JP2017180371A - Internal combustion engine controller - Google Patents
Internal combustion engine controller Download PDFInfo
- Publication number
- JP2017180371A JP2017180371A JP2016070929A JP2016070929A JP2017180371A JP 2017180371 A JP2017180371 A JP 2017180371A JP 2016070929 A JP2016070929 A JP 2016070929A JP 2016070929 A JP2016070929 A JP 2016070929A JP 2017180371 A JP2017180371 A JP 2017180371A
- Authority
- JP
- Japan
- Prior art keywords
- internal combustion
- combustion engine
- injection amount
- fuel injection
- torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 219
- 239000000446 fuel Substances 0.000 claims abstract description 105
- 238000002347 injection Methods 0.000 claims abstract description 89
- 239000007924 injection Substances 0.000 claims abstract description 89
- 238000004364 calculation method Methods 0.000 claims abstract description 72
- 238000012937 correction Methods 0.000 claims description 49
- 239000000243 solution Substances 0.000 abstract 1
- 238000000034 method Methods 0.000 description 38
- 230000008569 process Effects 0.000 description 37
- 230000006835 compression Effects 0.000 description 28
- 238000007906 compression Methods 0.000 description 28
- 239000000498 cooling water Substances 0.000 description 14
- 230000001133 acceleration Effects 0.000 description 13
- 230000008859 change Effects 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000007493 shaping process Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000012935 Averaging Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
Images
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
本発明は、内燃機関制御装置に関し、特に自動二輪車等の車両の内燃機関に適用される内燃機関制御装置に関する。 The present invention relates to an internal combustion engine control device, and more particularly to an internal combustion engine control device applied to an internal combustion engine of a vehicle such as a motorcycle.
近年、自動二輪車等の車両の内燃機関に対しては、コントローラを用いて、内燃機関に対する燃料の供給、空気の供給並びに燃料及び空気から成る混合気への点火を協働させながら内燃機関の運転状態を電子制御する電子制御式の内燃機関制御装置が採用されている。 In recent years, for an internal combustion engine of a vehicle such as a motorcycle, the controller is used to operate the internal combustion engine while cooperating the supply of fuel to the internal combustion engine, the supply of air, and the ignition of the mixture of fuel and air. An electronically controlled internal combustion engine controller that electronically controls the state is employed.
具体的には、かかる内燃機関制御装置は、エアフローセンサ、スロットル開度センサ及び吸気マニホルド負圧センサ等のセンサからの各々の検出信号を用いて得られる内燃機関に対する吸入空気量やクランク角センサからの検出信号を用いて得られる内燃機関の回転数等に基づき、内燃機関での適切な空燃比を実現するための燃料噴射量を算出して、この燃料噴射量で内燃機関に対して燃料噴射を実行すると共に、所定の点火時期で吸入空気及び噴射燃料の混合気に対して点火を実行する構成を有する。 Specifically, such an internal combustion engine control device includes an intake air amount and a crank angle sensor for an internal combustion engine obtained by using respective detection signals from sensors such as an air flow sensor, a throttle opening sensor, and an intake manifold negative pressure sensor. The fuel injection amount for realizing an appropriate air-fuel ratio in the internal combustion engine is calculated on the basis of the rotational speed of the internal combustion engine obtained using the detection signal, and the fuel injection amount is injected into the internal combustion engine with this fuel injection amount. And performing ignition on the mixture of intake air and injected fuel at a predetermined ignition timing.
また、この際、内燃機関制御装置においては、内燃機関におけるMBT(Minimum advance for the Best Torque)及びノッキング等に関する特性を考慮して、燃料噴射量及び点火時期における限界値が各々設定されている場合もある。また、このような内燃機関制御装置の中には、筒内圧センサ、ノックセンサ及びイオン電流センサ等のセンサからの各々の検出信号を用いて、燃焼室内の燃焼状態に応じた混合気への燃料噴射量及び点火時期の調整を各々実行する構成を有するものもある。 Further, at this time, in the internal combustion engine control device, the limit values for the fuel injection amount and the ignition timing are set in consideration of characteristics relating to MBT (Minimum Advance for the Best Torque) and knocking in the internal combustion engine. There is also. Further, in such an internal combustion engine control device, the fuel to the air-fuel mixture corresponding to the combustion state in the combustion chamber is detected by using detection signals from sensors such as an in-cylinder pressure sensor, a knock sensor, and an ion current sensor. Some have a configuration in which the injection amount and the ignition timing are each adjusted.
かかる状況下で、特許文献1は、エンジンの制御方法に関し、クランク角センサ、酸素濃度センサ、温度センサ、スロットル開度センサ、吸気管圧力センサ、熱線式吸入空気量センサ、吸入空気温度センサ、排気管温度センサ及び触媒温度センサを用いて、筒内温度の上昇によって点火以前に着火が起こるプレイグニッションを防止し、また点火以前に着火が起こってしまったときでも適切に処理を行ないエンジンの破損を防止する構成を有する。
Under such circumstances,
しかしながら、本発明者の検討によれば、特許文献1の構成では、酸素濃度センサ、吸気管圧力センサ、熱線式吸入空気量センサ、排気管温度センサ及び触媒温度センサ等の付加的なセンサを各種設ける必要があり、その構成が煩雑であると共に車両全体のコストが上昇する傾向にあると考えられて、この点で改良の余地があるものと考えられる。
However, according to the study of the present inventor, in the configuration of
また、本発明者の検討によれば、特に、内燃機関の空燃比の状態を把握するためには、酸素濃度センサや広域空燃比センサ等の高価なセンサを用いることが必要となり、車両全体のコストが上昇する傾向にあると考えられて、この点でも改良の余地があるものと考えられる。 Further, according to the study by the present inventor, in particular, in order to grasp the air-fuel ratio state of the internal combustion engine, it is necessary to use an expensive sensor such as an oxygen concentration sensor or a wide area air-fuel ratio sensor. Costs are likely to rise, and there is room for improvement in this respect.
また、本発明者の検討によれば、特に、内燃機関の空燃比の状態を把握するために普及型の酸素濃度センサを用いると内燃機関の運転状態のフィードバック制御が理論空燃比及びその近傍領域において限定的に可能となるため、かかるフィードバック制御をより広い空燃比領域で可能とするには、広域空燃比センサを用いることが必要となり、いずれにしても車両全体のコストが上昇する傾向にあると考えられて、この点でも改良の余地があるものと考えられる。 Further, according to the study of the present inventor, in particular, when a popular oxygen concentration sensor is used for grasping the state of the air-fuel ratio of the internal combustion engine, the feedback control of the operation state of the internal combustion engine performs the stoichiometric air-fuel ratio and its vicinity region. Therefore, in order to enable such feedback control in a wider air-fuel ratio range, it is necessary to use a wide-range air-fuel ratio sensor, and in any case, the cost of the entire vehicle tends to increase. In this respect, there is room for improvement.
本発明は、以上の検討を経てなされたものであり、内燃機関の個体差を抑制可能である簡便な構成で、適切な燃調を実現して内燃機関の運転状態を制御可能な内燃機関制御装置を提供することを目的とする。 The present invention has been made through the above studies, and an internal combustion engine control apparatus capable of controlling the operating state of the internal combustion engine by realizing an appropriate fuel adjustment with a simple configuration capable of suppressing individual differences among the internal combustion engines. The purpose is to provide.
以上の目的を達成するべく、本発明は、内燃機関の運転状態を制御する内燃機関制御装置において、前記内燃機関のトルクを算出するトルク算出部と、前記トルクに基づき前記内燃機関の燃焼を発生させた燃料噴射量の推定値を算出する推定値算出部と、前記燃焼を発生させるように前記内燃機関に指示された燃料噴射量の指示値と、前記推定値と、に応じて、前記運転状態を制御する運転状態制御部と、を備えることを第1の局面とする。 In order to achieve the above object, the present invention provides an internal combustion engine control apparatus that controls an operating state of an internal combustion engine, and a torque calculation unit that calculates torque of the internal combustion engine, and generates combustion of the internal combustion engine based on the torque. According to the estimated value calculation unit for calculating the estimated value of the injected fuel injection amount, the instruction value of the fuel injection amount instructed to the internal combustion engine to generate the combustion, and the estimated value. It is set as a 1st aspect to provide the driving | running state control part which controls a state.
本発明は、第1の局面に加えて、前記トルクの発生特性を反映した時間遅れを加味して、前記指示値を補正して補正値を算出する補正値算出部を更に備え、前記運転状態制御部は、前記補正値と、前記推定値と、に応じて前記運転状態を制御することを第2の局面とする。 In addition to the first aspect, the present invention further includes a correction value calculation unit that calculates a correction value by correcting the instruction value in consideration of a time delay that reflects the generation characteristics of the torque. A control part makes it 2nd aspect to control the said driving | running state according to the said correction value and the said estimated value.
本発明は、第2の局面に加えて、前記運転状態制御部は、前記補正値に比べて前記推定値が大きいときに、前記補正値よりも小さい新たな燃料噴射量の指示値を前記内燃機関に指示することで、前記運転状態を制御することを第3の局面とする。 In the present invention, in addition to the second aspect, when the estimated value is larger than the correction value, the operating state control unit supplies a new fuel injection amount instruction value smaller than the correction value to the internal combustion engine. Controlling the operating state by instructing the engine is a third aspect.
以上の本発明の第1の局面にかかる内燃機関制御装置によれば、内燃機関のトルクを算出するトルク算出部と、トルクに基づき内燃機関の燃焼を発生させた燃料噴射量の推定値を算出する推定値算出部と、燃焼を発生させるように内燃機関に指示された燃料噴射量の指示値と、推定値と、に応じて、運転状態を制御する運転状態制御部と、を備えるものであるので、内燃機関の個体差を抑制可能である簡便な構成で、適切な燃調を実現して内燃機関の運転状態を制御ことができる。 According to the internal combustion engine control apparatus according to the first aspect of the present invention described above, the torque calculation unit that calculates the torque of the internal combustion engine, and the estimated value of the fuel injection amount that caused combustion of the internal combustion engine based on the torque are calculated. And an operation state control unit that controls the operation state according to the estimated value of the fuel injection amount instructed to the internal combustion engine to generate combustion and the estimated value. As a result, it is possible to control the operating state of the internal combustion engine by realizing an appropriate fuel control with a simple configuration capable of suppressing individual differences among the internal combustion engines.
本発明の第2の局面にかかる内燃機関制御装置によれば、トルクの発生特性を反映した時間遅れを加味して、指示値を補正して補正値を算出する補正値算出部を更に備え、運転状態制御部が、補正値と、推定値と、に応じて運転状態を制御するものであるので、トルクの発生特性を反映した時間遅れを加味して燃料噴射量の指示値を適切に補正することができ、かかる補正値を用いることにより、内燃機関の運転状態をより適切に制御することができる。 The internal combustion engine control apparatus according to the second aspect of the present invention further includes a correction value calculation unit that calculates the correction value by correcting the instruction value in consideration of the time delay reflecting the torque generation characteristic, Since the driving state control unit controls the driving state according to the correction value and the estimated value, the fuel injection amount instruction value is appropriately corrected in consideration of the time delay reflecting the torque generation characteristics. By using such a correction value, the operating state of the internal combustion engine can be controlled more appropriately.
本発明の第3の局面にかかる内燃機関制御装置によれば、運転状態制御部が、補正値に比べて推定値が大きいときに、補正値よりも小さい新たな燃料噴射量の指示値を内燃機関に指示することで、運転状態を制御するものであるため、内燃機関の燃調がリッチ側にある状態を適切に抑止することができ、内燃機関の運転状態をより適切に制御することができる。 According to the internal combustion engine control apparatus of the third aspect of the present invention, when the estimated value is larger than the correction value, the operating state control unit generates a new fuel injection amount instruction value smaller than the correction value. Since the operating state is controlled by instructing the engine, it is possible to appropriately suppress the state where the fuel adjustment of the internal combustion engine is on the rich side, and to control the operating state of the internal combustion engine more appropriately. .
以下、図面を適宜参照して、本発明の実施形態における内燃機関制御装置につき、詳細に説明する。 Hereinafter, an internal combustion engine control apparatus according to an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
[構成]
まず、図1を参照して、本実施形態における内燃機関制御装置の構成について説明する。
[Constitution]
First, the configuration of the internal combustion engine control device in the present embodiment will be described with reference to FIG.
図1は、本実施形態における内燃機関制御装置の構成を示すブロック図である。 FIG. 1 is a block diagram showing the configuration of the internal combustion engine control device in the present embodiment.
図1に示すように、本実施形態における内燃機関制御装置1は、自動二輪車等の車両に搭載され、車両の内燃機関の運転状態を制御する。本実施形態における内燃機関制御装置1は、スロットル開度センサ20、クランク角センサ30、及び冷却水温センサ50に電気的に接続されたECU(Electronic Control Unit)60を備えている。なお、かかる内燃機関制御装置1が適用される内燃機関は、典型的には4ストロークサイクルの内燃機関であると共に、単気筒又は爆発が不等間隔の2気筒などの内燃機関である。また、説明の便宜上、車両や内燃機関の構成についての具体的な図示は、省略している。また、内燃機関に適用される燃料としては、原理的には、現在入手可能なものが適用でき、例えば、ガソリン、エタノール及びメタノール等の種別を問わず、ガソリンのオクタン価の種別も問わないものである。
As shown in FIG. 1, an internal combustion
スロットル開度センサ20は、内燃機関のスロットル装置の本体部に装着され、スロットルバルブの開度をスロットル開度として検出し、このように検出したスロットル開度を示す電気信号をECU60に入力する。
The
クランク角センサ30は、内燃機関において、リラクタの外周面に形成されている歯部に対向した態様でシリンダブロックの下部に組み付けられたロアケース等に装着され、クランクシャフト(クランク軸)の回転に伴って回転する歯部を検出することによって、クランクシャフトの回転速度を内燃機関の回転速度として検出する。クランク角センサ30は、このように検出した内燃機関の回転速度を示す電気信号をECU60に入力する。
In the internal combustion engine, the
冷却水温センサ50は、内燃機関の冷却水通路に侵入した態様でシリンダブロックに装着され、冷却水通路内を流通する冷却水の温度を検出し、このように検出した冷却水の温度を示す電気信号をECU60に入力する。
The cooling
ECU60は、車両が備えるバッテリからの電力を利用して動作する。ECU60は、A/D(Analog to Digital)変換回路601a及び601b、波形整形回路602、スロットル開度算出部603、角速度算出部604、冷却水温算出部606、実トルク算出部607、推定値算出部608、RAM609、補正値算出部610、運転状態制御部611、並びに駆動回路612a、612b及び612cを備えている。なお、スロットル開度算出部603、角速度算出部604、冷却水温算出部606、実トルク算出部607、推定値算出部608、補正値算出部610、及び運転状態制御部611は、ECU60の演算処理装置が図示を省略するメモリから必要な制御プログラムを読み出すと共にRAM609から必要な制御データを読み出して運転状態制御処理を実行する際の機能ブロックとして示している。
The ECU 60 operates using electric power from a battery provided in the vehicle. The ECU 60 includes A / D (Analog to Digital)
A/D変換回路601aは、スロットル開度センサ20から入力されたアナログ形態の電気信号をデジタル形態に変換してスロットル開度算出部603に入力する。
The A /
A/D変換回路601bは、冷却水温センサ50から入力されたアナログ形態の電気信号をデジタル形態に変換して冷却水温算出部606に入力する。
The A /
波形整形回路602は、クランク角センサ30から入力された電気信号に対してスムージング処理等の整形処理を施した後に電気信号を角速度算出部604に入力する。
The
スロットル開度算出部603は、A/D変換回路601aから入力された電気信号を用いてスロットル開度を算出し、このようにスロットル開度算出部603が算出したスロットル開度は、運転状態制御部611で用いられる。
The throttle
角速度算出部604は、波形整形回路602から入力された電気信号を用いて、内燃機関の排気行程、吸気行程、圧縮行程及び膨張行程の各行程におけるクランク軸の角速度を内燃機関の回転角速度として算出すると共に、かかる各行程におけるクランク軸の各角加速度を内燃機関の回転角加速度として算出する。このように角速度算出部604が算出した内燃機関の回転角速度及び回転角加速度は、実トルク算出部607において内燃機関の発生トルクである出力トルク(実トルク)の算出に用いられる。
The angular
具体的には、角速度算出部604は、波形整形回路602から入力された電気信号を用いて内燃機関のピストンの位置を検出し、それが排気上死点、吸気下死点、圧縮上死点及び膨張下死点のいずれにあるかを判別すると共にそのタイミングを取得する。併せて、角速度算出部604は、ピストンの位置が排気上死点にあると判別した場合には内燃機関の排気行程の行程時間、ピストンの位置が吸気下死点にあると判別した場合には内燃機関の吸気行程の行程時間、ピストンの位置が圧縮上死点にあると判別した場合には内燃機関の圧縮行程の行程時間、及びピストンの位置が膨張下死点にあると判別した場合には内燃機関の膨張行程の行程時間を、対応して算出する。
Specifically, the angular
ここで、これらの場合に対応して、角速度算出部604は、クランクシャフトの回転方向の角度であるクランク角における各行程の角度範囲である180°を排気行程の行程時間で除して内燃機関の排気行程の角速度、180°を吸気行程の行程時間で除して内燃機関の吸気行程の角速度、180°を圧縮行程の行程時間で除して内燃機関の圧縮行程の角速度、及び180°を膨張行程の行程時間で除して内燃機関の膨張行程の角速度、を、算出する。
Here, in response to these cases, the angular
更に、これらの場合に対応して、角速度算出部604は、排気行程の角速度からその直前に存在した膨張行程の角速度を減じて排気行程の角速度差を算出すると共に、排気行程の角速度差を排気行程の行程時間で除し、吸気行程の角速度からその直前に存在した排気行程の角速度を減じて吸気行程の角速度差を算出すると共に、吸気行程の角速度差を吸気行程の行程時間で除し、圧縮行程の角速度からその直前に存在した吸気行程の角速度を減じて圧縮行程の角速度差を算出すると共に、圧縮行程の角速度差を圧縮行程の行程時間で除し、及び膨張行程の角速度からその直前に存在した圧縮行程の角速度減じて膨張行程の角速度差を算出すると共に、膨張行程の角速度差を膨張行程の行程時間で除して、排気行程の角加速度、吸気行程の角加速度、圧縮行程の角加速度、及び膨張行程の角加速度を算出する。なお、かかる各行程の角速度差は、その行程の終了時点のクランクシャフトの角速度からその行程の開始時点のクランクシャフトの角速度を除して算出してもよい。
Further, in response to these cases, the angular
このように、内燃機関の実トルクの算出のために排気行程、吸気行程、圧縮行程及び膨張行程の各工程における内燃機関のクランクシャフトの角加速度の算出を行うためには、クランクシャフトの回転角における180°毎に少なくとも1つのクランクパルスがあれば足りることになる。つまり、このことは、自動二輪車で多く採用されているクランクシャフトの回転角の360°において1歯のみを有するリラクタに更に1歯を付加するだけの簡便な構造変更を施すことが必要となることを意味するから、その結果、コストアップを最小限に抑えつつ精度のよい内燃機関の実トルクの算出を可能とするものである。 As described above, in order to calculate the actual torque of the internal combustion engine, in order to calculate the angular acceleration of the crankshaft of the internal combustion engine in each step of the exhaust stroke, the intake stroke, the compression stroke, and the expansion stroke, It is sufficient to have at least one crank pulse for every 180 ° at. In other words, this means that it is necessary to make a simple structural change by adding one tooth to a reluctator having only one tooth at 360 ° of the rotation angle of the crankshaft often adopted in motorcycles. As a result, it is possible to calculate the actual torque of the internal combustion engine with high accuracy while minimizing the cost increase.
また、このように、内燃機関の実トルクの算出する際に内燃機関のクランクシャフトの角加速度の算出をクランクシャフトの回転角における180°毎に行えば、かかる実トルクの算出において、内燃機関のクランク機構におけるコンロッド及びピストンを主とする往復部材の慣性モーメントの影響を原理的に相殺することが可能となると共に、クランクシャフトの捩り振動の影響も原理的に吸収することを可能とする。このことは、内燃機関の高回転を含む運転領域において、共通化された算出手法で内燃機関のクランクシャフトの角加速度の算出を行って実トルクの算出を行うことを可能とする。ここで、かかる往復部材の慣性モーメントによる加速成分及び減速成分は、吸気行程及び排気行程におけるクランクシャフトの回転角における360°の区間毎に一巡し、圧縮行程及び膨張行程におけるクランクシャフトの回転角における360°の区間で一巡するものである。また、内燃機関の低回転時にはバルブスプリングの作動抵抗も無視し得ないが、これによる加速成分及び減速成分は、排気行程、吸気行程、圧縮行程及び膨張行程の各工程におけるクランクシャフトの回転角における180°の区間毎に対称に発生するものである。 In this way, when calculating the actual torque of the internal combustion engine, the angular acceleration of the crankshaft of the internal combustion engine is calculated every 180 ° in the rotation angle of the crankshaft. The influence of the moment of inertia of the reciprocating member mainly including the connecting rod and the piston in the crank mechanism can be canceled in principle, and the influence of the torsional vibration of the crankshaft can be absorbed in principle. This makes it possible to calculate the actual torque by calculating the angular acceleration of the crankshaft of the internal combustion engine by a common calculation method in an operation region including high rotation of the internal combustion engine. Here, the acceleration component and the deceleration component due to the moment of inertia of the reciprocating member make a round every 360 ° interval in the rotation angle of the crankshaft in the intake stroke and the exhaust stroke, and in the rotation angle of the crankshaft in the compression stroke and the expansion stroke. It makes a round in a section of 360 °. In addition, the operating resistance of the valve spring is not negligible when the internal combustion engine is running at a low speed. However, the acceleration component and the deceleration component due to this are the rotation angle of the crankshaft in each step of the exhaust stroke, the intake stroke, the compression stroke, and the expansion stroke. It occurs symmetrically every 180 ° section.
冷却水温算出部606は、A/D変換回路601bから入力された電気信号を用いて冷却水の温度を内燃機関の温度(エンジン温度)として算出し、このように冷却水温算出部606が算出したエンジン温度は、運転状態制御部611で用いられる。かかる冷却水の温度は、内燃機関の温度を代表的に示す内燃機関の代表温度であって、内燃機関のシリンダを冷却する冷却熱量を反映した温度であると評価され得るものである。なお、かかる内燃機関の代表温度としては、冷却水の温度の他に、内燃機関の潤滑油の温度等を用いてもよい。
The cooling water
実トルク算出部607は、角速度算出部604が算出した内燃機関の回転角速度を直接的に用いて内燃機関の実トルクを算出し、このように実トルク算出部607が算出した内燃機関の実トルクは、推定値算出部608で用いられる。
The actual
具体的には、実トルク算出部607は、特に角速度算出部604が算出した内燃機関の排気行程、吸気行程、圧縮行程及び膨張行程における回転角加速度を、内燃機関の排気行程、吸気行程、圧縮行程及び膨張行程における実トルクとして、対応して算出する。ここで、排気行程、吸気行程、圧縮行程及び膨張行程における実トルクは、内燃機関のクランク機構におけるコンロッド及びピストンを主とする往復部材の単位慣性モーメントあたりの排気抵抗トルク、吸気抵抗トルク、圧縮抵抗トルク及び膨張発生トルクに対応して相当するものである。詳しくは、排気抵抗トルクは、排気行程における内燃機関に対する外部負荷、内燃機関の内部フリクション及び内燃機関の排気抵抗が合算された抵抗トルクであるため、かかる外部負荷及び内部フリクションが一定の状態であれば、内燃機関の大気圧及びその変化の指標とすることが可能となる。吸気抵抗トルクは、吸気行程における内燃機関に対する外部負荷、内燃機関の内部フリクション及び内燃機関の吸気抵抗が合算された抵抗トルクであるため、かかる外部負荷及び内部フリクションが一定の状態であれば、内燃機関のスロットル開度及びその変化の指標とすることが可能となる。圧縮抵抗トルクは、圧縮行程における内燃機関に対する外部負荷、内燃機関の内部フリクション及び内燃機関の圧縮抵抗が合算された抵抗トルクであるため、かかる外部負荷及び内部フリクションが一定の状態であれば、内燃機関の吸入空気量及びその変化の指標とすることが可能となる。また、膨張発生トルクは、膨張行程における内燃機関に対する外部負荷、内燃機関の内部フリクション及び内燃機関が発生した出力トルクが合算されたトルクであるため、かかる外部負荷及び内部フリクションが一定の状態であれば、内燃機関が発生する実トルクの及びその変化、つまり内燃機関の駆動力及びその変化の指標とすることが可能となる。
Specifically, the actual
このように、内燃機関の排気行程、吸気行程、圧縮行程及び膨張行程の各工程についてクランクシャフトの回転角における180°毎に区分けして内燃機関の実トルクの算出を行うことにより、排気抵抗トルク、吸気抵抗トルク、圧縮抵抗トルク及び膨張発生トルクを各々算出することを可能とし、これにより、負荷・フリクショントルク及び行程発生トルク差をといったトルク成分を算出することを可能とする。 In this way, the exhaust torque, the exhaust stroke, the intake stroke, the compression stroke, and the expansion stroke of the internal combustion engine are divided into every 180 ° in the rotation angle of the crankshaft to calculate the actual torque of the internal combustion engine. In addition, it is possible to calculate the intake resistance torque, the compression resistance torque, and the expansion generation torque, respectively, thereby calculating torque components such as the load / friction torque and the stroke generation torque difference.
具体的には、実トルク算出部607は、互いに連続する排気行程及び吸気行程における角加速度同士の和から負荷・フリクショントルクを算出すると共に、互いに連続する圧縮行程及び膨張行程における角加速度同士の差又は比から行程発生トルク差を算出する。詳しくは、負荷・フリクショントルクは、排気抵抗トルク及び吸気抵抗トルクを合算することにより得られるもので、典型的には内燃機関の暖機状態において内燃機関に対して作用する抵抗力及びその変化の指標とすることが可能となる。行程発生トルク差は、圧縮抵抗トルク及び膨張発生トルクを合算することにより、又はそれらの比をとることにより得られるもので、内燃機関に作用している供給ガスの総量の及びその変化、つまり典型的には燃料噴射システムにおけるスロットル開度及び吸気圧並びにそれらの変化の指標とすることが可能となる。
Specifically, the actual
推定値算出部608は、実トルク算出部607が算出した内燃機関の実トルクに基づいて内燃機関の燃焼を発生させた燃料噴射量の推定値を算出し、このように推定値算出部608が算出した内燃機関の燃料噴射量の推定値は、運転状態制御部611で用いられる。
The estimated
ここで、特に、内燃機関の燃焼室に対して噴射された燃料が失火等を発生しないで燃焼してクランク軸の回転力になるとき、発生したトルク、つまり実トルクと噴射された燃料量との間には実質的に比例関係といってよいような相関関係が成立するため、かかる場合には、実トルクから燃料噴射量を推定して算出することが可能である。また、かかる実トルクとしては、内燃機関の運転状態の制御目的に応じて、排気行程、吸気行程、圧縮行程及び膨張行程の各行程における実トルク、負荷・フリクショントルク、並びに行程発生トルク差を、必要に応じて単独で又は組み合わせて用いればよい。 Here, especially when the fuel injected into the combustion chamber of the internal combustion engine burns without causing misfire or the like and becomes the rotational force of the crankshaft, the generated torque, that is, the actual torque and the amount of injected fuel In this case, it is possible to estimate and calculate the fuel injection amount from the actual torque. Further, as the actual torque, the actual torque, the load / friction torque, and the stroke generation torque difference in each stroke of the exhaust stroke, the intake stroke, the compression stroke, and the expansion stroke, depending on the control purpose of the operation state of the internal combustion engine, What is necessary is just to use individually or in combination as needed.
具体的には、実トルクと噴射された燃料量とは実質的に比例関係にあるという観点から、ボア、ストローク、シリンダ、シリンダヘッド、及び冷却系等が同一である同一設計仕様の内燃機関において最適な出力トルクが得られるような内燃機関、つまり量産における好ましい中央特性の内燃機関個体(マスタエンジン)において 実トルクと燃料噴射量との関係を予め求めて規定しておき、これを他の内燃機関に適用してその燃料噴射量の推定値を算出することにより、運転状態制御部611において内燃機関の個体差である製造時の公差によるばらつき、特に燃料噴射量のばらつき、圧縮比のばらつき及び吸入空気量のばらつき等に起因する内燃機関の発生トルクの過不足を補うことが可能となる。この際、燃料噴射量のばらつき、圧縮比のばらつき及び吸入空気量のばらつき等に起因する発生トルクの過不足を総合的に網羅して補うことが可能となり、ユーザにとって好ましい車両挙動を実現することが可能となる。また、同一仕様の内燃機関について、酸素濃度センサや広域空燃比センサを用いることなく燃調、つまり空燃比のばらつきを抑制することが可能となる。
Specifically, in an internal combustion engine with the same design specifications in which the bore, stroke, cylinder, cylinder head, cooling system, etc. are the same from the viewpoint that the actual torque and the injected fuel amount are in a substantially proportional relationship. In an internal combustion engine that can obtain the optimum output torque, that is, an internal combustion engine individual (master engine) having a preferable central characteristic in mass production, the relationship between the actual torque and the fuel injection amount is obtained in advance and defined. By applying the estimated value of the fuel injection amount to the engine and calculating the estimated value of the fuel injection amount, the operating
RAM609は、揮発性の記憶装置によって構成され、運転状態制御部611が内燃機関の運転状態を制御する際に用いる各種データ(燃料噴射量の指示値や点火時期等)を記憶する運転状態制御部611のワーキングエリアとして機能する。
The
補正値算出部610は、RAM609に記憶されている燃料噴射量の最新及び過去の指示値を用いて、内燃機関の実トルクの変動及び燃料噴射量の変動等に起因したトルクの発生特性を反映した時間遅れを加味して、燃料噴射量を補正して補正値を算出する。具体的には、補正値算出部610は、燃料噴射量の最新の推定値及び最新の指示値を各々補正した補正値を算出する。補正値算出部610がこのように算出した各々の補正値は、運転状態制御部611で用いられる。
The correction
運転状態制御部611は、内燃機関制御装置1全体の動作を制御する。具体的には、運転状態制御部611は、スロットル開度算出部603が算出したスロットル開度、実トルク算出部607が算出した内燃機関の出力トルク、推定値算出部608が算出した内燃機関の燃料噴射量の推定値、及び補正値算出部610が算出した補正値等に基づいて、点火時期及び燃料噴射量の指示値等を算出する。そして、運転状態制御部611は、このように算出した点火時期及び燃料噴射量の指示値等を内燃機関に適用することにより、その運転状態を制御する。
The operating
ここで、運転状態制御部611は、燃料噴射量の推定値と内燃機関の燃料噴射量の指示値とを比較し、燃料噴射量の推定値が燃料噴射量の指示値よりも大きい場合には、実際の燃料噴射量が燃料噴射量の指示値よりも大きい、つまり内燃機関の燃調がリッチ側にあるとの観点から、燃料噴射量の指示値を増量して算出する一方で、燃料噴射量の推定値が燃料噴射量の指示値よりも小さければ実際の燃料噴射量が燃料噴射量の指示値よりも小さい、つまり内燃機関の燃調がリーン側にあるとの観点から、燃料噴射量の指示値を減量して算出するものである。これにより、内燃機関の燃調の状態を検出するセンサ等を用いることなく、内燃機関の必要な出力トルクに対して適切な燃焼となる燃焼噴射量を実現することが可能となる。なお、この際、燃料噴射量の指示値としては、内燃機関の実トルクの変動及び燃料噴射量の変動等に起因したトルクの発生特性を反映した時間遅れを加味して、燃料噴射量の指示値を積算、平均化した値(移動平均処理した値)をその補正値として用いてもよい。
Here, the operation
駆動回路612aは、運転状態制御部611から入力された制御信号に従ってスロットルモータ70を駆動することによってスロットル開度を制御する。
The
駆動回路612bは、運転状態制御部611から入力された制御信号に従って点火栓80を駆動することによって内燃機関の点火時期を制御する。
The
駆動回路612cは、運転状態制御部611から入力された制御信号に従って燃料噴射弁90を駆動することによって内燃機関の燃料噴射量を制御する。
The
以上のような構成を有する内燃機関制御装置1は、以下に示す運転状態制御処理を実行することによって、内燃機関の個体差を抑制可能である簡便な構成で、適切な燃調を実現して内燃機関の運転状態を制御する。以下、図2を参照して、この運転状態制御処理を実行する際の内燃機関制御装置1の動作について説明する。
The internal combustion
〔運転状態制御処理〕
図2は、本実施形態における内燃機関制御装置1が実行する運転状態制御処理の流れを示すフローチャートである。
[Operation status control processing]
FIG. 2 is a flowchart showing a flow of an operation state control process executed by the internal combustion
図2に示すフローチャートは、車両のイグニッションスイッチがオフ状態からオン状態に切り替えられてECU60が稼働したタイミングで開始となり、運転状態制御処理はステップS1の処理に進む。かかる運転状態制御処理は、ECU60が稼働状態である間、メモリから必要な制御プログラムを読み出すと共にRAM609から必要な制御データを読み出して所定の制御周期毎に繰り返し実行される。
The flowchart shown in FIG. 2 starts when the
ステップS1の処理では、運転状態制御部611が、実トルク算出部607が算出した内燃機関の実トルク等に基づき内燃機関が運転中であるか否かを判別する。判別の結果、内燃機関が運転中である場合、運転状態制御部611は、運転状態制御処理をステップS2の処理に進める。一方、内燃機関が運転中でない場合には、運転状態制御部611は、今回の一連の運転状態制御処理を終了する。
In the process of step S1, the operating
ステップS2の処理では、実トルク算出部607が、角速度算出部604が算出した内燃機関の回転角速度を用いて内燃機関の実トルクを算出する。そして、実トルク算出部607がこのように算出した内燃機関の実トルクは、推定値算出部608で用いられる。ここで、実トルク算出部607が算出した実トルクとしては、内燃機関に作用している供給ガスの総量の及びその変化、つまり典型的には燃料噴射システムにおけるスロットル開度及び吸気圧並びにそれらの変化の指標とすることができる行程発生トルク差DCBCPとした。これにより、ステップS2の処理は完了し、運転状態制御処理はステップS3の処理に進む。
In step S2, the actual
ステップS3の処理では、推定値算出部608が、量産における好ましい中央特性の内燃機関個体(マスタエンジン)における実トルクと燃料噴射量との関係を示す特性に基づいて、ステップS2の処理において算出された実トルクに応じた燃料噴射量を、内燃機関の燃焼を発生させた燃料噴射量の推定値(推定燃焼寄与噴射量)TIDCBP0を算出する。そして、推定値算出部608がこのように算出した推定燃焼寄与噴射量TIDCBP0は、運転状態制御部611で用いられる。これにより、ステップS3の処理は完了し、運転状態制御処理はステップS4の処理に進む。
In the process of step S3, the estimated
ステップS4の処理では、補正値算出部610が、内燃機関の実トルクの変動及び燃料噴射量の変動等に起因したトルクの発生特性を反映した時間遅れを加味して、運転状態制御部611によりRAM609に記憶されている推定燃焼寄与噴射量TIDCBP0の最新及び過去の値を用いて、それらを積算、平均化した値(移動平均処理した値)を推定燃焼寄与噴射量の補正値TIDCBPとして算出する。そして、補正値算出部610がこのように算出した推定燃焼寄与噴射量の補正値TIDCBPは、運転状態制御部611で用いられる。これにより、ステップS4の処理は完了し、運転状態制御処理はステップS5の処理に進む。なお、推定燃焼寄与噴射量TIDCBP0の最新及び過去の値を積算、平均化するのに代えて、推定燃焼寄与噴射量TIDCBP0の最新の値を補正値TIDCBPとして採用してもよい。
In the process of step S4, the correction
ステップS5の処理では、補正値算出部610が、内燃機関の実トルクの変動及び燃料噴射量の変動等に起因したトルクの発生特性を反映した時間遅れを加味して、運転状態制御部611によりRAM609に記憶されている燃料噴射量の最新及び過去の指示値を用いて、それらを積算、平均化した値(移動平均処理した値)を燃料噴射量の指示値の補正値TIAVEとして算出する。そして、補正値算出部610がこのように算出した燃料噴射量の指示値の補正値TIAVEは、運転状態制御部611で用いられる。これにより、ステップS5の処理は完了し、運転状態制御処理はステップS6の処理に進む。
In the process of step S5, the correction
ステップS6の処理では、運転状態制御部611が、推定燃焼寄与噴射量の補正値TIDCBPが燃料噴射量の指示値の補正値TIAVEより大きいか否かを判別する。判別の結果、推定燃焼寄与噴射量の補正値TIDCBPが燃料噴射量の指示値の補正値TIAVEより大きい場合、運転状態制御部611は、燃料噴射量が過多になっていると判断し、運転状態制御処理をステップS7の処理に進める。一方、推定燃焼寄与噴射量の補正値TIDCBPが燃料噴射量の指示値の補正値TIAVE以下である場合には、運転状態制御部611は、燃料噴射量が過少になっていると判断し、運転状態制御処理をステップS8の処理に進める。
In the process of step S6, the operating
ステップS7の処理では、運転状態制御部611が、燃料噴射量が過多であるという観点から燃料噴射量の指示値を減量して設定して算出すると共に、クランクシャフトの角速度等を用いて内燃機関の点火時期を算出し、併せて、アクセル開度等を用いて目標スロットル開度を算出し、それらに応じて駆動回路612c、612b及び612aを介して燃料噴射弁90、点火栓80及びスロットルモータ70を駆動することによって、内燃機関の運転状態を制御する。この際、運転状態制御部611は、このように各々算出した燃料噴射量の指示値、点火時期及び目標スロットル開度をRAM609に記録した後にRAM609からこれらを読み出して内燃機関の運転状態を制御する。これにより、ステップS7の処理は完了し、今回の一連の運転状態制御処理は終了する。
In the process of step S7, the operating
ステップS8の処理では、運転状態制御部611が、燃料噴射量が過少であるという観点から燃料噴射量の指示値を増量して設定して算出すると共に、クランクシャフトの角速度等を用いて内燃機関の点火時期を算出し、併せて、アクセル開度等を用いて目標スロットル開度を算出し、それらに応じて駆動回路612c、612b及び612aを介して燃料噴射弁90、点火栓80及びスロットルモータ70を駆動することによって、内燃機関の運転状態を制御する。この際、運転状態制御部611は、このように各々算出した燃料噴射量の指示値、点火時期及び目標スロットル開度をRAM609に記録した後にRAM609からこれらを読み出して内燃機関の運転状態を制御する。これにより、ステップS8の処理は完了し、今回の一連の運転状態制御処理は終了する。
In the process of step S8, the operating
以上の説明から明らかなように、本実施形態における内燃機関制御装置1は、内燃機関の実トルクを算出する実トルク算出部607と、実トルクに基づき内燃機関の燃焼を発生させた燃料噴射量の推定値を算出する推定値算出部608と、燃焼を発生させるように内燃機関に指示された燃料噴射量の指示値と、推定値と、に応じて、運転状態を制御する運転状態制御部611と、を備えるものであるので、内燃機関の個体差を抑制可能である簡便な構成で、適切な燃調を実現して内燃機関の運転状態を制御ことができる。
As is clear from the above description, the internal combustion
また、本実施形態における内燃機関制御装置1では、トルクの発生特性を反映した時間遅れを加味して、指示値を補正して補正値を算出する補正値算出部610を更に備え、運転状態制御部611が、補正値と、推定値と、に応じて運転状態を制御するものであるので、トルクの発生特性を反映した時間遅れを加味して燃料噴射量の指示値を適切に補正することができ、かかる補正値を用いることにより、内燃機関の運転状態をより適切に制御することができる。
In addition, the internal combustion
また、本実施形態における内燃機関制御装置1では、運転状態制御部611が、補正値に比べて推定値が大きいときに、補正値よりも小さい新たな燃料噴射量の指示値を内燃機関に指示することで、運転状態を制御するものであるため、内燃機関の燃調がリッチ側にある状態を適切に抑止することができ、内燃機関の運転状態をより適切に制御することができる。
Further, in the internal combustion
なお、本発明は、部材の種類、形状、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を逸脱しない範囲で適宜変更可能であることはもちろんである。 In the present invention, the type, shape, arrangement, number, and the like of the members are not limited to the above-described embodiment, and the gist of the invention is appropriately replaced such that the constituent elements are appropriately replaced with those having the same operational effects. Of course, it can be changed as appropriate without departing from the scope.
以上のように、本発明は、内燃機関の個体差を抑制可能である簡便な構成で、適切な燃調を実現して内燃機関の運転状態を制御可能な内燃機関制御装置を提供することができるものであり、その汎用普遍的な性格から自動二輪車等の車両の内燃機関に広く適用され得るものと期待される。 As described above, the present invention can provide an internal combustion engine control device capable of controlling an operating state of an internal combustion engine by realizing an appropriate fuel adjustment with a simple configuration capable of suppressing individual differences among the internal combustion engines. It is expected that it can be widely applied to internal combustion engines of vehicles such as motorcycles because of its universal universal character.
1…内燃機関制御装置
20…スロットル開度センサ
30…クランク角センサ
50…冷却水温センサ
60…ECU
70…スロットルモータ
80…点火栓
90…燃料噴射弁
601a、601b…A/D変換回路
602…波形整形回路
603…スロットル開度算出部
604…角速度算出部
606…冷却水温算出部
607…実トルク算出部
608…推定値算出部
609…RAM
610…補正値算出部
611…運転状態制御部
612a、612b、612c…駆動回路
DESCRIPTION OF
DESCRIPTION OF
610 ... Correction
Claims (3)
前記内燃機関のトルクを算出するトルク算出部と、
前記トルクに基づき前記内燃機関の燃焼を発生させた燃料噴射量の推定値を算出する推定値算出部と、
前記燃焼を発生させるように前記内燃機関に指示された燃料噴射量の指示値と、前記推定値と、に応じて、前記運転状態を制御する運転状態制御部と、
を備えることを特徴とする内燃機関制御装置。 In an internal combustion engine control device for controlling the operating state of the internal combustion engine,
A torque calculator for calculating the torque of the internal combustion engine;
An estimated value calculating unit that calculates an estimated value of a fuel injection amount that causes combustion of the internal combustion engine based on the torque;
An operating state control unit that controls the operating state according to an instruction value of a fuel injection amount instructed to the internal combustion engine to generate the combustion, and the estimated value;
An internal combustion engine control device comprising:
前記運転状態制御部は、前記補正値と、前記推定値と、に応じて前記運転状態を制御することを特徴とする請求項1に記載の内燃機関制御装置。 A correction value calculation unit that calculates a correction value by correcting the instruction value in consideration of a time delay reflecting the torque generation characteristic,
The internal combustion engine control device according to claim 1, wherein the operating state control unit controls the operating state according to the correction value and the estimated value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016070929A JP6782049B2 (en) | 2016-03-31 | 2016-03-31 | Internal combustion engine controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016070929A JP6782049B2 (en) | 2016-03-31 | 2016-03-31 | Internal combustion engine controller |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017180371A true JP2017180371A (en) | 2017-10-05 |
JP6782049B2 JP6782049B2 (en) | 2020-11-11 |
Family
ID=60005779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016070929A Active JP6782049B2 (en) | 2016-03-31 | 2016-03-31 | Internal combustion engine controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6782049B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007303382A (en) * | 2006-05-11 | 2007-11-22 | Yanmar Co Ltd | Torque detection means for engine |
JP2017172482A (en) * | 2016-03-24 | 2017-09-28 | 株式会社ケーヒン | Internal combustion engine control device |
JP2017172483A (en) * | 2016-03-24 | 2017-09-28 | 株式会社ケーヒン | Internal combustion engine control device |
JP2017180370A (en) * | 2016-03-31 | 2017-10-05 | 株式会社ケーヒン | Internal combustion engine control device |
JP2017180372A (en) * | 2016-03-31 | 2017-10-05 | 株式会社ケーヒン | Internal combustion engine controller |
-
2016
- 2016-03-31 JP JP2016070929A patent/JP6782049B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007303382A (en) * | 2006-05-11 | 2007-11-22 | Yanmar Co Ltd | Torque detection means for engine |
JP2017172482A (en) * | 2016-03-24 | 2017-09-28 | 株式会社ケーヒン | Internal combustion engine control device |
JP2017172483A (en) * | 2016-03-24 | 2017-09-28 | 株式会社ケーヒン | Internal combustion engine control device |
JP2017180370A (en) * | 2016-03-31 | 2017-10-05 | 株式会社ケーヒン | Internal combustion engine control device |
JP2017180372A (en) * | 2016-03-31 | 2017-10-05 | 株式会社ケーヒン | Internal combustion engine controller |
Also Published As
Publication number | Publication date |
---|---|
JP6782049B2 (en) | 2020-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4893553B2 (en) | Control device for internal combustion engine | |
JP2007032531A5 (en) | ||
JP6254633B2 (en) | Internal combustion engine control device | |
JP2017141693A (en) | Control device of internal combustion engine | |
JP5944249B2 (en) | Internal EGR amount calculation device for internal combustion engine | |
JP2005273537A (en) | Engine-output control system | |
JPWO2006104271A1 (en) | Engine control device | |
JP2018112113A (en) | Engine device | |
JP2010007581A (en) | Air fuel ratio control device | |
JP5644733B2 (en) | Engine control device | |
JP5077562B2 (en) | Control device for internal combustion engine | |
JP6553537B2 (en) | Internal combustion engine control system | |
JP2017180372A (en) | Internal combustion engine controller | |
JP5310102B2 (en) | Control device for internal combustion engine | |
JP6782049B2 (en) | Internal combustion engine controller | |
JP6605376B2 (en) | Internal combustion engine control device | |
JP6604259B2 (en) | Control device for internal combustion engine | |
JP2017020417A (en) | Control device of internal combustion engine | |
JP4803099B2 (en) | Torque estimation device for variable compression ratio engine | |
JP2017057803A (en) | Engine torque estimation device for internal combustion engine | |
JP5793935B2 (en) | Ignition timing control device and ignition timing control method for internal combustion engine | |
JP2017193968A (en) | Control device of internal combustion engine | |
JP5240208B2 (en) | Control device for internal combustion engine | |
JP7146131B1 (en) | Control device for internal combustion engine | |
JP4853675B2 (en) | Control device for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200605 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200929 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201016 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6782049 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |