JP2017181171A - Concrete neutralization environment evaluating composition, sensor using the composition, and concrete neutralization condition evaluation method - Google Patents
Concrete neutralization environment evaluating composition, sensor using the composition, and concrete neutralization condition evaluation method Download PDFInfo
- Publication number
- JP2017181171A JP2017181171A JP2016065740A JP2016065740A JP2017181171A JP 2017181171 A JP2017181171 A JP 2017181171A JP 2016065740 A JP2016065740 A JP 2016065740A JP 2016065740 A JP2016065740 A JP 2016065740A JP 2017181171 A JP2017181171 A JP 2017181171A
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- neutralization
- sensor
- composition
- environment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006386 neutralization reaction Methods 0.000 title claims abstract description 78
- 239000004567 concrete Substances 0.000 title claims abstract description 75
- 238000011156 evaluation Methods 0.000 title claims abstract description 39
- 239000000203 mixture Substances 0.000 title claims abstract description 29
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000000465 moulding Methods 0.000 claims abstract description 11
- -1 silicate compound Chemical class 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 238000001514 detection method Methods 0.000 claims description 24
- 239000007787 solid Substances 0.000 claims description 4
- 229910015868 MSiO Inorganic materials 0.000 claims description 3
- 230000001590 oxidative effect Effects 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 abstract description 2
- 239000006258 conductive agent Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 22
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 20
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 17
- 229910052744 lithium Inorganic materials 0.000 description 17
- 230000003014 reinforcing effect Effects 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 239000001569 carbon dioxide Substances 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 10
- 239000004570 mortar (masonry) Substances 0.000 description 10
- 230000002378 acidificating effect Effects 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 239000004568 cement Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002482 conductive additive Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 2
- DOCYQLFVSIEPAG-UHFFFAOYSA-N [Mn].[Fe].[Li] Chemical compound [Mn].[Fe].[Li] DOCYQLFVSIEPAG-UHFFFAOYSA-N 0.000 description 2
- ISSGCAMUHKKFRI-UHFFFAOYSA-N [Mn].[Li].[Mn] Chemical compound [Mn].[Li].[Mn] ISSGCAMUHKKFRI-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 description 2
- 229910052912 lithium silicate Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052914 metal silicate Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910021642 ultra pure water Inorganic materials 0.000 description 2
- 239000012498 ultrapure water Substances 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229920006026 co-polymeric resin Polymers 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000006234 thermal black Substances 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Sampling And Sample Adjustment (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
本発明は、コンクリートが設置される環境において使用される中性化環境評価用組成物と、これを用いたコンクリートの中性化環境評価センサ、およびコンクリートの中性化状況評価方法に関する。なお、本発明においてコンクリートは、コンクリートのみならずモルタルなどのセメント硬化体を含む。 The present invention relates to a neutralization environment evaluation composition used in an environment where concrete is installed, a concrete neutralization environment evaluation sensor using the same, and a method for evaluating the neutralization status of concrete. In the present invention, concrete includes not only concrete but also hardened cement such as mortar.
通常、コンクリート中の鉄筋は、セメントの水和により生成した水酸化カルシウム等のアルカリ性物質により保護され腐食を免れている。しかし、空気中の炭酸ガスや亜硫酸ガス等の酸性物質がコンクリート内に侵入して、前記アルカリ性物質と反応し鉄筋周辺の中性化が進むと、鉄筋の防錆機能は失われる。その結果、鉄筋の腐食により生じる錆の膨張によって、コンクリートにひび割れが生じコンクリートの耐久性は著しく低下する。したがって、中性化の評価は、コンクリートの耐久性を維持管理するための指標として極めて重要である。とくに、酸性物質が比較的多く存在する温泉地帯や化学工業地帯等では、コンクリートの耐久性を確保するため、鉄筋のかぶり厚さ等を十分に検討する必要があり、中性化環境の事前評価が求められている。 Normally, the reinforcing bars in concrete are protected by an alkaline substance such as calcium hydroxide generated by hydration of cement to avoid corrosion. However, when an acidic substance such as carbon dioxide gas or sulfurous acid gas in the air enters the concrete and reacts with the alkaline substance to neutralize the reinforcing bar, the rust prevention function of the reinforcing bar is lost. As a result, the expansion of rust caused by corrosion of the reinforcing bars causes cracks in the concrete, and the durability of the concrete is significantly reduced. Therefore, the evaluation of neutralization is extremely important as an index for maintaining and managing the durability of concrete. In particular, in hot spring areas and chemical industrial areas where a relatively large amount of acidic substances are present, it is necessary to fully examine the cover thickness of the reinforcing bars in order to ensure the durability of the concrete. Is required.
ところで、中性化の評価方法は、コンクリートから採取したコアの割裂面にフェノールフタレイン溶液(赤紫色)を噴霧し、無色に退色した中性化部分の深さを測定する方法が一般的である。また、コンクリートの中性化を評価する方法は、他にもいくつか提案されている。
例えば、特許文献1には、コンクリートを穿孔する際に排出されるコンクリート粉のアルカリ性を検知してコンクリートの中性化深さを測定する方法が提案されている。また、特許文献2には、鉄筋が埋設されたコンクリート中にセンサを設置し、任意の間隔でモニタリングを行い収集した情報を用いて、鉄筋の腐食を予測する方法が提案されている。
By the way, the neutralization evaluation method is generally a method in which a phenolphthalein solution (red purple) is sprayed on the split surface of the core taken from the concrete, and the depth of the neutralized portion that is colorlessly faded is measured. is there. Several other methods for evaluating the neutralization of concrete have been proposed.
For example, Patent Document 1 proposes a method of measuring the neutralization depth of concrete by detecting the alkalinity of concrete powder discharged when drilling concrete. Patent Document 2 proposes a method for predicting corrosion of reinforcing bars using information collected by monitoring and collecting at arbitrary intervals in a concrete in which reinforcing bars are embedded.
また、特許文献3および特許文献4には、コンクリートの中性化環境を評価するために組成の異なるモルタル組成物を作成し、その中性化深さを測定する方法が提案されている。 Further, Patent Document 3 and Patent Document 4 propose a method of creating mortar compositions having different compositions and measuring the neutralization depth in order to evaluate the neutralization environment of concrete.
しかし、特許文献1に記載の方法では、コアの採取や穿孔はコンクリートの損傷を伴うため、耐久性面の低下が懸念される。特許文献2の方法では、コアの採取や穿孔は行われないが、コンクリートの中性化を事後的に、または同時に把握するものであり、コンクリート構造物の新規建設場所における中性化環境の事前評価には向かない。
特許文献3および特許文献4の方法では、センサであるモルタルの中性化が生じたか否かの測定であり、中性化の進行過程や度合いを数値的に評価できない。また、モルタルで製造されるので、センサが大きくなり設置場所の確保が必要となる。
However, in the method described in Patent Document 1, core collection and drilling are accompanied by damage to the concrete, so there is a concern that the durability may be lowered. In the method of Patent Document 2, the core is not collected or drilled, but the neutralization of the concrete is grasped later or simultaneously, and the neutralization environment in the new construction site of the concrete structure is determined in advance. Not suitable for evaluation.
In the methods of Patent Document 3 and Patent Document 4, it is a measurement of whether or not neutralization of the mortar that is a sensor has occurred, and the progress and degree of neutralization cannot be numerically evaluated. Moreover, since it is manufactured with mortar, a sensor becomes large and it is necessary to secure an installation place.
したがって、本発明は、コンクリートが置かれた中性化環境を簡易かつ高精度に評価できる中性化環境評価用組成物と、これを用いたセンサと、コンクリートの中性化状況評価方法を提供することを目的とする。 Therefore, the present invention provides a neutralization environment evaluation composition that can easily and accurately evaluate a neutralization environment in which concrete is placed, a sensor using the composition, and a method for evaluating the neutralization state of concrete. The purpose is to do.
本発明者らは、前記目的にかなうセンサを検討したところ、珪酸金属リチウムが炭酸ガスと反応して電気特性が変化することを見い出し本発明を完成させた。具体的には、本発明は以下の構成を有するものである。
[1]Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表されるオリビン型シリケート化合物、導電助剤、及び成型剤からなるコンクリートの中性化環境評価用組成物。
[2]前記[1]に記載のコンクリートの中性化環境評価用組成物からなる固形状の検知部と、
前記検知部の端部に接続された第1の通電部と、
前記検知部の端部と対向するもう一方の端部に接続された第2の通電部と、を備えることを特徴とするコンクリートの中性化環境評価用センサ。
[3]前記[2]に記載のセンサを評価の対象となる場所に設置し、センサの曝露開始から前記中性化検知部材が中性化を検知するまでの期間を求め、該期間を比較してコンクリートの中性化環境の評価を行う、コンクリートの中性化環境評価方法。
[4]前記[2]に記載のセンサをコンクリート構造物中に設置し、前記センサの検知部の電気特性値の変化に基づいて、コンクリートの中性化状況の評価を行う、コンクリートの中性化状況評価方法。
The inventors of the present invention have studied a sensor that meets the above-mentioned object, and have found that lithium metal silicate reacts with carbon dioxide gas to change electrical characteristics, thereby completing the present invention. Specifically, the present invention has the following configuration.
[1] An olivine-type silicate compound represented by Li 2 MSiO 4 (wherein M represents one or more selected from Fe, Ni, Co, or Mn), a conductive aid, and a molding agent. Composition for evaluating the neutralization environment of concrete.
[2] A solid detection unit comprising the composition for evaluating the neutralization environment of concrete according to [1],
A first energization unit connected to an end of the detection unit;
A neutralization environment evaluation sensor for concrete, comprising: a second energization unit connected to the other end opposite to the end of the detection unit.
[3] The sensor according to [2] is installed at a place to be evaluated, and a period from when the exposure of the sensor starts until the neutralization detection member detects neutralization is compared, and the period is compared. Then, the neutralization environment evaluation method for concrete, which evaluates the neutralization environment of concrete.
[4] The neutrality of the concrete in which the sensor according to [2] is installed in a concrete structure, and the neutralization state of the concrete is evaluated based on the change in the electrical characteristic value of the detection part of the sensor. Evaluation method
本発明の中性化環境評価用組成物と中性化環境評価用センサ、中性化環境評価方法によれば、コンクリートの中性化環境、およびコンクリートの中性化進行状況を簡易かつ高精度に評価することができる。 According to the neutralization environment evaluation composition, neutralization environment evaluation sensor, and neutralization environment evaluation method of the present invention, the neutralization environment of concrete and the progress of neutralization of concrete can be easily and accurately performed. Can be evaluated.
以下、本発明の中性化環境評価用組成物、中性化環境評価用センサ、コンクリートの中性化環境評価方法、および中性化状況評価方法について説明する。
1.中性化環境評価用組成物
Hereinafter, the neutralization environment evaluation composition, neutralization environment evaluation sensor, concrete neutralization environment evaluation method, and neutralization state evaluation method of the present invention will be described.
1. Neutralizing environment evaluation composition
本発明の中性化環境評価用組成物は、粒子表面に導電性が付与された珪酸金属リチウムであり、珪酸金属リチウムが炭酸ガスなどの酸性ガスと反応することにより、導電性が変化するものである。 The composition for evaluating the neutralization environment of the present invention is lithium metal silicate with conductivity imparted to the particle surface, and the conductivity changes when the metal lithium silicate reacts with an acidic gas such as carbon dioxide gas. It is.
中性化環境評価用組成物の原料である珪酸金属リチウムは、Li2MSiO4(式中、MはFe、Ni、Co又はMnから選ばれる1種又は2種以上を示す)で表されるオリビン型シリケート化合物型の鉱物である。オリビン型シリケート化合物の具体例としては、Li2FeSiO4、Li2NiSiO4、Li2CoSiO4、Li2MnSiO4、Li2(Fe)m(Mn)1-mSiO4(0<m<1である)等が挙げられる。このうち、製造性や原料コストの点からLi2FeSiO4、Li2MnSiO4、Li2(Fe)m(Mn)1-mSiO4が好ましい。
珪酸金属リチウムは、低温噴霧熱分解法、水熱合成法など、公知の方法で製造できる。
粒度は、材料の合成、ペーストの成形性の点から、1〜20μm、好ましくは3〜15μmとする。
Lithium metal silicate which is a raw material for the composition for evaluating neutralization environment is represented by Li 2 MSiO 4 (wherein M represents one or more selected from Fe, Ni, Co or Mn). It is an olivine type silicate compound type mineral. Specific examples of the olivine type silicate compound include Li 2 FeSiO 4 , Li 2 NiSiO 4 , Li 2 CoSiO 4 , Li 2 MnSiO 4 , Li 2 (Fe) m (Mn) 1 -mSiO 4 (0 <m <1 And the like. Among these, Li 2 FeSiO 4 , Li 2 MnSiO 4 , and Li 2 (Fe) m (Mn) 1 -mSiO 4 are preferable from the viewpoint of manufacturability and raw material cost.
The lithium metal silicate can be produced by a known method such as a low temperature spray pyrolysis method or a hydrothermal synthesis method.
The particle size is 1 to 20 μm, preferably 3 to 15 μm, from the viewpoint of material synthesis and paste moldability.
中性化環境評価用組成物の原料である導電助剤は、珪酸金属リチウムの電子伝導面積(電子伝導パス)を増加させて、十分な電子伝導性を確保することができる物質であればよく、例えばカーボンブラック系導電助剤、鱗片状黒鉛、繊維状炭素、活性炭が挙げられる。このうち、カーボンブラック系導電助剤が好ましく、具体的にはファーネスブラック、ケッチェンブラック、アセチレンブラック、サーマルブラック等が挙げられる。導電助剤の比表面積は、導電性の低下防止、塗工性の点から50〜2000m2/gが好ましい。
導電助剤は、珪酸金属リチウム100質量部に対し、導電性を確保する点から、珪酸金属リチウム100質量部に対し、炭素原子換算量で0.1〜20質量部が好ましく、さらに1〜10質量部が好ましい。
The conductive auxiliary agent that is a raw material for the neutralized environment evaluation composition only needs to be a substance that can increase the electron conduction area (electron conduction path) of lithium metal silicate and ensure sufficient electron conductivity. Examples thereof include carbon black-based conductive assistants, scaly graphite, fibrous carbon, and activated carbon. Of these, carbon black-based conductive assistants are preferable, and specific examples include furnace black, ketjen black, acetylene black, and thermal black. The specific surface area of the conductive auxiliary agent is preferably 50 to 2000 m 2 / g from the viewpoint of preventing decrease in conductivity and coating properties.
From the point which ensures electroconductivity with respect to 100 mass parts of metal silicate lithium, 0.1-20 mass parts is preferable at a carbon atom conversion amount with respect to 100 mass parts of metal silicate, and also 1-10. Part by mass is preferred.
成型剤は、中性化環境評価用組成物を固形状に保持するために添加され、例えば樹脂系結着剤、ゴム系結着剤、セルロース系結着剤が挙げられる。樹脂系結着剤としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン、ポリビニルアルコール(PVA)、ポリエチレンオキシド、ポリビニルピロリドン、ポリエステル樹脂、アクリル樹脂、フェノール樹脂、エポキシ樹脂等が挙げられる。ゴム系結着剤としては、エチレン−プロピレン−ジエン共重合樹脂、スチレンブタジエンゴム(SBR)、ポリブタジエン、フッ素ゴム等が挙げられる。セルロース系結着剤としては、ヒドロキシプロピルセルロース、カルボキシメチルセルロース(CMC)等が挙げられる。これらの結着剤は1種単独で用いてもよく、2種以上を併用してもよい。中でも、PVDFが特に好ましい。
成型剤は、珪酸金属リチウムや導電助剤との接着性の観点から、珪酸金属リチウムと導電助剤の合計量100質量部に対し、0.1〜20質量部、好ましくは1〜15質量部とする。
The molding agent is added to maintain the neutralized environment evaluation composition in a solid state, and examples thereof include a resin-based binder, a rubber-based binder, and a cellulose-based binder. Examples of the resin binder include polytetrafluoroethylene, polyvinylidene fluoride (PVDF), polyethylene, polypropylene, polyvinyl alcohol (PVA), polyethylene oxide, polyvinyl pyrrolidone, polyester resin, acrylic resin, phenol resin, and epoxy resin. It is done. Examples of the rubber binder include ethylene-propylene-diene copolymer resin, styrene butadiene rubber (SBR), polybutadiene, and fluorine rubber. Examples of the cellulose binder include hydroxypropyl cellulose and carboxymethyl cellulose (CMC). These binders may be used individually by 1 type, and may use 2 or more types together. Among these, PVDF is particularly preferable.
The molding agent is 0.1 to 20 parts by mass, preferably 1 to 15 parts by mass with respect to 100 parts by mass of the total amount of lithium metal silicate and the conductive auxiliary, from the viewpoint of adhesion to lithium metal silicate and the conductive auxiliary. And
2.中性化環境評価用センサ
本発明の中性化環境評価用センサは、前記の珪酸金属リチウムと導電助剤、さらに必要に応じて成型剤を、板状またはブロック状に成形してなる固形物を検知部とし、該検知部の少なくとも1面は大気、またはコンクリートなど炭酸ガスなど酸性ガスに曝露される曝露面であり、一方の端部と、その端部と対向するもう一方の端部に通電部が設けられ、珪酸金属リチウムが酸性ガスと反応して検知部の電気特性が変化することを利用して中性化環境を評価する。
以下に、(1)センサの形態、および(2)センサの製造方法に分けて詳細に説明する。
2. Neutralization environment evaluation sensor The neutralization environment evaluation sensor of the present invention is a solid material obtained by molding the above-described lithium metal silicate and a conductive additive, and further, if necessary, a molding agent into a plate shape or a block shape. And at least one surface of the detection unit is an exposed surface exposed to the atmosphere or an acidic gas such as carbon dioxide such as concrete, and one end and the other end opposite to the end are exposed. An energizing part is provided, and the neutralization environment is evaluated by utilizing the fact that the lithium metal silicate reacts with the acidic gas and the electrical characteristics of the detecting part change.
Hereinafter, it will be described in detail by dividing into (1) sensor form and (2) sensor manufacturing method.
(1)センサの形態
センサ10は、図1に示すように前記中性化環境評価用組成物からなる検知部11と、検知部の中性化により変化する電気特性を計測器で測定するための2本のリード線12からなる。また、図2に示すように検知部11の保護のためや酸性ガスとの暴露面を限定するために、必要に応じて任意の部材として検知部11の少なくとも1面を除く面を覆う外装部13を含む。
センサ10の形状は問わないが、成形の容易性から、好ましくは、円柱状、板状またはブロック状である。
検知部11の形状は問わないが、コンクリート中で使用され場合は、検出部11のコンクリートへの曝露面を骨材の最大寸法より大きいものとする。
外装部13は、フィルム、シート、塗膜、モルタル、セラミックス、樹脂等からなる。コンクリート中に埋設して使用する場合は、打設時の衝撃による破損を防止するために、またコンクリート構造物の強度面における弱点とならないように、コンクリートと同等かそれ以上の強度を有する材料を用いる。検知部11の保護が必要なく、炭酸ガスの曝露面を限定したい場合は、外装材13は、フィルム、シート、塗膜、および板等を貼り付けてもよい。
リード線12は、検知部11に電気的に接続されるように2本埋め込まれ、検知部の電気抵抗、電位の変化、電流密度などの電気特性をテスター等の計測器で測定できるようにする。
(1) Sensor form As shown in FIG. 1, the sensor 10 is a sensor 11 for measuring the neutralization environment evaluation composition and the electrical characteristics that change due to the neutralization of the sensor. The two lead wires 12. Moreover, as shown in FIG. 2, in order to protect the detection part 11 and to limit the exposure surface with acidic gas, the exterior part which covers the surface except at least one surface of the detection part 11 as an arbitrary member as needed 13 is included.
The shape of the sensor 10 is not limited, but is preferably a columnar shape, a plate shape, or a block shape from the viewpoint of ease of molding.
Although the shape of the detection part 11 is not ask | required, when used in concrete, the exposure surface to the concrete of the detection part 11 shall be larger than the largest dimension of an aggregate.
The exterior part 13 consists of a film, a sheet | seat, a coating film, mortar, ceramics, resin, etc. When embedding in concrete, use a material with strength equal to or higher than that of concrete so as to prevent damage due to impact during placement and not to be a weak point in the strength of the concrete structure. Use. When it is not necessary to protect the detection unit 11 and it is desired to limit the exposed surface of the carbon dioxide gas, the exterior member 13 may be a film, a sheet, a coating film, a plate, or the like.
Two lead wires 12 are embedded so as to be electrically connected to the detection unit 11 so that electric characteristics such as electrical resistance, potential change, and current density of the detection unit can be measured by a measuring instrument such as a tester. .
さらに、図3に示すようにコンクリート打設時の衝撃など検知部11の曝露面も破損する可能性がある場合は、当該曝露面に任意の部材として被覆部14を設けてもよい。被服部14は、アルカリ性であり固化後に多孔質となるセメントペーストまたはモルタルを使用することができる。セメントペーストまたはモルタルの水セメント比は、なるべく周囲と同じ環境であるように、またコンクリート表面から鉄筋への腐食因子の通過を妨げることがないように鉄筋コンクリート構造物のコンクリートと同等かコンクリートよりも高い水セメント比とすることが好ましい。被覆部14は、破損することがないよう、2〜15mmの厚さが好ましい。 Furthermore, as shown in FIG. 3, when the exposed surface of the detection unit 11 such as an impact at the time of placing concrete may also be damaged, the covering unit 14 may be provided as an arbitrary member on the exposed surface. The coated part 14 may be made of cement paste or mortar that is alkaline and becomes porous after solidification. The water-cement ratio of the cement paste or mortar is equal to or higher than that of reinforced concrete structures so that it is as close to the environment as possible and does not prevent the passage of corrosion factors from the concrete surface to the reinforcement. A water cement ratio is preferred. The covering portion 14 preferably has a thickness of 2 to 15 mm so as not to break.
(2)センサの製造方法
本発明のセンサの製造方法の1例を、下記(A)〜(F)に示す。
(A)水酸化リチウム、および珪酸ナトリウムをグリセリン等の有機溶媒を含む水に混合する。この溶液に硫酸鉄等の硫酸金属塩を添加し、混合する。当該混合液をオートクレーブに投入し、120〜200℃で水熱反応を行い、反応液はろ過後、乾燥する。当該乾燥物にグルコース等の有機溶媒と水を加え、還元雰囲気下で500〜800℃で焼成することで珪酸金属リチウムが得られる。
(B)次いで、得られた珪酸金属リチウムに、導電助剤、成型剤を混合し、これに有機溶媒を加える。当該有機溶媒の量は、スラリー中における珪酸金属リチウムおよび導電助剤の含有量(スラリー濃度)として、30〜60質量%が好ましく、さらに45〜55質量%が好ましい。
混合手段は、プラネタリーミキサー、二軸押出機、一軸押出機、遠心ディスクミキサー、双腕式練合機、ボールミル、遊星ミル、ヘンシェルミキサーにより行うことができるが、プラネタリーミキサーがより好ましい。
(2) Sensor Manufacturing Method One example of the sensor manufacturing method of the present invention is shown in the following (A) to (F).
(A) Lithium hydroxide and sodium silicate are mixed in water containing an organic solvent such as glycerin. To this solution, a metal sulfate metal salt such as iron sulfate is added and mixed. The mixed solution is put into an autoclave, a hydrothermal reaction is performed at 120 to 200 ° C., and the reaction solution is filtered and dried. Lithium metal silicate can be obtained by adding an organic solvent such as glucose and water to the dried product and firing at 500 to 800 ° C. in a reducing atmosphere.
(B) Next, a conductive additive and a molding agent are mixed with the obtained lithium metal silicate, and an organic solvent is added thereto. The amount of the organic solvent is preferably 30 to 60% by mass, more preferably 45 to 55% by mass, as the content (slurry concentration) of lithium metal silicate and the conductive additive in the slurry.
The mixing means may be a planetary mixer, a twin screw extruder, a single screw extruder, a centrifugal disk mixer, a double arm kneader, a ball mill, a planetary mill, or a Henschel mixer, with a planetary mixer being more preferred.
(C)円筒状のプラスチック容器を準備し、一方の端部に底板としてアルミホイルなどを接着する。予めリード線をアルミホイルに通し、挿通箇所は接着剤などで塞ぎ、プラスチック容器に作成したスラリーを充填する。もう一方の端部(上部)よりスラリー中にもう一方のリード線を差し込む。外装材を用いる場合は、プラスチック容器に代えてモルタルで製作された外装材に充填してもよい。 (C) A cylindrical plastic container is prepared, and aluminum foil or the like is bonded to one end as a bottom plate. The lead wire is passed through aluminum foil in advance, the insertion point is closed with an adhesive or the like, and the slurry prepared in a plastic container is filled. Insert the other lead into the slurry from the other end (top). When using an exterior material, the exterior material made of mortar may be filled instead of the plastic container.
(D)スラリーを乾燥して、検知部を固形状とする。乾燥方法は、真空乾燥、高温乾燥など有機溶媒を揮発除去できる方法であれば問わない。乾燥された検知部は、必要に応じてプラスチック容器やアルミホイルを除去する。
なお、(B)(C)(D)に代えて、(A)で得られた珪酸金属リチウムを加圧して成型し、検知部とすることもできる。
(D) The slurry is dried to make the detection part solid. Any drying method can be used as long as it can volatilize and remove the organic solvent such as vacuum drying and high temperature drying. The dried detector removes the plastic container and the aluminum foil as necessary.
Note that, instead of (B), (C), and (D), the metallic lithium silicate obtained in (A) may be pressed and molded to form a detection unit.
(E)外装材を設ける場合は、前述のプラスチック容器やアルミホイル、あるいはモルタルなどをそのまま利用すればよい。ただし、前述のプラスチック容器やアルミホイルでは、炭酸ガスが接合部などから侵入する場合があるので、新たにエポキシ樹脂等を塗布したり、外装材を準備して検知部をはめ込んでもよい。 (E) When the exterior material is provided, the aforementioned plastic container, aluminum foil, mortar, or the like may be used as it is. However, in the above-described plastic container and aluminum foil, carbon dioxide gas may enter from the joint or the like, so that an epoxy resin or the like may be newly applied, or an exterior material may be prepared to fit the detector.
(F)被覆部を設ける場合は、検知部の暴露面に練り混ぜたモルタルやペースト等を塗布し、養生を行う。 (F) When providing a coating part, apply mortar or paste kneaded to the exposed surface of the detection part and perform curing.
完成したセンサは、密封したり、酸性ガスを含まないガス中に使用するまで保管する。 The completed sensor is sealed or stored until used in a gas free of acid gases.
なお、本センサが目的とする機能の範囲内で、例えば、珪酸金属リチウムを加圧して成型、リード線は後で接着するなど、製造方法や製造順序を変えてもよい。 It should be noted that the manufacturing method and the manufacturing order may be changed within the range of the target function of the present sensor, for example, pressurizing and molding lithium metal silicate and bonding the lead wires later.
3.コンクリートの中性化環境評価方法
コンクリートの中性化環境評価方法は、本発明のセンサを評価の対象となる場所に一定の期間設置し、その電気特性を計測する。対象となる場所に設置したセンサの電気特性値を比較することでコンクリートの中性化環境を評価する。1箇所に設置するセンサの個数は、評価精度の観点から、好ましくは3個以上とする。
評価の対象となる場所は、コンクリートの設置を予定している場所、または評価の対象であるコンクリートと同一の中性化環境を有する範囲に設置することをいい、可能な限りコンクリートの近くに設置するのが好ましい。
また、中性化環境の標準地点を定め、その中性化環境を標準環境として設定し、電気特性値の推移を求めておけば、次回以降の評価において、評価対象場所の評価を標準環境の電気特性の推移との比較で行うことができる。たとえば、標準環境としてコンクリートの一般的な乾燥環境である20℃、相対湿度60%を設定してもよい。
3. Method for evaluating the neutralization environment of concrete In the method for evaluating the neutralization environment of concrete, the sensor of the present invention is installed in a place to be evaluated for a certain period of time, and its electrical characteristics are measured. The neutralization environment of concrete is evaluated by comparing the electrical characteristic values of the sensors installed in the target location. The number of sensors installed in one place is preferably 3 or more from the viewpoint of evaluation accuracy.
The place to be evaluated is the place where the concrete is planned to be installed, or within the range that has the same neutralization environment as the concrete to be evaluated. Install as close to the concrete as possible. It is preferable to do this.
In addition, if a neutralized environment standard point is set, the neutralized environment is set as the standard environment, and the transition of the electrical characteristic value is obtained, the evaluation of the evaluation target location will be evaluated in the standard environment in the next and subsequent evaluations. This can be done by comparison with the transition of electrical characteristics. For example, you may set 20 degreeC and 60% of relative humidity which are the general dry environment of concrete as a standard environment.
4.コンクリートの中性化状況評価方法
コンクリートの中性化状況評価方法は、本発明のセンサをコンクリート中に埋設し、炭酸ガスなど酸性ガスの浸透深さと酸性ガスの浸透による中性化の進行度を測定する。コンクリート構造物は、横方向や縦方向に鉄筋を備えており。これら鉄筋よりも表面に近い位置にセンサを埋設する。コンクリート中の中性化の領域は、鉄筋よりも先にセンサに到達するので、中性化が鉄筋に到達するのよりも先にセンサが中性化を早期に検知し、必要に応じて対策を講じることができる。さらに、センサは、酸性ガスが到達した後も酸性ガスと反応し続けて電気特性が変化するので、コンクリートの中性化の進行度も評価することができる。
また、コンクリートの表面から異なる深さに複数のセンサを設置することで、コンクリート中への酸性ガスの到達深さやコンクリートの中性化進行度を評価することができる。このときセンサ自身が酸性ガスの浸透を阻害しないよう、それぞれのセンサはコンクリート表面に対して重なることのないように設置する。
4). Concrete neutralization status evaluation method Concrete neutralization status evaluation method is a method of embedding the sensor of the present invention in concrete and measuring the penetration depth of acid gas such as carbon dioxide and the degree of neutralization by the penetration of acid gas. taking measurement. Concrete structures have reinforcing bars in the horizontal and vertical directions. A sensor is embedded at a position closer to the surface than these reinforcing bars. Since the neutralization area in concrete reaches the sensor before the reinforcing bar, the sensor detects the neutralization early before the neutralization reaches the reinforcing bar, and measures are taken if necessary. Can be taken. Furthermore, since the sensor continues to react with the acidic gas after the arrival of the acidic gas and the electrical characteristics change, the progress of neutralization of the concrete can also be evaluated.
In addition, by installing a plurality of sensors at different depths from the concrete surface, it is possible to evaluate the depth of acid gas reaching the concrete and the degree of neutralization of the concrete. At this time, each sensor is installed so as not to overlap the concrete surface so that the sensor itself does not hinder the penetration of acid gas.
以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
珪酸金属リチウムは、珪酸鉄マンガンリチウム(Li2FeMnSiO4)を用いた。LiOH・H2O 4.20g(100mol)、Na4SiO4・nH2O 13.98( 50mmol)に、超純水27.5cm3とグリセリン10.0cm3とを含有する溶媒( 溶媒中におけるグリセリンの含有量:27質量%)を加えて混合した(この時のpHは約13)。この混合液にFeSO4・7H2O 3.92g(14.1mmol)、MnSO4 ・5H2O 7.93g(32.9mmol)及びZrSO4・4H2O0.53g(1.5mmol)を添加し、混合した。得られた混合液をオートクレーブに投入し、150℃で12時間水熱反応を行った。反応液をろ過後、12時間凍結乾燥した。凍結乾燥して得られた粉末8.4gにグルコース(炭素濃度として10%)及び超純水10cm3を加え、還元雰囲気下で650℃1時間焼成して珪酸鉄マンガンリチウムを得た。
次いで、得られた珪酸鉄マンガンリチウムに、導電助剤としてアセチレンブラック(デンカ社製)、成型剤としてポリフッ化ビニリデン(クレハ社製、KF9305)を質量比98:1:1の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、中性化環境評価用組成物を含むペーストを得た。
As the lithium metal silicate, lithium iron manganese silicate (Li 2 FeMnSiO 4 ) was used. LiOH · H 2 O 4.20g (100mol ), the Na 4 SiO 4 · nH 2 O 13.98 (50mmol), in a solvent (solvent containing ultrapure water 27.5cm 3 and glycerin 10.0 cm 3 Glycerin content: 27% by mass) was added and mixed (pH at this time was about 13). To this mixture was added FeSO 4 · 7H 2 O 3.92 g (14.1 mmol), MnSO 4 · 5H 2 O 7.93 g (32.9 mmol) and ZrSO 4 · 4H 2 O 0.53 g (1.5 mmol). , Mixed. The obtained liquid mixture was thrown into the autoclave and hydrothermal reaction was performed at 150 degreeC for 12 hours. The reaction solution was filtered and lyophilized for 12 hours. Glucose (carbon concentration: 10%) and ultrapure water (10 cm 3) were added to 8.4 g of the powder obtained by freeze-drying, and calcined in a reducing atmosphere at 650 ° C. for 1 hour to obtain lithium manganese manganese silicate.
Next, acetylene black (manufactured by Denka) as a conductive additive and polyvinylidene fluoride (manufactured by Kureha Co., KF9305) as a molding agent were mixed with the obtained lithium iron silicate lithium in a mixing ratio of 98: 1: 1. Then, N-methyl-2-pyrrolidone was added thereto and kneaded sufficiently to obtain a paste containing a neutralizing environment evaluation composition.
外装材は、ゴム製とし、図2に示すφ5mm、長さ30mmの半円柱状のものを用いた。両端にリード線を接続し、中性化環境評価用組成物含むペーストを流し込んだ。このペーストを80℃12時間真空乾燥し、中性化環境評価用センサを得た。 The exterior material was made of rubber and used was a semi-cylindrical shape having a diameter of 5 mm and a length of 30 mm shown in FIG. Lead wires were connected to both ends, and a paste containing a neutralizing environment evaluation composition was poured. This paste was vacuum-dried at 80 ° C. for 12 hours to obtain a neutralization environment evaluation sensor.
2.中性化試験
製造したセンサを、炭酸ガス濃度5%、温度20℃、湿度60%下に曝露し、製造直後から一定の期間テスターで電気抵抗を測定した。
2. Neutralization test The manufactured sensor was exposed to a carbon dioxide concentration of 5%, a temperature of 20 ° C, and a humidity of 60%, and the electrical resistance was measured with a tester for a certain period immediately after the manufacture.
図4にセンサの曝露開始時間からの、センサの電気抵抗の推移を示す。また、図5に示すように中性化開始前の検知部と8日経過時点における検知部を採取し、XRDでその組成を確認した。中性化開始前では珪酸鉄マンガンリチウムとカーボンの回折ピークしか認められなかったが、8日経過時点では珪酸鉄マンガンリチウムの回折ピークが低下し、新たに炭酸リチウムの回折ピークが確認され、一部の珪酸鉄リチウムが炭酸化により分解していた。したがって、本発明のセンサは、炭酸化等で珪酸金属リチウムが分解すると抵抗値が上昇することがわかる。 FIG. 4 shows changes in the electrical resistance of the sensor from the exposure start time of the sensor. Moreover, as shown in FIG. 5, the detection part before the start of neutralization and the detection part in the 8th day progress were extract | collected, and the composition was confirmed by XRD. Before the start of neutralization, only the diffraction peaks of lithium iron manganese silicate and carbon were observed, but after 8 days, the diffraction peak of lithium manganese manganese silicate decreased, and a new diffraction peak of lithium carbonate was confirmed. Of lithium iron silicate was decomposed by carbonation. Therefore, it can be seen that the resistance value of the sensor of the present invention increases when lithium metal silicate is decomposed by carbonation or the like.
このように、本発明のセンサは、炭酸ガスの存在の有無を検知し、その炭酸化ガスを吸収することで微弱なコンクリートの中性化環境の相違を評価することができる。また、コンクリート中においても、炭酸ガスや酸性ガスの侵入による中性化の開始、また中性化の進行程度を評価することができる。 Thus, the sensor of the present invention can detect the presence or absence of carbon dioxide gas, and can evaluate the difference in the neutralization environment of weak concrete by absorbing the carbonation gas. Moreover, also in concrete, the start of neutralization by the penetration | invasion of a carbon dioxide gas or acidic gas, and the progress degree of neutralization can be evaluated.
10 センサ
11 検知部
12 リード線
13 外装部
14 被服部
DESCRIPTION OF SYMBOLS 10 Sensor 11 Detection part 12 Lead wire 13 Exterior part 14 Clothing part
Claims (4)
前記検知部の端部に接続された第1の通電部と、
前記検知部の端部と対向するもう一方の端部に接続された第2の通電部と、を備えることを特徴とするコンクリートの中性化環境評価用センサ。 A solid detector comprising the composition for evaluating the neutralization environment of concrete according to claim 1,
A first energization unit connected to an end of the detection unit;
A neutralization environment evaluation sensor for concrete, comprising: a second energization unit connected to the other end opposite to the end of the detection unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016065740A JP6663271B2 (en) | 2016-03-29 | 2016-03-29 | Concrete neutralization environment evaluation composition, sensor using the composition, and method for evaluating carbonation state of concrete |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016065740A JP6663271B2 (en) | 2016-03-29 | 2016-03-29 | Concrete neutralization environment evaluation composition, sensor using the composition, and method for evaluating carbonation state of concrete |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017181171A true JP2017181171A (en) | 2017-10-05 |
JP6663271B2 JP6663271B2 (en) | 2020-03-11 |
Family
ID=60006853
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016065740A Active JP6663271B2 (en) | 2016-03-29 | 2016-03-29 | Concrete neutralization environment evaluation composition, sensor using the composition, and method for evaluating carbonation state of concrete |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6663271B2 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5015355A (en) * | 1988-10-11 | 1991-05-14 | Strabag Bau-Ag | Corrosion measuring cell |
JP2005108580A (en) * | 2003-09-30 | 2005-04-21 | Fuji Photo Film Co Ltd | Fuel cell loading device |
JP2010230383A (en) * | 2009-03-26 | 2010-10-14 | Railway Technical Res Inst | Method and tool for measuring depth of neutralization depth of concrete structure using drill hole |
JP2012018018A (en) * | 2010-07-06 | 2012-01-26 | Taiheiyo Cement Corp | Corrosion environment detection sensor for concrete structure |
JP2013108866A (en) * | 2011-11-22 | 2013-06-06 | Seiko Epson Corp | Sensor device |
JP2015068771A (en) * | 2013-09-30 | 2015-04-13 | 太平洋セメント株式会社 | Sensor for neutralization environmental evaluation of concrete, and neutralization environmental evaluation method of concrete |
JP2015184215A (en) * | 2014-03-25 | 2015-10-22 | 一般財団法人電力中央研究所 | Method, device and program for determining presence of carbonation of concrete, and method, device and program for estimating carbonation range of concrete, and method, device and program for estimating diffusion coefficient of target element |
JP2017142972A (en) * | 2016-02-10 | 2017-08-17 | 太平洋セメント株式会社 | Polyanion positive electrode active material and method of producing the same |
-
2016
- 2016-03-29 JP JP2016065740A patent/JP6663271B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5015355A (en) * | 1988-10-11 | 1991-05-14 | Strabag Bau-Ag | Corrosion measuring cell |
JP2005108580A (en) * | 2003-09-30 | 2005-04-21 | Fuji Photo Film Co Ltd | Fuel cell loading device |
JP2010230383A (en) * | 2009-03-26 | 2010-10-14 | Railway Technical Res Inst | Method and tool for measuring depth of neutralization depth of concrete structure using drill hole |
JP2012018018A (en) * | 2010-07-06 | 2012-01-26 | Taiheiyo Cement Corp | Corrosion environment detection sensor for concrete structure |
JP2013108866A (en) * | 2011-11-22 | 2013-06-06 | Seiko Epson Corp | Sensor device |
JP2015068771A (en) * | 2013-09-30 | 2015-04-13 | 太平洋セメント株式会社 | Sensor for neutralization environmental evaluation of concrete, and neutralization environmental evaluation method of concrete |
JP2015184215A (en) * | 2014-03-25 | 2015-10-22 | 一般財団法人電力中央研究所 | Method, device and program for determining presence of carbonation of concrete, and method, device and program for estimating carbonation range of concrete, and method, device and program for estimating diffusion coefficient of target element |
JP2017142972A (en) * | 2016-02-10 | 2017-08-17 | 太平洋セメント株式会社 | Polyanion positive electrode active material and method of producing the same |
Also Published As
Publication number | Publication date |
---|---|
JP6663271B2 (en) | 2020-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6899422B2 (en) | Improved Isolation Plates for Lithium Ion Batteries and Related Methods | |
Barroca et al. | Wireless sensor networks for temperature and humidity monitoring within concrete structures | |
JP5889221B2 (en) | Concrete (composition) and method for producing concrete | |
US20140184249A1 (en) | Smart paint | |
JP2005078473A (en) | Protection case for radio sensor | |
US20080105564A1 (en) | Protection of Reinforcement | |
CN102177103B (en) | Hydraulic binding agent and binding agent matrixes produced thereof | |
WO2016099027A1 (en) | System for predicting residual lifespan of fire-damaged concrete structure and method therefor | |
JP2008526658A (en) | Coating system | |
Lee et al. | Fluctuation of electrical properties of carbon-based nanomaterials/cement composites: Case studies and parametric modeling | |
CN104755393A (en) | Outdoor tank waterproofing sheet and outdoor tank waterproofing method | |
Tian et al. | Mechanisms underlying the relationship between electrical resistivity and corrosion rate of steel in mortars | |
JP6663271B2 (en) | Concrete neutralization environment evaluation composition, sensor using the composition, and method for evaluating carbonation state of concrete | |
Ding et al. | Piezoelectric properties and microstructure of ceramicrete-based piezoelectric composites | |
Vlachakis et al. | Investigation of the compressive self-sensing response of filler-free metakaolin geopolymer binders and coatings | |
KR20160073757A (en) | Method for monitering chloride penetration into reinforced concrete with high conductive cement composite | |
JP4672608B2 (en) | Method for producing conductive ceramic material | |
JP2015187559A (en) | corrosion detection method and corrosion detection system | |
JP6636761B2 (en) | Cross-section restoration method for concrete structures | |
CN107702828B (en) | High-sensitivity self-sensing intelligent sensor for concrete and preparation method and application thereof | |
CN114350188B (en) | Energy storage protection type cement-based micro-variation monitoring coating for existing building strain monitoring and cement-based sensor | |
JP2016028258A (en) | Coating part of corrosion environment detection sensor for concrete structure | |
EP4195395A1 (en) | Electrode assembly, battery, battery module, battery pack, and electronic apparatus | |
JP6202966B2 (en) | Neutralization environment evaluation sensor for concrete, and neutralization environment evaluation method for concrete | |
JP6725337B2 (en) | Reference electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190315 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20190315 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200214 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6663271 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |