JP2017180671A - Hydrogen accumulator - Google Patents

Hydrogen accumulator Download PDF

Info

Publication number
JP2017180671A
JP2017180671A JP2016068982A JP2016068982A JP2017180671A JP 2017180671 A JP2017180671 A JP 2017180671A JP 2016068982 A JP2016068982 A JP 2016068982A JP 2016068982 A JP2016068982 A JP 2016068982A JP 2017180671 A JP2017180671 A JP 2017180671A
Authority
JP
Japan
Prior art keywords
hydrogen
end plate
pressure
layer material
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016068982A
Other languages
Japanese (ja)
Other versions
JP6753681B2 (en
Inventor
甫 中杉
Hajime Nakasugi
甫 中杉
平 李
Taira Ri
平 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroki Kogyosho Co Ltd
Original Assignee
Kuroki Kogyosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroki Kogyosho Co Ltd filed Critical Kuroki Kogyosho Co Ltd
Priority to JP2016068982A priority Critical patent/JP6753681B2/en
Publication of JP2017180671A publication Critical patent/JP2017180671A/en
Application granted granted Critical
Publication of JP6753681B2 publication Critical patent/JP6753681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen accumulator that is excellent in hydrogen resistance, whose thickness (weight) can be reduced by increasing strength, and that is excellent in economy.SOLUTION: A hydrogen accumulator comprises: a drum part; and end plate parts joined to both ends of the drum part. The drum part has a double-pipe structure in which an inner pipe and an outer pipe are mechanically joined. The end plate parts each have a double-layer structure in which an inner layer material and an outer layer material are metallurgically joined.SELECTED DRAWING: Figure 1

Description

本発明は、水素を高圧で貯蔵する水素蓄圧器に関する。   The present invention relates to a hydrogen pressure accumulator that stores hydrogen at a high pressure.

近年、クリーンなエネルギー源として世界的に水素が注目されており、水素を燃料とする燃料電池自動車の開発、促進が広く行われている。燃料電池自動車はガソリンの代わりに水素をタンクに積んで走行するため、水素を保管する車載の水素タンク及びガソリンスタンドに相当する水素ステーションにおける水素を高圧で貯蔵する水素蓄圧器が必要となる。   In recent years, hydrogen has attracted attention worldwide as a clean energy source, and development and promotion of fuel cell vehicles using hydrogen as fuel have been widely performed. Since a fuel cell vehicle travels with hydrogen stored in a tank instead of gasoline, an in-vehicle hydrogen tank that stores hydrogen and a hydrogen accumulator that stores hydrogen at a high pressure in a hydrogen station corresponding to a gasoline station are required.

水素蓄圧器は現在4タイプに区分されており、タイプ1はアルミあるいは鋼製のもの、タイプ2は金属の薄いライナーを内側にし、その外側をFRPで補強するもの、タイプ3は金属のライナーを内側にし、その外側を樹脂で含浸したシートで補強するもの、タイプ4は繊維又はシートで補強した樹脂製のものである。   There are currently four types of hydrogen pressure accumulators: Type 1 is made of aluminum or steel, Type 2 is a metal thin liner on the inside and the outside is reinforced with FRP, Type 3 is a metal liner The inside is reinforced with a sheet impregnated with resin, and the type 4 is made of resin reinforced with fibers or sheets.

水素を高圧で貯蔵するためには水素の圧力に耐える必要があるところ、当初、水素ステーションの水素蓄圧器で貯蔵する水素の圧力は20MPa程度であったが、貯蔵量を多くしてコストを下げる必要から、近年は40MPaが主流となっており、さらに80MPa以上が必要とされつつある。   In order to store hydrogen at a high pressure, it is necessary to withstand the pressure of hydrogen. Initially, the hydrogen pressure stored in the hydrogen pressure accumulator of the hydrogen station was about 20 MPa, but the storage amount was increased to reduce the cost. In recent years, 40 MPa has become mainstream due to necessity, and further 80 MPa or more is being required.

水素ステーションの水素蓄圧器においては、車載のものと比較して水素の貯蔵量が大きいため、より高い安全性が求められる。しかしながら、前述のタイプ2〜タイプ4では圧力に対する補強材が繊維やシートで補強された樹脂によって作られているため、安全性には限度がある。例えば、特許文献1では、金属のライナー(例:高強度鋼SA−723、35mm厚み)とライナー外周に配した繊維強化プラスチック(例:35mm厚み)とによって蓄圧した水素による内圧荷重を分担し、水素蓄圧器の高強度化、軽量化を図るとしているが、十分とは言えない。   In the hydrogen pressure accumulator of the hydrogen station, since the amount of hydrogen stored is larger than that of the vehicle-mounted one, higher safety is required. However, in the above-mentioned types 2 to 4, since the reinforcing material against pressure is made of resin reinforced with fibers or sheets, there is a limit to safety. For example, in Patent Document 1, an internal pressure load due to hydrogen accumulated by a metal liner (eg, high-strength steel SA-723, thickness of 35 mm) and a fiber reinforced plastic (eg, thickness of 35 mm) disposed on the outer periphery of the liner is shared, The hydrogen accumulator is designed to be stronger and lighter, but it is not enough.

一方、タイプ1では金属の耐水素性が問題となる。すなわち、低合金鋼等の鋼材に水素が侵入すると水素脆化することが知られている。水素圧力が15MPa程度までであれば十分な肉厚を有する低合金鋼を使用すれば良いが、それ以上の圧力では水素脆化による破壊の可能性が高まるため、SUS316L等のオーステナイト系ステンレス鋼が使用される。   On the other hand, in type 1, the hydrogen resistance of the metal becomes a problem. That is, it is known that hydrogen embrittles when hydrogen enters a steel material such as low alloy steel. If the hydrogen pressure is up to about 15 MPa, a low alloy steel having a sufficient thickness may be used. However, since the possibility of fracture due to hydrogen embrittlement increases at higher pressures, austenitic stainless steel such as SUS316L is used. used.

この水素脆化の問題に対し非特許文献1では、タイプ1の場合、高圧力に耐えうる強度に加えて脆性破壊を防止するために粘り強さ(靭性)を兼ね備える必要が指摘されており、この強度と靭性を満足するために熱処理と特殊な合金鋼が提案されている。しかしながら、提案されたSNCM439(ニッケルクロムモリブデン鋼)であっても、90MPaに対応するには71mm厚みが必要であり、重量が大となると同時に経済性に劣ることとなる。   Non-patent document 1 points out the need to combine tenacity (toughness) in order to prevent brittle fracture in addition to the strength that can withstand high pressure in Non-Patent Document 1 for this hydrogen embrittlement problem. Heat treatment and special alloy steel have been proposed to satisfy strength and toughness. However, even the proposed SNCM439 (nickel chrome molybdenum steel) requires a thickness of 71 mm to cope with 90 MPa, which increases the weight and at the same time is inferior in economic efficiency.

また、特許文献2では、タイプ1において、内側にアルミニウム又はアルミニウム合金のライナー層を100nm〜10mm設け、その外側にステンレス鋼の層を設けた二層構造が提案されている。この特許文献2によれば、アルミニウム又はアルミニウム合金のライナー層が、その外側のステンレス鋼への水素侵入を防止するとされている。しかしながら、特許文献2においてライナー層とステンレス鋼との接合は、メッキやクラッド等の冶金的接合で行われており、このような冶金的接合では、内側のライナー層から外側のステンレス鋼への水素侵入を十分に防止することはできない。このため、特許文献2では、外層材に水素侵入による延性、靭性などの機械的性質の劣化が小さいオーステナイト系ステンレス鋼を使用することとしており、重量と経済性を十分に両立できたとは言えない。   Patent Document 2 proposes a two-layer structure of type 1 in which an aluminum or aluminum alloy liner layer is provided on the inner side of 100 nm to 10 mm and a stainless steel layer is provided on the outer side thereof. According to Patent Document 2, the liner layer of aluminum or aluminum alloy is supposed to prevent hydrogen from entering the outer stainless steel. However, in Patent Document 2, the liner layer and the stainless steel are joined by metallurgical joining such as plating or cladding. In such metallurgical joining, hydrogen from the inner liner layer to the outer stainless steel is used. Intrusion cannot be sufficiently prevented. For this reason, Patent Document 2 uses austenitic stainless steel with small deterioration of mechanical properties such as ductility and toughness due to hydrogen intrusion for the outer layer material, and it cannot be said that both weight and economy can be sufficiently achieved. .

特開2015−158243号公報Japanese Patent Laying-Open No. 2015-158243 特開2004−324800号公報JP 2004-324800 A

和田洋流 水素スタンド用鋼製蓄圧器の材料選定と安全性評価について 水素エネルギーシステムVol.35,No.4(2010)p.38〜p.44Wada Yoryu Materials selection and safety evaluation of steel pressure accumulator for hydrogen stand Hydrogen Energy System Vol. 35, no. 4 (2010) p. 38-p. 44

以上に鑑み、本発明が解決しようとする課題は、耐水素性に優れ、かつ高強度化により厚み(重量)を小さくでき経済性に優れる水素蓄圧器を提供することにある。   In view of the above, the problem to be solved by the present invention is to provide a hydrogen pressure accumulator which is excellent in hydrogen resistance and can be reduced in thickness (weight) by increasing strength and is excellent in economy.

この課題を解決するため本発明では、胴部と、この胴部の両端に接合された鏡板部とを有する水素蓄圧器において、前記胴部を、内管と外管とが機械的に接合した二重管構造としたことを特徴とするものである。以下、本発明の特徴を詳しく説明する。   In order to solve this problem, in the present invention, in the hydrogen pressure accumulator having a barrel portion and a head plate portion joined to both ends of the barrel portion, the barrel portion is mechanically joined to the inner tube and the outer tube. It is characterized by having a double tube structure. The features of the present invention will be described in detail below.

水素は鋼材表面にある水及び鉄成分を介して鋼と反応しHとして鋼中に侵入し、約2ppmを超えると鋼にクラックを発生させる。したがって、水素に接する鋼材はできるだけ水素脆性に優れたオーステナイト系ステンレス鋼やアルミニウムが良いとされているが、水素蓄圧器が一層構造の場合は、この層にさらに耐圧性能(強度及び靭性)が必要となる。その結果、現在はオーステナイト系ステンレス鋼や高合金鋼(ニッケルクロムモリブデン鋼)の厚い鋼材が使用されているが、これを二層構造にして、内層は耐水素性に優れた材料、外層は強度や靭性に優れた材料とする考えは前記特許文献2に見られるように従前よりあった。しかしながら、通常、二層構造の製作はメッキやクラッド等の冶金的接合で行われ、その場合、水素との接触表面で発生したHは内層から外層までそのまま透過してしまい、鋼中のいずれかの場所で2ppmを超え、鋼材にクラックを発生させる。 Hydrogen reacts with the steel through the water and iron components present on the surface of the steel material and enters the steel as H + , and if it exceeds about 2 ppm, it causes cracks in the steel. Therefore, austenitic stainless steel and aluminum that have excellent hydrogen embrittlement as much as possible are used as the steel materials in contact with hydrogen. However, if the hydrogen pressure accumulator has a single layer structure, this layer needs to have pressure resistance (strength and toughness) It becomes. As a result, thick steel materials such as austenitic stainless steel and high alloy steel (nickel chrome molybdenum steel) are currently used, but this has a two-layer structure, the inner layer is excellent in hydrogen resistance, the outer layer is strong and The idea of making the material excellent in toughness has been as before as seen in Patent Document 2. However, normally, the two-layer structure is manufactured by metallurgical joining such as plating and cladding. In that case, H + generated on the contact surface with hydrogen is permeated as it is from the inner layer to the outer layer, and any of the steel in the steel It exceeds 2ppm in some places and causes cracks in the steel.

そこで、本発明では水素蓄圧器の胴部を二層構造、具体的には二重管構造とするにあたり、内管と外管との接合を冶金的接合ではなく、機械的接合によるものとしている。この結果、内管をHとして透過して来た水素は内管を出たところで一旦極低圧のHとなるが、このHは分子のために、このままでは外管中に再侵入することはできない。すなわち、外管中に再侵入するには、内管中に侵入するときと同様の高圧高濃度の水素と水とによりHとなる必要があるが、一般的には内管と外管との間でこのような条件を満足することはできない。 Therefore, in the present invention, when the body of the hydrogen pressure accumulator has a two-layer structure, specifically, a double-pipe structure, the inner pipe and the outer pipe are joined not by metallurgical joining but by mechanical joining. . As a result, the hydrogen that has permeated through the inner tube as H + once becomes H 2 at a very low pressure when it exits the inner tube, but this H 2 re-enters the outer tube as it is because of the molecules. It is not possible. That is, in order to re-enter into the outer pipe, it is necessary to become H + by high-pressure and high-concentration hydrogen and water as in the case of entering the inner pipe. Such a condition cannot be satisfied.

このように内管と外管とが機械的に接合した二重管構造では、内管を透過したHはそのまま外管は透過せず一旦Hとなるため、外管には特別の耐水素性に優れた鋼材を使用する必要がない。なお、内管の耐水素鋼に欠陥発生が危惧される場合は、内管と外管との間で水素が高圧化するのを防止するためにH検出端子を内管と外管との間に設置すればより安全である。 Thus, in the double pipe structure in which the inner pipe and the outer pipe are mechanically joined, H + that has permeated the inner pipe does not permeate the outer pipe as it is and becomes H 2 once. Therefore, the outer pipe has special water resistance. There is no need to use steel with excellent features. In the case where a defect occurs in water Motoko of the inner tube is feared, while the hydrogen between the inner tube and the outer tube is the inner tube and the outer tube of H 2 detection terminals in order to prevent the high pressure It is safer if installed in.

ここで、内管と外管とを機械的に接合する方法としては、加熱水圧拡管法が好適である。この加熱水圧拡管法とは、例えば特公昭56−46451号公報に記載のとおり、加熱膨張させた外管内に内管を挿入したのち当該内管を水圧によって拡管し、その後、当該外管を熱収縮させることによって両管を緊着締結させる方法である。ただし、内管と外管とを機械的に接合できる方法であれば加熱水圧拡管法には限定されず、例えば、加熱を伴わない水圧拡管法や、水圧拡管を伴わない焼嵌め法を採用することもできる。   Here, as a method of mechanically joining the inner tube and the outer tube, a heated water pressure expanding method is suitable. For example, as described in Japanese Examined Patent Publication No. 56-46451, the heated water pressure tube expansion method is to insert an inner tube into a heated and expanded outer tube, expand the inner tube by water pressure, and then heat the outer tube. In this method, both pipes are fastened and fastened by contraction. However, the method is not limited to the heated water expansion method as long as the inner tube and the outer tube can be mechanically joined. For example, a water pressure expansion method without heating or a shrink fitting method without water pressure expansion is adopted. You can also.

本発明によれば、水素蓄圧器の本体である胴部を、内管と外管とが機械的に接合した二重管構造としたので、内管には水素の発生・透過が小さい耐水素性に優れた鋼材を、外管には耐圧性能(高強度)及び靭性に優れた鋼材を自由に選ぶことができる。これにより、耐水素性に優れ、かつ高強度化により厚み(重量)を小さくでき経済性に優れる水素蓄圧器を提供することができる。   According to the present invention, the body that is the main body of the hydrogen pressure accumulator has a double pipe structure in which the inner pipe and the outer pipe are mechanically joined, so that the inner pipe has a low resistance to hydrogen generation and permeation. The steel material excellent in pressure resistance (high strength) and toughness can be freely selected for the outer tube. Accordingly, it is possible to provide a hydrogen pressure accumulator that is excellent in hydrogen resistance and can be reduced in thickness (weight) by increasing strength and is excellent in economy.

本発明の水素蓄圧器の一実施形態を示す全体概略図である。1 is an overall schematic diagram showing an embodiment of a hydrogen pressure accumulator of the present invention. 本発明の水素蓄圧器において胴部と鏡板部を溶接接合する工程例を示す説明図である。It is explanatory drawing which shows the process example which weld-joins a trunk | drum and an end plate part in the hydrogen pressure accumulator of this invention.

図1は、水素蓄圧器の一実施形態を示す全体概略図である。同図に示す水素蓄圧器は、円筒状の胴部と、この胴部の両端に接合された半球状の鏡板部とを有し、胴部と鏡板部とは溶接接合により一体化されている。   FIG. 1 is an overall schematic diagram showing an embodiment of a hydrogen pressure accumulator. The hydrogen pressure accumulator shown in the figure has a cylindrical body part and a hemispherical end plate part joined to both ends of the body part, and the body part and the end plate part are integrated by welding. .

胴部は、内管と外管とが機械的に接合した二重管構造からなる。一方、本実施形態において鏡板部は、内層材と外層材とが冶金的に接合した二層構造からなる。鏡板部の二層構造を冶金的接合によるものとしたのは、鏡板部には、その形状から応力が集中しやすいことから、冶金的接合により強固な二層構造とすることが好ましいためである。冶金的接合法としては、熱間等方圧加圧法(HIP)が好適であるが、メッキやクラッドを採用しても良い。   The trunk portion has a double tube structure in which an inner tube and an outer tube are mechanically joined. On the other hand, in the present embodiment, the end plate portion has a two-layer structure in which an inner layer material and an outer layer material are joined metallurgically. The reason why the two-layer structure of the end plate portion is made by metallurgical joining is that stress is likely to concentrate on the end plate portion due to its shape, and therefore it is preferable to make a strong two-layer structure by metallurgical joining. . As the metallurgical bonding method, hot isostatic pressing (HIP) is suitable, but plating or cladding may be employed.

このように本発明の水素蓄圧器において胴部の二重管構造は内管と外管との機械的接合によるものであるから、外管には耐水素性を必要としないため自由に鋼材を選択することができる。   As described above, in the hydrogen pressure accumulator of the present invention, the double pipe structure of the body portion is due to the mechanical joining of the inner pipe and the outer pipe, so the outer pipe does not require hydrogen resistance, so steel can be selected freely can do.

一方、外管の肉厚と強度は次の式(1)の関係に基づき選定することができる。
t=(PD/2σ )・f ・・・(1)
ここで、t:外管の肉厚
P:使用最大圧力
D:外管の外径
σ:外管の公称降伏強さ
f:安全率
On the other hand, the thickness and strength of the outer tube can be selected based on the relationship of the following equation (1).
t = (PD / 2σ) · f (1)
Where t: wall thickness of the outer tube
P: Maximum operating pressure
D: Outer tube outer diameter
σ: Nominal yield strength of outer pipe
f: Safety factor

すなわち、高強度鋼材(公降伏強さが大)を使用すれば外管の肉厚(t)を小さくすることができる。一般的には、高強度鋼材ほど価格が高い傾向にあるが、高強度鋼材の場合には肉厚を小さくできるため、全体の重量が小さくなり、設置部分の基礎や構造を簡略にすることができる。よって、その時々の状況に合わせて経済性も加味した最適の外管を選定することができる。なお、内管は耐水素性により選定することから、前記式(1)には内管の寄与は含めていない。実際の二重管構造では内管も強度向上に寄与するから、さらに安全性が向上する。   That is, the thickness (t) of the outer tube can be reduced by using high-strength steel (high public yield strength). Generally, high-strength steel materials tend to be more expensive, but in the case of high-strength steel materials, the wall thickness can be reduced, which reduces the overall weight and simplifies the foundation and structure of the installation part. it can. Therefore, it is possible to select an optimal outer tube that takes into account economic efficiency in accordance with the circumstances at that time. Since the inner pipe is selected based on hydrogen resistance, the contribution of the inner pipe is not included in the formula (1). In an actual double pipe structure, the inner pipe also contributes to the strength improvement, so the safety is further improved.

内管には耐水素性が必要とされるため、例えば表1に示すグループAのオーステナイト系ステンレス鋼を選定することができる。さらに高い耐水素性を必要とする場合は、グループBのNiを30%以上含有するスーパーオーステナイト系ステンレス鋼又はNi系合金鋼を選定することができる。   Since the inner pipe requires hydrogen resistance, for example, a group A austenitic stainless steel shown in Table 1 can be selected. When higher hydrogen resistance is required, super austenitic stainless steel or Ni alloy steel containing 30% or more of Group B Ni can be selected.

このように内管には耐水素性の良好な材料を使用すれば良く、強度を必要としないため、経済的には薄いほど良いことになるが、機械的接合法(加熱水圧拡管法)による製造上から、内管厚み/内管外径≧1%が実用的、経済的である。なお、内管厚みが6mmを超えると製造上の経済性が失われる。したがって、製造上、内管の厚みは2mm〜6mmが適当である。   In this way, it is only necessary to use a material with good hydrogen resistance for the inner pipe, and strength is not required. Therefore, the thinner the better, the better, but the production by the mechanical joining method (heated water pressure expansion method) From above, the inner tube thickness / inner tube outer diameter ≧ 1% is practical and economical. If the inner tube thickness exceeds 6 mm, the economical efficiency in production is lost. Therefore, the thickness of the inner tube is suitably 2 mm to 6 mm for manufacturing.

前述のとおり、内管と外管を冶金的接合ではなく機械的接合を行う種々の工業的方法の中で本発明に最も適する方法は加熱水圧拡管法である。この加熱水圧拡管法では、外管としては特別に機械研削や研磨等の2次加工を行っていない鋼管を一般のガス炉等の加熱手段によって熱膨張させて当該鋼管の内径を増径し、その中に当初の外管の内径より小さい外径の内管を低圧水で冷却しながら挿入した後、内管を高圧水で瞬時に加圧し、内管を塑性拡管及び合わせて外管も弾性内応力で随伴拡管する。その後、外管を内管に水を挿入することによって間接冷却させると当該外管は熱収縮によって内管にさらに当接し、締め付け力が発生することによって機械的接合でありながら強固な接合を得ることができる。この加熱水圧拡管法は、外管の熱収縮による締め付け力を利用しているために、内管及び外管の降伏強度等の制約がなく、自由な材質の選定が可能であることから、水素蓄圧器の胴部の製造に最も適している。   As described above, among various industrial methods for mechanically joining the inner tube and the outer tube instead of metallurgical joining, the method most suitable for the present invention is the heated water pressure expanding method. In this heated water expansion method, the outer tube is thermally expanded by a heating means such as a general gas furnace to increase the inner diameter of the steel tube, which is not subjected to secondary processing such as mechanical grinding or polishing. After inserting an inner tube with an outer diameter smaller than the inner diameter of the original outer tube while cooling with low-pressure water, the inner tube is instantaneously pressurized with high-pressure water, the inner tube is plastic expanded, and the outer tube is also elastic. The pipe expands with internal stress. After that, when the outer tube is indirectly cooled by inserting water into the inner tube, the outer tube is further brought into contact with the inner tube by thermal contraction, and a tightening force is generated to obtain a strong bond while being mechanically bonded. be able to. Since this heating water pressure expansion method uses the tightening force due to the thermal contraction of the outer tube, there is no restriction on the yield strength of the inner tube and the outer tube, and free materials can be selected. Most suitable for the manufacture of the body of the accumulator.

次に、鏡板部は胴部のいわゆる蓋に相当し、胴部の両端に位置するものであるが、その二層構造化については、工業的には胴部と同様の加熱水圧拡管法を採ることはできない。また、前述のとおり、鏡板部には応力が集中しやすいことから、冶金的接合により強固な二層構造とすることが好ましい。そこで、本実施形態において鏡板部は、内層材と外層材との熱間等方圧加圧法(HIP)による冶金的接合により二層構造としている。   Next, the end plate part corresponds to a so-called lid of the body part and is located at both ends of the body part, but for the two-layer structure, industrially, a heated water pressure expansion method similar to that of the body part is adopted. It is not possible. Further, as described above, since stress tends to concentrate on the end plate portion, it is preferable to have a strong two-layer structure by metallurgical bonding. Therefore, in this embodiment, the end plate portion has a two-layer structure by metallurgical joining between the inner layer material and the outer layer material by hot isostatic pressing (HIP).

熱間等方圧加圧法(HIP)では、外層材としての鏡板材の内側に内層材として薄肉ライナー材を配置し、これらを高温、高圧によって接合させ二層構造の鏡板部を製作する。この熱間等方圧加圧法(HIP)は、加熱水圧拡管法に比較して複雑な形状にも対応でき、水素の出入口を設ける必要がある鏡板部の製作に適した冶金的接合方法と言える。なお、熱間等方圧加圧法(HIP)では、内層材(薄肉ライナー材)を外層材(鏡板材)に密着させるために内層材と外層材との間を10−4Pa以下の真空にすることが重要である。また、接合時の温度は、鏡板材の融点の80%程度が好ましい。 In the hot isostatic pressing method (HIP), a thin liner material is disposed as an inner layer material inside an end plate material as an outer layer material, and these are joined by high temperature and high pressure to produce a two-layer structure end plate portion. This hot isostatic pressing method (HIP) can cope with a complicated shape as compared with the heated water pressure expansion method, and can be said to be a metallurgical joining method suitable for the production of an end plate portion that needs to be provided with a hydrogen inlet / outlet. . In the hot isostatic pressing method (HIP), a vacuum of 10 −4 Pa or less is applied between the inner layer material and the outer layer material in order to bring the inner layer material (thin liner material) into close contact with the outer layer material (end plate material). It is important to. The temperature at the time of joining is preferably about 80% of the melting point of the end plate material.

このように鏡板部を内層材と外層材とが冶金的に接合した二層構造とする場合、その内層材には、胴部の内管より1ランク上位の耐水素性を有する材料を使用することで一層の安全性を確保することができる。具体的には、胴部の内管が表1のグループAの場合は鏡板部の内層材は上位ランクのグループB又はCを、胴部の内管がグループBの場合は鏡板部の内層材はグループCの材料を選定するのが良い。これらの組み合わせを表2に示す。   In this way, when the end plate portion has a two-layer structure in which the inner layer material and the outer layer material are metallurgically joined, a material having hydrogen resistance that is one rank higher than the inner tube of the body portion should be used for the inner layer material. Therefore, further safety can be secured. Specifically, when the inner tube of the body portion is group A in Table 1, the inner layer material of the end plate portion is the upper rank group B or C, and when the inner tube of the body portion is group B, the inner layer material of the end plate portion It is better to select Group C materials. These combinations are shown in Table 2.

以上により製作した二重管構造の胴部と二層構造の鏡板部とは、溶接によって接合することができる。この溶接接合によって耐水素性を確保しつつ耐圧性を確保する必要があるため、この工程は重要である。その好ましい工程例を、図2を参照しつつ説明する。   The body portion of the double pipe structure and the end plate portion of the two-layer structure manufactured as described above can be joined by welding. This process is important because it is necessary to ensure pressure resistance while ensuring hydrogen resistance by this welding joint. The preferable process example is demonstrated referring FIG.

まず胴部及び鏡板部の端面を加工した後(工程(1)−1及び工程(1)−2)、シール部を表3の溶接材料で肉盛り溶接する(工程(2))。その後、シール部をさらに端面加工し(工程(3))、最後に円周状にシール部に使用した溶接材料で内層部を溶接し、外層部はそれ以上の強度を有する高張力鋼の溶接棒によって溶接接合する(工程(4))。溶接接合は通常はアーク溶接法で行うが、電子ビーム溶接法によっても良い。   First, after processing the end surfaces of the body portion and the end plate portion (step (1) -1 and step (1) -2), the seal portion is build-up welded with the welding material shown in Table 3 (step (2)). After that, the end face of the seal part is further processed (step (3)), and finally the inner layer part is welded with a welding material used for the seal part in a circumferential shape, and the outer layer part is welded with high strength steel having higher strength. Weld and join with a rod (step (4)). Welding is usually performed by arc welding, but may be performed by electron beam welding.

なお、シール部と溶接接合部の内層部に使用する溶接材料は、少なくとも鏡板部の内層材と同程度の耐水素性を有する材料であることが好ましく、表3に示すように鏡板部の内層材より高い耐水素性を有する材料であることがより好ましい。   In addition, it is preferable that the welding material used for the inner layer portion of the seal portion and the weld joint portion is a material having at least the same level of hydrogen resistance as the inner layer material of the end plate portion, and as shown in Table 3, the inner layer material of the end plate portion A material having higher hydrogen resistance is more preferable.

〔実施例1〕
使用最大圧力70MPaを想定した実施例を実施例1として表4に示す。この実施例1では、胴部の内管材と鏡板部の内層材は組み合わせ1を採用した。具体的には、胴部の内管材はオーステナイト系ステンレス鋼であるTP316Lとし、鏡板部の内層材はグレードを1ランク上げてNi系合金鋼であるLC2242とした。これにより、冶金的接合である鏡板部の耐水素性を機械的接合である胴部と同等とした。
[Example 1]
An example assuming a maximum working pressure of 70 MPa is shown in Table 4 as Example 1. In Example 1, a combination 1 was adopted as the inner tube material of the body portion and the inner layer material of the end plate portion. Specifically, the inner tube material of the body portion was TP316L, which is austenitic stainless steel, and the inner layer material of the end plate portion was upgraded by one rank to be LC2242, which is Ni-based alloy steel. Thereby, the hydrogen resistance of the end plate part which is metallurgical joining was made equal to that of the body part which was mechanical joining.

また、胴部の外管材は使用最大圧力に対応し強度に優れた、米国石油協会ラインパイプ規格(API 5L)のX100Mを採用し、肉厚を57mmとした。これだけの厚みがあれば、式(1)によって求められる必要肉厚を満足し、耐圧性能は十分にある。また、加熱水圧拡管法による製造上から、胴部内管の肉厚を5mmとし、内管厚み/内管外径=2.1%とした。鏡板部の外層材、内層材については、耐水素性以外は胴部に準じた設定とした。   In addition, the outer pipe material of the trunk portion is X100M of the American Petroleum Institute Line Pipe Standard (API 5L), which corresponds to the maximum pressure used and has excellent strength, and has a wall thickness of 57 mm. If there is such a thickness, the required thickness required by the equation (1) is satisfied, and the pressure resistance performance is sufficient. Further, from the standpoint of manufacturing by the heated water pressure expansion method, the thickness of the inner tube of the trunk portion was set to 5 mm, and the inner tube thickness / inner tube outer diameter = 2.1%. The outer layer material and inner layer material of the end plate part were set according to the body part except for hydrogen resistance.

なお、内層に関係する部分のシール部溶接材料及び溶接接合部の内層部は耐水素性に重きを置いた溶接材料を選定し、溶接接合部の外層部のみ強度を重視した溶接材料を選定した。   In addition, the welding material which put weight on hydrogen resistance was selected for the seal part welding material of the part relevant to an inner layer, and the inner layer part of a welding joint part, and the welding material which attached importance to the strength was selected only for the outer layer part of the welding joint part.

〔実施例2〕
使用最大圧力90MPaを想定した実施例を実施例2として表4に示す。この実施例2では、圧力が実施例1より若干高いため冶金的接合である鏡板部の内層材の耐水素性をさらにグレードアップしたNi系合金鋼であるLC2262とし、組み合わせ2を採用した。なお、耐圧性を増す必要があるため、胴部の外管材をグレードアップしてX120Mとした。これにより、外管の肉厚をほとんど実施例1と変えることなく、使用最大圧力90MPaに対応可能である。
[Example 2]
An example assuming a maximum working pressure of 90 MPa is shown in Table 4 as Example 2. In this Example 2, since the pressure was slightly higher than that in Example 1, LC 2262, which is a Ni-based alloy steel in which the hydrogen resistance of the inner layer material of the end plate part, which is metallurgical bonding, was further upgraded was used, and the combination 2 was adopted. Since the pressure resistance needs to be increased, the outer tube material of the body portion was upgraded to X120M. Thereby, it is possible to cope with the maximum use pressure of 90 MPa without changing the wall thickness of the outer tube almost as in the first embodiment.

〔実施例3〕
使用最大圧力100MPaを想定した実施例を実施例3として表4に示す。この実施例3では、圧力がさらに高い分、内層材の耐水素性もグレードアップさせる必要があるため、胴部の内管材と鏡板部の内層材は組み合わせ3を採用した。具体的には、胴部の内管材はNi系合金鋼であるLC2242を使用し、鏡板部の内層材はグレードを1ランク上げてNi系合金鋼であるLC2262とした。また、胴部の内管材のグレードアップに対応して、胴部のシール部溶接材料もグレードをアップした。さらに、使用最大圧力100MPaに対応するために、外層としては、胴部の外管材、鏡板部の外層材ともにSCM445を採用した。これにより、外管材及び外層材の肉厚をほとんど実施例1、実施例2と変えることなく、使用最大圧力100MPaに対応可能である。
Example 3
An example assuming a working maximum pressure of 100 MPa is shown in Table 4 as Example 3. In Example 3, since the pressure is further increased, it is necessary to upgrade the hydrogen resistance of the inner layer material. Therefore, the inner tube material of the trunk portion and the inner layer material of the end plate portion are combined 3. Specifically, the inner tube material of the trunk portion used LC2242 which is Ni-based alloy steel, and the inner layer material of the end plate portion was upgraded to one rank to be LC2262 which is Ni-based alloy steel. Corresponding to the upgrade of the inner tube material of the barrel part, the welding material for the seal part of the trunk part has also been upgraded. Furthermore, in order to cope with the maximum working pressure of 100 MPa, SCM445 was adopted as the outer layer for both the outer tube material of the trunk portion and the outer layer material of the end plate portion. Thereby, it is possible to cope with the maximum use pressure of 100 MPa without changing the wall thickness of the outer tube material and the outer layer material to those of the first and second embodiments.

〔実施例4〕
使用最大圧力110MPaを想定した実施例を実施例3として表4に示す。この実施例4では、耐水素性は大きく変える必要がないので実施例3と同様とし、耐圧性を増す必要があるため、外管材及び外層材をグレードアップしてSNCM630とした。これにより、外管材及び外層材の肉厚をほとんど実施例1、実施例2、実施例3と変えることなく、使用最大圧力110MPaに対応可能である。
Example 4
An example assuming a maximum working pressure of 110 MPa is shown in Table 4 as Example 3. In this Example 4, since it is not necessary to largely change the hydrogen resistance, it is the same as in Example 3, and it is necessary to increase the pressure resistance. Therefore, the outer tube material and the outer layer material were upgraded to SNCM630. Thereby, it is possible to cope with the maximum use pressure of 110 MPa without changing the wall thickness of the outer tube material and the outer layer material from those of the first embodiment, the second embodiment, and the third embodiment.

Claims (4)

胴部と、この胴部の両端に接合された鏡板部とを有する水素蓄圧器において、
前記胴部は、内管と外管とが機械的に接合した二重管構造からなることを特徴とする水素蓄圧器。
In a hydrogen pressure accumulator having a body part and a head plate part joined to both ends of the body part,
The body is formed of a double pipe structure in which an inner pipe and an outer pipe are mechanically joined to each other.
前記鏡板部は、内層材と外層材とが冶金的に接合した二層構造からなる、請求項1に記載の水素蓄圧器。   The hydrogen pressure accumulator according to claim 1, wherein the end plate portion has a two-layer structure in which an inner layer material and an outer layer material are metallurgically joined. 前記鏡板部の内層材は、前記胴部の内管よりも高い耐水素性を有する、請求項2に記載の水素蓄圧器。   The hydrogen pressure accumulator according to claim 2, wherein the inner layer material of the end plate portion has higher hydrogen resistance than the inner tube of the body portion. 前記胴部と前記鏡板部とが溶接接合されており、溶接接合部の内層部が前記鏡板部の内層材と同等又はそれ以上の耐水素性を有する、請求項3に記載の水素蓄圧器。   The hydrogen pressure accumulator according to claim 3, wherein the body portion and the end plate portion are welded and the inner layer portion of the weld joint has hydrogen resistance equal to or higher than that of the inner layer material of the end plate portion.
JP2016068982A 2016-03-30 2016-03-30 Hydrogen accumulator Active JP6753681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016068982A JP6753681B2 (en) 2016-03-30 2016-03-30 Hydrogen accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016068982A JP6753681B2 (en) 2016-03-30 2016-03-30 Hydrogen accumulator

Publications (2)

Publication Number Publication Date
JP2017180671A true JP2017180671A (en) 2017-10-05
JP6753681B2 JP6753681B2 (en) 2020-09-09

Family

ID=60004059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016068982A Active JP6753681B2 (en) 2016-03-30 2016-03-30 Hydrogen accumulator

Country Status (1)

Country Link
JP (1) JP6753681B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4227572A1 (en) 2022-02-15 2023-08-16 Parker Hannifin EMEA S.à.r.l. Storage tank for gaseous hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4227572A1 (en) 2022-02-15 2023-08-16 Parker Hannifin EMEA S.à.r.l. Storage tank for gaseous hydrogen

Also Published As

Publication number Publication date
JP6753681B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
JP5894800B2 (en) Manufacturing method of high nitrogen stainless steel pipe for manufacturing high pressure hydrogen gas storage container with high strength, high ductility and excellent corrosion resistance and heat resistance
CA2912415C (en) Hydrogen storage tank
JP5955125B2 (en) Turbine rotor, manufacturing method thereof, and steam turbine using the turbine rotor
US7147124B2 (en) Containers and methods for containing pressurized fluids using reinforced fibers and methods for making such containers
CZ20002142A3 (en) Process components, containers, and pipes suitable for storing and transporting cryogenic temperature fluids
SK178299A3 (en) Systems for vehicular, land-based distribution of liquefied natural gas
SE522014C2 (en) Pipeline distribution network system for transport of condensed natural gas
KR20090002795A (en) The welding method of lng tank
JP6753681B2 (en) Hydrogen accumulator
JP2014505213A (en) Reduction of residual stress in welding
CN210088255U (en) Metal corrugated pipe and flange connecting structure
CN111868270B (en) Pipe element for gas pressure vessel and gas pressure vessel
JP2009293799A (en) Frp container for high pressure hydrogen storage using cr-mo steel liner
US20080067214A1 (en) Dissimilar metal transition for superheater or reheater tubes
KR101214420B1 (en) Steam turbine installation
JP2015209880A (en) High pressure hydrogen storage container
CN203124987U (en) Dissimilar metal welding structure of titanium alloy flange and stainless steel pipeline
JP5789559B2 (en) Tank and water heater
JP5782830B2 (en) High compressive strength steel pipe and manufacturing method thereof
JP2012013351A (en) Hot water storage tank and water heater including the same
CN117957389A (en) Accumulator for high-pressure hydrogen
JPH01197081A (en) Manufacture of high corrosion resistant double metal pipe
JP2005088024A (en) Welding method for invar
Sakata et al. Application of SA-533 Class 2 Vessels in Floating LNG Plants
CN104989945A (en) Gas cylinder combined supporting structure used for liquefied natural gas vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6753681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250