JP2017181829A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2017181829A5 JP2017181829A5 JP2016069855A JP2016069855A JP2017181829A5 JP 2017181829 A5 JP2017181829 A5 JP 2017181829A5 JP 2016069855 A JP2016069855 A JP 2016069855A JP 2016069855 A JP2016069855 A JP 2016069855A JP 2017181829 A5 JP2017181829 A5 JP 2017181829A5
- Authority
- JP
- Japan
- Prior art keywords
- anisotropic
- optical film
- light
- range
- anisotropic optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009792 diffusion process Methods 0.000 claims description 31
- 230000003287 optical Effects 0.000 claims description 31
- 238000002834 transmittance Methods 0.000 claims description 16
- 238000005452 bending Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 2
- 239000011342 resin composition Substances 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 11
- 239000000758 substrate Substances 0.000 description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 8
- 239000011651 chromium Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000003211 photoinitiator Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-Dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000004313 glare Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- GEIAQOFPUVMAGM-UHFFFAOYSA-N oxozirconium Chemical compound [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 2
- -1 benzyldimethyl ketal Chemical compound 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000002829 reduced Effects 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000011882 ultra-fine particle Substances 0.000 description 2
- MXFQRSUWYYSPOC-UHFFFAOYSA-N (2,2-dimethyl-3-prop-2-enoyloxypropyl) prop-2-enoate Chemical compound C=CC(=O)OCC(C)(C)COC(=O)C=C MXFQRSUWYYSPOC-UHFFFAOYSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- PIZHFBODNLEQBL-UHFFFAOYSA-N 2,2-diethoxy-1-phenylethanone Chemical compound CCOC(OCC)C(=O)C1=CC=CC=C1 PIZHFBODNLEQBL-UHFFFAOYSA-N 0.000 description 1
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 1
- JMVZGKVGQDHWOI-UHFFFAOYSA-N 2-(2-methylpropoxy)-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC(C)C)C(=O)C1=CC=CC=C1 JMVZGKVGQDHWOI-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- RZVINYQDSSQUKO-UHFFFAOYSA-N 2-phenoxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC1=CC=CC=C1 RZVINYQDSSQUKO-UHFFFAOYSA-N 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N Benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N Bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- VVBLNCFGVYUYGU-UHFFFAOYSA-N Michler's ketone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N Propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 229910006854 SnOx Inorganic materials 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N Tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive Effects 0.000 description 1
- 230000003373 anti-fouling Effects 0.000 description 1
- 125000004429 atoms Chemical group 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon(0) Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000036961 partial Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002093 peripheral Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052904 quartz Inorganic materials 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 231100000489 sensitizer Toxicity 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atoms Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- YEJRWHAVMIAJKC-UHFFFAOYSA-N γ-lactone 4-hydroxy-butyric acid Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 1
Images
Description
ãã«ãŒããŒãããæ§é äœã
å³ïŒã«ç€ºãæ¬çºæã®ç°æ¹æ§å
æ¡æ£å±€ïŒå
ã®è€æ°ã®ã«ãŒããŒãããæ§é äœïŒã¯ããã®æ±è»žæ¹åã«çŽäº€ããæé¢åœ¢ç¶ããç¥è§äžžé·æ¹åœ¢ãæããŠããããšãç¹åŸŽãšããã
ç¥è§äžžé·æ¹åœ¢ã¯ãå
·äœçã«ã¯å³ïŒã«ç€ºãããã«ãå¹³è¡ç·å¹
ãã§ããäºæ¬ã®ç¥å¹³è¡ç·ã®å䞡端ããç¥å匧ã«ãŠçµãã 圢ç¶ã§ãããç¥è§äžžé·æ¹åœ¢ã®æ倧å¹
ã§ããç¥é·åŸç·ã®é·åŸç·å¹
ãšãå¹³è¡ç·å¹
ã¯ãç°æ¹æ§å
æ¡æ£å±€ïŒç°æ¹æ§å
åŠãã£ã«ã ïŒãå
åŠé¡åŸ®é¡ã§èŠ³å¯ããããšã«ãã£ãŠç¢ºèªããããšãã§ããã
ãŸããå³ïŒã«ç€ºãããã«ãç¥è§äžžé·æ¹åœ¢ã®é·åŸç·å¹
ã«å¯ŸããŠãåçŽãªæ¹åã®ç¥è§äžžé·æ¹åœ¢å¹
ã§ããã®ããšãã以äžãçåŸç·å¹
ãšç§°ãããšãšããã
ç¥è§äžžé·æ¹åœ¢ã®åœ¢ç¶ã¯ãåŸè¿°ããèŠå®ãããã³æ°åŒãæºè¶³ãããã®ã§ããã°ãããç¥è§äžžé·æ¹åœ¢å€åšéšã®çŽç·åœ¢ç¶ãæ²ç·åœ¢ç¶ããå¥åœ¢ç¶ãäŸãã°æ³¢æã¡åœ¢ç¶ãåŸæ圢ã§ãã£ãããå圢ç¶ãæ··åšããŠãããã®ã§ãã£ãŠãããã
[Louvre rod structure]
The plurality of louver rod structures 2 in the anisotropic light diffusion layer 1 of the present invention shown in FIG. 1 are characterized in that the cross-sectional shape perpendicular to the column axis direction has a substantially rounded rectangle.
Specifically, as shown in FIG. 2, the substantially rounded rectangle has a shape in which both ends of two substantially parallel lines having a parallel line width L are connected by a substantially arc. A long diameter line width Y of the substantially major axis line the maximum width of the substantially square RoundRectangle, parallel line width L can be confirmed by observing the anisotropic light-diffusing layer (anisotropic optical film) by an optical microscope.
In addition, as shown in FIG. 2, S, which is a substantially rounded rectangular width in a direction perpendicular to the long-diameter line width Y of the substantially rounded rectangle, is hereinafter referred to as a short-diameter line width.
The shape of the substantially rounded rectangular shape only needs to satisfy the regulations and formulas described later, and the linear shape or curved shape of the outer peripheral portion of the substantially rounded rectangular shape is another shape, for example, a wavy shape or an inclined shape, Each shape may be mixed.
ïŒïŒ¹ãšïŒ³ãšã®é¢ä¿ïŒ
æ¬çºæã«ãããŠã¯ãè€æ°ã®ã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åã«çŽäº€ããæé¢åœ¢ç¶ããç¥è§äžžé·æ¹åœ¢ã§ããããã«ãé·åŸç·å¹
ãšãçåŸç·å¹
ãšã®é¢ä¿ã¯ãïŒïŒ¹ã§ããå¿
èŠããããå ããŠãé·åŸç·å¹
ã¯ãïŒïŒïŒÎŒïœãïŒïŒïŒïŒÎŒïœã§ããããšã奜é©ã§ããããã奜é©ã«ã¯ãïŒïŒïŒÎŒïœãïŒïŒïŒïŒÎŒïœã§ãããããã«å¥œé©ã«ã¯ãïŒïŒïŒÎŒïœãïŒïŒïŒÎŒïœã§ãããïŒïŒïŒÎŒïœæªæºã®å Žåããã©ããã¹ã¯ã®ãã¿ãŒã³ããç°æ¹æ§å
æ¡æ£å±€ã®æªç¡¬åæš¹èçµæç©å±€äžã«å¿ å®ã«ç
§å°ã§ããªããªããå
åŠè¿æ¥å¹æã®åœ±é¿ãåãããããªããããããããïŒïŒïŒïŒÎŒïœè¶
ã®å Žåãå
ã®å¹²æžã«ããã®ã©ãããçãããããªãããããããã
(Relationship between Y and S)
In the present invention, since the cross-sectional shape orthogonal to the column axis direction of the plurality of louver rod structures is a substantially rounded rectangle, the relationship between the long diameter line width Y and the short diameter line width S is S <Y Need to be. In addition, the long diameter line width Y is preferably 0.5 ÎŒm to 50.0 ÎŒm , more preferably 1.0 ÎŒm to 10.0 ÎŒm , and even more preferably 1.0 ÎŒm. Ë5.0 ÎŒm. If it is less than 0.5 ÎŒm, the uncured resin composition layer of the anisotropic light diffusing layer cannot be faithfully irradiated with the photomask pattern, which may be easily affected by the optical proximity effect, and may exceed 50.0 ÎŒm. In such a case, glare due to light interference may easily occur.
ããªãã¡ããã®æ¹æ³ã«ããã°ãäžèšå
æºïŒãšæ€åºåšïŒãšã®éã«ãµã³ãã«ãé
眮ãããµã³ãã«ã®å転軞ãäžå¿è»žãšããŠããµã³ãã«ãå転ãããªãããå
æºïŒããã®ãµã³ãã«ãžã®å
¥å°å
è§åºŠæ¯ã«çŽç·ééå
éããã³çŽç·ééçïœçŽç·ééçïŒïŒãµã³ãã«ãæãå Žåã®æ€åºåšã®çŽç·ééå
éïŒãµã³ãã«ããªãå Žåã®æ€åºåšã®çŽç·ééå
éïŒÃïŒïŒïŒïœãæ€åºåšïŒã§æž¬å®ãããåŸãããããŒã¿ããå
åŠãããã¡ã€ã«ãåŸããããã®å
åŠãããã¡ã€ã«ããæ倧çŽç·ééçããã³æå°çŽç·ééçãæ±ããããªããäžèšïŒ¡âç·ãšçŽäº€ãã軞ãå³ïŒã«ç€ºãå転軞ãšäžèŽãããããã«ããŠãå
¥å°å
è§åºŠæ¯ã«çŽç·ééå
éããã³çŽç·ééçã枬å®ããå Žåãå³ïŒã«ç€ºãããã«å
¥å°å
è§åºŠã«ãããããŒãä»è¿ã®çŽç·ééå
éã瀺ãã
That is, according to this method, a sample is disposed between the light source 4 and the detector 5, and the incident light angle from the light source 4 to the sample is rotated while rotating the sample around the rotation axis P of the sample. The linear transmitted light amount and the linear transmittance { Linear transmittance = (Linear transmitted light amount of the detector when there is a sample / Linear transmitted light amount of the detector when there is no sample) Ã 100} are measured by the detector 5. An optical profile is obtained from the obtained data, and the maximum linear transmittance and the minimum linear transmittance are obtained from this optical profile. In addition, when the linearly transmitted light amount and the linear transmittance are measured for each incident light angle so that the axis orthogonal to the AA line coincides with the rotation axis P shown in FIG. 3, the incident light is incident as shown in FIG. The linear transmitted light amount near zero is shown regardless of the light angle.
ç°æ¹æ§å
æ¡æ£å±€ã圢æããææã«ãããããè€æ°ã®ã«ãŒããŒãããæ§é äœãå
ã匷ãæ¡æ£ããè§åºŠã¯ãã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åãã€ãŸãæ¡æ£äžå¿è»žã®åŸããšã該ã«ãŒããŒãããæ§é äœå
å
¥å°å
ã®é²è¡æ¹åã®åŸããšãã®å·®ãæŠã±ïŒïŒÂ°ã®ç¯å²ã«ãããšãã§ããã
ãŸãã該æ±è»žæ¹åã«ã«ãŒããŒãããæ§é äœãå±æ²ãããŠå»¶åãããå Žåãå
ã匷ãæ¡æ£ããé åãããåºããããšãã§ãããããã¯å±æ²ãããããšã«ãããã«ãŒããŒãããæ§é äœã«ãããŠãå
ã匷ãæ¡æ£ããè§åºŠç¯å²ã該æ±è»žæ¹åã«è€æ°æããããšãšãªãããã§ããã
å ããŠäžèšå±æ²ãè€æ°æããå Žåãå
ã匷ãæ¡æ£ããé åããäžèšæ±è»žæ¹åã«é£ç¶ããŠåœ¢æããããšãã§ãããããå
ã®åŒ·ããç¥äžå®ã«ä¿ã£ãç¶æ
ã§ãããå
ã®æ¡æ£ããã³éå
æ§ãé«ããããšãã§ããã
Although depending on the material forming the anisotropic light diffusion layer, the angle at which the plurality of louver rod structures diffuse light strongly depends on the column axis direction of the louver rod structure, that is, the inclination of the diffusion center axis, the louver rod structure This is when the difference between the inclination of the incident light and the traveling direction is in the range of approximately ± 10 °.
Further, when the louver rod structure is bent and extended in the column axis direction, a region where light is strongly diffused can be further expanded. This is because bending causes the louver rod structure to have a plurality of angular ranges in the column axis direction in which light is strongly diffused.
If multiple having the bending added, a region for diffusing light strongly, it is possible to form continuously in the column direction, while maintaining the intensity of light substantially constant, the more the light diffusion and The light collecting property can be improved.
ã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åãå±æ²ããå Žåã®è§åºŠïŒå±æ²è§ïŒã¯ãå
ã匷ãæ¡æ£ããååãªé åãåŸããããïŒïŒÂ°ãïŒïŒÂ°ã§ããããšã奜é©ã§ããã
ãŸãå±æ²è§ãïŒïŒÂ°ãïŒïŒÂ°ã§ããå Žåãå
ã匷ãæ¡æ£ããé åãããåºããããšãã§ããããããã奜é©ã§ããã
The angle (bending angle) when the column axis direction of the louver rod structure is bent is preferably 10 ° to 40 ° in order to obtain a sufficient region for diffusing light strongly.
Further, when the bending angle is 15 ° to 25 °, the region where light is strongly diffused can be further expanded, which is more preferable.
ããã«ãã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åãè€æ°ã®åŸããæããå Žåãããããã®è©²åŸãã¯ãç°æ¹æ§å
æ¡æ£å±€ã®å¹³é¢ã«å¯Ÿããæ³ç·æ¹åãïŒÂ°ãšãããšãã±ïŒïŒÂ°ã®ç¯å²ã«ããããšã奜é©ã§ããã該è€æ°ã®åŸãã®æ°ã¯å¶éãããªãããïŒãïŒã®éã«ããããšã奜é©ã§ãããåŸãã®æ°ãå€ããªããšãåŸãã圢æããããã«ç°æ¹æ§å
æ¡æ£å±€ã®åããå¢ãããšãšãªããçç£æ§ãäžããããã§ããã
Further, when the column axis direction of the louver rod structure has a plurality of inclinations, each inclination may be within a range of ± 70 ° when the normal direction to the plane of the anisotropic light diffusion layer is 0 °. Is preferred. The number of the plurality of slope is not limited, it is preferred to be between 2-5. This is because as the number of inclinations increases, the thickness of the anisotropic light diffusion layer increases in order to form the inclination, and the productivity decreases.
ããã®ä»ã®å±€ã
ç°æ¹æ§å
æ¡æ£å±€ã®äžæ¹ã®é¢ã«ä»ã®å±€ãèšããç°æ¹æ§å
åŠãã£ã«ã ãšããŠããããä»ã®å±€ãšããŠã¯ãäŸãã°ãç²çå±€ãåå
å±€ãå
æ¡æ£å±€ãäœåå°å±€ãé²æ±å±€ã垯é»é²æ¢å±€ã玫å€ç·ãè¿èµ€å€ç·ïŒïŒ®ïŒ©ïŒ²ïŒåžåå±€ãããªã³ã«ããå±€ãé»ç£æ³¢ã·ãŒã«ãå±€çãæããããšãã§ããã
ãŸãä»ã®å±€ãé 次ç©å±€ããŠããããããã«ç°æ¹æ§å
æ¡æ£å±€ã®äž¡æ¹ã®é¢ã«ãä»ã®å±€ãç©å±€ããŠããããäž¡æ¹ã®é¢ã«ç©å±€ãããä»ã®å±€ã¯ãåäžã®æ©èœãæããå±€ã§ãã£ãŠãããããå¥ã®æ©èœãæããå±€ã§ãã£ãŠãããã
[Other layers]
It is good also as an anisotropic optical film which provided the other layer in one surface of the anisotropic light-diffusion layer. Examples of other layers include an adhesive layer, a polarizing layer, a light diffusion layer, a low reflection layer, an antifouling layer, an antistatic layer, an ultraviolet ray and near infrared (NIR) absorption layer, a neon cut layer, and an electromagnetic wave shielding layer. be able to.
Moreover, you may laminate | stack another layer sequentially. Further, other layers may be laminated on both surfaces of the anisotropic light diffusion layer. The other layer laminated on both surfaces may be a layer having the same function or a layer having another function.
ãªããäžèšã«ããªã³éåæ§ååç©ã¯ãååäœã§çšããŠãããããŸããè€æ°æ··åããŠçšããŠãããã
ããã«å
硬åæ§ååç©ã¯ãäžèšã«éå®ããããã®ã§ã¯ãªããå ããŠååãªå±æçå·®ãçããããã¹ããäžèšå
硬åæ§ååç©ã«ã¯ãäœå±æçåãå³ããããããçŽ ååïŒïŒŠïŒãå°å
¥ããŠãè¯ããé«å±æçåãå³ããããç¡«é»ååïŒïŒ³ïŒãèçŽ ååïŒïŒ¢ïœïŒãåçš®éå±ååãå°å
¥ããŠãããããŸããç¹èš±ç¬¬ïŒïŒïŒïŒïŒïŒïŒå·ã«é瀺ãããããã«ãé
žåãã¿ã³ïŒïŒŽïœïŒ¯ ïŒ ïŒãé
žåãžã«ã³ããŠã ïŒïŒºïœïŒ¯ ïŒ ïŒãé
žåé«ïŒïŒ³ïœïŒ¯ïœïŒçã®é«å±æçã®éå±é
žåç©ãããªãè¶
埮ç²åã®è¡šé¢ã«ãã¢ã¯ãªã«åºãã¡ã¿ã¯ãªã«åºããšããã·åºçã®å
éåæ§å®èœåºãå°å
¥ããæ©èœæ§è¶
埮ç²åãäžèšå
硬åæ§ååç©ã«æ·»å ããããšãæå¹ã§ããã
In addition, the said cation polymeric compound may be used for each single-piece | unit, and multiple may be used in mixture.
Furthermore, a photocurable compound is not limited to the above. In addition, in order to cause a sufficient difference in refractive index, fluorine atoms (F) may be introduced into the photocurable compound in order to reduce the refractive index, and in order to increase the refractive index, sulfur atoms may be introduced. (S), bromine atoms (Br), and various metal atoms may be introduced. Further, as disclosed in Japanese Patent No. 4423040, acrylic particles are formed on the surface of ultrafine particles made of a metal oxide having a high refractive index such as titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tin oxide (SnOx). It is also effective to add functional ultrafine particles into which a photopolymerizable functional group such as a group, a methacryl group, or an epoxy group is introduced to the photocurable compound.
å
éå§å€ïŒœ
ã©ãžã«ã«éåæ§ååç©ãéåãããããšã®ã§ããå
éå§å€ãšããŠã¯ããã³ãŸãã§ãã³ããã³ãžã«ãããã©ãŒãºã±ãã³ãïŒâã¯ããããªããµã³ãã³ãïŒïŒïŒâãžãšãã«ããªããµã³ãã³ããã³ãŸã€ã³ãšãã«ãšãŒãã«ããã³ãŸã€ã³ã€ãœãããã«ãšãŒãã«ããã³ãŸã€ã³ã€ãœããã«ãšãŒãã«ãïŒïŒïŒâãžãšããã·ã¢ã»ããã§ãã³ããã³ãžã«ãžã¡ãã«ã±ã¿ãŒã«ãïŒïŒïŒâãžã¡ããã·âïŒïŒïŒâãžãã§ãã«ãšã¿ã³âïŒâãªã³ãïŒâããããã·âïŒâã¡ãã«âïŒâãã§ãã«ãããã³âïŒâãªã³ãïŒâããããã·ã·ã¯ãããã·ã«ãã§ãã«ã±ãã³ãïŒâã¡ãã«âïŒâïŒâïŒã¡ãã«ããªïŒãã§ãã«ïŒœâïŒâã¢ã«ãã©ãªãããããã³âïŒãïŒâïŒâïŒïŒâããããã·ãšããã·ïŒâãã§ãã«ïŒœâïŒâããããã·âïŒâã¡ãã«âïŒâãããã³âïŒâãªã³ããã¹ïŒã·ã¯ããã³ã¿ãžãšãã«ïŒâãã¹ïŒ»ïŒïŒïŒâãžãã«ãªãâïŒâïŒãã«âïŒâã€ã«ïŒãã§ãã«ïŒœãã¿ããŠã ãïŒâãã³ãžã«âïŒâãžã¡ãã«ã¢ããâïŒâïŒïŒâã¢ã«ãã©ãªããã§ãã«ïŒâãã¿ãã³âïŒãïŒïŒïŒïŒïŒâããªã¡ãã«ãã³ãŸã€ã«ãžãã§ãã«ãã©ã¹ãã£ã³ãªããµã€ãçãæããããããŸãããããã®ååç©ã¯ãååäœã§çšããŠããããè€æ°æ··åããŠçšããŠãããã
[Photoinitiator]
Photoinitiators that can polymerize radically polymerizable compounds include benzophenone, benzyl, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2- Diethoxyacetophenone, benzyldimethyl ketal, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2 -Methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1 -One, bis (cyclo Ntajieniru) - bis [2,6-difluoro-3- (pyrr-1-yl) phenyl] titanium, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) - butanone -1,2,4 , 6-trimethylbenzoyldiphenylphosphine oxide and the like. These compounds may be used alone or in combination.
æ¬çºæã«ãããŠãäžèšå
éå§å€ã¯ãå
硬åæ§ååç©ïŒïŒïŒéééšã«å¯ŸããŠãïŒïŒïŒïŒéééšãïŒïŒéééšããã奜é©ã«ã¯ïŒïŒïŒéééšãïŒéééšãããã«å¥œé©ã«ã¯ïŒïŒïŒéééšãïŒéééšçšåºŠé
åãããããšã奜é©ã§ãããããã¯ãïŒïŒïŒïŒéééšæªæºã§ã¯å
硬åæ§ãäœäžããïŒïŒéééšãè¶
ããŠé
åããå Žåã«ã¯ãè¡šé¢ã ãã硬åããŠå
éšã®ç¡¬åæ§ãäœäžããŠããŸãåŒå®³ã®ä»ãçè²ãã«ãŒããŒãããæ§é äœåœ¢æã®é»å®³ãæãããã§ããããããã®å
éå§å€ã¯ãéåžžç²äœãå
硬åæ§ååç©äžã«çŽæ¥æº¶è§£ããŠäœ¿çšããããã溶解æ§ãæªãå Žåã¯å
éå§å€ãäºã極å°éã®æº¶å€ã«é«æ¿åºŠã«æº¶è§£ããããã®ã䜿çšããããšãã§ããããã®ãããªæº¶å€ãšããŠã¯å
硬åæ§ã§ããããšããã奜é©ã§ãããå
·äœçã«ã¯çé
žãããã¬ã³ãγâãããã©ã¯ãã³çãæããããããŸããå
硬åæ§ãåäžãããããã«å
¬ç¥ã®åçš®ææãå¢æå€ãæ·»å ããããšãå¯èœã§ãããããã«å
硬åæ§ååç©ã§ãç±ã«ãã£ãŠã硬åãå¯èœãªååç©ã®å Žåãå
硬åæ§ååç©ãå ç±ã«ãã硬åãããããšã®ã§ããç±ç¡¬åéå§å€ãå
éå§å€ãšå
±ã«äœµçšããããšãã§ããããã®å Žåãå
硬åã®åŸã«å ç±ããããšã«ããå
硬åæ§ååç©ã®éåã»ç¡¬åãããä¿é²ãããããšãã§ããã
In this invention, the said photoinitiator is 0.01 weight part- 10 weight part with respect to 100 weight part of photocurable compounds, More preferably, 0.1 weight part- 7 weight part, More preferably, it is 0. it is preferable to be .1 to 5 parts by weight approximately formulation. This is because if less than 0.01 parts by weight, the photocurability is reduced, and if more than 10 parts by weight is blended, in addition to the adverse effect that only the surface is cured and the internal curability is reduced, coloring, This is because the louver rod structure formation is inhibited. These photoinitiators are usually used by directly dissolving powder in a photocurable compound, but if solubility is poor, a photoinitiator dissolved in a very small amount of solvent in advance at a high concentration is used. It can also be used. Such a solvent is more preferably photocurable, and specific examples thereof include propylene carbonate and γ-butyrolactone. It is also possible to add various known dyes and sensitizers to improve photocurability. Further, in the case of a photocurable compound that can be cured by heat, a thermosetting initiator capable of curing the photocurable compound by heating can be used in combination with the photoinitiator. In this case, polymerization and curing of the photocurable compound can be further promoted by heating after photocuring.
âªå·¥çšâ«
次ã«æ¬çºæã®ç°æ¹æ§å
åŠãã£ã«ã ã®è£œé æ¹æ³ïŒããã»ã¹ïŒã«ã€ããŠãå³ïŒãïŒãçšããŠèª¬æããã以äžã®å·¥çšãé 次çµãããšã§ãè€æ°ã®ã«ãŒããŒãããæ§é äœãšããããªãã¯ã¹é åãšãæããã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åã«çŽäº€ããæé¢åœ¢ç¶ããäºæ¬ã®ç¥å¹³è¡ç·ã®å䞡端ããç¥å匧ã«ãŠçµãã ç¥è§äžžé·æ¹åœ¢åœ¢ç¶ã§ããç°æ¹æ§å
åŠãã£ã«ã ãåŸãããšãã§ããã
ïŒïŒïŒå
硬åæ§æš¹èçµæç©ãåºæäžã«å¡å·¥ããŠå¡å·¥èïŒæªç¡¬åæš¹èçµæç©å±€ïŒãèšãããå¡å·¥å·¥çš
ïŒïŒïŒæªç¡¬åæš¹èçµæç©å±€ã«ãã©ããã¹ã¯ãç©å±€ãããããã©ããã¹ã¯ç©å±€å·¥çš
ïŒïŒïŒå
æºããå¹³è¡å
ç·ãåŸããå¹³è¡å
ç·ååŸå·¥çš
ïŒïŒïŒå¹³è¡å
ç·ãæªç¡¬åæš¹èçµæç©å±€äžã®ãã©ããã¹ã¯è¡šé¢ã«ç
§å°ãããæªç¡¬åæš¹èçµæç©å±€ãéåã»ç¡¬åãããã硬åå·¥çš
ïŒïŒïŒç°æ¹æ§å
æ¡æ£å±€ã«ããã®ä»ã®å±€ããçšéã«å¿ããŠç©å±€ããããä»ã®å±€ç©å±€å·¥çšïŒä»»æïŒ
âªProcessâ«
Next, the manufacturing method (process) of the anisotropic optical film of this invention is demonstrated using FIGS. By sequentially performing the following steps, the cross-sectional shape having a plurality of louver rod structures and a matrix region and orthogonal to the column axis direction of the louver rod structures has both ends of two substantially parallel lines. An anisotropic optical film having a substantially rounded rectangular shape connected by a substantially arc can be obtained.
(1) A coating process in which a photocurable resin composition is coated on a substrate to provide a coating film (uncured resin composition layer) (2) A photomask is laminated on the uncured resin composition layer , Photomask lamination process (3) Parallel light acquisition process to obtain parallel light from light source (4) Photomask surface on uncured resin composition layer is irradiated with parallel light to polymerize and cure uncured resin composition layer Curing process
(5) Other layer laminating process for laminating other layers on the anisotropic light diffusing layer according to applications (optional)
ïŒãã©ããã¹ã¯ç©å±€å·¥çšïŒ
æ¬çºæã®ç°æ¹æ§å
åŠãã£ã«ã ã«ãããç°æ¹æ§å
æ¡æ£å±€ã®è€æ°ã®ã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åã«çŽäº€ããæé¢åœ¢ç¶ããåžæããç¥è§äžžé·æ¹åœ¢ãšããŠåœ¢æãããããã«ãæªç¡¬åæš¹èçµæç©å±€äžã«ãã©ããã¹ã¯ãç©å±€ãããå·¥çšãèšããããšãã§ããã
ãã©ããã¹ã¯ã¯ããã©ããã¹ã¯äœè£œæé ã«åŸããåžæããç¥è§äžžé·æ¹åœ¢ããã¿ãŒãã³ã°ããåºæ¿ã䜿çšããããšãã§ããã
å
·äœçãªãã©ããã¹ã¯äœè£œæé ã¯ããŸãããã©ããã¹ã¯ãšãªãã¬ã©ã¹åºæ¿å
šé¢ã«ã玫å€ç·ãé®ãé®å
èãšããããã®ã¯ãã èãæèããããã®åŸé»åç·ã¬ãžã¹ãïŒæå
æ§ææïŒãå¡åžã»ããŒã¯ããŠãããé»åç·æç»è£
眮ã«ããé²å
ã»çŸåã»ãªã³ã¹ãè¡ããã¯ãã èäžã®é»åç·ã¬ãžã¹ãã«ãã¿ãŒãã³ã°ãè¡ãããã®åŸäžèŠãªã¯ãã èããšããã³ã°ã§æº¶ããã玫å€ç·ã®ééããç©ŽããããŠãããè¬æ¶²ã«ããã¬ãžã¹ããé€å»ããããšã«ããããã©ããã¹ã¯ãå®æããã
ãã©ããã¹ã¯ã«äœ¿çšããåºæ¿ã«ã¯ãã¬ã©ã¹ãåæç³è±äžã«ãäžèšã®ããã«ã¯ãã ãé®å
èãšããŠæç»å³åœ¢ã圢æããããã®ãå€ããããšãã«ãžã§ã³ãã¹ã¯ãšåŒã°ããéæãªé«ååãã£ã«ã äžã«å³åœ¢ãæããããã®ã§ãã£ãŠãããããã®éã«ã¯ã¯ãã ã®ä»£ããã«é»åéå±éã§é®å
èãäœè£œããããšã奜é©ã§ããã
ãã©ããã¹ã¯ã®ãã¿ãŒã³å€§ããã¯ãæ¡ä»¶ã«ããç°ãªãããæ¬çºæã§ã¯ãïŒïœïœÃïŒïœïœã®å€§ããã§ãã¿ãŒã³ãäœè£œãããå³ïŒã¯ãæ¬çºæ䜿çšãã©ããã¹ã¯ã®ãã¿ãŒã³ã®äžäŸã瀺ãæš¡åŒå³ã§ãããå³ïŒã¯ãæ¬çºæ䜿çšãã©ããã¹ã¯å
šäœã®äžäŸã瀺ãæš¡åŒå³ã§ããã
å³ïŒã§ã¯ããã©ããã¹ã¯ã®ãµã€ãºãïŒã€ã³ãÃïŒã€ã³ãã§ããããã¿ãŒã³ã¯ïŒã€ã®ãããã¯ã«åãããŠãããåãã¿ãŒã³éã®ãããã¯ïŒïŒïŒïŒïœïœããã©ããã¹ã¯å€åšãšåãã¿ãŒã³å€åšãšã®ééã¯ïŒïœïœã§ããã
æ¬çºæã§ã¯ãã©ããã¹ã¯ã䜿çšããããšã§ãç°æ¹æ§å
æ¡æ£å±€ã®è€æ°ã®ã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åã«çŽäº€ããæé¢åœ¢ç¶ããåžæããç¥è§äžžé·æ¹åœ¢åœ¢ç¶ã«äœè£œããããšãã§ãããããããªããããã©ããã¹ã¯ã®ãã¿ãŒã³å¯žæ³ããæªç¡¬åæš¹èçµæç©å±€ã«å¹³è¡å
ç·ãç
§å°ããéã®æ³¢é·ãããå°ãããªããšããã©ããã¹ã¯ã®ãã¿ãŒã³ãæªç¡¬åæš¹èçµæç©å±€äžã«å¿ å®ã«ç
§å°ã§ããªããªããå
åŠè¿æ¥å¹æã®åœ±é¿ãåããŠããŸãå Žåãããããã®å¯ŸçãšããŠã¯ãã©ããã¹ã¯ã®ãã¹ã¯ãã¿ãŒã³ã«ãããããå
è¿æ¥å¹æè£æ£ïŒïŒ¯ïŒ°ïŒ£ïŒãèšããææ³ãé©çšã§ããã
äžèšãã©ããã¹ã¯ã䜿çšããããšã«ãããç°æ¹æ§å
æ¡æ£å±€ã®è€æ°ã®ã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åã«çŽäº€ããæé¢åœ¢ç¶ããåžæããç¥è§äžžé·æ¹åœ¢åœ¢ç¶ãšããŠåœ¢æãããããšãã§ããã
ããã«ãã©ããã¹ã¯ã¯ãæªç¡¬åæš¹èçµæç©å±€ã®ç¡¬åã®éãé
žçŽ é»å®³ãé²ã圹å²ãå
Œããã
<Photomask lamination process>
In order to form the cross-sectional shape orthogonal to the column axis direction of the plurality of louver rod structures of the anisotropic light diffusion layer in the anisotropic optical film of the present invention on the uncured resin composition layer, A step of laminating a photomask can be provided.
As the photomask, a substrate in which a desired substantially rounded rectangle is patterned according to a photomask manufacturing procedure can be used.
A specific photomask manufacturing procedure is as follows. First, a chromium film for forming a light shielding film that blocks ultraviolet rays is formed on the entire surface of a glass substrate to be a photomask. Thereafter, an electron beam resist (photosensitive material) is applied and baked, and then exposed, developed, and rinsed by an electron beam drawing apparatus to pattern the electron beam resist on the chromium film. Thereafter, an unnecessary chromium film is dissolved by etching, a hole through which ultraviolet rays are transmitted is formed, and then the resist is removed with a chemical solution, thereby completing a photomask.
Many substrates used for photomasks have a drawing pattern formed on glass or synthetic quartz using chromium as a light-shielding film as described above, but they are drawn on a transparent polymer film called an emulsion mask. It may be. In that case, it is preferable to form a light-shielding film with blackened metal silver instead of chromium.
The pattern size of the photomask varies depending on the conditions, but in the present invention, the pattern was produced with a size of 3 cm à 3 cm. FIG. 5 is a schematic diagram showing an example of the pattern of the photomask used in the present invention, and FIG. 6 is a schematic diagram showing an example of the entire photomask used in the present invention.
In FIG. 6, the size of the photomask is 5 inches à 5 inches, the pattern is divided into nine blocks, the pitch between each pattern is 0.85 cm, and the distance between the outer periphery of the photomask and the outer periphery of each pattern is 1 cm. is there.
In the present invention, by using a photomask, the cross-sectional shape orthogonal to the column axis direction of the plurality of louver rod structures of the anisotropic light diffusing layer can be formed into a desired substantially rounded rectangular shape. However, if the photomask pattern dimension is smaller than the wavelength when the uncured resin composition layer is irradiated with parallel light, the photomask pattern cannot be faithfully irradiated onto the uncured resin composition layer. You may be affected by the effect. As a countermeasure against this, a technique of previously providing optical proximity correction (OPC) to the mask pattern of the photomask can be applied.
By using the photomask, the cross-sectional shape perpendicular to the column axis direction of the plurality of louver rod structures of the anisotropic light diffusion layer can be formed as a desired substantially rounded rectangular shape.
Further, the photomask also serves to prevent oxygen inhibition when the uncured resin composition layer is cured.
å®æœäŸïŒïŒœ
åãïŒïŒïŒÎŒïœãïŒïŒïŒïœïœÃïŒïŒïŒïœïœãµã€ãºã®ïŒ°ïŒ¥ïŒŽãã£ã«ã ïŒæ±æŽçŽ¡æ ªåŒäŒç€Ÿè£œãåååïŒïŒ¡ïŒïŒïŒïŒïŒãåºæãšããŠããã®çžéšå
šåšã«ãã£ã¹ãã³ãµãŒã䜿ãå
硬åæ§æš¹èçµæç©ã§é«ãïŒïŒïŒïŒïœïœã®éå£ã圢æããããã®éå£ã®é«ãã¯ãããããåŸãããç°æ¹æ§å
æ¡æ£å±€ã®åãã«çžåœããããšãšãªãããã®éå£ã®äžã«äžèšã«ç€ºãçµæã®å
硬åæ§æš¹èçµæç©ãå
å¡«ããæªç¡¬åæš¹èçµæç©å±€ã圢æããç¶ããŠãã®æªç¡¬åæš¹èçµæç©å±€è¡šé¢ã«ãã¯ãã èã«ããã¬ã©ã¹åºæ¿è£œãã©ããã¹ã¯ïŒåãïŒïœïœïŒãç©å±€ããã
ãªãããã©ããã¹ã¯ã¯å³ïŒã«ç€ºãèŠæ Œã®ãã®ã䜿çšãããµã€ãºãïŒã€ã³ãÃïŒã€ã³ãããã¿ãŒã³ã¯ïŒã€ã®ãããã¯ã«åãããŠãããåãã¿ãŒã³éã®ãããã¯ïŒïŒïŒïŒïœïœããã©ããã¹ã¯å€åšãšåãã¿ãŒã³å€åšãšã®ééã¯ïŒïœïœã§ãã£ããå³ïŒã¯ãã®å€èŠ³åçã§ããã
ãŸãããã¿ãŒã³ã¯å³ïŒã«ç€ºãèŠæ Œã®ãã®ã䜿çšãããµã€ãºãïŒïœïœÃïŒïœïœãç¥è§äžžé·æ¹åœ¢åœ¢ç¶ã¯ãé·åŸç·å¹
ãïŒïŒïŒÎŒïœãå¹³è¡ç·å¹
ãïŒïŒïŒÎŒïœãè§äžžååŸå¹
ïœãïŒïŒïŒÎŒïœã§ãããçåŸç·å¹
ãïŒïŒïŒÎŒïœãé·åŸç·å¹
æ¹åã®åç¥è§äžžé·æ¹åœ¢éã®ããããïŒïŒïŒÎŒïœãçåŸç·å¹
æ¹åã®åç¥è§äžžé·æ¹åœ¢éã®ããããïŒïŒïŒÎŒïœã§ãã£ããå³ïŒã¯ãã®éšåçè¡šé¢åçã§ããã
ã»ã·ãªã³ãŒã³ã»ãŠã¬ã¿ã³ã»ã¢ã¯ãªã¬ãŒãïŒå±æçïŒïŒïŒïŒïŒïŒãééå¹³åååéïŒïŒïŒïŒïŒïŒïŒ ïŒïŒéééš
ïŒïŒ²ïŒ¡ïŒšïŒ®ç€Ÿè£œãåååïŒïŒïŒâïŒïŒïŒïŒïŒŽïŒïŒïŒïŒ
ã»ããªãã³ãã«ã°ãªã³ãŒã«ãžã¢ã¯ãªã¬ãŒãïŒå±æçïŒïŒïŒïŒïŒïŒïŒ ïŒïŒéééš
ïŒãã€ã»ã«ã»ãµã€ããã¯æ ªåŒäŒç€Ÿè£œãåååïŒïŒ¥ïœïœ
ïœïœïœïœïŒïŒïŒïŒ
ã»ãã¹ãã§ããŒã«ïŒ¡ã®ïŒ¥ïŒ¯ä»å ç©ãžã¢ã¯ãªã¬ãŒãïŒå±æçïŒïŒïŒïŒïŒïŒïŒ ïŒïŒéééš
ïŒãã€ã»ã«ã»ãµã€ããã¯æ ªåŒäŒç€Ÿè£œãåååïŒïŒ¥ïœïœ
ïœïœïœïœïŒïŒïŒïŒ
ã»ãã§ããã·ãšãã«ã¢ã¯ãªã¬ãŒãïŒå±æçïŒïŒïŒïŒïŒïŒïŒ ïŒïŒéééš
ïŒå
±æ 瀟ååŠæ ªåŒäŒç€Ÿè£œãåååïŒã©ã€ãã¢ã¯ãªã¬ãŒãâïŒ
ã»ïŒïŒïŒâãžã¡ããã·âïŒïŒïŒâãžãã§ãã«ãšã¿ã³âïŒâãªã³ ïŒéééš
ïŒïŒ¢ïŒ¡ïŒ³ïŒŠç€Ÿè£œãåååïŒïŒ©ïœïœïœïœïœïœïœ
ïŒïŒïŒïŒ
ãã®ãã©ããã¹ã¯ãç©å±€ããæªç¡¬åæš¹èçµæç©å±€äžã®ãã©ããã¹ã¯è¡šé¢ããã¹ãããå
æºïŒæµæŸãããã¯ã¹æ ªåŒäŒç€Ÿç€Ÿè£œãåååïŒïŒ¬ïŒïŒïŒïŒâïŒïŒïŒã®èœå°çšç
§å°ãŠãããããåºå°ãããå¹³è¡å
ç·ïŒæ³¢é·ïŒïŒïŒïŒïœïœã®çŽ«å€ç·ïŒããç
§å°åŒ·åºŠïŒïœïŒ·ïŒïœïœïŒãšããŠïŒåéç
§å°ããŠãããã«ãåºæåŽããç
§å°åŒ·åºŠïŒïŒïœïŒ·ïŒïœïœïŒã®çŽ«å€ç·ãç
§å°ããŠãå®å
šã«ç¡¬åãããããããããåºæãšãã©ããã¹ã¯ãå¥ãããŠãå®æœäŸïŒã®ç°æ¹æ§å
æ¡æ£å±€ïŒç°æ¹æ§å
åŠãã£ã«ã ïŒãåŸãã
[Example 1]
A PET film having a thickness of 100 Όm and a size of 150 mm à 150 mm (trade name: A4100, manufactured by Toyobo Co., Ltd.) is used as a base material. A partition wall was formed. The height of the partition wall corresponds approximately to the thickness of the anisotropic light diffusion layer obtained. The partition wall is filled with a photocurable resin composition having the following composition to form an uncured resin composition layer, and then a glass substrate photomask made of a chromium film is formed on the surface of the uncured resin composition layer. (Thickness 2 mm) was laminated.
The photomask of the standard shown in FIG. 6 is used, the size is 5 inches à 5 inches, the pattern is divided into nine blocks, the pitch between each pattern is 0.85 cm, the outer periphery of the photomask and each pattern The distance from the outer periphery was 1 cm. FIG. 7 is a photograph of the appearance.
In addition, the standard pattern shown in FIG. 5 is used, and the size is 3 cm à 3 cm, and the substantially rounded rectangular shape has a long diameter line width Y of 1.5 Όm, a parallel line width L of 0.9 Όm, and a rounded radius width. r is 0.3 Όm, the short-diameter line width S is 0.5 Όm, the pitch between the substantially rounded rectangles in the long-diameter line width Y direction is 1.1 Όm, and between the substantially rounded rectangles in the short-diameter line width S direction The pitch was 0.4 Όm. FIG. 8 is a partial surface photograph thereof.
Silicone urethane acrylate (refractive index: 1.460, weight average molecular weight: 5,890) 20 parts by weight (trade name: 00-225 / TM18, manufactured by RAHN)
ã» Neopentyl glycol diacrylate (refractive index: 1.450) 30 parts by weight (manufactured by Daicel-Cytec Corporation, trade name: Ebecryl 145)
· EO adduct diacrylate of bisphenol A (refractive index: 1.536) 15 parts by weight (manufactured by Daicel-Cytec Co., Ltd., trade name: Ebec r yl150)
ã» Phenoxyethyl acrylate (refractive index: 1.518) 40 parts by weight (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate PO-A)
ã» 2,2-dimethoxy-1,2-diphenylethane-1-one 4 parts by weight (manufactured by BASF, trade name: Irgacure 651)
Parallel rays (wavelength: emitted from an irradiation unit for incident light of a UV spot light source (trade name: L2859-01, manufactured by Hamamatsu Photonics Co., Ltd.) from the photomask surface on the uncured resin composition layer on which the photomask is laminated. 365 nm ultraviolet rays) was irradiated for 1 minute with an irradiation intensity of 5 mW / cm 2 , and further, ultraviolet rays with an irradiation intensity of 20 mW / cm 2 were irradiated from the substrate side to be completely cured. From there, the base material and the photomask were peeled off to obtain the anisotropic light diffusion layer (anisotropic optical film) of Example 1.
å®æœäŸïŒïŒœ
æªç¡¬åæš¹èçµæç©å±€è¡šé¢ã«ãã¯ãã èã«ããã¬ã©ã¹åºæ¿è£œãã©ããã¹ã¯ïŒåãïŒïœïœïŒãç©å±€åŸã該æªç¡¬åæš¹èçµæç©å±€ã®åºæåŽããïŒïŒâã«å ç±ããããããã¬ãŒãã«èŒãããã©ããã¹ã¯è¡šé¢ããã¯é颚æ©ãã颚ãéãå·ãããç¶æ
ã«ããŠã該æªç¡¬åæš¹èçµæç©å±€ã®ãã©ããã¹ã¯åŽããå¹³è¡å
ç·ãç
§å°ããä»ã¯ãå®æœäŸïŒãšåæ§ã«ããŠãå®æœäŸïŒã®ç°æ¹æ§å
æ¡æ£å±€ïŒç°æ¹æ§å
åŠãã£ã«ã ïŒãåŸãã
ãŸããç°æ¹æ§å
æ¡æ£å±€ã®åãæ¹åïŒç°æ¹æ§å
æ¡æ£å±€å¹³é¢ã«åçŽãªæ¹åïŒãå
åŠé¡åŸ®é¡ã§ç¢ºèªãããšãããïŒã€ã®æ¡æ£äžå¿è»žãæããç°æ¹æ§å
æ¡æ£å±€ã®åãæ¹åãïŒÂ°ãšããå Žåã«ãããããã®æ¡æ£äžå¿è»žã®åŸããïŒÂ°ãšïŒïŒÂ°ã§ãããå±æ²è§ãïŒïŒÂ°ã®å±æ²æ§é ãæããŠããã
[Example 2]
After laminating a glass substrate photomask (thickness 2 mm) with a chromium film on the surface of the uncured resin composition layer , the substrate side of the uncured resin composition layer is placed on a hot plate heated to 80 ° C. Anisotropic light diffusion of Example 2 is performed in the same manner as in Example 1 except that air is blown from the blower from the mask surface and irradiated with parallel rays from the photomask side of the uncured resin composition layer. A layer (anisotropic optical film) was obtained.
Further, when the thickness direction of the anisotropic light diffusion layer (direction perpendicular to the plane of the anisotropic light diffusion layer) was confirmed with an optical microscope, it had two diffusion center axes, and the thickness direction of the anisotropic light diffusion layer was 0 °. In this case, each diffusion center axis had a bent structure with inclinations of 0 ° and 15 ° and a bending angle of 15 °.
æ¯èŒäŸïŒïŒœ
æªç¡¬åæš¹èçµæç©å±€è¡šé¢ã«ãã¯ãã èã«ããã¬ã©ã¹åºæ¿è£œãã©ããã¹ã¯ã®ä»£ããã«ãåãïŒïŒÎŒïœãïŒïŒïŒïœïœÃïŒïŒïŒïœïœãµã€ãºã®ïŒ°ïŒ¥ïŒŽãã£ã«ã ïŒæ±æŽçŽ¡æ ªåŒäŒç€Ÿè£œãåååïŒïŒ¡ïŒïŒïŒïŒïŒãç©å±€ããä»ã¯ãå®æœäŸïŒãšåæ§ã«ããŠãæ¯èŒäŸïŒã®ç°æ¹æ§å
æ¡æ£å±€ïŒç°æ¹æ§å
åŠãã£ã«ã ïŒãåŸãã
æ¯èŒäŸïŒã®ç°æ¹æ§å
æ¡æ£å±€ã§ã¯ãç°æ¹æ§å
æ¡æ£å±€å
ã«ãããŠãè€æ°ã®ã«ãŒããŒãããæ§é äœã§ã¯ãªããè€æ°ã®ãã©ãŒæ§é äœã圢æãããè€æ°ã®ãã©ãŒæ§é äœã®æ±è»žæ¹åã«çŽäº€ããæé¢åœ¢ç¶ã¯ãå
åŠé¡åŸ®é¡ã§ç¢ºèªãããšãããç¥å圢ã§ãã£ãã
[Comparative Example 1]
Other than laminating a glass substrate photomask made of chromium film on the surface of the uncured resin composition layer, a PET film having a thickness of 50 Όm and a size of 150 mm à 150 mm (made by Toyobo Co., Ltd., trade name: A4100) In the same manner as in Example 1, the anisotropic light diffusion layer (anisotropic optical film) of Comparative Example 1 was obtained.
In the anisotropic light diffusing layer of Comparative Example 1, a plurality of pillar structures are formed in the anisotropic light diffusing layer, not a plurality of louver rod structures, and a cross-sectional shape orthogonal to the column axis direction of the plurality of pillar structures is When confirmed with an optical microscope, it was substantially circular.
äžèšçµæã«ç€ºããšãããå®æœäŸïŒãïŒã®ç°æ¹æ§å
æ¡æ£å±€ïŒç°æ¹æ§å
åŠãã£ã«ã ïŒã¯ãæ倧çŽç·ééçãæå°çŽç·ééçãæ¡æ£å¹
ãã®ã©ãããããã³èŒåºŠã®æ¥æ¿ãªå€åãè¯å¥œã§ãããç¹ã«å®æœäŸïŒããã³ïŒã¯ãããè¯å¥œãªçµæãšãªã£ããããã¯ãç°æ¹æ§å
åŠãã£ã«ã ã®ç°æ¹æ§å
æ¡æ£å±€ã«ãããŠãè€æ°ã®ã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åïŒç°æ¹æ§å
æ¡æ£å±€ã®åãæ¹åïŒã«çŽäº€ããæé¢ã®åœ¢ç¶ããæé©åãããç¥è§äžžé·æ¹åœ¢ãšããããšã«ãããç°æ¹æ§å
æ¡æ£å±€ã®åºå°å
ãé©åºŠã«æ¡æ£ããã¬ã³ãºå¹æãçºçŸããå
ã®å¹²æžã«ããã®ã©ãããèŒåºŠã®æ¥æ¿ãªå€åãæããå
æ¡æ£æ§ãå«ãå
åŠç¹æ§ã®ãã©ã³ã¹ãæé©åããããšãã§ãããããšèããããã
ããã«ãå®æœäŸïŒãïŒã®æ¬çºæã®ç°æ¹æ§å
æ¡æ£å±€ã¯ãäžèšã§èŠå®ãããè§äžžååŸå¹
ã®ç¯å²å
ã§ããã®ã§ãæ¡æ£å¹
ãåºãããããšãã§ããã
ãŸããå®æœäŸïŒã®æ¡æ£å¹
ã倧ããçç±ã¯ãäžèšã«ãŒããŒãããæ§é äœãé©åºŠã«åŸæããŠããããã§ãããšèããããããã«ãå®æœäŸïŒã®æ¡æ£å¹
ãæã倧ããçç±ã¯ã該ã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åã«å±æ²ãæããŠãããããå
ã匷ãæ¡æ£ããé åãããåºããæ¡æ£å¹
ããã倧ããããããšãã§ãããããšèããããã
As shown in the above results, the anisotropic light diffusion layers (anisotropic optical films) of Examples 1 to 4 have good maximum linear transmittance, minimum linear transmittance, diffusion width, glare, and rapid change in luminance. In particular, Examples 2 and 3 gave better results. This is because, in the anisotropic light diffusion layer of the anisotropic optical film, the shape of the cross section perpendicular to the column axis direction (thickness direction of the anisotropic light diffusion layer) of the plurality of louver rod structures is optimized. By adopting a rectangular shape, the lens effect that moderately diffuses the light emitted from the anisotropic light diffusing layer is manifested, suppressing glare and sudden changes in brightness due to light interference, and optimizing the balance of optical properties including light diffusivity It is thought that it was possible.
Furthermore, since the anisotropic light-diffusion layers of the present invention in Examples 1 to 4 were within the range of the rounded radius width defined above, the diffusion width could be widened.
The reason why the diffusion width of Example 3 is large is considered to be that the louver rod structure was appropriately inclined, and the reason why the diffusion width of Example 2 was the largest was that the louver rod structure. because it has a cylindrical axis direction in the bent and spread more areas to diffuse light strongly, presumably because it is possible to further increase the diffusion width.
Claims (9)
該ç°æ¹æ§å åŠãã£ã«ã ã¯ãå°ãªããšãïŒå±€ã®ç°æ¹æ§å æ¡æ£å±€ãæãã
該ç°æ¹æ§å æ¡æ£å±€ã¯ã
è€æ°ã®ã«ãŒããŒãããæ§é äœãšããããªãã¯ã¹é åãšããæãã
該ã«ãŒããŒãããæ§é äœã®æ±è»žæ¹åã«çŽäº€ããæé¢åœ¢ç¶ããäºæ¬ã®ç¥å¹³è¡ç·ã®å䞡端ããç¥å匧ã«ãŠçµãã ç¥è§äžžé·æ¹åœ¢ã§ããã
åèšäºæ¬ã®ç¥å¹³è¡ç·ã®å¹³è¡ç·å¹ ããåèšç¥è§äžžé·æ¹åœ¢ã®æå€§å¹ ã§ããç¥é·åŸç·ã®é·åŸç·å¹ ããšããïŒïŒ¹âïŒïŒïŒãè§äžžååŸå¹ ã§ããïœãšããå Žåãæ°åŒïŒïœïŒïŒ¬ïŒïŒïŒïœãæºããããšãç¹åŸŽãšããç°æ¹æ§å åŠãã£ã«ã ã An anisotropic optical film in which the amount of transmitted light changes depending on the incident light angle of light,
The anisotropic optical film has at least one anisotropic light diffusion layer,
The anisotropic light diffusion layer is
A plurality of louver rod structures and a matrix region;
Sectional shape perpendicular to the cylindrical axis direction of the louver rod structure, each ends of two substantially parallel lines, Ri substantially square RoundRectangle der which connects in a substantially circular arc,
The parallel line width of the two substantially parallel lines is L, the long diameter line width of the substantially long diameter line which is the maximum width of the substantially rounded rectangle is Y, and (YâL) / 2 is the rounded radius width r. The anisotropic optical film characterized by satisfying Formula 2r <L <10r .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016069855A JP6745625B2 (en) | 2016-03-31 | 2016-03-31 | Anisotropic optical film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016069855A JP6745625B2 (en) | 2016-03-31 | 2016-03-31 | Anisotropic optical film |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2017181829A JP2017181829A (en) | 2017-10-05 |
JP2017181829A5 true JP2017181829A5 (en) | 2018-08-23 |
JP6745625B2 JP6745625B2 (en) | 2020-08-26 |
Family
ID=60004494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016069855A Active JP6745625B2 (en) | 2016-03-31 | 2016-03-31 | Anisotropic optical film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6745625B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7201965B2 (en) * | 2017-12-05 | 2023-01-11 | 倧æ¥æ¬å°å·æ ªåŒäŒç€Ÿ | Optical laminate and image display device |
JP7191537B2 (en) * | 2018-03-30 | 2022-12-19 | æ ªåŒäŒç€Ÿå·Žå·è£œçŽæ | anisotropic optical film |
JP2019179203A (en) * | 2018-03-30 | 2019-10-17 | æ ªåŒäŒç€Ÿå·Žå·è£œçŽæ | Anisotropic optical film |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2803552A (en) * | 1953-06-23 | 1957-08-20 | Ca Nat Research Council | Antifog materials and method of producing the same |
US7199929B2 (en) * | 2001-04-27 | 2007-04-03 | Asml Holdings N.V. | Methods for optical beam shaping and diffusing |
JP2003302507A (en) * | 2002-02-05 | 2003-10-24 | Sumitomo Chem Co Ltd | Anisotropic scattering film and liquid crystal display device using the same |
JP2010044319A (en) * | 2008-08-18 | 2010-02-25 | Daicel Chem Ind Ltd | Light control film and back light apparatus using the same |
JP2010079197A (en) * | 2008-09-29 | 2010-04-08 | Fujifilm Corp | Anisotropic scattering film, film for head up display, and glass |
US9958580B2 (en) * | 2012-11-29 | 2018-05-01 | Tomoegawa Co., Ltd. | Anisotropic optical film |
JP6288672B2 (en) * | 2014-03-28 | 2018-03-07 | æ ªåŒäŒç€Ÿå·Žå·è£œçŽæ | Anisotropic optical film |
-
2016
- 2016-03-31 JP JP2016069855A patent/JP6745625B2/en active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI654087B (en) | Anisotropic optical film | |
KR102240334B1 (en) | Anisotropic optical film | |
JP6716313B2 (en) | Method for producing anisotropic optical film | |
JP6093113B2 (en) | Anisotropic optical film | |
KR20190128621A (en) | Anti-glare film and display device | |
TW201428353A (en) | Anisotropic optical film | |
KR20160015162A (en) | Anti-glare film | |
JP5090861B2 (en) | Anisotropic diffusion media | |
JP2017181829A5 (en) | ||
KR20150095197A (en) | Anti-glare film | |
JP2005141202A (en) | Transmission type screen | |
JP6745625B2 (en) | Anisotropic optical film | |
JP2010262046A (en) | Reflection type screen | |
JP6542007B2 (en) | Anisotropic optical film and method for producing the same | |
JP2015222441A (en) | Anisotropic optical film | |
JP7191537B2 (en) | anisotropic optical film | |
KR20160015163A (en) | Anti-glare film | |
JPH08201795A (en) | Black matrix substrate and production of microlens array sheet using it | |
KR20150079052A (en) | Anti-glare film having surface characteristics of organic particles | |
JP6902895B2 (en) | Anisotropic optical film and its manufacturing method | |
WO2022209567A1 (en) | Anisotropic light-diffusing film and display device | |
KR20160091956A (en) | Antiglare film | |
WO2021200891A1 (en) | Anisotropic light-diffusing film and display device | |
JP7475182B2 (en) | Anisotropic light-diffusing film laminate and display device | |
JP7475333B2 (en) | Reflective display device using anisotropic optical film |