複数の接続パッド23や終端抵抗24などで構成された終端部22が配置される。図4の例では、終端部22の素子1つあたり、3つの接続パッド23と2つの終端抵抗24とが設けられている。終端部22の各接続パッド23には、Au等で形成された突起状の端子であるバンプ25を設けてある。RF電極3aは、バンプ25を用いたフリップチップ接続により接続パッド23に接続される。外部基板21の下面は、バンプ25の形成箇所を含む一部を除き、絶縁膜26によって覆われている。
Immediately above the substrate 1, an external substrate 21, which is a termination substrate in which wiring circuits constituting the termination portion of the high-frequency signal are integrated, is disposed so as to at least partially overlap all the RF electrodes 3 a. The external substrate 21 is configured such that the RF electrode 3a and the wiring circuit of the external substrate 21 can be electrically connected at a portion facing the substrate 1.
That is, the termination portion 22 composed of a plurality of connection pads 23, termination resistors 24, and the like is disposed at a position corresponding to each RF electrode 3a on the lower surface of the external substrate 21 (surface on the substrate 1 side). In the example of FIG. 4, three connection pads 23 and two termination resistors 24 are provided for each element of the termination portion 22. Each connection pad 23 of the end portion 22 is provided with a bump 25 that is a protruding terminal formed of Au or the like. The RF electrode 3 a is connected to the connection pad 23 by flip chip connection using the bump 25. The lower surface of the external substrate 21 is covered with an insulating film 26 except for a part including a portion where the bump 25 is formed.

外部基板21の直上には、更に放熱構造(ヒートシンク)31を配置することもできる。放熱構造31としては、熱伝導の良い金属や熱伝導シートを用いることができ、光変調器の筐体に接続される。放熱構造31として金属を用いる場合には、別体の金属ブロックであってもよい。
また、外部基板21に、抵抗単独ではなくバイアスティー(Bias Tee)機能を組み込む場合には、基板上面にそれらの素子を実装してもよい。この場合、放熱構造31は、更にその上に配置されることになる。
A heat radiating structure (heat sink) 31 can also be disposed immediately above the external substrate 21. As the heat dissipation structure 31, a metal or a heat conductive sheet with good heat conduction can be used, and it is connected to the housing of the optical modulator. When a metal is used for the heat dissipation structure 31, a separate metal block may be used.
Further, when a bias tee (Bias Tee) function is incorporated in the external substrate 21 instead of a resistor alone, those elements may be mounted on the upper surface of the substrate. In this case, the heat dissipation structure 31 is further disposed thereon.

外部基板21の基板材として、基板1にほぼ等しい線膨張率の材質の基板を用いることで、基板1と外部基板21との接続部の機械信頼性が高い光変調器を実現できる。このため、基板1と外部基板21は同じ材料を用いることが好ましい。   By using a substrate having a material having a linear expansion coefficient substantially equal to that of the substrate 1 as the substrate material of the external substrate 21, it is possible to realize an optical modulator with high mechanical reliability at the connection portion between the substrate 1 and the external substrate 21. For this reason, it is preferable to use the same material for the substrate 1 and the external substrate 21.

このように、外部基板21を基板1の直上に配置することで、基板1の側部に外部基板21を隣接させて配置する構造に比べて、基板1と外部基板21の配置に必要な平面領域を削減することができるため、光変調器サイズの大型化を抑制することができる。また、基板1の電極と外部基板21の配線回路とをこれら基板の対向し合う部分で電気的に接続するように構成したので、RF電極3aから終端抵抗24に至る配線の短縮や簡素化を実現することができる。   Thus, by arranging the external substrate 21 immediately above the substrate 1, a plane necessary for the arrangement of the substrate 1 and the external substrate 21 as compared with the structure in which the external substrate 21 is arranged adjacent to the side portion of the substrate 1. Since the area can be reduced, an increase in the size of the optical modulator can be suppressed. Further, since the electrodes of the substrate 1 and the wiring circuit of the external substrate 21 are configured to be electrically connected at the opposing portions of these substrates, the wiring from the RF electrode 3a to the termination resistor 24 can be shortened or simplified. Can be realized.

図5は、本発明の第2実施例における各終端部の配置を示す平面図である。
本例の光変調器では、光変調領域M1を構成するメインのマッハツェンダー型導波路の各アーム部にRF電極31を2つずつ設けてあるが、一方のアーム部のRF電極31と他方のアーム部のRF電極31とをX方向(基板の長さ方向)にずらして配置してある。そして、これに合うように、外部基板21の各終端部22もX方向にずらして配置してある。
FIG. 5 is a plan view showing the arrangement of the terminal portions in the second embodiment of the present invention.
In the optical modulator of this example, two RF electrodes 31 are provided in each arm part of the main Mach-Zehnder type waveguide constituting the light modulation region M1, but the RF electrode 31 of one arm part and the other The RF electrode 31 of the arm portion is arranged so as to be shifted in the X direction (length direction of the substrate). In addition, the terminal portions 22 of the external substrate 21 are also shifted in the X direction so as to match this.

このような構造によれば、終端部22の発熱が分散されるので、外部基板21の発熱を抑えることができる。なお、図5に示した終端部22の配置は一例に過ぎず、他の配置であっても構わないことは言うまでもない。   According to such a structure, the heat generation of the terminal portion 22 is dispersed, so that the heat generation of the external substrate 21 can be suppressed. Needless to say, the arrangement of the terminal portions 22 shown in FIG. 5 is merely an example, and other arrangements may be used.

図6は、本発明の第2実施例における外部基板の変形例を示す平面図である。
本変形例は、外部基板21の下面に、RF電極31に対応する終端部22のほかに、ダミーの接続パッドであるダミーパッド27を設ける。図6では、外部基板21の下面の四隅に、ダミーパッド27を設けてある。このようなダミーパッド27を配置することで、基板1との接続強度を向上させることができる。
FIG. 6 is a plan view showing a modification of the external substrate in the second embodiment of the present invention.
In this modification, a dummy pad 27 that is a dummy connection pad is provided on the lower surface of the external substrate 21 in addition to the terminal end 22 corresponding to the RF electrode 31. In FIG. 6, dummy pads 27 are provided at the four corners of the lower surface of the external substrate 21. By arranging such a dummy pad 27, the connection strength with the substrate 1 can be improved.

図7は、本発明の第3実施例に係る光変調器を説明する平面図である。
本例の光変調器は、外部基板21を接着樹脂41で基板1に接着して固定している。接着樹脂41による接着・固定は、RF電極31の作用部(RF電極31からの電界が光導波路2に作用する部位)以外の部位で行うことが好ましい。RF電極31の作用部へ接着樹脂41が流入すると、高周波の損失やインピーダンスの変化、マイクロ波の屈折率の変化による光変調の速度整合の劣化が懸念されるためである。
FIG. 7 is a plan view for explaining an optical modulator according to the third embodiment of the present invention.
In the optical modulator of this example, the external substrate 21 is bonded and fixed to the substrate 1 with an adhesive resin 41. Bonding / fixing with the adhesive resin 41 is preferably performed at a site other than the action portion of the RF electrode 31 (the site where the electric field from the RF electrode 31 acts on the optical waveguide 2). This is because if the adhesive resin 41 flows into the action portion of the RF electrode 31, there is a concern about the loss of high-frequency modulation, the impedance change, and the deterioration of the speed matching of the light modulation due to the change in the refractive index of the microwave.

なお、本例の光変調器では、接着樹脂41がRF電極31の作用部に流れ込むことを防止するために、流出防止パターン42,43を設けてある。同図では、Y方向への接着樹脂41の流出を防止するための流出防止パターン42と、X方向への接着樹脂41の流出を防止するための流出防止パターン43とが設けられている。これらの流出防止パターンは、基板1に設けてもよく、外部基板21に設けてもよく、これらの両方に設けてもよい。   In the optical modulator of this example, outflow prevention patterns 42 and 43 are provided to prevent the adhesive resin 41 from flowing into the action portion of the RF electrode 31. In the figure, an outflow prevention pattern 42 for preventing the adhesive resin 41 from flowing out in the Y direction and an outflow preventing pattern 43 for preventing the adhesive resin 41 from flowing out in the X direction are provided. These outflow prevention patterns may be provided on the substrate 1, may be provided on the external substrate 21, or may be provided on both of them.

このような構造によれば、RF電極31の作用部への接着樹脂41の流入による高周波の損失やインピーダンスの変化、マイクロ波の屈折率の変化による光変調の速度整合の劣化を抑制することができる。また、流出防止パターン42,43は、基板1に対して外部基板21を正確に配置するための位置合わせも兼ねることができる。   According to such a structure, it is possible to suppress deterioration in speed matching of light modulation due to high-frequency loss, impedance change, and microwave refractive index change due to the inflow of the adhesive resin 41 to the action part of the RF electrode 31. it can. Further, the outflow prevention patterns 42 and 43 can also serve as alignment for accurately arranging the external substrate 21 with respect to the substrate 1.

図8は、本発明の第4実施例に係る光変調器を説明する平面図である。
本例の光変調器は、光変調領域M1,M2をそれぞれ別の基板に形成してある。具体的には、光変調領域M1を基板1Aに形成し、光変調領域M2を基板1Bに形成してある。また、光変調領域M1,M2をX方向にずらして配置してある。これに対応して、光変調領域M1,M2の各々に配置される制御電極3の配置位置もX方向にずれ、各制御電極3に接続する電気線の配線もX方向にずれることになる。このため、電気線の配線が局所的に集中することを抑制できるので、電気線間のクロストークを抑制することができる。また、他の電気線を回り込むように電気線を取り回さずに済むため、配線の短縮や簡素化を実現することができる。
FIG. 8 is a plan view for explaining an optical modulator according to the fourth embodiment of the present invention.
In the light modulator of this example, the light modulation regions M1 and M2 are formed on different substrates. Specifically, the light modulation region M1 is formed on the substrate 1A, and the light modulation region M2 is formed on the substrate 1B. In addition, the light modulation areas M1 and M2 are shifted in the X direction. Correspondingly, the arrangement position of the control electrode 3 arranged in each of the light modulation regions M1 and M2 is also shifted in the X direction, and the wiring of the electric wire connected to each control electrode 3 is also shifted in the X direction. For this reason, since it can suppress that the wiring of an electric wire concentrates locally, the crosstalk between electric wires can be suppressed. Further, since it is not necessary to route the electric wire so as to go around other electric wires, the wiring can be shortened or simplified.

また、本例の光変調器は、X方向の上流側に位置する光変調領域M1では、X方向の上流から下流に向かって、RF電極3a、DC電極3b、DC電極3cの順に配置されている。一方、X方向の下流側に位置する光変調領域M2では、X方向の上流から下流に向かって、DC電極3c、RF電極3a、DC電極3bの順に配置されている。すなわち、光変調領域M1と光変調領域M2でX方向におけるDC電極とRF電極との配置順が異なっている。このため、光変調領域M1のRF電極と光変調領域M2のRF電極のX方向のずれ量を光変調領域M1,M2のX方向のずれ量より大きくすることができる。これにより、光変調領域M1,M2のX方向のずれ量を少なくして光変調器のX方向の長さの増大を抑えつつ、高周波信号を入力するためのRFコネクタからRF電極に至る各電気線について余裕を持って配線できるようになる。   The light modulator of this example is arranged in the order of the RF electrode 3a, the DC electrode 3b, and the DC electrode 3c from the upstream in the X direction toward the downstream in the light modulation region M1 located on the upstream side in the X direction. Yes. On the other hand, in the light modulation region M2 located on the downstream side in the X direction, the DC electrode 3c, the RF electrode 3a, and the DC electrode 3b are arranged in this order from the upstream in the X direction to the downstream. That is, the arrangement order of the DC electrode and the RF electrode in the X direction is different between the light modulation region M1 and the light modulation region M2. For this reason, the shift amount in the X direction of the RF electrode in the light modulation region M1 and the RF electrode in the light modulation region M2 can be made larger than the shift amount in the X direction of the light modulation regions M1 and M2. Thus, each electric power from the RF connector to the RF electrode for inputting a high-frequency signal can be suppressed while suppressing an increase in the length of the optical modulator in the X direction by reducing the amount of shift in the X direction of the light modulation regions M1 and M2. Wires can be wired with a margin.

以上、実施例に基づいて本発明を説明したが、本発明は上述した内容に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更可能であることはいうまでもない。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above-described contents, and it is needless to say that the design can be changed as appropriate without departing from the gist of the present invention.

以上、説明したように、本発明によれば、基板上の電気線の配線取り回しを容易にすることが可能な光変調器を提供することができる。   As described above, according to the present invention, it is possible to provide an optical modulator capable of facilitating wiring of electric wires on a substrate.

1 基板
2 光導波路
3 制御電極
3a RF電極
3b,3c DC電極
4 受光素子
5 偏波合成部
6 光ファイバ
21 外部基板(終端基板)
22 終端部
23 接続パッド
24 終端抵抗
25 バンプ
26 絶縁膜
27 ダミーパッド
31 放熱構造
41 接着樹脂
42,43 流出防止パターン
DESCRIPTION OF SYMBOLS 1 Substrate 2 Optical waveguide 3 Control electrode 3a RF electrode 3b, 3c DC electrode 4 Light receiving element 5 Polarization combining part 6 Optical fiber 21 External substrate (termination substrate)
22 termination part 23 connection pad 24 termination resistor 25 bump 26 insulating film 27 dummy pad 31 heat dissipation structure 41 adhesive resin 42, 43 outflow prevention pattern

Claims (3)

電気光学効果を有する基板と、
前記基板に形成された、第1の波長の光を変調する位相偏波変調又は直交振幅変調のための第1の光変調領域、及び、第2の波長の光を変調する位相偏波変調又は直交振幅変調のための第2の光変調領域と、
前記第1の光変調領域及び前記第2の光変調領域に設けられた、変調のための電極と、
前記電極と電気的に接続される配線回路が形成された外部基板とを有する光変調器において、
前記第1の光変調領域と前記第2の光変調領域は前記基板の幅方向に並列に配置され、
前記外部基板は前記基板の直上に配置され、
前記電極と前記配線回路とは前記基板と前記外部基板とが対向し合う部分で電気的に接続されることを特徴とする光変調器。
A substrate having an electro-optic effect;
A first optical modulation region for modulating phase polarization or quadrature amplitude modulation, which is formed on the substrate, and phase polarization modulation for modulating light of the second wavelength; A second light modulation region for quadrature amplitude modulation;
An electrode for modulation provided in the first light modulation region and the second light modulation region;
In an optical modulator having an external substrate on which a wiring circuit electrically connected to the electrode is formed,
The first light modulation region and the second light modulation region are arranged in parallel in the width direction of the substrate,
The external substrate is disposed immediately above the substrate;
The optical modulator, wherein the electrode and the wiring circuit are electrically connected at a portion where the substrate and the external substrate face each other.
請求項1に記載の光変調器において、
前記第1の光変調領域及び前記第2の光変調領域には、DC電極とRF電極とがそれぞれ形成され、
前記第1の光変調領域及び前記第2の光変調領域で、前記基板の長さ方向における前記DC電極と前記RF電極との配置順が異なることを特徴とする光変調器。
The optical modulator according to claim 1.
A DC electrode and an RF electrode are respectively formed in the first light modulation region and the second light modulation region,
The optical modulator, wherein the arrangement order of the DC electrode and the RF electrode in the length direction of the substrate is different between the first light modulation region and the second light modulation region.
請求項1又は請求項2に記載の光変調器において、
前記第1の光変調領域及び前記第2の光変調領域は、前記基板の長さ方向にずらして配置されることを特徴とする光変調器。
The optical modulator according to claim 1 or 2,
The optical modulator, wherein the first optical modulation region and the second optical modulation region are arranged so as to be shifted in the length direction of the substrate.
JP2016070326A 2016-03-31 2016-03-31 Light modulator Active JP6728888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016070326A JP6728888B2 (en) 2016-03-31 2016-03-31 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070326A JP6728888B2 (en) 2016-03-31 2016-03-31 Light modulator

Publications (2)

Publication Number Publication Date
JP2017181851A true JP2017181851A (en) 2017-10-05
JP6728888B2 JP6728888B2 (en) 2020-07-22

Family

ID=60006969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070326A Active JP6728888B2 (en) 2016-03-31 2016-03-31 Light modulator

Country Status (1)

Country Link
JP (1) JP6728888B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11256154B2 (en) 2018-06-14 2022-02-22 Mitsubishi Electric Corporation Optical modulator and optical transmission module
WO2024038481A1 (en) * 2022-08-15 2024-02-22 日本電信電話株式会社 Ic-integrated optical polarization division multiplexing iq optical modulator module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128440A (en) * 2003-10-27 2005-05-19 Fujitsu Ltd Optical waveguide module with built-in electric circuit, and its manufacturing method
JP2010185978A (en) * 2009-02-10 2010-08-26 Fujitsu Optical Components Ltd Optical modulator
JP2010286770A (en) * 2009-06-15 2010-12-24 Fujitsu Optical Components Ltd Optical device
US20130170841A1 (en) * 2011-12-30 2013-07-04 Alcatel-Lucent Usa Method and apparatus for transmitting high-level qam optical signals with binary drive signals
JP2014199302A (en) * 2013-03-29 2014-10-23 住友大阪セメント株式会社 Optical device
JP2015055669A (en) * 2013-09-10 2015-03-23 株式会社フジクラ Optical modulator module
JP2015069162A (en) * 2013-09-30 2015-04-13 住友大阪セメント株式会社 Optical modulator
JP2015172630A (en) * 2014-03-11 2015-10-01 富士通オプティカルコンポーネンツ株式会社 Optical transmission apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005128440A (en) * 2003-10-27 2005-05-19 Fujitsu Ltd Optical waveguide module with built-in electric circuit, and its manufacturing method
JP2010185978A (en) * 2009-02-10 2010-08-26 Fujitsu Optical Components Ltd Optical modulator
JP2010286770A (en) * 2009-06-15 2010-12-24 Fujitsu Optical Components Ltd Optical device
US20130170841A1 (en) * 2011-12-30 2013-07-04 Alcatel-Lucent Usa Method and apparatus for transmitting high-level qam optical signals with binary drive signals
JP2014199302A (en) * 2013-03-29 2014-10-23 住友大阪セメント株式会社 Optical device
JP2015055669A (en) * 2013-09-10 2015-03-23 株式会社フジクラ Optical modulator module
JP2015069162A (en) * 2013-09-30 2015-04-13 住友大阪セメント株式会社 Optical modulator
JP2015172630A (en) * 2014-03-11 2015-10-01 富士通オプティカルコンポーネンツ株式会社 Optical transmission apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11256154B2 (en) 2018-06-14 2022-02-22 Mitsubishi Electric Corporation Optical modulator and optical transmission module
WO2024038481A1 (en) * 2022-08-15 2024-02-22 日本電信電話株式会社 Ic-integrated optical polarization division multiplexing iq optical modulator module

Also Published As

Publication number Publication date
JP6728888B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
US8135242B2 (en) Optical modulator
JP4899730B2 (en) Light modulator
US7912326B2 (en) Optical control device
JP7283180B2 (en) optical modulator
JP2008089936A (en) Optical control element
JP5991339B2 (en) Light control element
WO2014157456A1 (en) Optical modulator
JP6394423B2 (en) Optical device
CN107797310B (en) Optical modulator
US20230367147A1 (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmission device
JP2016212130A (en) Optical modulator
JP6728888B2 (en) Light modulator
JP2018055070A (en) Optical module and optical modulator
WO2017171094A1 (en) Optical modulator
CN113646690B (en) Light Modulator
US20230258967A1 (en) Optical waveguide device, optical modulator, optical modulation module, and optical transmission apparatus
US11442329B2 (en) Optical waveguide element, optical modulator, optical modulation module, and optical transmission apparatus
JP6459245B2 (en) Light modulator
JP2022117099A (en) Optical modulator and light transmitter using the same
JP2021026090A (en) Optical device
JP6290971B2 (en) Optical transmitter and optical modulator
JP7468279B2 (en) Optical modulator and optical transmitter using same
JP6638515B2 (en) Light modulator
US20230161184A1 (en) Optical device
JP6288153B2 (en) Light modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6728888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150