JP2015068771A - Sensor for neutralization environmental evaluation of concrete, and neutralization environmental evaluation method of concrete - Google Patents

Sensor for neutralization environmental evaluation of concrete, and neutralization environmental evaluation method of concrete Download PDF

Info

Publication number
JP2015068771A
JP2015068771A JP2013204951A JP2013204951A JP2015068771A JP 2015068771 A JP2015068771 A JP 2015068771A JP 2013204951 A JP2013204951 A JP 2013204951A JP 2013204951 A JP2013204951 A JP 2013204951A JP 2015068771 A JP2015068771 A JP 2015068771A
Authority
JP
Japan
Prior art keywords
neutralization
sensor
concrete
environment
detection member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013204951A
Other languages
Japanese (ja)
Other versions
JP6202966B2 (en
Inventor
達三 佐藤
Tatsuzo Sato
達三 佐藤
玲 江里口
Rei Eriguchi
玲 江里口
平林 克己
Katsumi Hirabayashi
克己 平林
祐輔 石井
Yusuke Ishii
祐輔 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2013204951A priority Critical patent/JP6202966B2/en
Publication of JP2015068771A publication Critical patent/JP2015068771A/en
Application granted granted Critical
Publication of JP6202966B2 publication Critical patent/JP6202966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensor or the like capable of easily and rapidly evaluating a neutralization environment of concrete.SOLUTION: In the sensor for neutralization environment evaluation of concrete, a hardened body of a cement composition that is produced by molding, into a tabular or block shape, a cement composition 11 having a water/cement ratio (mass ratio) of 35-200% and a water/powder ratio (mass ratio) of 25-70% is used as an infiltration component 11. Furthermore, one surface of the infiltration component 11 is an exposure surface exposed to the atmospheric air, a neutralization detection member 12 for detecting the neutralization using an electrical characteristic is installed on the rear surface facing the exposure surface, and the surface other than the exposure surface is a blocked surface blocked from the atmospheric air by a blocking material 13.

Description

本発明は、コンクリートが設置される環境において、コンクリートの中性化のし易さを評価するために用いるセンサと、これを用いたコンクリートの中性化環境評価方法に関する。なお、本発明においてコンクリートは、コンクリートのみならずモルタルおよびセメント硬化体を含む。   The present invention relates to a sensor used for evaluating the ease of neutralization of concrete in an environment where concrete is installed, and a method for evaluating the neutralization environment of concrete using the sensor. In the present invention, concrete includes not only concrete but also mortar and hardened cement.

通常、コンクリート中の鉄筋は、セメントの水和により生成した水酸化カルシウム等のアルカリ性物質により保護され腐食を免れている。しかし、空気中の炭酸ガスや亜硫酸ガス等の酸性物質がコンクリート内に侵入して、前記アルカリ性物質と反応し鉄筋周辺の中性化が進むと、鉄筋の防錆機能は失われる。その結果、鉄筋の腐食により生じる錆の膨張によって、コンクリートにひび割れが生じコンクリートの耐久性は著しく低下する。したがって、中性化の評価は、コンクリートの耐久性を維持管理するための指標として極めて重要である。   Normally, the reinforcing bars in concrete are protected by an alkaline substance such as calcium hydroxide generated by hydration of cement to avoid corrosion. However, when an acidic substance such as carbon dioxide gas or sulfurous acid gas in the air enters the concrete and reacts with the alkaline substance to neutralize the reinforcing bar, the rust prevention function of the reinforcing bar is lost. As a result, the expansion of rust caused by corrosion of the reinforcing bars causes cracks in the concrete, and the durability of the concrete is significantly reduced. Therefore, the evaluation of neutralization is extremely important as an index for maintaining and managing the durability of concrete.

ところで、従来の中性化の評価方法は、コンクリートから採取したコアの割裂面にフェノールフタレイン溶液(赤紫色)を噴霧し、無色に退色した中性化部分の深さを測定する方法が一般的であった。また、コンクリートの中性化を評価する方法は、他にもいくつか提案されている。
例えば、特許文献1には、コンクリートを穿孔する際に排出されるコンクリート粉のアルカリ性を検知してコンクリートの中性化深さを測定する方法が提案されている。また、特許文献2には、鉄筋が埋設されたコンクリート中にセンサを設置し、任意の間隔でモニタリングを行い収集した情報を用いて、鉄筋の腐食を予測する方法が提案されている。
By the way, the conventional evaluation method of neutralization is generally a method of spraying a phenolphthalein solution (red purple) on the split surface of a core collected from concrete and measuring the depth of the neutralized portion that has been colorlessly faded. It was the target. Several other methods for evaluating the neutralization of concrete have been proposed.
For example, Patent Document 1 proposes a method of measuring the neutralization depth of concrete by detecting the alkalinity of concrete powder discharged when drilling concrete. Patent Document 2 proposes a method for predicting corrosion of reinforcing bars using information collected by monitoring and collecting at arbitrary intervals in a concrete in which reinforcing bars are embedded.

しかし、前記従来の方法や特許文献に記載の方法は、下記(1)〜(3)の問題がある。
(1)コアの採取や穿孔はコンクリートの損傷を伴うため、耐久性面の低下が懸念される。
(2)コンクリートの中性化は年単位で徐々に進行するため、通常、その評価は数年以上かかる。
(3)前記方法はそもそもコンクリートの中性化を事後的に、または同時に把握するものであり、コンクリート構造物の新規建設場所における中性化環境の事前評価には向かない。
ちなみに、事前評価が必要な場所は、酸性物質が比較的多く存在する温泉地帯や化学工業地帯等がある。このような場所では、コンクリートの耐久性を確保するため、鉄筋のかぶり厚さ等を十分に検討する必要があり、それには中性化環境の事前評価が重要になる。
However, the conventional methods and the methods described in the patent literature have the following problems (1) to (3).
(1) Since core collection and drilling involve damage to concrete, there is a concern that the durability may be lowered.
(2) Since the neutralization of concrete proceeds gradually year by year, the evaluation usually takes several years or more.
(3) The above method is to grasp the neutralization of concrete after the fact or at the same time, and is not suitable for the prior evaluation of the neutralization environment at the new construction site of the concrete structure.
Incidentally, places that require prior assessment include hot springs and chemical industries where there are relatively many acidic substances. In such a place, in order to ensure the durability of the concrete, it is necessary to fully examine the cover thickness of the reinforcing bars, and for that purpose, prior evaluation of the neutralization environment is important.

特開2002−40013号公報Japanese Patent Laid-Open No. 2002-40013 特開2007−240481号公報Japanese Patent Laid-Open No. 2007-240481

したがって、本発明は、コンクリートが置かれた中性化環境を簡易かつ早期に評価できるセンサと、これを用いた中性化環境評価方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a sensor that can easily and quickly evaluate a neutralization environment in which concrete is placed, and a neutralization environment evaluation method using the sensor.

本発明者らは、前記目的にかなうセンサを検討したところ、後掲の図1に示すように、(i)モルタルの中性化速度定数(中性化のし易さ)と、水/セメント比との間には、乾燥(気中曝露)期間に依らず、ほぼ同一の線形関係が成立すること、したがって、
(ii)中性化のし易さは、一義的に水/セメント比により決まること、そして、
(iii)この新たな知見に基づき創作した下記のセンサは、前記目的を達成できること
を見い出し本発明を完成させた。具体的には、本発明は以下の構成を有するものである。
[1]水/セメント比(質量比)が35〜200%、および水/粉体比(質量比)が25〜70%であるセメント組成物を、板状またはブロック状に成形してなるセメント組成物の硬化体を浸透部材とし、該浸透部材の1面は大気中に曝露された曝露面であり、該曝露面に対向する背面には電気的特性を利用して中性化を検知する中性化検知部材が設置され、該曝露面以外の面は遮断材により大気と遮断された遮断面である、コンクリートの中性化環境評価用センサ。
[2]前記セメント組成物の硬化体の1面および該1面に対向する背面は大気中に曝露された曝露面であり、該2つの曝露面との間に中性化検知部材が設置され、該曝露面以外の面は遮断材により大気と遮断された遮断面である、コンクリートの中性化環境評価用センサ。
[3]前記中性化検知部材が、中性化に起因した腐食反応による電気抵抗の変化、電位の変化、または電流密度の変化により中性化を検知する部材である、前記[1]または[2]に記載のコンクリートの中性化環境評価用センサ。
[4]前記センサの浸透部は、水/セメント比の異なる2以上のセメント組成物の硬化体が、前記曝露面および前記曝露面に対向する背面以外の面で連接され、かつ該連接面は酸性物質の移動が遮断されてなるものである、前記[1]〜[3]のいずれかに記載のコンクリートの中性化環境評価用センサ。
[5]前記背面は、前記曝露面との距離(厚み)が段階的に異なるように階段状に形成されてなり、かつそれぞれの背面に中性化検知部材が設置されてなる、前記[1]、[3]または[4]のいずれかに記載のコンクリートの中性化環境評価用センサ。
The inventors of the present invention have examined a sensor that meets the above-mentioned purpose. As shown in FIG. 1 to be described later, (i) a mortar neutralization rate constant (ease of neutralization), water / cement The ratio is approximately the same linear relationship regardless of the dry (air exposure) period,
(Ii) The ease of neutralization is primarily determined by the water / cement ratio, and
(Iii) The following sensor created based on this new knowledge was found to achieve the above object, and the present invention was completed. Specifically, the present invention has the following configuration.
[1] Cement formed by molding a cement composition having a water / cement ratio (mass ratio) of 35 to 200% and a water / powder ratio (mass ratio) of 25 to 70% into a plate shape or a block shape. A cured body of the composition is used as a penetrating member, and one surface of the penetrating member is an exposed surface exposed to the atmosphere, and neutralization is detected on the back surface facing the exposed surface using electrical characteristics. A sensor for evaluating the neutralization environment of concrete, wherein a neutralization detection member is installed, and a surface other than the exposed surface is a shield surface that is shielded from the atmosphere by a shielding material.
[2] One side of the hardened body of the cement composition and the back side opposite to the one side are exposed surfaces exposed to the atmosphere, and a neutralization detection member is installed between the two exposed surfaces. A sensor for evaluating the neutralization environment of concrete, wherein the surface other than the exposed surface is a shielding surface shielded from the atmosphere by a shielding material.
[3] The [1] or [1], wherein the neutralization detection member is a member that detects neutralization by a change in electrical resistance, a change in potential, or a change in current density due to a corrosion reaction caused by neutralization. The sensor for evaluating the neutralization environment of concrete according to [2].
[4] The penetrating part of the sensor includes a hardened body of two or more cement compositions having different water / cement ratios connected on the exposed surface and a surface other than the back surface facing the exposed surface, and the connected surface is The sensor for evaluating the neutralization environment of concrete according to any one of [1] to [3], wherein movement of the acidic substance is blocked.
[5] The back surface is formed in a stepped shape so that the distance (thickness) to the exposed surface varies stepwise, and a neutralization detection member is installed on each back surface. ] The neutralization environment evaluation sensor for concrete according to any one of [3] and [4].

[6]前記[1]〜[5]のいずれかに記載のセンサを1個以上、評価の対象となる場所(2カ所以上)に設置し、センサの曝露開始から前記中性化検知部材が中性化を検知するまでの期間を求め、該期間を比較して中性化環境の評価を行う、コンクリートの中性化環境評価方法。
[7]前記[1]〜[5]のいずれかに記載のセンサを1個以上、評価の対象となる場所に設置し、センサの曝露開始から中性化検知部材が中性化を検知するまでの期間を求め、該期間と曝露面から中性化検知部材の距離に基づき、下記(A)式を用いて中性化速度定数を算出し、該定数を用いて中性化環境の評価を行う、コンクリートの中性化環境評価方法。
D=C・t1/2 ・・・(A)
ただし、(A)式中、Dは曝露面から中性化検知部材の距離を表し、Cは中性化速度定数を表し、tはセンサの曝露開始から中性化検知部材が中性化を検知するまでの期間を表わす。
[6] One or more sensors according to any one of the above [1] to [5] are installed in a place (two or more places) to be evaluated, and the neutralization detection member is installed from the start of sensor exposure. A method for evaluating the neutralization environment of concrete, which obtains a period until neutralization is detected, and evaluates the neutralization environment by comparing the periods.
[7] One or more sensors according to any one of [1] to [5] are installed in a location to be evaluated, and the neutralization detection member detects neutralization from the start of exposure of the sensor. The neutralization rate constant is calculated using the following formula (A) based on the period and the distance from the exposed surface to the neutralization detection member, and the neutralization environment is evaluated using the constant. A method for evaluating the neutralization environment of concrete.
D = C · t 1/2 (A)
However, in the formula (A), D represents the distance from the exposed surface to the neutralization detection member, C represents the neutralization rate constant, and t represents the neutralization detection member from the start of exposure of the sensor. Indicates the period until detection.

本発明のコンクリートの中性化環境評価用センサと中性化環境評価方法によれば、コンクリートの中性化環境を簡易かつ早期に評価することができる。   According to the neutralization environment evaluation sensor and the neutralization environment evaluation method of the present invention, the neutralization environment of concrete can be easily and quickly evaluated.

水/セメント比と中性化速度定数との間の線形関係を示すグラフである。Figure 2 is a graph showing a linear relationship between water / cement ratio and neutralization rate constant. ブロック状の中性化環境評価用センサ(一例)の断面図と平面図である。It is sectional drawing and a top view of a sensor for neutralization environment evaluation (an example) of a block shape. ブロック状の中性化環境評価用センサ(一例)の斜視図である。It is a perspective view of the sensor for neutralization environment evaluation (an example) of a block shape. 円板状の中性化環境評価用センサ(一例)の斜視図である。It is a perspective view of the sensor for neutralization environment evaluation (an example) of disk shape. 水/セメント比が異なるセメント組成物の硬化体が連接されてなる中性化環境評価用センサ(一例)の平面図である。It is a top view of the sensor for neutralization environment evaluation (an example) by which the hardening body of the cement composition from which water / cement ratio differs is connected. 水/セメント比が異なるセメント組成物の硬化体が連接されてなる中性化環境評価用センサ(一例)の斜視図等である。1 is a perspective view of a neutralization environment evaluation sensor (one example) in which hardened bodies of cement compositions having different water / cement ratios are connected. FIG. 中性化検知部材が段階状に設置された中性化環境評価用センサの断面図と平面図である((a)と(b)の2つの例を示す。)。It is sectional drawing and a top view of the sensor for neutralization environment evaluation in which the neutralization detection member was installed in steps (2 examples of (a) and (b) are shown). 中性化検知部材が段階状に設置された中性化環境評価用センサ(前記(a)の例)の斜視図である。It is a perspective view of the sensor for neutralization environment evaluation (example of the above-mentioned (a)) in which the neutralization detection member was installed in steps. 中性化検知部材の一例を示す図である。It is a figure which shows an example of a neutralization detection member. 無線方式の中性化検知部材の一例を示す図である。It is a figure which shows an example of the neutralization detection member of a radio | wireless system. 中性化検知部材の製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of a neutralization detection member. 曝露期間と中性化検知部材の電気抵抗の関係を示す図である。It is a figure which shows the relationship between an exposure period and the electrical resistance of a neutralization detection member. 本発明の中性化環境評価用センサの中性化深さ(実験値)とその回帰曲線を示すグラフである。It is a graph which shows the neutralization depth (experimental value) of the sensor for neutralization environment evaluation of this invention, and its regression curve. 本発明の中性化環境評価用センサの中性化深さ(実験値)とその予測曲線を示すグラフである。It is a graph which shows the neutralization depth (experimental value) of the sensor for neutralization environment evaluation of this invention, and its prediction curve.

以下、本発明の中性化環境評価用センサ、および中性化環境評価方法について説明する。
1.中性化環境評価用センサ
本発明の中性化環境評価用センサは、前記のとおり、特定の水/セメント比等を有するセメント組成物を、板状またはブロック状に成形してなるセメント組成物の硬化体を浸透部とし、該浸透部の1面は大気中に曝露された曝露面であり、該曝露面に対向する背面には電気的特性を利用して中性化を検知する中性化検知部材が設置され、該曝露面以外の面は遮断材により大気と遮断された遮断面を有するセンサである。そして、本発明のセンサを構成する浸透部は、セメント組成物の硬化体で形成され、炭酸ガスや亜硫酸ガス等の酸性物質が浸透する部材として機能する。
以下に、(1)セメント組成物の水/セメント比等、(2)センサの形態、および(3)センサの製造方法に分けて詳細に説明する。
Hereinafter, the neutralization environment evaluation sensor and the neutralization environment evaluation method of the present invention will be described.
1. Neutralization environment evaluation sensor The neutralization environment evaluation sensor of the present invention is, as described above, a cement composition formed by molding a cement composition having a specific water / cement ratio or the like into a plate shape or a block shape. The surface of the infiltrating part is an exposed surface exposed to the atmosphere, and the back surface opposite to the exposed surface is neutralized by detecting the neutralization using electrical characteristics. A sensor having a blocking surface in which a chemical detection member is installed and the surface other than the exposed surface is blocked from the atmosphere by a blocking material. And the penetration part which comprises the sensor of this invention is formed with the hardening body of a cement composition, and functions as a member which acidic substances, such as a carbon dioxide gas and a sulfurous acid gas, osmose | permeate.
Hereinafter, (1) the water / cement ratio of the cement composition, (2) the form of the sensor, and (3) the manufacturing method of the sensor will be described in detail.

(1)セメント組成物の水/セメント比と水/粉体比
前記水/セメント比は質量比で35〜200%である。該比が35%未満では硬化体が密実で中性化の進行が遅いため評価期間が長くなるおそれがあり、200%を超えると硬化体の空隙が多く中性化の進行が不均一になって、評価精度が低下するおそれがある。該比は、好ましくは55〜180%、より好ましくは60〜160%、さらに好ましくは60〜150%である。
また、前記水/粉体比は質量比で25〜70%である。該比が25%未満ではセメント組成物の流動性が低く成形が困難になる場合があり、70%を超えるとセメント組成物の成形の際に材料分離が生じる場合がある。該比は、好ましくは30〜60%、より好ましくは30〜50%である。
(1) Water / cement ratio and water / powder ratio of cement composition The water / cement ratio is 35 to 200% by mass. If the ratio is less than 35%, the cured body is dense and the progress of neutralization is slow, so the evaluation period may be long. If it exceeds 200%, there are many voids in the cured body and the progress of neutralization is uneven. As a result, the evaluation accuracy may be reduced. The ratio is preferably 55 to 180%, more preferably 60 to 160%, and still more preferably 60 to 150%.
The water / powder ratio is 25 to 70% by mass. If the ratio is less than 25%, the fluidity of the cement composition may be low and molding may be difficult, and if it exceeds 70%, material separation may occur during molding of the cement composition. The ratio is preferably 30 to 60%, more preferably 30 to 50%.

(2)センサの形態
前記[1]のセンサは浸透部材、中性化検知部材、および遮断材を含み、また、センサの強度の補強、小型化、および誤差要因の回避等のため、必要に応じて、任意の部材として外装材を含む。そして、浸透部材は、立体形状のセメント組成物の硬化体であり、成形の容易性から、好ましくは、図2〜4に示すように、板状またはブロック状のセメント組成物の硬化体である。
そして、前記[1]のセンサの1面は、酸性物質が浸透部材内に侵入できるように大気中に曝露され、該曝露された面に対向する背面には中性化検知部材が設置され、該曝露面以外の面は酸性物質の侵入を防止するため遮断材により大気と遮断されている。該遮断材は、酸性物質の侵入を防止できるものであれば、特に限定されず、例えば、フィルム、シート、塗膜、および板等から選ばれる1種以上が挙げられる。該遮断材は、粘着剤、接着剤、およびビス止め等の公知の方法で硬化体面に固定できる。なお、前記外装材が遮断材としての機能を有する場合は、外装材を遮断材に含めるものとする。
(2) Sensor configuration The sensor of [1] includes a penetrating member, a neutralization detecting member, and a blocking material, and is necessary for reinforcing the strength of the sensor, downsizing, avoiding an error factor, and the like. Accordingly, an exterior material is included as an optional member. The penetrating member is a hardened body of a three-dimensional cement composition, and is preferably a hardened body of a plate-like or block-like cement composition as shown in FIGS. .
And, one surface of the sensor of [1] is exposed to the atmosphere so that an acidic substance can enter the penetrating member, and a neutralization detecting member is installed on the back surface facing the exposed surface, Surfaces other than the exposed surface are shielded from the atmosphere by a shielding material to prevent intrusion of acidic substances. The blocking material is not particularly limited as long as it can prevent intrusion of an acidic substance, and examples thereof include one or more selected from films, sheets, coating films, plates, and the like. The blocking material can be fixed to the cured body surface by a known method such as a pressure-sensitive adhesive, an adhesive, and a screw. In addition, when the said exterior material has a function as a shielding material, an exterior material shall be included in a shielding material.

前記中性化検知部材は、酸性物質(中性化の原因物質)による金属の腐食反応に起因する、電気抵抗の変化、電位の変化、および電流密度の変化等に基づき中性化を検知する部材であって、腐食反応により電気的特性が変化する導体パターン部を、金属薄膜を用いて下地材の上に形成してなる部材である。
前記導体パターン部の形状は、酸性物質との接触確率が高く腐食反応が進みやすい形状が好ましく、例えば、図9に示すような、つづら折りの形状等が挙げられる。
また、前記導体パターン部を構成する金属は、炭酸ガスや亜硫酸ガス等の酸性物質との腐食反応により、電気的特性が変化する金属であれば特に限定されず、例えば、イオン化傾向が大きい鉄、鉄の合金、および亜鉛等が好ましい。
さらに、前記下地材は、電気的な絶縁性が高く、セメント組成物の硬化体に含まれるアルカリ成分と反応せず、かつ耐候性や耐水性が高い材料であれば特に制限されず、例えば、ガラスエポキシ等のガラスコンポジット材料、フェノール樹脂、ポリイミド、ポリエチレン、ポリプロピレン、塩化ビニル樹脂、フッ素樹脂、またはPETなどのポリカーボネート等が挙げられる。
The neutralization detection member detects neutralization based on a change in electrical resistance, a change in potential, a change in current density, and the like due to a corrosion reaction of a metal caused by an acidic substance (a substance causing neutralization). The member is a member formed by forming a conductor pattern portion whose electrical characteristics change due to a corrosion reaction on a base material using a metal thin film.
The shape of the conductor pattern portion is preferably a shape that has a high probability of contact with an acidic substance and that easily undergoes a corrosion reaction, and examples thereof include a zigzag shape as shown in FIG.
Further, the metal constituting the conductor pattern portion is not particularly limited as long as the electrical characteristics change due to a corrosion reaction with an acidic substance such as carbon dioxide gas or sulfurous acid gas. For example, iron having a large ionization tendency, Iron alloys, zinc and the like are preferred.
Furthermore, the base material is not particularly limited as long as it is a material having high electrical insulation, does not react with an alkali component contained in the cured body of the cement composition, and has high weather resistance and water resistance. Examples thereof include glass composite materials such as glass epoxy, phenol resins, polyimides, polyethylene, polypropylene, vinyl chloride resins, fluororesins, and polycarbonates such as PET.

次に、図9に基づき、中性化検知部材を説明する。
中性化検知部材100は、金属薄膜(例えば、鉄を圧延して作製した鉄箔材)で形成した導電パターン部101と、導電パターン部101を保持する下地材102と、導体パターン部101の一部に設けられた貴金属(例えば、金)で形成された薄膜部103とを備えている。導電パターン部101の端部には、測定用端子101aが設けられている。導電パターン部101は、酸性物質による腐食により電気的特性が変化する。
また、電気的特性により腐食を検知するメカニズムは以下のとおりである。
金属の陽極部と陰極部が明確に区別できるような電池が形成されたものをマクロセルといい、両極間を流れる電流を腐食電流(マクロセル電流)という。そして、腐食により金属薄膜がイオン化する反応(アノード反応)と、金属薄膜の表面で酸素が還元される反応(カソード反応)が同時に進行し、アノード部は卑な電位、カソード部は貴な電位となって電位差が生じ、アノード部からカソード部に腐食電流が流れて、金属薄膜の腐食が進む。この原理を利用して、貴金属で形成された薄膜部103(カソード部)を設けることにより、導体パターン部101の腐食が進行して、腐食をより早く把握できる。
中性化検知部材は、中性化を検知する装置に直接接続して、導電パターン部の腐食反応にともなう電気信号を計測するか、または、図10に示すように、計測回路を有する無線装置にあらかじめ接続して無線で計測してもよい。
Next, the neutralization detection member will be described based on FIG.
The neutralization detection member 100 includes a conductive pattern portion 101 formed of a metal thin film (for example, an iron foil material produced by rolling iron), a base material 102 that holds the conductive pattern portion 101, and the conductive pattern portion 101. And a thin film portion 103 formed of a noble metal (for example, gold) provided in part. A measuring terminal 101 a is provided at the end of the conductive pattern portion 101. The electrical characteristics of the conductive pattern portion 101 change due to corrosion by an acidic substance.
The mechanism for detecting corrosion by electrical characteristics is as follows.
A cell in which a battery in which a metal anode part and a cathode part can be clearly distinguished is formed is called a macro cell, and a current flowing between both electrodes is called a corrosion current (macro cell current). A reaction in which the metal thin film is ionized due to corrosion (anode reaction) and a reaction in which oxygen is reduced on the surface of the metal thin film (cathode reaction) proceed simultaneously, and the anode part has a base potential and the cathode part has a noble potential. As a result, a potential difference is generated, and a corrosion current flows from the anode portion to the cathode portion, and the corrosion of the metal thin film proceeds. By utilizing this principle and providing the thin film portion 103 (cathode portion) formed of a noble metal, the corrosion of the conductor pattern portion 101 proceeds and the corrosion can be grasped more quickly.
The neutralization detection member is directly connected to a device for detecting neutralization, and measures an electrical signal associated with the corrosion reaction of the conductive pattern portion, or a wireless device having a measurement circuit as shown in FIG. It is also possible to measure wirelessly by connecting in advance.

また、腐食を検知し得る電気的特性として、(i)電気抵抗の変化、(ii)電位の変化、および(iii)電流密度の変化等が知られている。以下、該電気的特性について説明する。
(i)電気抵抗の変化
中性化検知部材100の導体パターン部101の腐食に伴い、金属の断面積は減少し、これに伴って、図12に示すように電気抵抗が増加する。したがって、電気抵抗の変化により腐食(中性化)を検知できる。
(ii)電位の変化
中性化検知部材101の金属が腐食すると、金属がイオン化する際に腐食発生箇所(アノード)の電子が未腐食箇所(カソード)に移動して電位差が生じる。これを駆動力として継続的に腐食電流が生じ、腐食が進行することから、例えば電極を用いて、金属間の電位差を計測することにより、腐食現象の発生前と発生後の電位の変化から、腐食の発生を判定することができる。
(iii)電流密度の変化
腐食は、腐食回路の生成により生起する現象であり、腐食電流に伴って生ずる腐食部位の電流密度の変化を計測することにより、腐食現象を捉えることができる。
As electrical characteristics that can detect corrosion, (i) a change in electrical resistance, (ii) a change in potential, and (iii) a change in current density are known. Hereinafter, the electrical characteristics will be described.
(I) Change in electrical resistance As the conductor pattern portion 101 of the neutralization detecting member 100 corrodes, the cross-sectional area of the metal decreases, and as a result, the electrical resistance increases as shown in FIG. Therefore, corrosion (neutralization) can be detected by a change in electrical resistance.
(Ii) Change in potential When the metal of the neutralization detecting member 101 corrodes, when the metal is ionized, electrons at the corrosion occurrence site (anode) move to an uncorroded site (cathode), resulting in a potential difference. Since corrosion current is continuously generated using this as a driving force, and corrosion proceeds, for example, by measuring the potential difference between metals using electrodes, from the change in potential before and after the occurrence of the corrosion phenomenon, The occurrence of corrosion can be determined.
(Iii) Change in current density Corrosion is a phenomenon that occurs due to the generation of a corrosion circuit, and the corrosion phenomenon can be captured by measuring the change in the current density of the corrosion site that occurs with the corrosion current.

図11に中性化検知部材の製造方法のフローチャートを示す。具体的には、中性化検知部材の製造方法は、下記(i)〜(v)に記載のとおりである。
(i)金属薄膜(図11では鉄箔材)と下地材102とを一体化させて、金属薄膜シートを作製する。該一体化の方法としては、例えば、下地材として樹脂フィルム(例えば、PET、ポリイミド材等の樹脂フィルム)に、接着剤を塗布し、ローラ等を用いて、鉄箔材と下地材102とを張り合わせる。
(ii)作製した金属薄膜シートの金属薄膜上に、導体パターン部101と回路の形状のレジスト膜を、スクリーン印刷やフォト印刷等によって形成する。また、このとき一緒に、完成後に中性化検知部材100を抜き型によって個々に切断して分離するためのガイド等も印刷する。
(iii)レジスト膜を形成した金属薄膜シートは、エッチング槽にてエッチングする。これにより、レジスト膜が施されていない露出した金属薄膜は、エッチング液(例えば、塩化第2鉄溶液)に溶解し、エッチングの終了後は、金属薄膜シートをエッチング槽から取り出して付着液を洗浄する。
(vi)レジスト被膜を溶剤等によって除去し、導体パターン部101および回路の外形を形成する。
(v)金属薄膜シートの分割を行ない、マスキングを剥離し、導体パターン部101を完成させ、その後、抜き型を用いて、保護処理を施したセンサを個々に切断・分離し、コードを取り付ける。
FIG. 11 shows a flowchart of a method for manufacturing a neutralization detection member. Specifically, the manufacturing method of the neutralization detection member is as described in the following (i) to (v).
(I) The metal thin film (iron foil material in FIG. 11) and the base material 102 are integrated to produce a metal thin film sheet. As an integration method, for example, an adhesive is applied to a resin film (for example, a resin film such as PET or polyimide material) as a base material, and an iron foil material and the base material 102 are bonded using a roller or the like. Paste together.
(Ii) On the metal thin film of the produced metal thin film sheet, a conductive pattern portion 101 and a resist film having a circuit shape are formed by screen printing or photo printing. At the same time, a guide or the like for individually separating the neutralization detecting member 100 by cutting with a punching die after completion is also printed.
(Iii) The metal thin film sheet on which the resist film is formed is etched in an etching tank. As a result, the exposed metal thin film not coated with the resist film is dissolved in the etching solution (for example, ferric chloride solution), and after the etching is finished, the metal thin film sheet is taken out from the etching tank and the adhering solution is washed. To do.
(Vi) The resist film is removed with a solvent or the like to form the conductor pattern portion 101 and the outer shape of the circuit.
(V) The metal thin film sheet is divided, the masking is peeled off, the conductor pattern portion 101 is completed, and then the sensors subjected to the protection treatment are individually cut and separated using a punching die, and a cord is attached.

(3)センサの製造方法
本発明のセンサの浸透部はセメント組成物の硬化体で構成され、酸性物質の浸透部材として機能するものであり、好ましくはモルタル、またはセメント硬化体(セメントペースト硬化体)である。
前記セメント組成物中のセメントは、特に限定されず、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、高炉セメント、フライアッシュセメント、石炭灰含有セメント、シリカセメント、白色セメント、およびエコセメント等から選ばれる1種以上が挙げられる。
また、前記セメント組成物の混練水は、中性化環境評価に悪影響を与えないものであれば用いることができ、例えば、上水道水や再生水等である。
(3) Sensor manufacturing method The penetrating part of the sensor of the present invention is composed of a hardened body of a cement composition, and functions as a penetrating member for an acidic substance, preferably mortar or hardened cement body (hardened cement paste) ).
The cement in the cement composition is not particularly limited, and is usually Portland cement, early-strength Portland cement, ultra-early-strength Portland cement, medium heat Portland cement, low heat Portland cement, sulfate-resistant Portland cement, blast furnace cement, fly ash cement. , One or more selected from coal ash-containing cement, silica cement, white cement, eco-cement and the like.
The kneaded water of the cement composition can be used as long as it does not adversely affect the neutralization environment evaluation, and is, for example, tap water or reclaimed water.

前記硬化体がモルタルの場合、用いる細骨材は、川砂、陸砂、珪砂、および軽量骨材等から選ばれる1種以上が挙げられる。また、該細骨材は天然骨材のほか再生骨材も使用できる。
細骨材の粒度によってはセンサの厚みの下限が制限されるためと、骨材の偏在を防止するため、前記細骨材は、好ましくは呼び寸法が2.5mmのJIS標準ふるいを全通するものであり、より好ましくは呼び寸法が850μmのJIS標準ふるいを全通するものである。
また、前記細骨材の配合量は、好ましくは細骨材/粉体比(質量比)で3以下である。該値が3を超えると、粉体ペーストの量が少ないため、成形性が低下して粗大な空隙が生じる場合がある。また、前記細骨材の単位容積率は、好ましくは60%以下である。
When the hardened body is mortar, the fine aggregate to be used includes at least one selected from river sand, land sand, silica sand, lightweight aggregate, and the like. The fine aggregate may be natural aggregate or recycled aggregate.
In order to limit the lower limit of the sensor thickness depending on the particle size of the fine aggregate and to prevent the uneven distribution of the aggregate, the fine aggregate preferably passes through a JIS standard sieve having a nominal size of 2.5 mm. More preferably, it passes through a JIS standard sieve having a nominal size of 850 μm.
The blending amount of the fine aggregate is preferably 3 or less as a fine aggregate / powder ratio (mass ratio). When the value exceeds 3, since the amount of the powder paste is small, the moldability may be reduced and coarse voids may be generated. The unit volume ratio of the fine aggregate is preferably 60% or less.

さらに、前記硬化体は硬化体の密実性等を調整するため、混和材を含むことができる。該混和材は、好ましくは石灰石微粉末や珪石粉等の、潜在水硬性やポゾラン活性を有しない鉱物質微粉末である。該混和材の粉末度は、ブレーン比表面積で、好ましくは2500〜10000cm/g、より好ましくは3000〜8000cm/gである。該値が2500cm/g未満では、保水性や材料分離抵抗性が低下してセンサの品質変動が生じる場合があり、10000cm/gを超えると粘性が増して成形が困難になる場合がある。また、前記混和材の置換率は、好ましくは10〜85質量%である。なお、前記置換率とは、混和材とセメントの質量の合計を100とした場合の混和材の含有率(質量%)である。 Further, the cured body may contain an admixture in order to adjust the solidity of the cured body. The admixture is preferably a fine mineral powder not having latent hydraulic properties or pozzolanic activity, such as fine limestone powder or silica powder. Fineness of該混sum material is a Blaine specific surface area, preferably 2500~10000cm 2 / g, more preferably 3000~8000cm 2 / g. If the value is less than 2500 cm 2 / g, water retention and material separation resistance may be reduced, resulting in sensor quality fluctuations. If it exceeds 10,000 cm 2 / g, viscosity may increase and molding may be difficult. . The substitution rate of the admixture is preferably 10 to 85% by mass. In addition, the said substitution rate is content rate (mass%) of an admixture when the sum total of the mass of an admixture and cement is set to 100. As shown in FIG.

また、前記硬化体は、乾燥収縮によるひび割れを防止するため、ビニロン繊維、ポリエチレン繊維、およびポリプロピレン繊維等の有機繊維や、鋼繊維およびガラス繊維等の無機繊維や、収縮低減剤および保湿剤等を含んでもよい。該繊維の添加量は、好ましくはセメント組成物中の粉体量に対し質量比で0.02以下である。
また、セメント組成物の流動性を高めるため、減水剤、AE減水剤、および高性能AE減水剤等の減水剤を添加してもよい。該減水剤の添加率は、好ましくはセメント組成物中の粉体量に対し質量比で0.05以下である。
さらに、前記セメント組成物は、流動性等のフレッシュ性状を良好に保つため、空気量調整剤を用いて空気量を調整してもよい。該空気量は好ましくは5〜30%である。該値が5%未満ではセメント組成物の流動性や表面仕上げ性が低く、30%を超えると脱気し易く空気量が変動する場合がある。該値は、より好ましくは5〜25%、さらに好ましくは10〜25%である。なお、前記セメント組成物の流動性は15打のフロー値(JIS R 5201−1997)で表わせば、好ましくは105〜250mmである。
なお、本発明のセンサの構成材料は、評価の精度の観点から、評価対象のコンクリートが決定している場合は、該コンクリートに用いる材料と同じものが好ましい。
In addition, the cured body contains organic fibers such as vinylon fiber, polyethylene fiber, and polypropylene fiber, inorganic fibers such as steel fiber and glass fiber, shrinkage reducing agents, moisturizing agents, and the like in order to prevent cracks due to drying shrinkage. May be included. The amount of the fiber added is preferably 0.02 or less by mass ratio with respect to the amount of powder in the cement composition.
Moreover, in order to improve the fluidity | liquidity of a cement composition, you may add water reducing agents, such as a water reducing agent, AE water reducing agent, and a high performance AE water reducing agent. The addition rate of the water reducing agent is preferably 0.05 or less in terms of mass ratio with respect to the amount of powder in the cement composition.
Further, the cement composition may adjust the amount of air using an air amount adjusting agent in order to keep fresh properties such as fluidity. The amount of air is preferably 5 to 30%. If the value is less than 5%, the fluidity and surface finish of the cement composition are low, and if it exceeds 30%, the amount of air may fluctuate easily. The value is more preferably 5 to 25%, still more preferably 10 to 25%. The fluidity of the cement composition is preferably 105 to 250 mm in terms of a flow value of 15 strokes (JIS R 5201-1997).
In addition, from the viewpoint of evaluation accuracy, the constituent material of the sensor of the present invention is preferably the same as the material used for the concrete when the evaluation target concrete is determined.

本発明のセンサを構成する浸透部材は、型枠への流し込み成形、押出成形、プレス成型、振動加圧成形等により製造できる。例えば、中性化検知部材を、アクリル製や高強度モルタル製の型枠(外装材)の底面側に設置し、曝露面側に前記セメント組成物を打設する。そして、成形後に成形体は、湿潤養生、水中養生、蒸気養生、およびオートクレーブ養生等を行ってもよい。   The penetrating member constituting the sensor of the present invention can be manufactured by casting into a mold, extrusion molding, press molding, vibration pressure molding or the like. For example, the neutralization detection member is installed on the bottom side of an acrylic or high-strength mortar formwork (exterior material), and the cement composition is placed on the exposed surface side. And after shaping | molding, a molded object may perform wet curing, underwater curing, steam curing, autoclave curing, etc.

次に、前記[2]、[4]および[5]に記載のセンサについて説明する。
前記[2]に記載のセンサは、浸透部材として前記セメント組成物で形成され、前記セメント組成物の硬化体の1面および該1面に対向する背面は大気中に曝露された曝露面であり、該2つの曝露面との間に中性化検知部材が設置され、該曝露面以外の面は遮断材により大気と遮断された遮断面を有するものである。そして、[2]のセンサは、前記[1]のセンサと異なり、2つの面からのセンサの曝露開始から前記中性化検知部材が中性化を検知するまでの期間を測定できるため、1回の試験で2倍のデータが得られ、その分、環境評価の信頼性が高まる。
Next, the sensors described in [2], [4] and [5] will be described.
The sensor according to [2] is formed of the cement composition as a penetrating member, and one surface of the cured body of the cement composition and a back surface facing the one surface are exposed surfaces exposed to the atmosphere. The neutralization detection member is installed between the two exposed surfaces, and the surface other than the exposed surface has a blocking surface blocked from the atmosphere by a blocking material. And since the sensor of [2] can measure the period from the start of exposure of the sensor from two surfaces until the neutralization detection member detects neutralization, unlike the sensor of [1], 1 Double data is obtained in each test, and the reliability of environmental evaluation is increased accordingly.

また、前記[4]に記載のセンサは、図5と図6に示すように、水/セメント比が異なる2以上のセメント組成物の硬化体が、曝露面およびその背面以外の面で連接され、かつ該連接面は酸性物質の移動が遮断されてなるものである。該センサを用いれば、コンクリートの水/セメント比の違いを考慮した中性化環境の評価を、まとめて1度に行うことができるため効率がよく、また、取得データ数が増えるから、その分、評価の精度も向上する。   In the sensor described in [4], as shown in FIGS. 5 and 6, cured bodies of two or more cement compositions having different water / cement ratios are connected on the exposed surface and the surface other than the back surface. The connecting surface is formed by blocking the movement of the acidic substance. If this sensor is used, the neutralization environment can be evaluated all at once in consideration of the difference in the water / cement ratio of the concrete, which is efficient and the number of acquired data increases. The accuracy of evaluation is also improved.

さらに、前記[5]のセンサは、図7と図8に示すように、前記背面と曝露面との距離(厚み)が段階的に異なるように、前記背面が階段状に形成されてなり、かつ階段状の各背面には中性化検知部材が設置されてなるものである。また、センサの別の形態として、背面を階段状に形成する代わりに、曝露面において浸透部材の厚みが異なるように階段状にすることもできる。前記遮断材は曝露面以外の面を大気から遮断するために、曝露面以外の面には遮断材が設けられている。この形状によれば、同じ材質(水/セメント比等)の複数のセンサにより、曝露開始から前記中性化検知部材が中性化を検知するまでの期間を求めることができるため経済的である。
前記セメント組成物の硬化体(浸透部材)の厚みは、特に限定されないが、中性化速度等を考慮すると、好ましくは2〜100mm、より好ましくは5〜60mmである。該値が2mm未満ではセンサにひび割れが生じる場合があり、100mmを超えると評価期間が長くなり過ぎる。
Further, as shown in FIGS. 7 and 8, the sensor of [5] has a back surface formed in a step shape so that the distance (thickness) between the back surface and the exposed surface varies stepwise. In addition, a neutralization detection member is provided on each step-like back surface. As another form of the sensor, instead of forming the back surface in a stepped shape, the sensor can be formed in a stepped shape so that the thickness of the penetrating member is different on the exposed surface. The shielding material is provided with a shielding material on the surface other than the exposed surface in order to shield surfaces other than the exposed surface from the atmosphere. According to this shape, it is economical because a plurality of sensors of the same material (water / cement ratio, etc.) can determine the period from the start of exposure until the neutralization detection member detects neutralization. .
Although the thickness of the hardened body (penetrating member) of the cement composition is not particularly limited, it is preferably 2 to 100 mm, more preferably 5 to 60 mm in consideration of the neutralization speed and the like. If the value is less than 2 mm, the sensor may crack, and if it exceeds 100 mm, the evaluation period becomes too long.

2.コンクリートの中性化環境評価方法
本発明のコンクリートの中性化環境評価方法は、前記[6]および[7]に記載された方法であり、以下、該方法について具体的に説明する。
(1)前記[6]に記載の評価方法
該方法は、前記[1]〜[5]のいずれかに記載のセンサを1個以上、評価の対象となる場所(2カ所以上)に設置し、センサの曝露開始から中性化検知部材が中性化を検知するまでの期間を求め、該期間を比較して中性化環境を評価する方法である。
ここで、前記[1]〜[5]に記載のセンサを1個以上とは、前記[1]〜[5]に記載のセンサから選択された同種類のセンサを2個以上用いる場合と、異なる種類のセンサを2個以上用いる場合のいずれも含む。
設置するセンサの個数は1個以上、好ましくは3個以上であり、また、該センサの厚みは1水準以上、好ましくは2水準以上であり、該センサの水/セメント比は1水準以上、好ましくは3水準以上である。前記の各好ましい水準数であれば、評価の精度は向上する。
なお、前記評価の対象となる環境に設置するとは、コンクリートの設置を予定している場所、または評価の対象であるコンクリートと同一の中性化環境を有する範囲に設置することをいい、可能な限りコンクリートの近くに設置するのが好ましい。
2. The neutralization environment evaluation method of concrete The neutralization environment evaluation method of concrete of this invention is the method described in said [6] and [7], and, below, this method is demonstrated concretely.
(1) Evaluation method according to [6] In this method, one or more sensors according to any one of [1] to [5] are installed at a location (two or more locations) to be evaluated. This is a method for obtaining a period from the start of exposure of the sensor until the neutralization detection member detects neutralization and comparing the periods to evaluate the neutralization environment.
Here, the term “one or more sensors described in [1] to [5]” means that two or more sensors of the same type selected from the sensors described in [1] to [5] are used. This includes any case where two or more different types of sensors are used.
The number of sensors to be installed is 1 or more, preferably 3 or more, the thickness of the sensor is 1 level or more, preferably 2 levels or more, and the water / cement ratio of the sensor is 1 level or more, preferably Is more than 3 levels. If it is each said preferable level number, the precision of evaluation will improve.
In addition, installing in the environment subject to the evaluation means installing in a place where concrete is planned to be installed, or in a range having the same neutralization environment as the concrete subject to evaluation. It is preferable to install as close to concrete as possible.

コンクリートの中性化環境は、直接的には中性化深さと期間で評価できるため、[6]の評価方法では、曝露面から中性化検知部材までの距離を一定にした場合の、センサの曝露開始から中性化検知部材が中性化を検知するまでの期間を評価指標として用いる。該評価方法について具体例を用いて説明すれば、A地点とB地点のそれぞれに同じ厚さの浸透部材を有するセンサを1個以上設置し、中性化検知部材が中性化を検知するまでの期間を測定する。A地点に設置したセンサにおける該期間が100日、B地点に設置したセンサにおける該期間が70日とすれば、B地点の中性化環境はA地点と比べ相対的に厳しい中性化の環境であると定性的かつ容易に評価できる。   Since the neutralization environment of concrete can be directly evaluated by the neutralization depth and duration, the sensor in the case of a constant distance from the exposed surface to the neutralization detection member is used in the evaluation method [6]. The period from the start of exposure until the neutralization detection member detects neutralization is used as an evaluation index. If this evaluation method is explained using a specific example, one or more sensors having penetrating members of the same thickness are installed at each of the points A and B until the neutralization detection member detects neutralization. Measure the period. If the period at the sensor installed at point A is 100 days and the period at the sensor installed at point B is 70 days, the neutralization environment at point B is a relatively severe neutralization environment compared to point A. It can be evaluated qualitatively and easily.

(2)前記[7]に記載の評価方法
該方法は、センサの曝露開始から中性化検知部材が中性化を検知するまでの期間と、曝露面から中性化検知部材までの距離から、前記(A)式を用いて中性化速度定数を算出し、該定数を用いて中性化環境の評価を定量的に行うものであり、以下の方法が挙げられる。
(i)中性化速度定数の比を用いる方法
該方法について、前記(1)で挙げた具体例を前記(A)式に当てはめて具体的に説明する。
前記(1)の具体例によれば、中性化速度定数は、A地点でC=10(mm)/1001/2(日)=1.0、B地点でC=10(mm)/801/2(日)=1.2になる。そして、両地点の中性化環境の違いを両地点の中性化速度定数の比(K)で表すと、K=C/C=1.2/1.0=1.2が得られ、B地点はA地点と比べ20%程度中性化し易い環境にあると定量的に評価できる。
(2) Evaluation method according to [7] The method is based on a period from the start of exposure of the sensor until the neutralization detection member detects neutralization, and a distance from the exposed surface to the neutralization detection member. The neutralization rate constant is calculated using the formula (A), and the neutralization environment is quantitatively evaluated using the constant, and the following methods are exemplified.
(i) Method Using Ratio of Neutralization Rate Constants The method will be specifically described by applying the specific example given in the above (1) to the above formula (A).
According to the specific example of (1) above, the neutralization rate constant is C A = 10 (mm) / 100 1/2 (day) = 1.0 at point A and C B = 10 (mm at point B). ) / 80 1/2 (day) = 1.2. When the difference in neutralization environment between the two points is expressed by the ratio (K) of the neutralization rate constant between the two points, K = C B / C A = 1.2 / 1.0 = 1.2 is obtained. Therefore, it can be quantitatively evaluated that the point B is in an environment that is more easily neutralized by about 20% than the point A.

(ii)標準環境を設定して用いる方法
例えば、前記A地点の中性化環境を標準環境として設定し、A地点における中性化速度定数を標準値(標準中性化速度定数)として求めておけば、次回以降の評価において、評価対象場所の評価は、該中性化速度定数と該標準中性化速度定数との比を用いて行なえ、センサの曝露開始から前記中性化検知部材が中性化を検知するまでの期間の測定は評価対象場所だけで済み経済的である。
さらに、中性化評価を一般化するため、前記標準環境としてコンクリートの一般的な乾燥環境である20℃、相対湿度60%を設定し、該環境下で求めた標準中性化速度定数と、評価対象の構造物がある環境下で求めた中性化速度定数とを比較してもよい。
具体的には、B地点での中性化環境は、B地点での中性化速度定数(C)と標準中性化速度定数(C)を用いた下記(B)式により、一般化して定量的に評価できる。
K=C/CA、またはK=C/C ・・・(B)
(B)式中、Kは中性化速度定数比を表し、CとCは、それぞれA地点の中性化速度定数とB地点の中性化速度定数を表し、Cは標準中性化速度定数を表わす。
(Ii) Method of setting and using the standard environment For example, the neutralization environment of the point A is set as the standard environment, and the neutralization rate constant at the point A is obtained as a standard value (standard neutralization rate constant). Then, in the next and subsequent evaluations, the evaluation target location can be evaluated using the ratio between the neutralization rate constant and the standard neutralization rate constant. Measurement of the period until neutralization is detected requires only the location to be evaluated and is economical.
Furthermore, in order to generalize the neutralization evaluation, 20 ° C., which is a general dry environment of concrete, and 60% relative humidity are set as the standard environment, and the standard neutralization rate constant obtained under the environment, You may compare with the neutralization rate constant calculated | required in the environment with the structure of evaluation object.
Specifically, the neutralization environment at the B point is expressed by the following equation (B) using the neutralization rate constant (C B ) and the standard neutralization rate constant (C S ) at the B point. Can be quantitatively evaluated.
K = C B / C A or K = C B / C S (B)
In the formula (B), K represents a neutralization rate constant ratio, C A and C B represent a neutralization rate constant at point A and a neutralization rate constant at point B , respectively, and C S is standard. Represents the crystallization rate constant.

本発明において、曝露期間と中性化深さから前記(A)式を用いて中性化速度定数を算出する方法は、センサの曝露開始から前記中性化検知部材が中性化を検知するまでの期間を説明変数とし中性化深さを目的変数として、(A)式を用いて曲線のフィッティングを行うか、または、(A)式の対数をとって対数関数の1次式に変換し、その切片の値(logC)から求める。もっとも、(A)式は経験上精度が高いことが知られているから、使用できるデータが1つの場合、(A)式にセンサの曝露開始から前記中性化検知部材が中性化を検知するまでの期間と中性化深さの値を直接代入して、中性化速度定数を算出してもよい。   In the present invention, the neutralization rate constant is calculated from the exposure period and the neutralization depth using the equation (A). The neutralization detection member detects neutralization from the start of exposure of the sensor. Fit the curve using equation (A) with the period up to the explanatory variable and the neutralization depth as the objective variable, or take the logarithm of equation (A) and convert it to a linear expression of the logarithmic function And the value of the intercept (logC). However, since it is known from the experience that the formula (A) is highly accurate, if the data that can be used is one, the neutralization detection member detects neutralization from the start of exposure of the sensor to the formula (A). The neutralization rate constant may be calculated by directly substituting the value of the period until neutralization and the value of the neutralization depth.

3.本発明の評価結果を建物の仕様へ反映する方法
コンクリート構造物中の鉄筋は、鉄筋を覆うかぶりコンクリートによって、中性化による腐食から保護されている。したがって、通常、構造物の重要性や耐用年数により、設計段階で、標準的な環境(20℃、相対湿度60%の定常的な乾燥環境)を想定してコンクリートのかぶり厚さを設定する。例えば、耐用年数50年として標準環境の中性化速度定数(Cs)を用いると中性化深さはCs×(50年)1/2になり、これに安全係数をかけてかぶり厚さが求まる。
3. Method for Reflecting Evaluation Results of Present Invention to Building Specifications Reinforcing bars in concrete structures are protected from corrosion due to neutralization by cover concrete covering the reinforcing bars. Therefore, the concrete cover thickness is usually set at the design stage, assuming a standard environment (steady dry environment at 20 ° C. and 60% relative humidity), depending on the importance of the structure and the service life. For example, if the neutralization rate constant (Cs) of the standard environment is used with a service life of 50 years, the neutralization depth becomes Cs × (50 years) 1/2 , and the cover thickness is multiplied by a safety factor. I want.

また、実際に建物が置かれる場所で求めた中性化速度定数をCとすると、C/Cs=1.0であれば、設計仕様でよいと判断できる。一方、該比が1.0を超えると中性化のリスクが増し、さらに安全係数を超えると該構造物は中性化による鉄筋腐食により、想定した耐用年数を下回ると予想される。
実際に、現場の環境条件を事前に把握することは難しく、従来のように、安全係数を過大にとって設計した場合、コンクリートの使用量が増加するほか、建築物中の居住空間が減少して実質的なコスト増に繋がり易い。
Further, actually the neutralization rate constant determined at the location where the building is placed and C R, if C R /Cs=1.0, it can be determined that may be design specifications. On the other hand, when the ratio exceeds 1.0, the risk of neutralization increases. When the ratio exceeds the safety factor, the structure is expected to be less than the expected service life due to corrosion of reinforcing bars due to neutralization.
Actually, it is difficult to grasp the environmental conditions in the field in advance, and when designing with an excessive safety factor as in the past, the amount of concrete used will increase and the living space in the building will decrease, resulting in a substantial decrease. It is easy to lead to cost increase.

これに対し、本発明のセンサを用いて、予め標準環境での中性化速度定数Csを把握しておけば、該センサを用いて求めた現地における中性化速度定数Cに基づき、適切なかぶり厚さを設定できる。具体的には、C/C=1.2とすれば、設定された耐用年数でのかぶり厚さは、中性化深さを1.2倍として設計した上に、安全係数を乗じて決定することが望ましい。 In contrast, using the sensor of the present invention, in advance if to grasp the neutralization rate constant Cs in a standard environment, on the basis of neutralization rate constant C R in local obtained using the sensor, suitable The cover thickness can be set. Specifically, if C R / C S = 1.2, the cover thickness for the set service life is designed with a neutralization depth of 1.2 times and multiplied by a safety factor. It is desirable to decide.

また、コンクリートの水/セメント比を予め低く設定すれば、同一のかぶり厚さでも対応可能となる。例えば、C/C=1.2で、中性化速度定数と水/セメント比(%)の線形関係式の傾きが0.024とすると、0.2/0.024=8.3となるから、水/セメント比を9%程度低く設定すれば、中性化に起因するリスクを考慮に入れて、当初の設計を修正することができる。なお、ここで使用するセンサは、単一の水/セメント比のセンサ、または複数の水/セメント比のセンサのいずれでもよい。 Further, if the concrete water / cement ratio is set low in advance, the same cover thickness can be handled. For example, if C R / C S = 1.2 and the slope of the linear relationship between the neutralization rate constant and the water / cement ratio (%) is 0.024, 0.2 / 0.024 = 8.3. Therefore, if the water / cement ratio is set low by about 9%, the initial design can be modified taking into account the risk due to neutralization. The sensor used here may be either a single water / cement ratio sensor or a plurality of water / cement ratio sensors.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
(1)セメント:普通ポルトランドセメント(太平洋セメント社製)
(2)細骨材:珪砂(細目砂)、呼び寸法が850μmのJIS標準ふるいを全通した珪砂。
(3)混和材:石灰石微粉末、ブレーン比表面積6000cm/g
(4)水:上水道水
(5)AE減水剤:JIS A 6204 AE減水剤・標準形I種に適合するリグニンスルホン酸化合物
(6)空気量調整剤:JIS A 6204 AE剤・I種に適合するアルキルエーテル系陰イオン界面活性剤
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
1. Materials used (1) Cement: Ordinary Portland cement (manufactured by Taiheiyo Cement)
(2) Fine aggregate: quartz sand (fine sand), quartz sand that has passed through a JIS standard sieve having a nominal size of 850 μm.
(3) Admixture: fine limestone powder, Blaine specific surface area of 6000 cm 2 / g
(4) Water: tap water (5) AE water reducing agent: JIS A 6204 AE water reducing agent-lignin sulfonic acid compound compatible with standard type I (6) Air amount adjusting agent: JIS A 6204 AE agent-compatible with type I Alkyl ether anionic surfactant

2.中性化試験
表1に示す配合に従い4種のモルタルを混練し、縦80mm、横150mm、厚さ50mmの大きさであって、それぞれ曝露面から5mm、10mm、15mm、20mm、30mm、および40mm離れた位置に6つの中性化検出部材(電気抵抗の変化により腐食を検知し得る部材)を埋め込んでなるブロック状のセンサ(図7の(a)のタイプ)を成形した後、20℃で7日間密封養生を行った。
2. Neutralization test Four types of mortar were kneaded according to the formulation shown in Table 1 and were 80 mm long, 150 mm wide, and 50 mm thick, and 5 mm, 10 mm, 15 mm, 20 mm, 30 mm, and 40 mm from the exposed surface, respectively. After forming a block-shaped sensor (type (a) in FIG. 7) in which six neutralization detection members (members that can detect corrosion due to changes in electrical resistance) are embedded at remote positions, Sealing curing was performed for 7 days.

Figure 2015068771
Figure 2015068771

次に、該センサの1面を残し他の5面をマスキングシートで被覆して大気中に曝露した。
センサの曝露開始から、各深さに埋め込んだ中性化検出部材が電気抵抗の変化により中性化を検知するまでの期間(図12参照、ここでは閾値を200Ωとした。)を求め、該期間と、曝露面から中性化検知部材までの距離に基づき、前記(A)式を用いて中性化速度定数を算出した。図13に、センサの中性化深さ(実験値)と、その回帰曲線を示す。
Next, one side of the sensor was left and the other five sides were covered with a masking sheet and exposed to the atmosphere.
A period (see FIG. 12, where the threshold is set to 200Ω) from the start of exposure of the sensor until the neutralization detection member embedded at each depth detects neutralization by a change in electrical resistance is obtained. Based on the period and the distance from the exposed surface to the neutralization detection member, the neutralization rate constant was calculated using the equation (A). FIG. 13 shows the neutralization depth (experimental value) of the sensor and its regression curve.

また、図13に示す結果から中性化速度定数と(A)式を用いて算出した予測曲線と、その現場で実際に、水/セメント比が60%および70%にて製造して設置したコンクリートの中性化深さの検証値との関係を図14に示す。
図14に示すように、該予測曲線は検証値とよく一致し、本発明は中性化環境の評価だけでなく実構造物の中性化深さの予測にも用いることができる。なお、図14に記載の薬液法とは、従来から行われている中性化試験方法であり、大気に曝露したコンクリート供試体を切断し、その断面に1質量%フェノールフタレイン溶液を噴霧して、無色に退色した部分の長さ(中性化深さ)を測定する方法である。本発明のセンサと薬液法よる中性化深さはよく一致している。
以上のことから、本発明のコンクリートの中性化環境評価用センサと中性化環境評価方法を用いれば、コンクリートの中性化環境を簡易かつ早期に評価することができる。
Moreover, the prediction curve calculated using the neutralization rate constant and the formula (A) from the results shown in FIG. 13 and the actual production on the spot at the water / cement ratio of 60% and 70% were installed. The relationship with the verification value of the neutralization depth of concrete is shown in FIG.
As shown in FIG. 14, the prediction curve agrees well with the verification value, and the present invention can be used not only for the evaluation of the neutralization environment but also for the prediction of the neutralization depth of the actual structure. The chemical method described in FIG. 14 is a conventional neutralization test method, in which a concrete specimen exposed to the atmosphere is cut, and a 1% by mass phenolphthalein solution is sprayed on its cross section. This is a method for measuring the length (neutralization depth) of the portion fading colorless. The neutralization depth according to the sensor of the present invention and the chemical method is in good agreement.
From the above, the neutralization environment of concrete can be easily and quickly evaluated by using the neutralization environment evaluation sensor and the neutralization environment evaluation method of the present invention.

10 センサ
11 セメント組成物の硬化体(浸透部材)
12、100 中性化検知部材
13 外装材(遮断材)
14 コード
101 導体パターン部
101a 測定用端子
102 下地材
103 薄膜部
10 Sensor 11 Hardened body of cement composition (penetrating member)
12, 100 Neutralization detection member 13 Exterior material (blocking material)
14 Code 101 Conductor pattern portion 101a Measuring terminal 102 Base material 103 Thin film portion

Claims (7)

水/セメント比(質量比)が35〜200%、および水/粉体比(質量比)が25〜70%であるセメント組成物を、板状またはブロック状に成形してなるセメント組成物の硬化体を浸透部材とし、該浸透部材の1面は大気中に曝露された曝露面であり、該曝露面に対向する背面には電気的特性を利用して中性化を検知する中性化検知部材が設置され、該曝露面以外の面は遮断材により大気と遮断された遮断面である、コンクリートの中性化環境評価用センサ。   A cement composition obtained by molding a cement composition having a water / cement ratio (mass ratio) of 35 to 200% and a water / powder ratio (mass ratio) of 25 to 70% into a plate shape or a block shape. The hardened body is a penetrating member, and one surface of the penetrating member is an exposed surface exposed to the atmosphere, and the back surface facing the exposed surface is neutralized by detecting neutralization using electrical characteristics. A sensor for evaluating the neutralization environment of concrete, in which a detection member is installed, and a surface other than the exposed surface is a shielding surface that is shielded from the atmosphere by a shielding material. 前記セメント組成物の硬化体の1面および該1面に対向する背面は大気中に曝露された曝露面であり、該2つの曝露面との間に中性化検知部材が設置され、該曝露面以外の面は遮断材により大気と遮断された遮断面である、コンクリートの中性化環境評価用センサ。   One surface of the hardened body of the cement composition and the back surface facing the one surface are exposed surfaces exposed to the atmosphere, and a neutralization detection member is installed between the two exposed surfaces, and the exposure A sensor for evaluating the neutralization environment of concrete, where the surface other than the surface is a shielding surface shielded from the atmosphere by a shielding material. 前記中性化検知部材が、中性化に起因した腐食反応による電気抵抗の変化、電位の変化、または電流密度の変化により中性化を検知する部材である、請求項1または2に記載のコンクリートの中性化環境評価用センサ。   The neutralization detection member according to claim 1 or 2, wherein the neutralization detection member is a member that detects neutralization by a change in electrical resistance, a change in potential, or a change in current density due to a corrosion reaction caused by neutralization. Sensor for evaluating the neutralization environment of concrete. 前記センサの浸透部は、水/セメント比の異なる2以上のセメント組成物の硬化体が、前記曝露面および前記曝露面に対向する背面以外の面で連接され、かつ該連接面は酸性物質の移動が遮断されてなるものである、請求項1〜3のいずれか1項に記載のコンクリートの中性化環境評価用センサ。   The penetrating part of the sensor includes a hardened body of two or more cement compositions having different water / cement ratios connected to the exposed surface and a surface other than the back surface facing the exposed surface, and the connected surface is made of an acidic substance. The sensor for evaluating the neutralization environment of concrete according to any one of claims 1 to 3, wherein the movement is blocked. 前記背面は、前記曝露面との距離(厚み)が段階的に異なるように階段状に形成されてなり、かつそれぞれの背面に中性化検知部材が設置されてなる、請求項1、3または4のいずれか1項に記載のコンクリートの中性化環境評価用センサ。   The said back surface is formed in step shape so that distance (thickness) with the said exposed surface may differ in steps, and the neutralization detection member is installed in each back surface, Claim 3 or 3 5. A sensor for evaluating the neutralization environment of concrete according to any one of 4 above. 前記請求項1〜5のいずれか1項に記載のセンサを1個以上、評価の対象となる場所(2カ所以上)に設置し、センサの曝露開始から前記中性化検知部材が中性化を検知するまでの期間を求め、該期間を比較して中性化環境の評価を行う、コンクリートの中性化環境評価方法。   One or more sensors according to any one of claims 1 to 5 are installed in a place (two or more places) to be evaluated, and the neutralization detection member is neutralized from the start of exposure of the sensor. The neutralization environment evaluation method of concrete which calculates | requires the period until it detects and compares the period and evaluates neutralization environment. 請求項1〜5のいずれか1項に記載のセンサを1個以上、評価の対象となる場所に設置し、センサの曝露開始から中性化検知部材が中性化を検知するまでの期間を求め、該期間と曝露面から中性化検知部材の距離に基づき、下記(A)式を用いて中性化速度定数を算出し、該定数を用いて中性化環境の評価を行う、コンクリートの中性化環境評価方法。
D=C・t1/2 ・・・(A)
(ただし、(A)式中、Dは曝露面から中性化検知部材の距離を表し、Cは中性化速度定数を表し、tはセンサの曝露開始から中性化検知部材が中性化を検知するまでの期間を表わす。)
One or more sensors according to any one of claims 1 to 5 are installed in a place to be evaluated, and a period from when the exposure of the sensor is detected until the neutralization detection member detects neutralization. The concrete is obtained by calculating a neutralization rate constant using the following equation (A) based on the period and the distance from the exposed surface to the neutralization detection member, and evaluating the neutralization environment using the constant. Neutralization environment evaluation method.
D = C · t 1/2 (A)
(However, in the formula (A), D represents the distance from the exposed surface to the neutralization detection member, C represents the neutralization rate constant, and t represents the neutralization detection member neutralized from the start of exposure of the sensor. This represents the period until it is detected.)
JP2013204951A 2013-09-30 2013-09-30 Neutralization environment evaluation sensor for concrete, and neutralization environment evaluation method for concrete Active JP6202966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013204951A JP6202966B2 (en) 2013-09-30 2013-09-30 Neutralization environment evaluation sensor for concrete, and neutralization environment evaluation method for concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204951A JP6202966B2 (en) 2013-09-30 2013-09-30 Neutralization environment evaluation sensor for concrete, and neutralization environment evaluation method for concrete

Publications (2)

Publication Number Publication Date
JP2015068771A true JP2015068771A (en) 2015-04-13
JP6202966B2 JP6202966B2 (en) 2017-09-27

Family

ID=52835563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204951A Active JP6202966B2 (en) 2013-09-30 2013-09-30 Neutralization environment evaluation sensor for concrete, and neutralization environment evaluation method for concrete

Country Status (1)

Country Link
JP (1) JP6202966B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101658785B1 (en) 2015-12-16 2016-09-23 한국건설기술연구원 Apparatus for detecting carbonation of concrete structure ,system for detecting carbonation of concrete structure using drone or robot, and method for the same
JP2017181171A (en) * 2016-03-29 2017-10-05 太平洋セメント株式会社 Concrete neutralization environment evaluating composition, sensor using the composition, and concrete neutralization condition evaluation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015355A (en) * 1988-10-11 1991-05-14 Strabag Bau-Ag Corrosion measuring cell
JP2005336012A (en) * 2004-05-27 2005-12-08 Japan Sewage Works Agency Sulfuric acid-resistant hydraulic composition and sulfuric acid-resistant hardened matter
JP2007163324A (en) * 2005-12-14 2007-06-28 Taiheiyo Cement Corp Corrosion detecting member and corrosion sensor
JP2011075423A (en) * 2009-09-30 2011-04-14 Sumitomo Osaka Cement Co Ltd Curing container for concrete sample, and curing method for concrete sample
WO2011043442A1 (en) * 2009-10-07 2011-04-14 太平洋セメント株式会社 Corrosion sensor
JP2012202731A (en) * 2011-03-24 2012-10-22 Taiheiyo Cement Corp Prediction method for diffusion state of chemical species in concrete and prediction method for corrosion occurrence period of steel material in concrete using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015355A (en) * 1988-10-11 1991-05-14 Strabag Bau-Ag Corrosion measuring cell
JP2005336012A (en) * 2004-05-27 2005-12-08 Japan Sewage Works Agency Sulfuric acid-resistant hydraulic composition and sulfuric acid-resistant hardened matter
JP2007163324A (en) * 2005-12-14 2007-06-28 Taiheiyo Cement Corp Corrosion detecting member and corrosion sensor
JP2011075423A (en) * 2009-09-30 2011-04-14 Sumitomo Osaka Cement Co Ltd Curing container for concrete sample, and curing method for concrete sample
WO2011043442A1 (en) * 2009-10-07 2011-04-14 太平洋セメント株式会社 Corrosion sensor
JP2012202731A (en) * 2011-03-24 2012-10-22 Taiheiyo Cement Corp Prediction method for diffusion state of chemical species in concrete and prediction method for corrosion occurrence period of steel material in concrete using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101658785B1 (en) 2015-12-16 2016-09-23 한국건설기술연구원 Apparatus for detecting carbonation of concrete structure ,system for detecting carbonation of concrete structure using drone or robot, and method for the same
JP2017181171A (en) * 2016-03-29 2017-10-05 太平洋セメント株式会社 Concrete neutralization environment evaluating composition, sensor using the composition, and concrete neutralization condition evaluation method

Also Published As

Publication number Publication date
JP6202966B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP6289216B2 (en) Corrosion detection sensor and evaluation method for corrosive environment of steel in concrete
Du et al. Chloride ions migration and induced reinforcement corrosion in concrete with cracks: a comparative study of current acceleration and natural marine exposure
Sandberg et al. Recurrent studies of chloride ingress in uncracked marine concrete at various exposure times and elevations
KR101790256B1 (en) Method And Computer Program For Salt Damage Prediction of Reinforced Concrete
Nygaard et al. A method for measuring the chloride threshold level required to initiate reinforcement corrosion in concrete
WO2011043442A1 (en) Corrosion sensor
JP5631788B2 (en) Method for predicting diffusion state of chemical species in concrete, and method for predicting corrosion occurrence time of steel in concrete using the same
Imperatore et al. Strength decay of RC sections for chloride attack
JP6202966B2 (en) Neutralization environment evaluation sensor for concrete, and neutralization environment evaluation method for concrete
Safehian et al. Prediction of RC structure service life from field long term chloride diffusion
CN101122595A (en) Concrete structure residual life analysis system
Bhargava et al. Time-dependent reliability of corrosion-affected RC beams. Part 3: Effect of corrosion initiation time and its variability on time-dependent failure probability
JP6071085B2 (en) Covering part of corrosive environment detection sensor for concrete structures
Köliö et al. Possibilities to validate design models for corrosion in carbonated concrete using condition assessment data
JP6153367B2 (en) A sensor for evaluating the neutralization environment of concrete and a method for evaluating the neutralization environment of concrete.
Helene et al. Evaluation of the chloride penetration and service life of self-healing concretes activated by crystalline catalyst
Sakai et al. Evaluation of mass transfer resistance of concrete based on representative pore size of permeation resistance
Boschmann Käthler et al. Effect of cracks on chlorideinduced corrosion of steel in concrete-a review: Etatsprogrammet Varige konstruksjoner 2012-2015
Bueno et al. Evaluation of reinforced concrete structural durability in the post-occupation phase-A case study in Novo Hamburgo/RS
Kenny et al. A Statistical Analysis of the Distribution of the Chloride Threshold with Relation to Steel-concrete Interface
Ekolu Model validation and characteristics of the service life of Johannesburg concrete structures
Pape et al. A detailed case study of carbonation profiles in prestressed concrete beams from an aggressive marine environment
HE et al. Error analysis for measurement of non-steady state chloride migration coefficient in concrete using AgNO3 colorimetric method
KAO et al. Evaluation of Repair Effect of Patch Repair Materials Containing Fly Ash and Lithium Nitrite
Rao et al. An experimental study on flexural strength and corrosion properties of reinforced concrete beams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170829

R150 Certificate of patent or registration of utility model

Ref document number: 6202966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250