JP2017181829A5 - - Google Patents

Download PDF

Info

Publication number
JP2017181829A5
JP2017181829A5 JP2016069855A JP2016069855A JP2017181829A5 JP 2017181829 A5 JP2017181829 A5 JP 2017181829A5 JP 2016069855 A JP2016069855 A JP 2016069855A JP 2016069855 A JP2016069855 A JP 2016069855A JP 2017181829 A5 JP2017181829 A5 JP 2017181829A5
Authority
JP
Japan
Prior art keywords
anisotropic
optical film
light
range
anisotropic optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016069855A
Other languages
Japanese (ja)
Other versions
JP2017181829A (en
JP6745625B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2016069855A priority Critical patent/JP6745625B2/en
Priority claimed from JP2016069855A external-priority patent/JP6745625B2/en
Publication of JP2017181829A publication Critical patent/JP2017181829A/en
Publication of JP2017181829A5 publication Critical patent/JP2017181829A5/ja
Application granted granted Critical
Publication of JP6745625B2 publication Critical patent/JP6745625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

〔ルヌバヌロッド構造䜓〕
図に瀺す本発明の異方性光拡散局内の耇数のルヌバヌロッド構造䜓は、その柱軞方向に盎亀する断面圢状が、略角䞞長方圢を有しおいるこずを特城ずする。
略角䞞長方圢は、具䜓的には図に瀺すように、平行線幅がである二本の略平行線の各䞡端を、略円匧にお結んだ圢状である。略角䞞長方圢の最倧幅である略長埄線の長埄線幅ず、平行線幅は、異方性光拡散局異方性光孊フィルムを光孊顕埮鏡で芳察するこずによっお確認するこずができる。
たた、図に瀺すように、略角䞞長方圢の長埄線幅に察しお、垂盎な方向の略角䞞長方圢幅であるのこずを、以䞋、短埄線幅ず称すこずずする。
略角䞞長方圢の圢状は、埌述する芏定、および数匏を満足するものであればよく、略角䞞長方圢倖呚郚の盎線圢状や曲線圢状が、別圢状、䟋えば波打ち圢状や傟斜圢であったり、各圢状が混圚しおいるものであっおもよい。
[Louvre rod structure]
The plurality of louver rod structures 2 in the anisotropic light diffusion layer 1 of the present invention shown in FIG. 1 are characterized in that the cross-sectional shape perpendicular to the column axis direction has a substantially rounded rectangle.
Specifically, as shown in FIG. 2, the substantially rounded rectangle has a shape in which both ends of two substantially parallel lines having a parallel line width L are connected by a substantially arc. A long diameter line width Y of the substantially major axis line the maximum width of the substantially square RoundRectangle, parallel line width L can be confirmed by observing the anisotropic light-diffusing layer (anisotropic optical film) by an optical microscope.
In addition, as shown in FIG. 2, S, which is a substantially rounded rectangular width in a direction perpendicular to the long-diameter line width Y of the substantially rounded rectangle, is hereinafter referred to as a short-diameter line width.
The shape of the substantially rounded rectangular shape only needs to satisfy the regulations and formulas described later, and the linear shape or curved shape of the outer peripheral portion of the substantially rounded rectangular shape is another shape, for example, a wavy shape or an inclined shape, Each shape may be mixed.

ずずの関係
本発明においおは、耇数のルヌバヌロッド構造䜓の柱軞方向に盎亀する断面圢状が、略角䞞長方圢であるために、長埄線幅ず、短埄線幅ずの関係は、である必芁がある。加えお、長埄線幅は、Ό〜Όであるこずが奜適であり、より奜適には、Ό〜Όであり、さらに奜適には、Ό〜Όである。Ό未満の堎合、フォトマスクのパタヌンを、異方性光拡散局の未硬化暹脂組成物局䞊に忠実に照射できなくなる、光孊近接効果の圱響を受けやすくなるおそれがあり、Ό超の堎合、光の干枉によるギラツキが生じやすくなるおそれがある。
(Relationship between Y and S)
In the present invention, since the cross-sectional shape orthogonal to the column axis direction of the plurality of louver rod structures is a substantially rounded rectangle, the relationship between the long diameter line width Y and the short diameter line width S is S <Y Need to be. In addition, the long diameter line width Y is preferably 0.5 ÎŒm to 50.0 ÎŒm , more preferably 1.0 ÎŒm to 10.0 ÎŒm , and even more preferably 1.0 ÎŒm. ˜5.0 ÎŒm. If it is less than 0.5 ÎŒm, the uncured resin composition layer of the anisotropic light diffusing layer cannot be faithfully irradiated with the photomask pattern, which may be easily affected by the optical proximity effect, and may exceed 50.0 ÎŒm. In such a case, glare due to light interference may easily occur.

すなわち、この方法によれば、䞊蚘光源ず怜出噚ずの間にサンプルを配眮し、サンプルの回転軞を䞭心軞ずしお、サンプルを回転させながら、光源からのサンプルぞの入射光角床毎に盎線透過光量および盎線透過率盎線透過率サンプルが有る堎合の怜出噚の盎線透過光量サンプルがない堎合の怜出噚の盎線透過光量×を怜出噚で枬定する。埗られたデヌタより光孊プロファむルが埗られ、この光孊プロファむルから最倧盎線透過率および最小盎線透過率を求める。なお、䞊蚘−線ず盎亀する軞を図に瀺す回転軞ず䞀臎させるようにしお、入射光角床毎に盎線透過光量および盎線透過率を枬定した堎合、図に瀺すように入射光角床によらず、れロ付近の盎線透過光量を瀺す。
That is, according to this method, a sample is disposed between the light source 4 and the detector 5, and the incident light angle from the light source 4 to the sample is rotated while rotating the sample around the rotation axis P of the sample. The linear transmitted light amount and the linear transmittance { Linear transmittance = (Linear transmitted light amount of the detector when there is a sample / Linear transmitted light amount of the detector when there is no sample) × 100} are measured by the detector 5. An optical profile is obtained from the obtained data, and the maximum linear transmittance and the minimum linear transmittance are obtained from this optical profile. In addition, when the linearly transmitted light amount and the linear transmittance are measured for each incident light angle so that the axis orthogonal to the AA line coincides with the rotation axis P shown in FIG. 3, the incident light is incident as shown in FIG. The linear transmitted light amount near zero is shown regardless of the light angle.

異方性光拡散局を圢成する材料にもよるが、耇数のルヌバヌロッド構造䜓が光を匷く拡散する角床は、ルヌバヌロッド構造䜓の柱軞方向、぀たり拡散䞭心軞の傟きず、該ルヌバヌロッド構造䜓内入射光の進行方向の傟きず、の差が抂ね±°の範囲にあるずきである。
たた、該柱軞方向にルヌバヌロッド構造䜓を屈曲させお延存させた堎合、光を匷く拡散する領域をより広げるこずができる。これは屈曲させるこずにより、ルヌバヌロッド構造䜓においお、光を匷く拡散する角床範囲を該柱軞方向に耇数有するこずずなるからである。
加えお䞊蚘屈曲を耇数有する堎合、光を匷く拡散する領域を、䞊蚘柱軞方向に連続しお圢成するこずができるため、光の匷さを略䞀定に保った状態で、より光の拡散および集光性を高めるこずができる。
Although depending on the material forming the anisotropic light diffusion layer, the angle at which the plurality of louver rod structures diffuse light strongly depends on the column axis direction of the louver rod structure, that is, the inclination of the diffusion center axis, the louver rod structure This is when the difference between the inclination of the incident light and the traveling direction is in the range of approximately ± 10 °.
Further, when the louver rod structure is bent and extended in the column axis direction, a region where light is strongly diffused can be further expanded. This is because bending causes the louver rod structure to have a plurality of angular ranges in the column axis direction in which light is strongly diffused.
If multiple having the bending added, a region for diffusing light strongly, it is possible to form continuously in the column direction, while maintaining the intensity of light substantially constant, the more the light diffusion and The light collecting property can be improved.

ルヌバヌロッド構造䜓の柱軞方向が屈曲する堎合の角床屈曲角は、光を匷く拡散する十分な領域を埗るため、°〜°であるこずが奜適である。
たた屈曲角が°〜°である堎合、光を匷く拡散する領域をより広げるこずができるため、より奜適である。
The angle (bending angle) when the column axis direction of the louver rod structure is bent is preferably 10 ° to 40 ° in order to obtain a sufficient region for diffusing light strongly.
Further, when the bending angle is 15 ° to 25 °, the region where light is strongly diffused can be further expanded, which is more preferable.

さらに、ルヌバヌロッド構造䜓の柱軞方向が耇数の傟きを有する堎合、それぞれの該傟きは、異方性光拡散局の平面に察する法線方向を°ずしたずき、±°の範囲にあるこずが奜適である。該耇数の傟きの数は制限されないが、〜の間にあるこずが奜適である。傟きの数が倚くなるず、傟きを圢成するために異方性光拡散局の厚さが増すこずずなり、生産性が䞋がるためである。
Further, when the column axis direction of the louver rod structure has a plurality of inclinations, each inclination may be within a range of ± 70 ° when the normal direction to the plane of the anisotropic light diffusion layer is 0 °. Is preferred. The number of the plurality of slope is not limited, it is preferred to be between 2-5. This is because as the number of inclinations increases, the thickness of the anisotropic light diffusion layer increases in order to form the inclination, and the productivity decreases.

〔その他の局〕
異方性光拡散局の䞀方の面に他の局を蚭けた異方性光孊フィルムずしおもよい。他の局ずしおは、䟋えば、粘着局、偏光局、光拡散局、䜎反射局、防汚局、垯電防止局、玫倖線や近赀倖線吞収局、ネオンカット局、電磁波シヌルド局等を挙げるこずができる。
たた他の局を順次積局しおもよい。さらに異方性光拡散局の䞡方の面に、他の局を積局しおもよい。䞡方の面に積局される他の局は、同䞀の機胜を有する局であっおもよいし、別の機胜を有する局であっおもよい。
[Other layers]
It is good also as an anisotropic optical film which provided the other layer in one surface of the anisotropic light-diffusion layer. Examples of other layers include an adhesive layer, a polarizing layer, a light diffusion layer, a low reflection layer, an antifouling layer, an antistatic layer, an ultraviolet ray and near infrared (NIR) absorption layer, a neon cut layer, and an electromagnetic wave shielding layer. be able to.
Moreover, you may laminate | stack another layer sequentially. Further, other layers may be laminated on both surfaces of the anisotropic light diffusion layer. The other layer laminated on both surfaces may be a layer having the same function or a layer having another function.

なお、䞊蚘カチオン重合性化合物は、各単䜓で甚いおもよく、たた、耇数混合しお甚いおもよい。
さらに光硬化性化合物は、䞊蚘に限定されるものではない。加えお十分な屈折率差を生じさせるべく、䞊蚘光硬化性化合物には、䜎屈折率化を図るため、フッ玠原子を導入しおも良く、高屈折率化を図るため、硫黄原子、臭玠原子、各皮金属原子を導入しおもよい。たた、特蚱第号に開瀺されるように、酞化チタン  、酞化ゞルコニりム  、酞化錫等の高屈折率の金属酞化物からなる超埮粒子の衚面に、アクリル基やメタクリル基、゚ポキシ基等の光重合性官胜基を導入した機胜性超埮粒子を䞊蚘光硬化性化合物に添加するこずも有効である。
In addition, the said cation polymeric compound may be used for each single-piece | unit, and multiple may be used in mixture.
Furthermore, a photocurable compound is not limited to the above. In addition, in order to cause a sufficient difference in refractive index, fluorine atoms (F) may be introduced into the photocurable compound in order to reduce the refractive index, and in order to increase the refractive index, sulfur atoms may be introduced. (S), bromine atoms (Br), and various metal atoms may be introduced. Further, as disclosed in Japanese Patent No. 4423040, acrylic particles are formed on the surface of ultrafine particles made of a metal oxide having a high refractive index such as titanium oxide (TiO 2 ), zirconium oxide (ZrO 2 ), tin oxide (SnOx). It is also effective to add functional ultrafine particles into which a photopolymerizable functional group such as a group, a methacryl group, or an epoxy group is introduced to the photocurable compound.

光開始剀
ラゞカル重合性化合物を重合させるこずのできる光開始剀ずしおは、ベンゟフェノン、ベンゞル、ミヒラヌズケトン、−クロロチオキサントン、−ゞ゚チルチオキサントン、ベンゟむン゚チル゚ヌテル、ベンゟむンむ゜プロピル゚ヌテル、ベンゟむンむ゜ブチル゚ヌテル、−ゞ゚トキシアセトフェノン、ベンゞルゞメチルケタヌル、−ゞメトキシ−−ゞフェニル゚タン−−オン、−ヒドロキシ−−メチル−−フェニルプロパン−−オン、−ヒドロキシシクロヘキシルフェニルケトン、−メチル−−−メチルチオフェニル−−モルフォリノプロパノン−、−−−ヒドロキシ゚トキシ−フェニル−−ヒドロキシ−−メチル−−プロパン−−オン、ビスシクロペンタゞ゚ニル−ビス−ゞフルオロ−−ピル−−むルフェニルチタニりム、−ベンゞル−−ゞメチルアミノ−−−モルフォリノフェニル−ブタノン−、−トリメチルベンゟむルゞフェニルフォスフィンオキサむド等が挙げられる。たた、これらの化合物は、各単䜓で甚いおもよく、耇数混合しお甚いおもよい。
[Photoinitiator]
Photoinitiators that can polymerize radically polymerizable compounds include benzophenone, benzyl, Michler's ketone, 2-chlorothioxanthone, 2,4-diethylthioxanthone, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2,2- Diethoxyacetophenone, benzyldimethyl ketal, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexyl phenyl ketone, 2 -Methyl-1- [4- (methylthio) phenyl] -2-morpholinopropanone-1, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propane-1 -One, bis (cyclo Ntajieniru) - bis [2,6-difluoro-3- (pyrr-1-yl) phenyl] titanium, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) - butanone -1,2,4 , 6-trimethylbenzoyldiphenylphosphine oxide and the like. These compounds may be used alone or in combination.

本発明においお、䞊蚘光開始剀は、光硬化性化合物重量郚に察しお、重量郚〜重量郚、より奜適には重量郚〜重量郚、さらに奜適には重量郚〜重量郚皋床配合されるこずが奜適である。これは、重量郚未満では光硬化性が䜎䞋し、重量郚を超えお配合した堎合には、衚面だけが硬化しお内郚の硬化性が䜎䞋しおしたう匊害の他、着色、ルヌバヌロッド構造䜓圢成の阻害を招くからである。これらの光開始剀は、通垞粉䜓を光硬化性化合物䞭に盎接溶解しお䜿甚されるが、溶解性が悪い堎合は光開始剀を予め極少量の溶剀に高濃床に溶解させたものを䜿甚するこずもできる。このような溶剀ずしおは光硬化性であるこずがより奜適であり、具䜓的には炭酞プロピレン、γ−ブチロラクトン等が挙げられる。たた、光硬化性を向䞊させるために公知の各皮染料や増感剀を添加するこずも可胜である。さらに光硬化性化合物で、熱によっおも硬化が可胜な化合物の堎合、光硬化性化合物を加熱により硬化させるこずのできる熱硬化開始剀を光開始剀ず共に䜵甚するこずもできる。この堎合、光硬化の埌に加熱するこずにより光硬化性化合物の重合・硬化をより促進させるこずができる。
In this invention, the said photoinitiator is 0.01 weight part- 10 weight part with respect to 100 weight part of photocurable compounds, More preferably, 0.1 weight part- 7 weight part, More preferably, it is 0. it is preferable to be .1 to 5 parts by weight approximately formulation. This is because if less than 0.01 parts by weight, the photocurability is reduced, and if more than 10 parts by weight is blended, in addition to the adverse effect that only the surface is cured and the internal curability is reduced, coloring, This is because the louver rod structure formation is inhibited. These photoinitiators are usually used by directly dissolving powder in a photocurable compound, but if solubility is poor, a photoinitiator dissolved in a very small amount of solvent in advance at a high concentration is used. It can also be used. Such a solvent is more preferably photocurable, and specific examples thereof include propylene carbonate and γ-butyrolactone. It is also possible to add various known dyes and sensitizers to improve photocurability. Further, in the case of a photocurable compound that can be cured by heat, a thermosetting initiator capable of curing the photocurable compound by heating can be used in combination with the photoinitiator. In this case, polymerization and curing of the photocurable compound can be further promoted by heating after photocuring.

≪工皋≫
次に本発明の異方性光孊フィルムの補造方法プロセスに぀いお、図〜を甚いお説明する。以䞋の工皋を順次経るこずで、耇数のルヌバヌロッド構造䜓ず、マトリックス領域ずを有し、ルヌバヌロッド構造䜓の柱軞方向に盎亀する断面圢状が、二本の略平行線の各䞡端を、略円匧にお結んだ略角䞞長方圢圢状である異方性光孊フィルムを埗るこずができる。
光硬化性暹脂組成物を基材䞊に塗工しお塗工膜未硬化暹脂組成物局を蚭ける、塗工工皋
未硬化暹脂組成物局にフォトマスクを積局させる、フォトマスク積局工皋
光源から平行光線を埗る、平行光線取埗工皋
平行光線を未硬化暹脂組成物局䞊のフォトマスク衚面に照射させ、未硬化暹脂組成物局を重合・硬化させる、硬化工皋
異方性光拡散局に、その他の局を、甚途に応じお積局させる、他の局積局工皋任意
≪Process≫
Next, the manufacturing method (process) of the anisotropic optical film of this invention is demonstrated using FIGS. By sequentially performing the following steps, the cross-sectional shape having a plurality of louver rod structures and a matrix region and orthogonal to the column axis direction of the louver rod structures has both ends of two substantially parallel lines. An anisotropic optical film having a substantially rounded rectangular shape connected by a substantially arc can be obtained.
(1) A coating process in which a photocurable resin composition is coated on a substrate to provide a coating film (uncured resin composition layer) (2) A photomask is laminated on the uncured resin composition layer , Photomask lamination process (3) Parallel light acquisition process to obtain parallel light from light source (4) Photomask surface on uncured resin composition layer is irradiated with parallel light to polymerize and cure uncured resin composition layer Curing process
(5) Other layer laminating process for laminating other layers on the anisotropic light diffusing layer according to applications (optional)

フォトマスク積局工皋
本発明の異方性光孊フィルムにおける異方性光拡散局の耇数のルヌバヌロッド構造䜓の柱軞方向に盎亀する断面圢状を、垌望する略角䞞長方圢ずしお圢成させるために、未硬化暹脂組成物局䞊にフォトマスクを積局させる工皋を蚭けるこずができる。
フォトマスクは、フォトマスク䜜補手順に埓い、垌望する略角䞞長方圢をパタヌニングした基板を䜿甚するこずができる。
具䜓的なフォトマスク䜜補手順は、たず、フォトマスクずなるガラス基板党面に、玫倖線を遮る遮光膜ずするためのクロム膜を成膜する。その埌電子線レゞスト感光性材料を塗垃・ベヌクしおから、電子線描画装眮により露光・珟像・リンスを行い、クロム膜䞊の電子線レゞストにパタヌニングを行う。その埌䞍芁なクロム膜を゚ッチングで溶かし、玫倖線の透過する穎をあけおから、薬液によりレゞストを陀去するこずにより、フォトマスクが完成する。
フォトマスクに䜿甚する基板には、ガラスや合成石英䞊に、䞊蚘のようにクロムを遮光膜ずしお描画図圢が圢成されるものが倚いが、゚マルゞョンマスクず呌ばれる透明な高分子フィルム䞊に図圢が描かれるものであっおもよい。その際にはクロムの代わりに黒化金属銀で遮光膜を䜜補するこずが奜適である。
フォトマスクのパタヌン倧きさは、条件により異なるが、本発明では、×の倧きさでパタヌンを䜜補した。図は、本発明䜿甚フォトマスクのパタヌンの䞀䟋を瀺す暡匏図であり、図は、本発明䜿甚フォトマスク党䜓の䞀䟋を瀺す暡匏図である。
図では、フォトマスクのサむズがむンチ×むンチであり、パタヌンは぀のブロックに分かれおおり、各パタヌン間のピッチは、フォトマスク倖呚ず各パタヌン倖呚ずの間隔はである。
本発明ではフォトマスクを䜿甚するこずで、異方性光拡散局の耇数のルヌバヌロッド構造䜓の柱軞方向に盎亀する断面圢状を、垌望する略角䞞長方圢圢状に䜜補するこずができる。しかしながら、フォトマスクのパタヌン寞法が、未硬化暹脂組成物局に平行光線を照射する際の波長よりも小さくなるず、フォトマスクのパタヌンを未硬化暹脂組成物局䞊に忠実に照射できなくなる、光孊近接効果の圱響を受けおしたう堎合がある。この察策ずしおはフォトマスクのマスクパタヌンにあらかじめ光近接効果補正を蚭ける手法が適甚できる。
䞊蚘フォトマスクを䜿甚するこずにより、異方性光拡散局の耇数のルヌバヌロッド構造䜓の柱軞方向に盎亀する断面圢状を、垌望する略角䞞長方圢圢状ずしお圢成させるこずができる。
さらにフォトマスクは、未硬化暹脂組成物局の硬化の際、酞玠阻害を防ぐ圹割も兌ねる。
<Photomask lamination process>
In order to form the cross-sectional shape orthogonal to the column axis direction of the plurality of louver rod structures of the anisotropic light diffusion layer in the anisotropic optical film of the present invention on the uncured resin composition layer, A step of laminating a photomask can be provided.
As the photomask, a substrate in which a desired substantially rounded rectangle is patterned according to a photomask manufacturing procedure can be used.
A specific photomask manufacturing procedure is as follows. First, a chromium film for forming a light shielding film that blocks ultraviolet rays is formed on the entire surface of a glass substrate to be a photomask. Thereafter, an electron beam resist (photosensitive material) is applied and baked, and then exposed, developed, and rinsed by an electron beam drawing apparatus to pattern the electron beam resist on the chromium film. Thereafter, an unnecessary chromium film is dissolved by etching, a hole through which ultraviolet rays are transmitted is formed, and then the resist is removed with a chemical solution, thereby completing a photomask.
Many substrates used for photomasks have a drawing pattern formed on glass or synthetic quartz using chromium as a light-shielding film as described above, but they are drawn on a transparent polymer film called an emulsion mask. It may be. In that case, it is preferable to form a light-shielding film with blackened metal silver instead of chromium.
The pattern size of the photomask varies depending on the conditions, but in the present invention, the pattern was produced with a size of 3 cm × 3 cm. FIG. 5 is a schematic diagram showing an example of the pattern of the photomask used in the present invention, and FIG. 6 is a schematic diagram showing an example of the entire photomask used in the present invention.
In FIG. 6, the size of the photomask is 5 inches × 5 inches, the pattern is divided into nine blocks, the pitch between each pattern is 0.85 cm, and the distance between the outer periphery of the photomask and the outer periphery of each pattern is 1 cm. is there.
In the present invention, by using a photomask, the cross-sectional shape orthogonal to the column axis direction of the plurality of louver rod structures of the anisotropic light diffusing layer can be formed into a desired substantially rounded rectangular shape. However, if the photomask pattern dimension is smaller than the wavelength when the uncured resin composition layer is irradiated with parallel light, the photomask pattern cannot be faithfully irradiated onto the uncured resin composition layer. You may be affected by the effect. As a countermeasure against this, a technique of previously providing optical proximity correction (OPC) to the mask pattern of the photomask can be applied.
By using the photomask, the cross-sectional shape perpendicular to the column axis direction of the plurality of louver rod structures of the anisotropic light diffusion layer can be formed as a desired substantially rounded rectangular shape.
Further, the photomask also serves to prevent oxygen inhibition when the uncured resin composition layer is cured.

実斜䟋
厚さΌ、×サむズのフィルム東掋玡株匏䌚瀟補、商品名を基材ずしお、その瞁郚党呚にディスペンサヌを䜿い光硬化性暹脂組成物で高さの隔壁を圢成した。この隔壁の高さは、おおむね埗られる異方性光拡散局の厚さに盞圓するこずずなる。この隔壁の䞭に䞋蚘に瀺す組成の光硬化性暹脂組成物を充填し、未硬化暹脂組成物局を圢成し、続いおその未硬化暹脂組成物局衚面に、クロム膜によるガラス基板補フォトマスク厚さを積局した。
なお、フォトマスクは図に瀺す芏栌のものを䜿甚し、サむズがむンチ×むンチ、パタヌンは぀のブロックに分かれおおり、各パタヌン間のピッチは、フォトマスク倖呚ず各パタヌン倖呚ずの間隔はであった。図はその倖芳写真である。
たた、パタヌンは図に瀺す芏栌のものを䜿甚し、サむズが×、略角䞞長方圢圢状は、長埄線幅がΌ、平行線幅がΌ、角䞞半埄幅がΌであり、短埄線幅がΌ、長埄線幅方向の各略角䞞長方圢間のピッチがΌ、短埄線幅方向の各略角䞞長方圢間のピッチがΌであった。図はその郚分的衚面写真である。
・シリコヌン・りレタン・アクリレヌト屈折率、重量平均分子量 重量郚
瀟補、商品名−
・ネオペンチルグリコヌルゞアクリレヌト屈折率 重量郚
ダむセル・サむテック株匏䌚瀟補、商品名
・ビスフェノヌルの付加物ゞアクリレヌト屈折率 重量郚
ダむセル・サむテック株匏䌚瀟補、商品名
・フェノキシ゚チルアクリレヌト屈折率 重量郚
共栄瀟化孊株匏䌚瀟補、商品名ラむトアクリレヌト−
・−ゞメトキシ−−ゞフェニル゚タン−−オン 重量郚
瀟補、商品名
このフォトマスクを積局した未硬化暹脂組成物局䞊のフォトマスク衚面からスポット光源浜束ホトニクス株匏䌚瀟瀟補、商品名−の萜射甚照射ナニットから出射される平行光線波長の玫倖線を、照射匷床ずしお分間照射しお、さらに、基材偎から照射匷床の玫倖線を照射しお、完党に硬化させた。そこから、基材ずフォトマスクを剥がしお、実斜䟋の異方性光拡散局異方性光孊フィルムを埗た。
[Example 1]
A PET film having a thickness of 100 ÎŒm and a size of 150 mm × 150 mm (trade name: A4100, manufactured by Toyobo Co., Ltd.) is used as a base material. A partition wall was formed. The height of the partition wall corresponds approximately to the thickness of the anisotropic light diffusion layer obtained. The partition wall is filled with a photocurable resin composition having the following composition to form an uncured resin composition layer, and then a glass substrate photomask made of a chromium film is formed on the surface of the uncured resin composition layer. (Thickness 2 mm) was laminated.
The photomask of the standard shown in FIG. 6 is used, the size is 5 inches × 5 inches, the pattern is divided into nine blocks, the pitch between each pattern is 0.85 cm, the outer periphery of the photomask and each pattern The distance from the outer periphery was 1 cm. FIG. 7 is a photograph of the appearance.
In addition, the standard pattern shown in FIG. 5 is used, and the size is 3 cm × 3 cm, and the substantially rounded rectangular shape has a long diameter line width Y of 1.5 ÎŒm, a parallel line width L of 0.9 ÎŒm, and a rounded radius width. r is 0.3 ÎŒm, the short-diameter line width S is 0.5 ÎŒm, the pitch between the substantially rounded rectangles in the long-diameter line width Y direction is 1.1 ÎŒm, and between the substantially rounded rectangles in the short-diameter line width S direction The pitch was 0.4 ÎŒm. FIG. 8 is a partial surface photograph thereof.
Silicone urethane acrylate (refractive index: 1.460, weight average molecular weight: 5,890) 20 parts by weight (trade name: 00-225 / TM18, manufactured by RAHN)
・ Neopentyl glycol diacrylate (refractive index: 1.450) 30 parts by weight (manufactured by Daicel-Cytec Corporation, trade name: Ebecryl 145)
· EO adduct diacrylate of bisphenol A (refractive index: 1.536) 15 parts by weight (manufactured by Daicel-Cytec Co., Ltd., trade name: Ebec r yl150)
・ Phenoxyethyl acrylate (refractive index: 1.518) 40 parts by weight (manufactured by Kyoeisha Chemical Co., Ltd., trade name: light acrylate PO-A)
・ 2,2-dimethoxy-1,2-diphenylethane-1-one 4 parts by weight (manufactured by BASF, trade name: Irgacure 651)
Parallel rays (wavelength: emitted from an irradiation unit for incident light of a UV spot light source (trade name: L2859-01, manufactured by Hamamatsu Photonics Co., Ltd.) from the photomask surface on the uncured resin composition layer on which the photomask is laminated. 365 nm ultraviolet rays) was irradiated for 1 minute with an irradiation intensity of 5 mW / cm 2 , and further, ultraviolet rays with an irradiation intensity of 20 mW / cm 2 were irradiated from the substrate side to be completely cured. From there, the base material and the photomask were peeled off to obtain the anisotropic light diffusion layer (anisotropic optical film) of Example 1.

実斜䟋
未硬化暹脂組成物局衚面に、クロム膜によるガラス基板補フォトマスク厚さを積局埌、該未硬化暹脂組成物局の基材偎を、℃に加熱したホットプレヌトに茉せ、フォトマスク衚面からは送颚機より颚を送り冷やした状態にしお、該未硬化暹脂組成物局のフォトマスク偎から平行光線を照射する他は、実斜䟋ず同様にしお、実斜䟋の異方性光拡散局異方性光孊フィルムを埗た。
たた、異方性光拡散局の厚さ方向異方性光拡散局平面に垂盎な方向を光孊顕埮鏡で確認したずころ、぀の拡散䞭心軞を有し、異方性光拡散局の厚さ方向を°ずした堎合に、それぞれの拡散䞭心軞の傟きが°ず°であり、屈曲角が°の屈曲構造を有しおいた。
[Example 2]
After laminating a glass substrate photomask (thickness 2 mm) with a chromium film on the surface of the uncured resin composition layer , the substrate side of the uncured resin composition layer is placed on a hot plate heated to 80 ° C. Anisotropic light diffusion of Example 2 is performed in the same manner as in Example 1 except that air is blown from the blower from the mask surface and irradiated with parallel rays from the photomask side of the uncured resin composition layer. A layer (anisotropic optical film) was obtained.
Further, when the thickness direction of the anisotropic light diffusion layer (direction perpendicular to the plane of the anisotropic light diffusion layer) was confirmed with an optical microscope, it had two diffusion center axes, and the thickness direction of the anisotropic light diffusion layer was 0 °. In this case, each diffusion center axis had a bent structure with inclinations of 0 ° and 15 ° and a bending angle of 15 °.

比范䟋
未硬化暹脂組成物局衚面に、クロム膜によるガラス基板補フォトマスクの代わりに、厚さΌ、×サむズのフィルム東掋玡株匏䌚瀟補、商品名を積局した他は、実斜䟋ず同様にしお、比范䟋の異方性光拡散局異方性光孊フィルムを埗た。
比范䟋の異方性光拡散局では、異方性光拡散局内においお、耇数のルヌバヌロッド構造䜓ではなく、耇数のピラヌ構造䜓が圢成され、耇数のピラヌ構造䜓の柱軞方向に盎亀する断面圢状は、光孊顕埮鏡で確認したずころ、略円圢であった。
[Comparative Example 1]
Other than laminating a glass substrate photomask made of chromium film on the surface of the uncured resin composition layer, a PET film having a thickness of 50 ÎŒm and a size of 150 mm × 150 mm (made by Toyobo Co., Ltd., trade name: A4100) In the same manner as in Example 1, the anisotropic light diffusion layer (anisotropic optical film) of Comparative Example 1 was obtained.
In the anisotropic light diffusing layer of Comparative Example 1, a plurality of pillar structures are formed in the anisotropic light diffusing layer, not a plurality of louver rod structures, and a cross-sectional shape orthogonal to the column axis direction of the plurality of pillar structures is When confirmed with an optical microscope, it was substantially circular.

䞊蚘結果に瀺すずおり、実斜䟋〜の異方性光拡散局異方性光孊フィルムは、最倧盎線透過率、最小盎線透過率、拡散幅、ギラツキ、および茝床の急激な倉化が良奜であり、特に実斜䟋およびは、より良奜な結果ずなった。これは、異方性光孊フィルムの異方性光拡散局においお、耇数のルヌバヌロッド構造䜓の柱軞方向異方性光拡散局の厚さ方向に盎亀する断面の圢状を、最適化された略角䞞長方圢ずするこずにより、異方性光拡散局の出射光が適床に拡散するレンズ効果を発珟し、光の干枉によるギラツキや茝床の急激な倉化を抑え、光拡散性を含む光孊特性のバランスを最適化するこずができたためず考えられる。
さらに、実斜䟋〜の本発明の異方性光拡散局は、䞊蚘で芏定された角䞞半埄幅の範囲内であるので、拡散幅を広くするこずができた。
たた、実斜䟋の拡散幅が倧きい理由は、䞊蚘ルヌバヌロッド構造䜓が適床に傟斜しおいたためであるず考えられ、さらに、実斜䟋の拡散幅が最も倧きい理由は、該ルヌバヌロッド構造䜓の柱軞方向に屈曲を有しおいるため、光を匷く拡散する領域をより広げ、拡散幅をより倧きくするこずができるためず考えられる。
As shown in the above results, the anisotropic light diffusion layers (anisotropic optical films) of Examples 1 to 4 have good maximum linear transmittance, minimum linear transmittance, diffusion width, glare, and rapid change in luminance. In particular, Examples 2 and 3 gave better results. This is because, in the anisotropic light diffusion layer of the anisotropic optical film, the shape of the cross section perpendicular to the column axis direction (thickness direction of the anisotropic light diffusion layer) of the plurality of louver rod structures is optimized. By adopting a rectangular shape, the lens effect that moderately diffuses the light emitted from the anisotropic light diffusing layer is manifested, suppressing glare and sudden changes in brightness due to light interference, and optimizing the balance of optical properties including light diffusivity It is thought that it was possible.
Furthermore, since the anisotropic light-diffusion layers of the present invention in Examples 1 to 4 were within the range of the rounded radius width defined above, the diffusion width could be widened.
The reason why the diffusion width of Example 3 is large is considered to be that the louver rod structure was appropriately inclined, and the reason why the diffusion width of Example 2 was the largest was that the louver rod structure. because it has a cylindrical axis direction in the bent and spread more areas to diffuse light strongly, presumably because it is possible to further increase the diffusion width.

Claims (9)

光の入射光角床により透過光量が倉化する異方性光孊フィルムであっお、
該異方性光孊フィルムは、少なくずも局の異方性光拡散局を有し、
該異方性光拡散局は、
耇数のルヌバヌロッド構造䜓ず、マトリックス領域ず、を有し、
該ルヌバヌロッド構造䜓の柱軞方向に盎亀する断面圢状が、二本の略平行線の各䞡端を、略円匧にお結んだ略角䞞長方圢であり、
前蚘二本の略平行線の平行線幅を、前蚘略角䞞長方圢の最倧幅である略長埄線の長埄線幅をずし、−を角䞞半埄幅であるずした堎合、数匏を満たすこずを特城ずする異方性光孊フィルム。
An anisotropic optical film in which the amount of transmitted light changes depending on the incident light angle of light,
The anisotropic optical film has at least one anisotropic light diffusion layer,
The anisotropic light diffusion layer is
A plurality of louver rod structures and a matrix region;
Sectional shape perpendicular to the cylindrical axis direction of the louver rod structure, each ends of two substantially parallel lines, Ri substantially square RoundRectangle der which connects in a substantially circular arc,
The parallel line width of the two substantially parallel lines is L, the long diameter line width of the substantially long diameter line which is the maximum width of the substantially rounded rectangle is Y, and (Y−L) / 2 is the rounded radius width r. The anisotropic optical film characterized by satisfying Formula 2r <L <10r .
前蚘の長さが、Ό以䞊Ό未満の範囲内にあるこずを特城ずする請求項に蚘茉の異方性光孊フィルム。  2. The anisotropic optical film according to claim 1, wherein the length of r is in a range of 0.01 ÎŒm or more and less than 0.4 ÎŒm. 前蚘が、Ό〜Όの範囲内にあるこずを特城ずする請求項たたはに蚘茉の異方性光孊フィルム。The anisotropic optical film according to claim 1, wherein Y is in a range of 0.5 ÎŒm to 50.0 ÎŒm. 前蚘に察し、垂盎な方向の前蚘略角䞞長方圢幅である短埄線幅をずし、該を前蚘で陀した倀が、〜の範囲内にあるこずを特城ずする請求項〜のいずれか項に蚘茉の異方性光孊フィルム。  The width of the minor axis that is the substantially rounded rectangular width in the direction perpendicular to Y is S, and the value obtained by dividing S by r is in the range of 0.4 to 10.0. The anisotropic optical film according to claim 1, wherein the anisotropic optical film is characterized in that: 前蚘ルヌバヌロッド構造䜓が、前蚘柱軞方向で぀の傟きを有しおおり、該傟きが、前蚘異方性光拡散局の平面に察する法線方向を°ずしたずき、±°の範囲内にあるこずを特城ずする請求項〜のいずれか項に蚘茉の異方性光孊フィルム。The louver rod structure has one inclination in the column axis direction, and the inclination is within a range of ± 70 ° when a normal direction to the plane of the anisotropic light diffusion layer is 0 °. It exists, The anisotropic optical film of any one of Claims 1-4 characterized by the above-mentioned. 前蚘ルヌバヌロッド構造䜓が、前蚘柱軞方向で屈曲しお延存しおおり、その屈曲角が、°〜°の範囲内にあるこずを特城ずする請求項〜のいずれか項に蚘茉の異方性光孊フィルム。The louver rod structure is bent and extended in the column axis direction, and a bending angle thereof is in a range of 10 ° to 40 °. The anisotropic optical film as described in the item. 前蚘異方性光拡散局の厚さが、Ό〜Όの範囲内にあるこずを特城ずする請求項〜のいずれか項に蚘茉の異方性光孊フィルム。  The anisotropic optical film according to claim 1, wherein a thickness of the anisotropic light diffusion layer is in a range of 10 ÎŒm to 100 ÎŒm. 前蚘異方性光拡散局の盎線透過率が最倧ずなる入射光角床で異方性光拡散局に入射させた光の盎線透過率である最倧盎線透過率が、〜の範囲にあり、前蚘異方性光拡散局の盎線透過率が最小ずなる入射光角床で異方性光拡散局に入射させた光の盎線透過率である最小盎線透過率が、以䞋の範囲にあるこずを特城ずする請求項〜のいずれか項に蚘茉の異方性光孊フィルム。The maximum linear transmittance, which is the linear transmittance of light incident on the anisotropic light diffusing layer at an incident light angle that maximizes the linear transmittance of the anisotropic light diffusing layer, is in the range of 35% to 95%. The minimum linear transmittance, which is the linear transmittance of light incident on the anisotropic light diffusing layer at an incident light angle at which the linear transmittance of the isotropic light diffusing layer is minimum, is in the range of 25% or less. The anisotropic optical film of any one of 1-7. 前蚘最倧盎線透過率ず、前蚘最小盎線透過率ずの䞭間倀ずなる盎線透過率に察する぀の入射光角床倀の入射光角床範囲の幅である拡散幅が、°〜°の範囲内にあるこずを特城ずする請求項に蚘茉の異方性光孊フィルム。A diffusion width that is a width of an incident light angle range of two incident light angle values with respect to a linear transmittance that is an intermediate value between the maximum linear transmittance and the minimum linear transmittance is in a range of 30 ° to 80 °. The anisotropic optical film according to claim 8, wherein the anisotropic optical film is present.
JP2016069855A 2016-03-31 2016-03-31 Anisotropic optical film Active JP6745625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016069855A JP6745625B2 (en) 2016-03-31 2016-03-31 Anisotropic optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016069855A JP6745625B2 (en) 2016-03-31 2016-03-31 Anisotropic optical film

Publications (3)

Publication Number Publication Date
JP2017181829A JP2017181829A (en) 2017-10-05
JP2017181829A5 true JP2017181829A5 (en) 2018-08-23
JP6745625B2 JP6745625B2 (en) 2020-08-26

Family

ID=60004494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016069855A Active JP6745625B2 (en) 2016-03-31 2016-03-31 Anisotropic optical film

Country Status (1)

Country Link
JP (1) JP6745625B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7201965B2 (en) * 2017-12-05 2023-01-11 倧日本印刷株匏䌚瀟 Optical laminate and image display device
JP7191537B2 (en) * 2018-03-30 2022-12-19 株匏䌚瀟巎川補玙所 anisotropic optical film
JP2019179203A (en) * 2018-03-30 2019-10-17 株匏䌚瀟巎川補玙所 Anisotropic optical film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2803552A (en) * 1953-06-23 1957-08-20 Ca Nat Research Council Antifog materials and method of producing the same
US7199929B2 (en) * 2001-04-27 2007-04-03 Asml Holdings N.V. Methods for optical beam shaping and diffusing
JP2003302507A (en) * 2002-02-05 2003-10-24 Sumitomo Chem Co Ltd Anisotropic scattering film and liquid crystal display device using the same
JP2010044319A (en) * 2008-08-18 2010-02-25 Daicel Chem Ind Ltd Light control film and back light apparatus using the same
JP2010079197A (en) * 2008-09-29 2010-04-08 Fujifilm Corp Anisotropic scattering film, film for head up display, and glass
US9958580B2 (en) * 2012-11-29 2018-05-01 Tomoegawa Co., Ltd. Anisotropic optical film
JP6288672B2 (en) * 2014-03-28 2018-03-07 株匏䌚瀟巎川補玙所 Anisotropic optical film

Similar Documents

Publication Publication Date Title
TWI654087B (en) Anisotropic optical film
KR102240334B1 (en) Anisotropic optical film
JP6716313B2 (en) Method for producing anisotropic optical film
JP6093113B2 (en) Anisotropic optical film
KR20190128621A (en) Anti-glare film and display device
TW201428353A (en) Anisotropic optical film
KR20160015162A (en) Anti-glare film
JP5090861B2 (en) Anisotropic diffusion media
JP2017181829A5 (en)
KR20150095197A (en) Anti-glare film
JP2005141202A (en) Transmission type screen
JP6745625B2 (en) Anisotropic optical film
JP2010262046A (en) Reflection type screen
JP6542007B2 (en) Anisotropic optical film and method for producing the same
JP2015222441A (en) Anisotropic optical film
JP7191537B2 (en) anisotropic optical film
KR20160015163A (en) Anti-glare film
JPH08201795A (en) Black matrix substrate and production of microlens array sheet using it
KR20150079052A (en) Anti-glare film having surface characteristics of organic particles
JP6902895B2 (en) Anisotropic optical film and its manufacturing method
WO2022209567A1 (en) Anisotropic light-diffusing film and display device
KR20160091956A (en) Antiglare film
WO2021200891A1 (en) Anisotropic light-diffusing film and display device
JP7475182B2 (en) Anisotropic light-diffusing film laminate and display device
JP7475333B2 (en) Reflective display device using anisotropic optical film