JP2017180832A - Double-row self-aligning roller bearing - Google Patents

Double-row self-aligning roller bearing Download PDF

Info

Publication number
JP2017180832A
JP2017180832A JP2017048527A JP2017048527A JP2017180832A JP 2017180832 A JP2017180832 A JP 2017180832A JP 2017048527 A JP2017048527 A JP 2017048527A JP 2017048527 A JP2017048527 A JP 2017048527A JP 2017180832 A JP2017180832 A JP 2017180832A
Authority
JP
Japan
Prior art keywords
rollers
roller
rows
row
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017048527A
Other languages
Japanese (ja)
Other versions
JP6871767B2 (en
Inventor
一将 ▲瀬▼古
一将 ▲瀬▼古
Kazumasa Seko
井上 靖之
Yasuyuki Inoue
靖之 井上
径生 堀
Michio Hori
径生 堀
貴志 山本
Takashi Yamamoto
貴志 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to ES17770365T priority Critical patent/ES2959734T3/en
Priority to PCT/JP2017/011775 priority patent/WO2017164325A1/en
Priority to CN201780019166.XA priority patent/CN108884867B/en
Priority to EP17770365.9A priority patent/EP3434918B1/en
Publication of JP2017180832A publication Critical patent/JP2017180832A/en
Priority to US16/138,504 priority patent/US10655674B2/en
Application granted granted Critical
Publication of JP6871767B2 publication Critical patent/JP6871767B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a double-row self-aligning roller bearing which is advantageously used for receiving different loads, axial load and radial load, on each of rollers of double rows aligned in an axial direction, and which can sufficiently maximize a load capacity of the rollers of the rows receiving the axial load by having a large contact angle between the rollers of both rows receiving the axial load.SOLUTION: A double-row self-aligning roller bearing 1 includes an inner ring 2 and an outer ring 3, and double-row rollers 4, 5 therebetween aligned in two rows in a bearing width direction. A raceway surface 3a of the outer ring 3 is in a spherical shape, and an outer surface of the double-row rollers 4, 5 forms a cross-sectional shape along the raceway surface 3a of the outer ring 3. The double-row rollers 4, 5 have different length L1, L2. A contact angle θ2 of the longer roller 5 is made larger than a contact angle θ1 of the smaller roller 4. A center position Q of a center rib 8 in a bearing width direction is shifted toward the longer roller 5 from a position on point P in a bearing width direction where action lines S1, S2 intersect to form contact angles θ1, θ2.SELECTED DRAWING: Figure 1

Description

この発明は、軸受幅方向に並ぶ2列のころに不均等な荷重が負荷される用途、例えば風力発電装置や産業機械の主軸を支持する軸受等に適用される複列自動調心ころ軸受に関する。   The present invention relates to a double-row self-aligning roller bearing applied to an application in which an uneven load is applied to two rows of rollers arranged in the bearing width direction, for example, a bearing that supports a main shaft of a wind power generator or an industrial machine. .

風力発電装置の主軸を支持する軸受には、ブレードやロータヘッドの自重によるラジアル荷重の他に、風力によるアキシアル荷重が作用する。主軸支持用の軸受が図10に示すような複列自動調心ころ軸受41である場合、内輪42と外輪43間に介在する2列のころ44,45のうち、主にアキシアル荷重Faに対して後ろ側となる一方の列のころ45だけがアキシアル荷重Faを受ける。つまり、一方の列のころ45がラジアル荷重とアキシアル荷重の両方を受けるのに対し、他方の列のころ44はほぼラジアル荷重だけを受ける。このため、アキシアル荷重を受ける列のころ45は、ラジアル荷重だけを受ける列のころ44と比べて接触面圧が大きくなり、ころ45の転動面および外輪43の軌道面43aの表面損傷や摩耗が生じやすく、転がり寿命が短い。よって、アキシアル荷重を受けるころ45の列の転がり寿命により、軸受全体の実質寿命が決定される。   In addition to the radial load caused by the weight of the blade and the rotor head, an axial load caused by wind force acts on the bearing that supports the main shaft of the wind power generator. When the main shaft supporting bearing is a double-row self-aligning roller bearing 41 as shown in FIG. 10, of the two rows of rollers 44 and 45 interposed between the inner ring 42 and the outer ring 43, the axial load Fa is mainly used. Only one row of rollers 45 on the rear side receives the axial load Fa. That is, one row of rollers 45 receives both a radial load and an axial load, while the other row of rollers 44 receives only a radial load. For this reason, the roller 45 in the row receiving the axial load has a larger contact surface pressure than the roller 44 in the row receiving only the radial load, and the surface damage and wear of the rolling surface of the roller 45 and the raceway surface 43a of the outer ring 43 are increased. Is likely to occur and the rolling life is short. Therefore, the actual life of the entire bearing is determined by the rolling life of the row of rollers 45 that receive the axial load.

上記課題に対して、図11に示す複列自動調心ころ軸受51のように、内輪52と外輪53との間に介在する2列のころ54,55の長さL1,L2を互いに異ならせることで、アキシアル荷重を受ける列のころ55の負荷容量を、アキシアル荷重を殆ど受けない列のころ54の負荷容量よりも大きくすることが提案されている(特許文献1)。各列のころ54,55の負荷容量が適切な大きさとなるようにころ長さL1,L2を設定することにより、各列のころ54,55の転がり寿命がほぼ同じになり、軸受全体の実質寿命を向上させることができる。   To solve the above problem, the lengths L1 and L2 of the two rows of rollers 54 and 55 interposed between the inner ring 52 and the outer ring 53 are made different from each other as in the double row self-aligning roller bearing 51 shown in FIG. Thus, it has been proposed that the load capacity of the rollers 55 in the row that receives the axial load be larger than the load capacity of the rollers 54 in the row that hardly receive the axial load (Patent Document 1). By setting the roller lengths L1 and L2 so that the load capacities of the rollers 54 and 55 in each row become appropriate, the rolling life of the rollers 54 and 55 in each row becomes substantially the same, and the actual bearing as a whole. Lifespan can be improved.

また、図12に示す複列自動調心ころ軸受61のように、内輪62と外輪63との間に介在する2列のころ64,65の接触角θ1,θ2を互いに異ならせ、接触角θ2が大きいころ65で大きなアキシアル荷重を受けられるようにした提案がされている(特許文献2)。各列のころ64,65の負荷容量が適切な大きさとなるように接触角θ1,θ2を設定することにより、各列のころ64,65の転がり寿命がほぼ同じになり、軸受全体の実質寿命を向上させることができる。   Further, like the double-row self-aligning roller bearing 61 shown in FIG. 12, the contact angles θ1 and θ2 of the two rows of rollers 64 and 65 interposed between the inner ring 62 and the outer ring 63 are made different from each other, so that the contact angle θ2 A proposal has been made that a large axial load can be received by the roller 65 having a large diameter (Patent Document 2). By setting the contact angles θ1 and θ2 so that the load capacities of the rollers 64 and 65 in each row become appropriate, the rolling lives of the rollers 64 and 65 in each row become substantially the same, and the actual life of the entire bearing Can be improved.

国際公開第2005/050038号パンフレットInternational Publication No. 2005/050038 Pamphlet 米国特許第2014/0112607号明細書US 2014/0112607

前述したように、図11のように2列のころ54,55の長さL1,L2を互いに異ならせることによっても、あるいは図12のように2列のころ64,65の接触角θ1,θ2を互いに異ならせることによっても、アキシアル荷重を受ける列のころ55,65の負荷容量を大きくして、軸受全体の実質寿命を向上させることができる。しかし、軸受の寸法規格(ISO規格;JIS B 1512)の制限があるため、上記2通りの手法のうち片方の手法を用いるだけでは、アキシアル荷重を受ける列のころ55,65の負荷容量を適正な値まで高めることが難しい。つまり、寸法規格によって呼び番号に対して内径、外径、および軸受幅がそれぞれ決まっているため、図11におけるアキシアル荷重を受ける列のころ55の長さL2を長くし過ぎると、軸受幅Bが規格値を超える。また、図12におけるアキシアル荷重を受ける列のころ65の接触角θ2を大きくし過ぎると、内径dが規格値を超える。   As described above, the contact angles θ1, θ2 of the two rows of rollers 64, 65 can be made different from each other by making the lengths L1, L2 of the two rows of rollers 54, 55 different from each other as shown in FIG. Also by making them different from each other, it is possible to increase the load capacity of the rollers 55 and 65 in the row receiving the axial load, thereby improving the actual life of the entire bearing. However, because there is a limitation on the dimensional standard (ISO standard; JIS B 1512) of the bearing, the load capacity of the rollers 55 and 65 of the row subjected to the axial load is adequate by using only one of the above two methods. It is difficult to increase to a reasonable value. That is, since the inner diameter, the outer diameter, and the bearing width are determined with respect to the nominal number according to the dimensional standard, if the length L2 of the roller 55 in the row receiving the axial load in FIG. The standard value is exceeded. If the contact angle θ2 of the roller 65 in the row receiving the axial load in FIG. 12 is excessively increased, the inner diameter d exceeds the standard value.

そこで、各部の寸法が軸受の寸法規格から外れることなく、アキシアル荷重を受ける列とラジアル荷重だけを受ける列の接触面圧を均等化するために、2列のころの長さを互いに異ならせる手法と、2列のころの接触角を互いに異ならせる手法とを組み合わせることを試みた。その場合、アキシアル荷重を受ける列のころの接触角を大きくして、当該ころの負荷容量を十分に大きくすることが重要である。   Therefore, in order to equalize the contact surface pressure of the row receiving the axial load and the row receiving only the radial load without causing the dimensions of each part to deviate from the dimensional standard of the bearing, the method of making the lengths of the two rows of rollers different from each other An attempt was made to combine the contact angle of the two rows of rollers with different methods. In that case, it is important to increase the contact angle of the rollers in the row receiving the axial load, and to sufficiently increase the load capacity of the rollers.

この発明の目的は、アキシアル荷重およびラジアル荷重を受け、軸方向に並ぶ2列のころに互いに大きさが異なる荷重が作用する用途で用いるのに適し、アキシアル荷重を受ける列のころの負荷容量を十分に大きくするために、アキシアル荷重を受ける列のころの接触角を大きくとることができる複列自動調心ころ軸受を提供することである。   The object of the present invention is suitable for use in applications in which axial loads and radial loads are applied, and loads having different sizes act on two rows of rollers arranged in the axial direction. In order to make it sufficiently large, it is an object of the present invention to provide a double row self-aligning roller bearing capable of taking a large contact angle of a row roller subjected to an axial load.

この発明の複列自動調心ころ軸受は、内輪と外輪との間に、軸受幅方向に並んで2列にころが介在し、前記外輪の軌道面が球面状であり、前記2列のころは外周面が前記外輪の軌道面に沿う断面形状である複列自動調心ころ軸受であって、
前記2列のころは互いに長さが異なり、かつ長さの長いころの接触角の方が長さの短いころの接触角よりも大きく、前記内輪の外周面における前記2列のころ間の部分に中つばが存在し、この中つばの軸受幅方向の中心位置が、両列の接触角を成す作用線が互いに交わる点の軸受幅方向の位置よりも、前記長さの長いころの側にずれていることを特徴とする。
The double-row self-aligning roller bearing according to the present invention has two rows of rollers arranged in the bearing width direction between the inner ring and the outer ring, the raceway surface of the outer ring is spherical, and the two-row roller Is a double row self-aligning roller bearing whose outer peripheral surface has a cross-sectional shape along the raceway surface of the outer ring,
The two rows of rollers have different lengths, and the contact angle of the long roller is greater than the contact angle of the short roller, and the portion between the two rows of rollers on the outer peripheral surface of the inner ring There is a middle brim, and the center position of the middle brim in the bearing width direction is closer to the longer roller side than the position in the bearing width direction at the point where the action lines forming the contact angles of both rows intersect each other. It is characterized by deviation.

この構成によると、2列のころの長さを互いに異ならせることにより、長さの長いころが長さの短いころよりも、大きな負荷容量を持つようになる。また、長さの長いころの接触角を長さの短いころの接触角よりも大きくしたことにより、長さの長いころが大きなアキシアル荷重を負担することが可能となる。長さの長いころの接触角を長さの短いころの接触角よりも大きくすることで、逆に長さの短いころの接触角は小さくなり、長さの短いころのラジアル荷重の負荷容量が向上する。   According to this configuration, by making the lengths of the two rows of rollers different from each other, a roller having a long length has a larger load capacity than a roller having a short length. Further, since the contact angle of the long roller is larger than that of the short roller, the long roller can bear a large axial load. By making the contact angle of the long roller larger than the contact angle of the short roller, the contact angle of the short roller is reduced and the radial load capacity of the short roller is reduced. improves.

この複列自動調心ころ軸受を、アキシアル荷重およびラジアル荷重が作用する条件下で用いる場合、長さが長く接触角が大きなころでアキシアル荷重のほぼすべてとラジアル荷重の一部を負担させ、長さが短く接触角が小さなころでラジアル荷重の残りを負担させる。このような分担割合で2列のころでアキシアル荷重とラジアル荷重を分担して負担することにより、両列のころの接触面圧を均等にすることができる。これにより、軸受全体で大きな負荷容量を確保すると共に、軸受全体の実質寿命を向上することができる。   When this double row spherical roller bearing is used under conditions where axial load and radial load are applied, a roller with a long length and a large contact angle bears almost all of the axial load and part of the radial load. The remainder of the radial load is borne by rollers with short and small contact angles. By sharing the axial load and the radial load between the two rows of rollers at such a sharing ratio, the contact surface pressure of the rollers in both rows can be made uniform. As a result, a large load capacity can be ensured in the entire bearing, and the substantial life of the entire bearing can be improved.

中つばの軸受幅方向の中心位置を、両列の接触角を成す作用線が互いに交わる点の軸受幅方向の位置よりも、長さの長いころの側にずらしたことにより、長さの短いころの接触角に対する長さの長いころの接触角の比率を大きくすることができる。それにより、長さが長く接触角が大きいころで、より大きなアキシアル荷重を負担することが可能となる。   By shifting the center position in the bearing width direction of the middle collar toward the roller with a longer length than the position in the bearing width direction at the point where the lines of action forming the contact angles of both rows intersect each other, the length is shortened. The ratio of the contact angle of the long roller to the contact angle of the roller can be increased. Thereby, it becomes possible to bear a larger axial load with a roller having a long length and a large contact angle.

この発明において、長さの短いころの接触角と長さの長いころの接触角との比が1:2ないし1:4の範囲内にあるのが好ましい。
両列のころの接触角の比率が異なる複数の複列自動調心ころ軸受を用意し、各複列自動調心ころ軸受について、風力発電装置の主軸支持用軸受として使用する場合に想定されるアキシアル荷重およびラジアル荷重にて、そのときの両列のころの接触面圧を解析した。その結果、接触角の比は1:2ないし1:4の範囲内にある場合に、両列のころの接触面圧が十分に均等化することが分かった。なお、最適な接触角の比は1:3である。
In the present invention, the ratio of the contact angle of the short roller to the contact angle of the long roller is preferably in the range of 1: 2 to 1: 4.
Expected when multiple double-row spherical roller bearings with different contact angle ratios for both rows of rollers are used, and each double-row spherical roller bearing is used as a spindle support bearing for a wind turbine generator. The contact surface pressure of the rollers in both rows at that time was analyzed with an axial load and a radial load. As a result, it was found that when the contact angle ratio is in the range of 1: 2 to 1: 4, the contact pressures of the rollers in both rows are sufficiently equalized. The optimum contact angle ratio is 1: 3.

この複列自動調心ころ軸受は、風力発電装置の主軸の支持に適する。
風力発電装置の主軸を支持する複列自動調心ころ軸受には、ブレードやロータヘッドの自重によるラジアル荷重、および風力によるアキシアル荷重が作用する。軸受幅方向に並ぶ2列のころのうち片方のころ列はラジアル荷重とアキシアル荷重の両方を受け、もう片方の列のころは殆どラジアル荷重だけを受ける。その場合、アキシアル荷重を受ける列のころは、長さが長く接触角が大きいころとし、殆どラジアル荷重だけを受ける列のころは、長さが短く接触角が小さいころとすることで、左右各列のころの接触面圧をほぼ均等にすることができる。
This double row self-aligning roller bearing is suitable for supporting the main shaft of the wind power generator.
A radial load due to the weight of the blade and the rotor head and an axial load due to wind force are applied to the double row spherical roller bearing that supports the main shaft of the wind power generator. Of the two rows of rollers arranged in the bearing width direction, one roller row receives both a radial load and an axial load, and the other row roller receives almost only a radial load. In that case, the roller in the row receiving the axial load is a roller having a long length and a large contact angle, and the roller in a row receiving only the radial load is a roller having a short length and a small contact angle. The contact surface pressure of the rows of rollers can be made substantially uniform.

前記各列のころをそれぞれ保持する保持器を備え、各保持器は、各列のころの軸方向内側の端面を案内する環状の円環部と、この円環部から軸方向に延び且つ円周方向に沿って定められた間隔置きに設けられた複数の柱部とを備え、これら柱部間に前記ころを保持するポケットが設けられ、前記長いころを保持する一方の保持器は、前記柱部の外径面が基端側から先端側に向かうに従って半径方向内方に傾斜する傾斜角度を有し、
前記各ころは、ころ転動面にDLC被膜、且つ前記ころ転動面の端部にクラウニングを有し、
前記内輪は、この内輪の外周面における前記2列のころ間に設けられ前記2列のころを案内する中つばと、前記外周面の両端にそれぞれ設けられ各列のころの軸方向外側の端面に臨む小つばとを備え、前記内輪は、前記各小つばのうち、前記長いころの軸方向外側の端面に臨む小つばに、前記長いころを軸受内に挿入する入れ溝を備えても良い。
前記定められた間隔は、設計等によって任意に定める間隔であって、例えば、試験およびシミュレーションのいずれか一方または両方等により適切な間隔を求めて定められる。
前記DLCは、ダイヤモンドライクカーボン(Diamond-like Carbon)の略称である。
Each of the rows of rollers is provided with a cage, and each cage has an annular ring portion that guides an axially inner end face of each row of rollers, an axially extending from the annular portion, and a circular shape. A plurality of pillars provided at intervals defined along the circumferential direction, pockets for holding the rollers are provided between the pillars, and one of the cages for holding the long rollers is The outer diameter surface of the column part has an inclination angle inclined inward in the radial direction from the base end side toward the tip end side,
Each of the rollers has a DLC film on the roller rolling surface, and a crowning at an end of the roller rolling surface,
The inner ring is provided between the two rows of rollers on the outer peripheral surface of the inner ring and guides the two rows of rollers, and the end surface on the outer side in the axial direction of each row of rollers provided on both ends of the outer peripheral surface. The inner ring may be provided with a slot into which the long roller is inserted into the bearing in the small brim facing the axially outer end surface of the long roller. .
The predetermined interval is an interval arbitrarily determined by design or the like, and is determined by determining an appropriate interval by, for example, one or both of testing and simulation.
The DLC is an abbreviation for Diamond-like Carbon.

この構成によると、各ころがころ転動面にDLC被膜を有するため、耐摩耗性の向上を図ることができる。これにより、前記DLC被膜が無いものより、ころ転動面および内輪、外輪の軌道面の摩耗が生じ難くなる。またころ転動面の端部にクラウニングが設けられているため、エッジ応力の緩和を図ることができる。
長いころを保持する一方の保持器は、柱部の外径面が基端側から先端側に向かうに従って半径方向内方に傾斜する傾斜角度を有するため、保持器のポケット面がころの最大径位置を抱えることができる。これにより、長いころの姿勢安定性が損なわれることがなく、また長いころの組込性も容易に行うことが可能となる。内輪は、各小つばのうち、長いころの軸方向外側の端面に臨む小つばに、長いころを軸受内に挿入する入れ溝を備えたため、長いころの組込性をさらに向上させることができる。
According to this structure, since each roller has a DLC film on the roller rolling surface, it is possible to improve wear resistance. As a result, the roller rolling surfaces and the inner and outer raceways are less likely to be worn than those without the DLC coating. Further, since the crowning is provided at the end of the roller rolling surface, the edge stress can be reduced.
One cage that holds the long roller has an inclination angle in which the outer diameter surface of the column portion inclines radially inward from the proximal end side toward the distal end side, so that the pocket surface of the cage has the maximum diameter of the roller. Can hold a position. Thereby, the posture stability of the long roller is not impaired, and the long roller can be easily assembled. The inner ring is provided with a slot for inserting the long roller into the bearing in the small collar facing the axially outer end face of the long roller among the individual collars, so that it is possible to further improve the ease of assembling the long roller. .

この発明の複列自動調心ころ軸受は、内輪と外輪との間に、軸受幅方向に並んで2列にころが介在し、前記外輪の軌道面が球面状であり、前記2列のころは外周面が前記外輪の軌道面に沿う断面形状であって、前記2列のころは互いに長さが異なり、かつ長さの長いころの接触角の方が長さの短いころの接触角よりも大きく、前記内輪の外周面における前記2列のころ間の部分に中つばが存在し、この中つばの軸受幅方向の中心位置が、両列の接触角を成す作用線が互いに交わる点の軸受幅方向の位置よりも、前記長さの長いころの側にずれているため、アキシアル荷重およびラジアル荷重を受け、軸方向に並ぶ2列のころに互いに大きさが異なる荷重が作用する用途で用いるのに適し、アキシアル荷重を受ける列のころの負荷容量を十分に大きくするために、アキシアル荷重を受ける列のころの接触角を大きくとることができる。   The double-row self-aligning roller bearing according to the present invention has two rows of rollers arranged in the bearing width direction between the inner ring and the outer ring, the raceway surface of the outer ring is spherical, and the two-row roller Is a cross-sectional shape in which the outer peripheral surface is along the raceway surface of the outer ring, and the two rows of rollers are different in length from each other, and the contact angle of the longer roller is longer than the contact angle of the shorter roller The middle collar is present at the portion between the two rows of rollers on the outer peripheral surface of the inner ring, and the center position of the middle collar in the bearing width direction is such that the lines of action forming the contact angles of both rows intersect each other. Because it is shifted to the longer roller side than the position in the bearing width direction, it receives an axial load and a radial load, and loads with different sizes act on two rows of rollers arranged in the axial direction. Suitable for use, sufficient load capacity of row rollers subjected to axial load To listen, it is possible to increase the contact angle of the rollers of the column for receiving an axial load.

この発明の一実施形態にかかる複列自動調心ころ軸受の断面図である。It is sectional drawing of the double row self-aligning roller bearing concerning one Embodiment of this invention. 非対称ころの説明図である。It is explanatory drawing of an asymmetrical roller. 同複列自動調心ころ軸受と従来の複列自動調心ころ軸受にそれぞれアキシアル荷重とラジアル荷重の合成荷重をかけた場合におけるフロント側のころの接触面圧の分布解析結果を示すグラフである。It is a graph which shows the distribution analysis result of the contact surface pressure of the roller of the front side when the combined load of an axial load and a radial load is applied to the same double row spherical roller bearing and the conventional double row spherical roller bearing, respectively. . 同複列自動調心ころ軸受と従来の複列自動調心ころ軸受にそれぞれアキシアル荷重とラジアル荷重の合成荷重をかけた場合におけるリア側のころの接触面圧の分布解析結果を示すグラフである。It is a graph which shows the distribution analysis result of the contact surface pressure of the roller of the rear side when the combined load of an axial load and a radial load is applied to the same double row spherical roller bearing and the conventional double row spherical roller bearing, respectively. . 両列のころの接触角の比がそれぞれ異なる複数種類の複列自動調心ころ軸受にアキシアル荷重とラジアル荷重の合成荷重をかけた場合におけるフロント側のころの接触面圧の分布解析結果を示すグラフである。Fig. 4 shows the distribution analysis results of the contact pressure of the roller on the front side when a composite load of axial load and radial load is applied to multiple types of double row spherical roller bearings with different contact angle ratios for both rows of rollers. It is a graph. 両列のころの接触角の比がそれぞれ異なる複数種類の複列自動調心ころ軸受にアキシアル荷重とラジアル荷重の合成荷重をかけた場合におけるリア側のころの接触面圧の分布解析結果を示すグラフである。Fig. 5 shows the distribution analysis results of the contact pressure of the roller on the rear side when a composite load of axial load and radial load is applied to multiple types of double row spherical roller bearings with different contact angle ratios for both rows of rollers. It is a graph. 従来の複数の複列自動調心ころ軸受について軸受幅に対するころ長さの比率を同一図面上に図示した図である。It is the figure which illustrated the ratio of the roller length with respect to a bearing width on the same drawing about several conventional double row self-aligning roller bearings. 風力発電装置の主軸支持装置の一例の一部を切り欠いて表した斜視図である。It is the perspective view which notched and represented a part of example of the spindle support apparatus of the wind power generator. 同主軸支持装置の破断側面図である。It is a fracture side view of the spindle support device. 従来の一般的な複列自動調心ころ軸受の断面図である。It is sectional drawing of the conventional common double row self-aligning roller bearing. 第1の提案例の複列自動調心ころ軸受の断面図である。It is sectional drawing of the double row self-aligning roller bearing of the 1st proposal example. 第2の提案例の複列自動調心ころ軸受の断面図である。It is sectional drawing of the double row self-aligning roller bearing of the 2nd proposal example. この発明の他の実施形態に係る複列自動調心ころ軸受の断面図である。It is sectional drawing of the double row self-aligning roller bearing which concerns on other embodiment of this invention. 同複列自動調心ころ軸受の一部を拡大して示す拡大断面図である。It is an expanded sectional view which expands and shows a part of the same double row self-aligning roller bearing. 同複列自動調心ころ軸受のころのDLC被膜等を示す拡大断面図である。It is an expanded sectional view which shows the DLC film etc. of the roller of the same double row self-aligning roller bearing. 同複列自動調心ころ軸受の内輪の入れ溝等を示す拡大断面図である。It is an expanded sectional view which shows the insertion groove | channel etc. of the inner ring | wheel of the double row self-aligning roller bearing. 同内輪の入れ溝等を軸方向から見た端面図である。It is the end elevation which looked at the slot of the inner ring from the axial direction. この発明のさらに他の実施形態に係る複列自動調心ころ軸受の断面図である。It is sectional drawing of the double row self-aligning roller bearing which concerns on other embodiment of this invention.

この発明の一実施形態を図1と共に説明する。
この複列自動調心ころ軸受1は、内輪2と外輪3との間に軸受幅方向に並ぶ左右2列のころ4,5を介在させてある。外輪3の軌道面3aは球面状であり、左右各列のころ4,5は外周面が外輪3の軌道面3aに沿う断面形状である。言い換えると、ころ4,5の外周面は、外輪3の軌道面3aに沿った円弧を中心線C1,C2回りに回転させた回転曲面である。内輪2には、左右各列のころ4,5の外周面に沿う断面形状の複列の軌道面2a,2bが形成されている。内輪2の外周面の両端には、つば(小つば)6,7がそれぞれ設けられている。内輪2の外周面の中央部、すなわち左列のころ4と右列のころ5間に、中つば8が設けられている。
An embodiment of the present invention will be described with reference to FIG.
This double-row self-aligning roller bearing 1 has two rows of left and right rollers 4 and 5 arranged in the bearing width direction between an inner ring 2 and an outer ring 3. The raceway surface 3 a of the outer ring 3 has a spherical shape, and the rollers 4 and 5 in each of the left and right rows have a cross-sectional shape along the raceway surface 3 a of the outer ring 3. In other words, the outer peripheral surfaces of the rollers 4 and 5 are rotating curved surfaces obtained by rotating an arc along the raceway surface 3a of the outer ring 3 around the center lines C1 and C2. The inner ring 2 is formed with double-row raceway surfaces 2a and 2b having a cross-sectional shape along the outer peripheral surfaces of the rollers 4 and 5 in the left and right rows. At both ends of the outer peripheral surface of the inner ring 2, collars (small collars) 6 and 7 are provided, respectively. An intermediate collar 8 is provided at the center of the outer peripheral surface of the inner ring 2, that is, between the left row roller 4 and the right row roller 5.

図2に誇張して示すように、左右各列のころ4,5は、いずれも最大径D1max,D2maxの位置がころ長さの中央A1,A2から外れた非対称ころである。左列のころ4の最大径D1maxの位置はころ長さの中央A1よりも右側にあり、右列のころ5の最大径D2maxの位置はころ長さの中央A2よりも左側にある。このような非対称ころからなる左右各列のころ4,5は、誘起スラスト荷重が発生する。この誘起スラスト荷重を受けるために、内輪2の前記中つば8が設けられる。非対称ころ4,5と中つば8の組合せは、ころ4,5を内輪2、外輪3、および中つば8の3箇所で案内するので、案内精度が良い。 As shown exaggeratedly in FIG. 2, the left and right rollers 4 and 5 are asymmetrical rollers in which the positions of the maximum diameters D1 max and D2 max deviate from the center A1 and A2 of the roller length. The position of the maximum diameter D1 max of the roller 4 in the left row is on the right side of the center A1 of the roller length, and the position of the maximum diameter D2 max of the roller 5 in the right row is on the left side of the center A2 of the roller length. Induced thrust loads are generated in the rollers 4 and 5 in the left and right rows of such asymmetric rollers. In order to receive this induced thrust load, the middle collar 8 of the inner ring 2 is provided. The combination of the asymmetrical rollers 4 and 5 and the middle collar 8 guides the rollers 4 and 5 at the three locations of the inner ring 2, the outer ring 3 and the middle collar 8, so that the guidance accuracy is good.

図1に示すように、左列のころ4と右列のころ5は、最大径D1max,D2maxが互いに同じで、中心線C1,C2に沿った長さL1,L2が互いに異なっている。長さが長いころ5の長さL2は、軸受幅Bの39%以上である。 As shown in FIG. 1, the roller 4 in the left row and the roller 5 in the right row have the same maximum diameters D1 max and D2 max and different lengths L1 and L2 along the center lines C1 and C2. . The length L2 of the long roller 5 is 39% or more of the bearing width B.

また、長さの長いころ5の接触角θ2の方が、長さの短いころ4の接触角θ1よりも大きくなっている。長さが短いころ4の接触角θ1と長さが長いころ5の接触角θ2の比は、1:2ないし1:4の範囲内に設定されている。最も好ましい接触角θ1,θ2の比は、1:3である。その理由については、後で説明する。具体的には、接触角θ1の範囲は例えば5°〜7°であり、接触角θ2の範囲は例えば14°〜16°である。   Further, the contact angle θ2 of the roller 5 having a long length is larger than the contact angle θ1 of the roller 4 having a short length. The ratio of the contact angle θ1 of the short roller 4 to the contact angle θ2 of the long roller 5 is set in the range of 1: 2 to 1: 4. The most preferable ratio of the contact angles θ1 and θ2 is 1: 3. The reason will be described later. Specifically, the range of the contact angle θ1 is, for example, 5 ° to 7 °, and the range of the contact angle θ2 is, for example, 14 ° to 16 °.

両列の接触角θ1,θ2を成す作用線S1,S2が互いに交わる点Pの軸受幅方向位置は、前記中つば8の軸受幅方向の中心位置Qよりも、長さの短いころ4の側に距離Kだけずらしてある。これにより、長さの長いころ5を必要以上に長くすることなく、長さの長いころ5の接触角θ2を大きくすることができる。なお、前記作用線S1,S2は、ころ4,5と内輪2および外輪3との接触部に働く力の合成力が作用する線である。作用線S1,S2が互いに交わる点Pは、軸受中心軸O上に位置する。   The position in the bearing width direction at the point P where the action lines S1 and S2 forming the contact angles θ1 and θ2 of both rows intersect with each other is closer to the side of the roller 4 that is shorter than the center position Q in the bearing width direction of the middle collar 8. Is shifted by a distance K. Thereby, the contact angle θ2 of the long roller 5 can be increased without making the long roller 5 longer than necessary. The action lines S1 and S2 are lines on which a combined force of forces acting on the contact portions between the rollers 4 and 5 and the inner ring 2 and the outer ring 3 acts. A point P where the action lines S1 and S2 intersect with each other is located on the bearing center axis O.

左右各列のころ4,5は、それぞれ保持器10L,10Rにより保持されている。左列用の保持器10Lは、円環部11から複数の柱部12が左側に延び、これら柱部12間のポケットに左列のころ4が保持される。右列用の保持器10Rは、円環部11から複数の柱部12が右側に延び、これら柱部12間のポケットに右列のころ5が保持される。   The rollers 4 and 5 in the left and right rows are respectively held by cages 10L and 10R. In the left row retainer 10 </ b> L, a plurality of column portions 12 extend to the left side from the annular portion 11, and the left row rollers 4 are held in pockets between these column portions 12. In the right row retainer 10 </ b> R, a plurality of column portions 12 extend to the right side from the annular portion 11, and the right row rollers 5 are held in pockets between the column portions 12.

この構成の複列自動調心ころ軸受1は、アキシアル荷重およびラジアル荷重を受け、左右のころ列に互いに大きさが異なる荷重が作用する用途、例えば風力発電装置の主軸支持軸受として用いられる。その場合、旋回翼に近い側(フロント側)に左列のころ4が位置し、遠い側(リア側)に右列のころ5が位置するように、複列自動調心ころ軸受1を設置する。これにより、長さL2が長くかつ接触角θ2が大きい右列のころ5が、アキシアル荷重のほぼすべてとラジアル荷重の一部を負担し、長さL1が短くかつ接触角θ1が小さい左列のころ4が、ラジアル荷重の残りを負担する。   The double-row self-aligning roller bearing 1 having this configuration is used as a main shaft support bearing of a wind power generator, for example, receiving an axial load and a radial load, and loads having different sizes acting on the left and right roller rows. In that case, the double row self-aligning roller bearing 1 is installed so that the left row roller 4 is located on the side closer to the swirl blade (front side) and the right row roller 5 is located on the far side (rear side). To do. Accordingly, the roller 5 in the right row having a long length L2 and a large contact angle θ2 bears almost all of the axial load and a part of the radial load, and the left row has a short length L1 and a small contact angle θ1. Roller 4 bears the remainder of the radial load.

ころ4,5の長さL1,L2および接触角θ1,θ2を適切に設定することにより、左右各列のころ4,5が持つ負荷容量に応じた比率で荷重を分担させることができる。その結果、左右各列のころ4,5の面圧が均等になる。これにより、軸受全体で大きな負荷容量を確保すると共に、軸受全体の実質寿命を向上させることができる。   By appropriately setting the lengths L1 and L2 and the contact angles θ1 and θ2 of the rollers 4 and 5, it is possible to share the load at a ratio corresponding to the load capacity of the rollers 4 and 5 in the left and right rows. As a result, the surface pressures of the rollers 4 and 5 in the left and right rows are equalized. As a result, a large load capacity can be ensured in the entire bearing, and the substantial life of the entire bearing can be improved.

図10に示す従来の複列自動調心ころ軸受41および図1に示す本発明の複列自動調心ころ軸受1について、風力発電装置の主軸支持用軸受として使用する場合に想定されるアキシアル荷重とラジアル荷重との合成荷重にて、そのときの左右両列のころの接触面圧を解析した。図3はフロント側すなわち左列のころ44,4の接触面圧分布を示し、図4はリア側すなわち右列のころ45,5の接触面圧分布解析結果を示す。   An axial load assumed when the conventional double-row spherical roller bearing 41 shown in FIG. 10 and the double-row spherical roller bearing 1 of the present invention shown in FIG. 1 are used as main shaft support bearings of a wind turbine generator. The contact surface pressure of the left and right rows of rollers at that time was analyzed using a combined load of the load and radial load. 3 shows the contact surface pressure distribution of the rollers 44, 4 in the front side, that is, the left row, and FIG. 4 shows the analysis result of the contact surface pressure distribution of the rollers 45, 5 in the rear side, that is, the right row.

図3、図4から次のことが分かる。図10の従来品は、フロント側にて接触面圧が小さく、リア側で接触面圧が大きくなっており、フロント側とリア側とで荷重負担が不均一な状態となっている。これに対し、図1の接触角変更品は、フロント側にてころ全体に接触面圧が発生することにより、リア側の接触面圧の最大値が下がり、両列での接触面圧差が小さくなり均等化されている。   The following can be understood from FIGS. The conventional product shown in FIG. 10 has a small contact surface pressure on the front side and a large contact surface pressure on the rear side, and the load load is not uniform between the front side and the rear side. On the other hand, in the contact angle change product of FIG. 1, the contact surface pressure is generated on the entire roller on the front side, so that the maximum value of the contact surface pressure on the rear side is lowered and the contact surface pressure difference between both rows is small. Are equalized.

また、左列のころ4の接触角θ1と右列のころ5の接触角θ2との比がそれぞれ異なる3種類の複列自動調心ころ軸受を用意し、前記同様にして左右両列のころの接触面圧を解析した。図5はフロント側すなわち左列のころ4の接触面圧分布解析結果を示し、図6はリア側すなわち右列のころ5の接触面圧分布解析結果を示す。接触角の比が1:1であるものは従来品であり、接触角の比が1:2、1:3であるものは本発明の接触角変更品である。   Also, three types of double-row self-aligning roller bearings having different ratios of the contact angle θ1 of the left row roller 4 and the contact angle θ2 of the right row roller 5 are prepared. The contact surface pressure was analyzed. FIG. 5 shows a contact surface pressure distribution analysis result of the roller 4 in the front side, that is, the left row, and FIG. 6 shows a contact surface pressure distribution analysis result of the roller 5 in the rear side, that is, the right row. A contact angle ratio of 1: 1 is a conventional product, and contact angle ratios of 1: 2 and 1: 3 are contact angle change products of the present invention.

図5、図6から次のことが分かる。各接触角の比について接触面圧分布解析結果を比較すると、接触角の比が1:3のものが、フロント側とリア側とで最も接触面圧が均等化されている。接触角の比が1:2のものは、接触角の比が1:3のものに比べると均等化はされていないが、接触角の比が1:1のものに比べれば十分に均等化されている。図1からも分かるように、ころ5の接触角θ2が大きくなると、寸法制約の関係から内輪2の肉厚が薄くなり過ぎるため、長さが長いころ5を配置することが困難になる。これらのことから、接触角の比は、1:2以上で1:4以内とするのが望ましい。   The following can be understood from FIGS. Comparing the contact surface pressure distribution analysis results for each contact angle ratio, the contact surface pressure ratio is 1: 3, and the contact surface pressure is most even on the front side and the rear side. The contact angle ratio of 1: 2 is not equalized compared to the contact angle ratio of 1: 3, but it is sufficiently equalized compared to the contact angle ratio of 1: 1. Has been. As can be seen from FIG. 1, when the contact angle θ <b> 2 of the roller 5 increases, the inner ring 2 becomes too thin due to dimensional constraints, making it difficult to place the roller 5 having a long length. For these reasons, the contact angle ratio is desirably 1: 2 or more and 1: 4 or less.

なお、前記想定されるアキシアル荷重およびラジアル荷重とは、発電能力、設置場所等の諸条件を考慮して平均的な風力発電装置が最も通常に運転しているときのアキシアル荷重およびラジアル荷重を指す。よって、平均的な風力発電装置と比べて前記条件が異なる風力発電装置に用いられる複列自動調心ころ軸受では、最適な接触角の比が1:3でないことが有り得る。しかし、その場合でも、最適な接触角の比は1:2ないし1:4の範囲内に収まる。   The assumed axial load and radial load refer to the axial load and radial load when the average wind power generator is operating most normally in consideration of various conditions such as power generation capacity and installation location. . Therefore, in a double row self-aligning roller bearing used in a wind power generator having different conditions as compared with an average wind power generator, the optimal contact angle ratio may not be 1: 3. However, even in that case, the optimum contact angle ratio falls within the range of 1: 2 to 1: 4.

また、長さが長いころ5の長さL2は軸受幅Bの39%以上であるという条件を付加することにより、寸法規格の範囲内で両列のころの接触角の比が上記適正とされた複列自動調心ころ軸受が得られる。なお、従来の複列自動調心ころ軸受について、軸受幅Bに対するころ5の長さL2の比率を調査した。その結果、図7に示すように、前記比率が39%以上であることが判明した。上記寸法規格は、内径、外径、および軸受幅を定めた規格である。   Further, by adding a condition that the length L2 of the roller 5 having a long length is 39% or more of the bearing width B, the ratio of the contact angles of the rollers in both rows is made appropriate within the range of the dimensional standard. Double row spherical roller bearings can be obtained. In addition, about the conventional double row self-aligning roller bearing, the ratio of the length L2 of the roller 5 to the bearing width B was investigated. As a result, as shown in FIG. 7, the ratio was found to be 39% or more. The dimensional standard is a standard that defines an inner diameter, an outer diameter, and a bearing width.

図8、図9は、風力発電装置の主軸支持装置の一例を示す。支持台21上に旋回座軸受22(図9)を介してナセル23のケーシング23aが水平旋回自在に設置されている。ナセル23のケーシング23a内には、軸受ハウジング24に設置された主軸支持軸受25を介して主軸26が回転自在に設置され、主軸26のケーシング23a外に突出した部分に、旋回翼となるブレード27が取り付けられている。主軸26の他端は、増速機28に接続され、増速機28の出力軸が発電機29のロータ軸に結合されている。ナセル23は、旋回用モータ30により、減速機31を介して任意の角度に旋回させられる。主軸支持軸受25は、図示の例では2個並べて設置してあるが、1個であっても良い。   8 and 9 show an example of the spindle support device of the wind power generator. A casing 23a of the nacelle 23 is installed on the support base 21 via a swivel bearing 22 (FIG. 9) so as to be horizontally swivelable. In the casing 23 a of the nacelle 23, a main shaft 26 is rotatably installed via a main shaft support bearing 25 installed in the bearing housing 24, and a blade 27 serving as a swirl wing is formed on a portion protruding from the casing 23 a of the main shaft 26. Is attached. The other end of the main shaft 26 is connected to the speed increaser 28, and the output shaft of the speed increaser 28 is coupled to the rotor shaft of the generator 29. The nacelle 23 is turned at an arbitrary angle by the turning motor 30 via the speed reducer 31. In the illustrated example, two main shaft support bearings 25 are arranged side by side, but may be one.

他の実施形態について説明する。
以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
Another embodiment will be described.
In the following description, the same reference numerals are given to portions corresponding to the matters described in advance in the respective embodiments, and overlapping descriptions are omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.

他の実施形態に係る複列自動調心ころ軸受を図13〜図17と共に説明する。
図13に示すように、この複列自動調心ころ軸受1Aは、(1)傾斜角度付きの保持器10RA、(2)クラウニング13、(3)DLC被膜14、および(4)入れ溝15を備えている。
A double-row self-aligning roller bearing according to another embodiment will be described with reference to FIGS.
As shown in FIG. 13, this double row spherical roller bearing 1A includes (1) a cage 10RA with an inclination angle, (2) a crowning 13, (3) a DLC film 14, and (4) a slot 15. I have.

<(1)傾斜角度付きの保持器等について>
同図13に示す右列用の一方の保持器10RAは、軸方向長さの長いころ5を保持する保持器である。この保持器10RAは、柱部12Aの外径面12Aaが基端側から先端側に向かうに従って半径方向内方に傾斜する傾斜角度βを有する。この傾斜角度βは、軸受中心軸Oに対する角度である。保持器10RAの外径面12Aaの傾斜角度βは、零よりも大きく、右列のころ5の最大径角α2以下の範囲(0<β≦α2)に設定されている。最大径角α2は、軸受中心軸Oに垂直な平面に対する、右列のころ5の最大径D2maxの位置の傾き角である。
<(1) About a cage with an inclination angle>
One cage 10RA for the right row shown in FIG. 13 is a cage that holds the rollers 5 having a long axial length. The retainer 10RA has an inclination angle β that is inclined inward in the radial direction as the outer diameter surface 12Aa of the column portion 12A moves from the proximal end side toward the distal end side. This inclination angle β is an angle with respect to the bearing center axis O. The inclination angle β of the outer diameter surface 12Aa of the cage 10RA is set to a range (0 <β ≦ α2) that is larger than zero and not more than the maximum diameter angle α2 of the rollers 5 in the right row. The maximum diameter angle α2 is an inclination angle of the position of the maximum diameter D2 max of the roller 5 in the right row with respect to a plane perpendicular to the bearing center axis O.

この例の右列用の保持器10RAにおける、柱部12Aの内径面は、傾斜面部12Abと、この傾斜面部12Abに繋がる平坦面部12Acとを有する。傾斜面部12Abは、柱部12Aの内径面の基端側から同内径面の軸方向中間付近まで延び、基端側から軸方向中間付近に向かうに従って半径方向内方に傾斜する傾斜角度γを有する。この傾斜角度γも軸受中心軸Oに対する角度であり、傾斜角度γは傾斜角度β以上(γ≧β)となるように設定されている。この例では、傾斜角度γは傾斜角度βよりも数度大きく設定されている。但し、この関係(γ≧β)に限定されるものではない。平坦面部12Acは、傾斜面部12Abの先端縁から軸方向に延びる軸受中心軸Oに平行な平坦面である。なお左列用の他方の保持器10Lは、柱部12の外径面および内径面が、傾斜角度を有しない、換言すれば、軸受中心軸Oに対して平行である。   The inner diameter surface of the column portion 12A in the cage 10RA for the right row in this example has an inclined surface portion 12Ab and a flat surface portion 12Ac connected to the inclined surface portion 12Ab. The inclined surface portion 12Ab extends from the base end side of the inner diameter surface of the column portion 12A to the vicinity of the middle in the axial direction of the inner diameter surface, and has an inclination angle γ that inclines radially inward from the base end side toward the vicinity of the middle in the axial direction. . The inclination angle γ is also an angle with respect to the bearing center axis O, and the inclination angle γ is set to be equal to or larger than the inclination angle β (γ ≧ β). In this example, the inclination angle γ is set to be several degrees larger than the inclination angle β. However, it is not limited to this relationship (γ ≧ β). The flat surface portion 12Ac is a flat surface parallel to the bearing center axis O extending in the axial direction from the tip edge of the inclined surface portion 12Ab. In the other cage 10L for the left row, the outer diameter surface and the inner diameter surface of the column portion 12 do not have an inclination angle, in other words, are parallel to the bearing center axis O.

<(2)クラウニング13について>
図14は、図13の一部(XIV部)を拡大して示す拡大断面図である。図13および図14に示すように、左右各列のころ4,5は、それぞれころ転動面の端部にクラウニング13を有する。この例のころ転動面は、対数曲線で表現される対数クラウニング形状とされている。但し、クラウニング13は対数クラウニング形状に限定されるものではなく、例えば、ころ転動面を複合Rクラウニング形状にしても良い。クラウニング部のR寸法を、ころ転動面の基準Rよりも小さくすることで、ドロップ量を大きくする前記複合Rクラウニング形状を形成し得る。
<(2) About Crowning 13>
14 is an enlarged cross-sectional view showing a part (XIV part) of FIG. 13 in an enlarged manner. As shown in FIGS. 13 and 14, the left and right rows of rollers 4 and 5 each have a crowning 13 at the end of the roller rolling surface. The roller rolling surface in this example has a logarithmic crowning shape expressed by a logarithmic curve. However, the crowning 13 is not limited to a logarithmic crowning shape. For example, the roller rolling surface may be a composite R crowning shape. By making the R dimension of the crowning portion smaller than the reference R of the roller rolling surface, the composite R crowning shape that increases the drop amount can be formed.

<(3)DLC被膜14について>
図15に示すように、各ころ4,5は、ころ転動面にDLC被膜14を有する。この例のDLC被膜14は、基材であるころ4,5との密着性が高い多層構造が採用されている。DLC被膜14は、表面層16と、中間層17と、応力緩和層18とを有する。表面層16は、炭素供給源として固体ターゲットのグラファイトのみを使用し、水素混入量を抑えたDLCを主体とする膜である。中間層16は、表面層16と前記基材との間に形成される、少なくともCrまたはWを主体とする層である。応力緩和層18は、中間層17と表面層16との間に形成される。
<(3) DLC film 14>
As shown in FIG. 15, each of the rollers 4 and 5 has a DLC film 14 on the roller rolling surface. The DLC film 14 in this example employs a multilayer structure having high adhesion to the rollers 4 and 5 as the base material. The DLC film 14 has a surface layer 16, an intermediate layer 17, and a stress relaxation layer 18. The surface layer 16 is a film mainly composed of DLC in which only a solid target graphite is used as a carbon supply source and the amount of hydrogen contamination is suppressed. The intermediate layer 16 is a layer mainly composed of at least Cr or W formed between the surface layer 16 and the base material. The stress relaxation layer 18 is formed between the intermediate layer 17 and the surface layer 16.

中間層17は、組成の異なる複数の層を含む構造であり、図15では17a〜17cの三層構造を例示している。例えば、基材の表面にCrを主体とする層17cを形成し、その上にWを主体とする層17bを形成し、その上にWおよびCを主体とする層17aを形成する。図15では3層構造を例示したが、中間層17は、必要に応じて、これ以下または以上の数の層を含むものであっても良い。   The intermediate layer 17 has a structure including a plurality of layers having different compositions, and FIG. 15 illustrates a three-layer structure of 17a to 17c. For example, the layer 17c mainly composed of Cr is formed on the surface of the substrate, the layer 17b mainly composed of W is formed thereon, and the layer 17a mainly composed of W and C is formed thereon. Although the three-layer structure is illustrated in FIG. 15, the intermediate layer 17 may include a number of layers equal to or less than this, if necessary.

応力緩和層18に隣接する層17aは、他方で隣接する層17bの主体となる金属と、炭素とを主体することで、中間層17と応力緩和層18との間の密着性を向上できる。例えば、層17aがWとCとを主体とする場合、Wを主体とする中間層17b側からCを主体とする応力緩和層18側に向けて、Wの含有量を減少させ、一方、Cの含有量を増加させる(組成傾斜)ことで、より密着性の向上が図れる。   The layer 17a adjacent to the stress relaxation layer 18 can improve the adhesion between the intermediate layer 17 and the stress relaxation layer 18 by mainly including the metal that is the main component of the adjacent layer 17b and carbon. For example, when the layer 17a is mainly composed of W and C, the W content is decreased from the intermediate layer 17b side mainly composed of W toward the stress relaxation layer 18 side mainly composed of C. By increasing the content of (composition gradient), the adhesion can be further improved.

応力緩和層18は、Cを主体とし、その硬度が中間層17側から表面層16側へ連続的または段階的に上昇する傾斜層である。具体的には、UBMS法においてグラファイト製ターゲットを用い、基材に対するバイアス電圧を連続的または段階的に上昇させて成膜することで得られるDLC傾斜層である。硬度が連続的または段階的に上昇するのは、DLC構造におけるグラファイト構造(SP)とダイヤモンド構造(SP)との構成比率が、バイアス電圧の上昇により後者に偏っていくためである。 The stress relaxation layer 18 is an inclined layer whose main component is C and whose hardness increases continuously or stepwise from the intermediate layer 17 side to the surface layer 16 side. Specifically, it is a DLC gradient layer obtained by forming a film by using a graphite target in the UBMS method and increasing the bias voltage with respect to the substrate continuously or stepwise. The reason why the hardness increases continuously or stepwise is that the constituent ratio of the graphite structure (SP 2 ) and the diamond structure (SP 3 ) in the DLC structure is biased toward the latter as the bias voltage increases.

表面層16は、応力緩和層18の延長で形成されるDLCを主体とする膜であり、特に、構造中の水素含有量を低減したDLC膜である。水素含有量を低減させたことで、耐摩耗性が向上する。このようなDLC膜を形成するためには、例えばUBMS法を用いて、スパッタリング処理に用いる原料およびスパッタリングガス中に水素および水素を含む化合物を混入させない方法を用いる。   The surface layer 16 is a film mainly composed of DLC formed by extension of the stress relaxation layer 18, and in particular, a DLC film with a reduced hydrogen content in the structure. Abrasion resistance is improved by reducing the hydrogen content. In order to form such a DLC film, for example, a method in which hydrogen and a compound containing hydrogen are not mixed into a raw material used for the sputtering process and a sputtering gas by using the UBMS method is used.

応力緩和層18および表面層16の成膜法に関して、UBMS法を用いる場合を例示したが、硬度を連続的または段階的に変化させることができる成膜法であれば、その他公知の成膜法を採用することができる。中間層17と、応力緩和層18と、表面層16とを含む多層の膜厚の合計が0.5μm〜3.0μmとすることが好ましい。膜厚の合計が0.5μm未満であれば、耐摩耗性および機械的強度に劣り、膜厚の合計が3.0μmを超えると剥離し易くなるので好ましくない。
なお、この例では、各ころ4,5の外周面のみにDLC被膜14を設けているが、さらに各ころ4,5の両端面にDLC被膜14を設けても良い。特に、中つば8(図13)に案内される各ころ4,5の一端面にDLC被膜14を設けた場合、各ころ4,5の前記一端面が摩耗し難くなり、ころ4,5の耐摩耗性をより高め得る。
The case of using the UBMS method has been exemplified for the method of forming the stress relaxation layer 18 and the surface layer 16, but any other known film forming method may be used as long as the hardness can be changed continuously or stepwise. Can be adopted. The total thickness of the multilayer including the intermediate layer 17, the stress relaxation layer 18, and the surface layer 16 is preferably 0.5 μm to 3.0 μm. If the total film thickness is less than 0.5 μm, the abrasion resistance and mechanical strength are inferior, and if the total film thickness exceeds 3.0 μm, peeling tends to occur.
In this example, the DLC film 14 is provided only on the outer peripheral surfaces of the rollers 4 and 5, but the DLC film 14 may be provided on both end faces of the rollers 4 and 5. In particular, when the DLC film 14 is provided on one end face of each roller 4, 5 guided to the middle collar 8 (FIG. 13), the one end face of each roller 4, 5 becomes difficult to wear, and the rollers 4, 5 Abrasion resistance can be further increased.

<(4)入れ溝について>
図16に示すように、内輪2は、各小つば6,7(図13)のうち、長いころ5の軸方向外側の端面に臨む小つば7に、長いころ5を軸受内に挿入する入れ溝15を備えている。図17に示すように、内輪2の前記小つば7の円周方向一箇所に、円弧形状の入れ溝15が設けられている。この入れ溝15の円弧15aの曲率半径は、挿入すべきころ5(図16)の最大径に応じて適宜設定されている。
その他前述の実施形態と同様の構成を備えている。
<(4) Groove insertion>
As shown in FIG. 16, the inner ring 2 is inserted into the small collar 7 facing the axially outer end surface of the long roller 5 among the small collars 6 and 7 (FIG. 13). A groove 15 is provided. As shown in FIG. 17, an arc-shaped insertion groove 15 is provided at one place in the circumferential direction of the small brim 7 of the inner ring 2. The radius of curvature of the arc 15a of the insertion groove 15 is appropriately set according to the maximum diameter of the roller 5 to be inserted (FIG. 16).
In addition, the same configuration as the above-described embodiment is provided.

<作用効果について>
他の実施形態に係る複列自動調心ころ軸受1Aによれば、各ころ4,5がころ転動面にDLC被膜14を有するため、耐摩耗性の向上を図ることができる。これにより、前記DLC被膜が無いものより、ころ転動面および内輪2、外輪3の軌道面2a、2b、3aの摩耗が生じ難くなる。またころ転動面の端部にクラウニング13が設けられているため、エッジ応力の緩和を図ることができる。
<About the effects>
According to the double-row self-aligning roller bearing 1A according to another embodiment, since each of the rollers 4 and 5 has the DLC film 14 on the roller rolling surface, it is possible to improve wear resistance. As a result, the roller rolling surfaces and the raceways 2a, 2b, and 3a of the outer ring 3 are less likely to be worn than those without the DLC film. Further, since the crowning 13 is provided at the end of the roller rolling surface, the edge stress can be relaxed.

長いころ5を保持する一方の保持器10RAは、柱部12Aの外径面12Aaが基端側から先端側に向かうに従って半径方向内方に傾斜する傾斜角度βを有するため、保持器10RAのポケットPt面がころ5の最大径位置を抱えることができる。換言すれば、一方の保持器10RAが前述のような傾斜角度βを有するため、保持器10RAのポケットPt面がころ5のピッチ円直径付近で維持され、軸受運転時に保持器10RAのポケットPt面がころ5の最大径位置を円滑に抱えることができる。これにより、長いころ5の姿勢安定性が損なわれることがなく、また長いころ5の組込性も容易に行うことが可能となる。内輪2は、各小つば6,7のうち、長いころ5の軸方向外側の端面に臨む小つば7に、長いころ5を軸受内に挿入する入れ溝15を備えたため、長いころ5の組込性をさらに向上させることができる。   One retainer 10RA that retains the long roller 5 has an inclination angle β in which the outer diameter surface 12Aa of the column portion 12A is inclined radially inward from the proximal end side toward the distal end side. The Pt surface can hold the maximum diameter position of the roller 5. In other words, since one of the cages 10RA has the inclination angle β as described above, the pocket Pt surface of the cage 10RA is maintained near the pitch circle diameter of the rollers 5, and the pocket Pt surface of the cage 10RA during the bearing operation. However, the maximum diameter position of the rollers 5 can be held smoothly. Thereby, the posture stability of the long roller 5 is not impaired, and the long roller 5 can be easily assembled. The inner ring 2 is provided with an insertion groove 15 for inserting the long roller 5 into the bearing in the small brim 7 facing the axially outer end surface of the long roller 5 among the small collars 6, 7. Can be further improved.

図18に示す複列自動調心ころ軸受1Bでは、一方の保持器10RBにおける、柱部12Bの外径面12Baの傾斜角度βが、零よりも大きく、右列のころ5の最大径角α2以下の範囲に設定され、且つ、柱部12Bの内径面の傾斜角度γが外径面の傾斜角度βと同一に設定されている。この例の傾斜角度βは、最大径角α2以下で最大径角α2に略近い角度に設定されている。また柱部12Bの内径面は、傾斜面部のみから成り、前述の平坦面部が設けられていない。
この図18の構成によれば、保持器10RBが前述のような傾斜角度βを有するため、保持器10RBのポケットPt面がころ5のピッチ円直径付近でより確実に維持され、軸受運転時に保持器10RBのポケットPt面がころ5の最大径位置を円滑に且つ確実に抱えることができる。また長いころ5の組込性もより容易に行うことができる。
In the double row self-aligning roller bearing 1B shown in FIG. 18, the inclination angle β of the outer diameter surface 12Ba of the column portion 12B in one cage 10RB is larger than zero, and the maximum diameter angle α2 of the roller 5 in the right row. The inclination angle γ of the inner diameter surface of the column portion 12B is set to be equal to the inclination angle β of the outer diameter surface. The inclination angle β in this example is set to an angle that is equal to or less than the maximum diameter angle α2 and is substantially close to the maximum diameter angle α2. Further, the inner diameter surface of the column portion 12B is composed only of the inclined surface portion, and the above-described flat surface portion is not provided.
According to the configuration of FIG. 18, since the cage 10RB has the inclination angle β as described above, the pocket Pt surface of the cage 10RB is more reliably maintained in the vicinity of the pitch circle diameter of the roller 5, and is retained during bearing operation. The pocket Pt surface of the container 10RB can hold the maximum diameter position of the roller 5 smoothly and reliably. In addition, the long roller 5 can be easily assembled.

以上、実施例に基づいて本発明を実施するための形態を説明したが、ここで開示した実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   As mentioned above, although the form for implementing this invention based on the Example was demonstrated, embodiment disclosed here is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1,1A,1B…複列自動調心ころ軸受
2…内輪
3…外輪
3a…軌道面
4,5…ころ
6,7…小つば
8…中つば
10L,10R,10RA,10RB…保持器
11,11A…円環部
12,12A,12B…柱部
13…クラウニング
14…DLC被膜
15…入れ溝
26…主軸
A1,A2…ころ長さの中央
D1max,D2max…最大径
L1,L2…長さ
P…作用線が互いに交わる点
Q…中つばの軸受幅方向の中心位置
S1,S2…作用線
θ1,θ2…接触角
1, 1A, 1B ... Double-row self-aligning roller bearing 2 ... Inner ring 3 ... Outer ring 3a ... Raceway surface 4, 5 ... Roller 6, 7 ... Small collar 8 ... Middle collar 10L, 10R, 10RA, 10RB ... Retainer 11, 11A ... annular portion 12, 12A, 12B ... pillar part 13 ... crowning 14 ... central D1 max, D2 max ... maximum diameter L1, L2 ... the length of the DLC coating 15 ... grooving 26 ... main shaft A1, A2 ... roller length P ... Point where the lines of action intersect with each other Q ... Center positions S1, S2 of the middle collar in the bearing width direction ... Lines of action θ1, θ2 ... Contact angle

Claims (4)

内輪と外輪との間に、軸受幅方向に並んで2列にころが介在し、前記外輪の軌道面が球面状であり、前記2列のころは外周面が前記外輪の軌道面に沿う断面形状である複列自動調心ころ軸受であって、
前記2列のころは互いに長さが異なり、かつ長さの長いころの接触角の方が長さの短いころの接触角よりも大きく、前記内輪の外周面における前記2列のころ間の部分に中つばが存在し、この中つばの軸受幅方向の中心位置が、両列の接触角を成す作用線が互いに交わる点の軸受幅方向の位置よりも、前記長さの長いころの側にずれていることを特徴とする複列自動調心ころ軸受。
Between the inner ring and the outer ring, rollers are arranged in two rows in the bearing width direction, the raceway surface of the outer ring is spherical, and the outer surface of the two rows of rollers is a cross section along the raceway surface of the outer ring. A double row spherical roller bearing having a shape,
The two rows of rollers have different lengths, and the contact angle of the long roller is greater than the contact angle of the short roller, and the portion between the two rows of rollers on the outer peripheral surface of the inner ring There is a middle brim, and the center position of the middle brim in the bearing width direction is closer to the longer roller side than the position in the bearing width direction at the point where the action lines forming the contact angles of both rows intersect each other. Double-row self-aligning roller bearing characterized by being displaced.
請求項1に記載の複列自動調心ころ軸受において、長さの短いころの接触角と長さの長いころの接触角との比が1:2ないし1:4の範囲内にある複列自動調心ころ軸受。   2. The double row self-aligning roller bearing according to claim 1, wherein the ratio of the contact angle of the short roller and the contact angle of the long roller is in the range of 1: 2 to 1: 4. Spherical roller bearing. 請求項1または請求項2に記載の複列自動調心ころ軸受において、風力発電装置の主軸の支持に用いられる複列自動調心ころ軸受。   The double row spherical roller bearing according to claim 1 or 2, wherein the double row spherical roller bearing is used for supporting a main shaft of a wind power generator. 請求項1ないし請求項3のいずれか1項に記載の複列自動調心ころ軸受において、
前記各列のころをそれぞれ保持する保持器を備え、各保持器は、各列のころの軸方向内側の端面を案内する環状の円環部と、この円環部から軸方向に延び且つ円周方向に沿って定められた間隔置きに設けられた複数の柱部とを備え、これら柱部間に前記ころを保持するポケットが設けられ、前記長いころを保持する一方の保持器は、前記柱部の外径面が基端側から先端側に向かうに従って半径方向内方に傾斜する傾斜角度を有し、
前記各ころは、ころ転動面にDLC被膜、且つ前記ころ転動面の端部にクラウニングを有し、
前記内輪は、この内輪の外周面における前記2列のころ間に設けられ前記2列のころを案内する中つばと、前記外周面の両端にそれぞれ設けられ各列のころの軸方向外側の端面に臨む小つばとを備え、前記内輪は、前記各小つばのうち、前記長いころの軸方向外側の端面に臨む小つばに、前記長いころを軸受内に挿入する入れ溝を備えた複列自動調心ころ軸受。
In the double row spherical roller bearing according to any one of claims 1 to 3,
Each of the rows of rollers is provided with a cage, and each cage has an annular ring portion that guides an axially inner end face of each row of rollers, an axially extending from the annular portion, and a circular shape. A plurality of pillars provided at intervals defined along the circumferential direction, pockets for holding the rollers are provided between the pillars, and one of the cages for holding the long rollers is The outer diameter surface of the column part has an inclination angle inclined inward in the radial direction from the base end side toward the tip end side,
Each of the rollers has a DLC film on the roller rolling surface, and a crowning at an end of the roller rolling surface,
The inner ring is provided between the two rows of rollers on the outer peripheral surface of the inner ring and guides the two rows of rollers, and the end surface on the outer side in the axial direction of each row of rollers provided on both ends of the outer peripheral surface. The inner ring has a double row provided with a slot into which the long roller is inserted into the bearing in a small brim that faces the axially outer end surface of the long roller. Spherical roller bearing.
JP2017048527A 2016-03-24 2017-03-14 Double row self-aligning roller bearing Active JP6871767B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES17770365T ES2959734T3 (en) 2016-03-24 2017-03-23 Double row self-aligning roller bearing
PCT/JP2017/011775 WO2017164325A1 (en) 2016-03-24 2017-03-23 Double-row spherical roller bearing
CN201780019166.XA CN108884867B (en) 2016-03-24 2017-03-23 Double-row self-aligning roller bearing
EP17770365.9A EP3434918B1 (en) 2016-03-24 2017-03-23 Double-row self-aligning roller bearing
US16/138,504 US10655674B2 (en) 2016-03-24 2018-09-21 Double-row self-aligning roller bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016059474 2016-03-24
JP2016059474 2016-03-24

Publications (2)

Publication Number Publication Date
JP2017180832A true JP2017180832A (en) 2017-10-05
JP6871767B2 JP6871767B2 (en) 2021-05-12

Family

ID=60004096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017048527A Active JP6871767B2 (en) 2016-03-24 2017-03-14 Double row self-aligning roller bearing

Country Status (1)

Country Link
JP (1) JP6871767B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109322911A (en) * 2018-11-30 2019-02-12 瓦房店轴承集团国家轴承工程技术研究中心有限公司 Wind-power electricity generation main shaft biserial abnormity self-aligning roller bearing
WO2020203393A1 (en) 2019-04-05 2020-10-08 Ntn株式会社 Self-aligning roller bearing
US11542985B2 (en) 2018-09-26 2023-01-03 Ntn Corporation Rolling bearing and wind power generation rotor shaft support device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245251A (en) * 2003-02-10 2004-09-02 Nsk Ltd Automatic centering rolling bearing
JP2005083467A (en) * 2003-09-08 2005-03-31 Nsk Ltd Cylindrical roller bearing
DE102004047881A1 (en) * 2004-10-01 2006-04-06 Fag Kugelfischer Ag & Co. Ohg Self-aligning roller bearing for use in applications where axial loading is predominantly on one side has two rows of rollers which are inclined to vertical in opposite directions, angle being greater on side with higher loading
JP2007040520A (en) * 2005-07-01 2007-02-15 Nsk Ltd Tapered roller bearing
JP2007247678A (en) * 2006-03-13 2007-09-27 Ntn Corp Double row roller bearing and its assembling method
JP2007255601A (en) * 2006-03-23 2007-10-04 Ntn Corp Double row roller bearing and method for assembling the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004245251A (en) * 2003-02-10 2004-09-02 Nsk Ltd Automatic centering rolling bearing
JP2005083467A (en) * 2003-09-08 2005-03-31 Nsk Ltd Cylindrical roller bearing
DE102004047881A1 (en) * 2004-10-01 2006-04-06 Fag Kugelfischer Ag & Co. Ohg Self-aligning roller bearing for use in applications where axial loading is predominantly on one side has two rows of rollers which are inclined to vertical in opposite directions, angle being greater on side with higher loading
JP2007040520A (en) * 2005-07-01 2007-02-15 Nsk Ltd Tapered roller bearing
JP2007247678A (en) * 2006-03-13 2007-09-27 Ntn Corp Double row roller bearing and its assembling method
JP2007255601A (en) * 2006-03-23 2007-10-04 Ntn Corp Double row roller bearing and method for assembling the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11542985B2 (en) 2018-09-26 2023-01-03 Ntn Corporation Rolling bearing and wind power generation rotor shaft support device
CN109322911A (en) * 2018-11-30 2019-02-12 瓦房店轴承集团国家轴承工程技术研究中心有限公司 Wind-power electricity generation main shaft biserial abnormity self-aligning roller bearing
WO2020203393A1 (en) 2019-04-05 2020-10-08 Ntn株式会社 Self-aligning roller bearing
EP3951197A4 (en) * 2019-04-05 2022-12-07 NTN Corporation Self-aligning roller bearing
US11773901B2 (en) 2019-04-05 2023-10-03 Ntn Corporation Self-aligning roller bearing

Also Published As

Publication number Publication date
JP6871767B2 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2017164325A1 (en) Double-row spherical roller bearing
US10655674B2 (en) Double-row self-aligning roller bearing
WO2005050038A1 (en) Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
JP7029249B2 (en) Multi-row self-aligning roller bearings and pop-out prevention jigs
US10697492B2 (en) Double-row self-aligning roller bearing
JP2017180832A (en) Double-row self-aligning roller bearing
JP2017180831A (en) Double-row self-aligning roller bearing
WO2017047506A1 (en) Double-row self-aligning roller bearing
CN113661331B (en) Self-aligning roller bearing
CN111989500B (en) Multi-row self-aligning roller bearing
WO2018131618A1 (en) Double-row self-aligning roller bearing
CN110945256B (en) Double-row automatic aligning roller bearing
WO2018131617A1 (en) Double-row self-aligning roller bearing and protrusion prevention jig
EP3783237B1 (en) Double-row self-aligning roller bearing
JP6236754B2 (en) Tandem double-row angular contact ball bearing, differential device, and automobile
JP2010025183A (en) Self-aligning roller bearing
JP2004314203A (en) Machine tool table device and rolling bearing for machine tool table device
JP2006118696A (en) Thrust roller bearing
JP2023102849A (en) Self-aligning roller bearing
JP2006090346A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP2017057950A (en) Double row self-aligning roller bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20210106

TRDD Decision of grant or rejection written
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210416

R150 Certificate of patent or registration of utility model

Ref document number: 6871767

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150