JP2017178796A - Anti-inflammatory additive - Google Patents
Anti-inflammatory additive Download PDFInfo
- Publication number
- JP2017178796A JP2017178796A JP2016064627A JP2016064627A JP2017178796A JP 2017178796 A JP2017178796 A JP 2017178796A JP 2016064627 A JP2016064627 A JP 2016064627A JP 2016064627 A JP2016064627 A JP 2016064627A JP 2017178796 A JP2017178796 A JP 2017178796A
- Authority
- JP
- Japan
- Prior art keywords
- phytic acid
- inflammatory
- amino
- nitrogen compound
- organic nitrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Fodder In General (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
本発明は、食品、飼料や医薬品などに抗炎症作用を付与するための、抗炎症用添加剤に関する。 The present invention relates to an anti-inflammatory additive for imparting an anti-inflammatory effect to foods, feeds, pharmaceuticals and the like.
「炎症」とは異物侵入や組織障害といった生体組織にとって好ましくない刺激に対して免疫系が引き起こす、生体にとって必須の防御反応である。しかし、免疫系の自己反応や過剰反応が起こると生体そのものにも損傷や苦痛を引き起こす有害な疾患となる。
炎症はがん、生活習慣病、自己免疫性疾患、神経疾患、肥満、炎症性腸疾患、変形性関節症、リウマチ、サルコペニアなど非常に多くの疾患への関与が知られており、その解決が求められている。
“Inflammation” is an essential defense reaction for the living body caused by the immune system against stimuli that are undesirable for living tissues such as foreign body invasion and tissue damage. However, when an immune system's self-reaction or excessive reaction occurs, it becomes a harmful disease that causes damage and pain to the living body itself.
Inflammation is known to be involved in numerous diseases such as cancer, lifestyle-related diseases, autoimmune diseases, neurological diseases, obesity, inflammatory bowel disease, osteoarthritis, rheumatism, and sarcopenia. It has been demanded.
炎症は自然免疫系の免疫担当細胞やT細胞が組織に集積して血管拡張や血管透過性の亢進を引き起こし、腫脹や疼痛を誘起した状態である。また、全身炎症では発熱を引き起こし、これらの反応が組織内で起こることにより組織の機能障害が生じる。 Inflammation is a state in which immune-competent cells and T cells of the innate immune system accumulate in tissues, causing vasodilation and increased vascular permeability, and causing swelling and pain. In addition, systemic inflammation causes fever, and these reactions occur in the tissue, resulting in tissue dysfunction.
炎症の初期には好中球が細菌,ウイルス,死細胞などの異物の処理を行うが、炎症後期ではマクロファージが食作用による処理を行う。抗原提示などによりこれら異物と遭遇したマクロファージは活性化し、TNF-α,IL-1β,IL-6といったサイトカインやIL-8といったケモカインを放出する。
炎症性サイトカインは血管浸透性を亢進して発熱,発赤や腫脹を引き起こす。またケモカインは白血球の走性を亢進して腫脹を引き起こす。マクロファージは生体の恒常性維持に重要な役割を担っているが、マクロファージの異常活性化により引き起こされる過剰な炎症反応は多くの疾患に作用する。そのため、抗炎症作用を有する素材の開発が求められている。
In the early stage of inflammation, neutrophils treat foreign substances such as bacteria, viruses, and dead cells, but in later stages of inflammation, macrophages process by phagocytosis. Macrophages that encounter these foreign substances are activated by antigen presentation and release cytokines such as TNF-α, IL-1β, and IL-6 and chemokines such as IL-8.
Inflammatory cytokines increase vascular permeability and cause fever, redness, and swelling. Chemokines also increase leukocyte chemotaxis and cause swelling. Macrophages play an important role in maintaining homeostasis, but excessive inflammatory responses caused by abnormal macrophage activation can affect many diseases. Therefore, development of a material having an anti-inflammatory action is demanded.
フィチン酸は生体物質の一種でmyo-イノシトールの六リン酸エステルである。種子などの多くの植物組織に存在するリンの貯蔵形態であり、キレート作用が強く自然界では多くの金属イオンを結合したフィチン酸塩の形態で存在する。このフィチン酸塩はフィチンと呼ばれる。フィチン酸は抗腫瘍効果があることが報告されている(非特許文献1)。
また、他にも尿路結石(非特許文献2)や腎結石の予防(非特許文献3)、歯垢形成の抑制効果(非特許文献4)などの報告もされている。抗炎症作用に関しては、ヒト大腸細胞やマクロファージでの炎症性サイトカイン抑制効果(非特許文献5)やラットのカラギニン足浮腫試験での浮腫抑制効果(非特許文献6)が報告されている。
Phytic acid is a kind of biological material and is a hexaphosphate ester of myo-inositol. It is a storage form of phosphorus present in many plant tissues such as seeds, and has a strong chelating action and exists in the form of phytate in which many metal ions are bound in nature. This phytate is called phytin. It has been reported that phytic acid has an antitumor effect (Non-patent Document 1).
In addition, urinary calculi (Non-patent Document 2), prevention of kidney stones (Non-patent Document 3), suppression effect of plaque formation (Non-patent Document 4), and the like have been reported. As for the anti-inflammatory action, inflammatory cytokine inhibitory effect in human colon cells and macrophages (Non-patent Document 5) and edema inhibitory effect in rat carrageenin paw edema test (Non-patent Document 6) have been reported.
フィチン酸は抗腫瘍効果、抗酸化効果、そして抗炎症作用等の機能性を有する。しかし、一方でフィチン酸は強烈なキレート作用を有するため、生体内では即座にカチオンと結合して反応性の乏しい不溶塩の形態となってしまう。よって、その効果を発揮するためには充分量摂取することが必要であると考えられる。
一方で、フィチン酸自体の強烈なキレート作用は生体への刺激性が強く、ミネラルの吸収阻害や成長阻害を引き起こす悪影響も報告されているため、大量に摂取することは問題があるとも考えられる。
Phytic acid has functionalities such as an antitumor effect, an antioxidant effect, and an anti-inflammatory effect. However, phytic acid, on the other hand, has a strong chelating action, so in the living body, it immediately binds to a cation and forms an insoluble salt with poor reactivity. Therefore, it is considered necessary to ingest a sufficient amount in order to exert the effect.
On the other hand, the strong chelating action of phytic acid itself is highly irritating to the living body, and it has been reported that adverse effects of mineral absorption inhibition and growth inhibition have been reported.
そこで本発明は、フィチン酸が持つ生理機能を有効に発揮するための技術を提供することを課題とする。 Then, this invention makes it a subject to provide the technique for exhibiting the physiological function which phytic acid has effectively.
本発明者は本課題について鋭意検討する中で、フィチン酸がペプチド等のアミノ態有機窒素化合物にミネラルを介さずに直接結合した結合体が、生体内で強い抗炎症作用を発揮すること、またその効果が生体内においてはフィチン酸単体よりも優れていることを見出し、本発明を完成させた。 The present inventor has been diligently examining this problem, and that a conjugate in which phytic acid is directly bound to an amino organic nitrogen compound such as a peptide without using a mineral exhibits a strong anti-inflammatory action in vivo. The inventor found that the effect is superior to phytic acid alone in the living body and completed the present invention.
即ち、本発明は以下の発明を包含する。
(1)アミノ態有機窒素化合物のアミノ基と、フィチン酸もしくはその塩のリン酸基とが結合したフィチン酸結合体を有効成分とする、抗炎症用添加剤、
(2)アミノ態有機窒素化合物がアミノ酸,ペプチドもしくはタンパク質、又はこれらの塩から選択される、前記(1)記載の抗炎症用添加剤、
(3)食品添加剤、医薬添加剤又は飼料添加剤である、前記(1)又は(2)記載の抗炎症用添加剤、
(4)アミノ態有機窒素化合物及びフィチン酸もしくはその塩の混合物をpH5.5以下に調整することにより、アミノ態有機窒素化合物のアミノ基とフィチン酸もしくはその塩のリン酸基とを結合させたフィチン酸結合体を得ることを特徴とする、抗炎症用添加剤の製造法、
(5)アミノ態有機窒素化合物及びフィチン酸もしくはその塩の混合物をpH5.5以下に調整することにより、アミノ態有機窒素化合物のアミノ基とフィチン酸もしくはその塩のリン酸基とを結合させたフィチン酸結合体を得ることを特徴とする、該アミノ態有機窒素化合物に抗炎症能を付与する方法。
That is, the present invention includes the following inventions.
(1) An anti-inflammatory additive comprising as an active ingredient a phytic acid conjugate in which an amino group of an amino organic nitrogen compound is bonded to a phosphate group of phytic acid or a salt thereof,
(2) The anti-inflammatory additive according to (1), wherein the amino organic nitrogen compound is selected from amino acids, peptides or proteins, or salts thereof,
(3) The anti-inflammatory additive according to (1) or (2), which is a food additive, a pharmaceutical additive or a feed additive,
(4) The amino group of the amino organic nitrogen compound and the phosphate group of phytic acid or its salt were bound by adjusting the mixture of the amino organic nitrogen compound and phytic acid or its salt to pH 5.5 or lower. A method for producing an anti-inflammatory additive, characterized by obtaining a phytic acid conjugate,
(5) The amino group of the amino organic nitrogen compound and the phosphate group of phytic acid or its salt were bound by adjusting the mixture of the amino organic nitrogen compound and phytic acid or its salt to pH 5.5 or lower. A method for imparting anti-inflammatory activity to the amino organic nitrogen compound, which comprises obtaining a phytic acid conjugate.
本発明により、フィチン酸をベースとした優れた抗炎症作用を有する抗炎症用添加剤を提供でき、食品添加剤、医薬添加剤または飼料添加剤などとして使用することができる。 According to the present invention, an anti-inflammatory additive having an excellent anti-inflammatory action based on phytic acid can be provided and used as a food additive, a pharmaceutical additive, a feed additive, or the like.
本発明の抗炎症用添加剤は、アミノ態有機窒素化合物のアミノ基と、フィチン酸もしくはその塩のリン酸基とが結合したフィチン酸結合体を有効成分とすることを特徴とする。以下、本発明の実施形態について具体的に説明する。 The anti-inflammatory additive of the present invention is characterized in that a phytic acid conjugate in which an amino group of an amino organic nitrogen compound is bonded to a phosphate group of phytic acid or a salt thereof is an active ingredient. Hereinafter, embodiments of the present invention will be specifically described.
(アミノ態有機窒素化合物)
本発明においてアミノ態有機窒素化合物は、分子中に窒素がアミノ基(-NH2)の状態で含まれる有機化合物を指す。アミノ態有機窒素化合物としては、タンパク質(ポリペプチド)、低分子ペプチド、アミノ酸等が挙げられる。該アミノ態有機窒素化合物は、それが含まれる天然物を用いることができるし、天然物の濃縮物又は精製物、あるいは合成化合物を用いることもできる。
(Amino organic nitrogen compounds)
In the present invention, the amino organic nitrogen compound refers to an organic compound in which nitrogen is contained in the molecule in the state of an amino group (—NH 2 ). Examples of amino organic nitrogen compounds include proteins (polypeptides), low molecular peptides, amino acids and the like. As the amino organic nitrogen compound, a natural product containing the amino organic nitrogen compound can be used, or a concentrated or purified product of a natural product, or a synthetic compound can be used.
タンパク質とは、動物性、植物性、合成を問わずアミノ酸が鎖状に重合してできた高分子化合物を指し、ポリペプチドと称する場合もある。例えば動物性タンパク質としては、乳由来タンパク質(カゼイン、ホエータンパク質等)、卵黄や卵白などの卵由来タンパク質、牛肉,豚肉,鶏肉,魚肉などの肉由来タンパク質(コラーゲン、ゼラチン等)、酵母,細菌,糸状菌などの微生物由来タンパク質等が挙げられる。また植物性タンパク質としては、大豆やエンドウなどの豆類由来タンパク質、小麦,大麦,米,米糠などの穀物由来タンパク質、キャノーラ,ナッツ類などの種子由来タンパク質等が挙げられるが、これらの例示に限られるものではない。 Protein refers to a high molecular compound obtained by polymerizing amino acids in a chain regardless of animality, plantiness, or synthesis, and is sometimes referred to as a polypeptide. For example, animal proteins include milk-derived proteins (casein, whey protein, etc.), egg-derived proteins such as egg yolk and egg white, meat-derived proteins such as beef, pork, chicken, and fish (collagen, gelatin, etc.), yeast, bacteria, Examples include microorganism-derived proteins such as filamentous fungi. Examples of vegetable proteins include beans-derived proteins such as soybeans and peas, grains-derived proteins such as wheat, barley, rice and rice bran, and seed-derived proteins such as canola and nuts, but are not limited to these examples. It is not a thing.
ペプチドとは、上記のタンパク質を酵素や化学処理によって分解してタンパク質よりも低分子化したもの、あるいは人工的に合成によりアミノ酸の複数の分子を重合させたものを指す。 Peptide refers to a product obtained by degrading the above protein by an enzyme or chemical treatment to lower the molecular weight than the protein, or a product obtained by artificially synthesizing a plurality of amino acid molecules.
アミノ酸としては、生体のタンパク質を構成する20種類のα−アミノ酸(カルボキシル基が結合している炭素にアミノ基も結合しているアミノ酸)が挙げられる。α−アミノ酸の中でもD型、L型の光学異性体があるが、そのいずれでもよい。β−アラニン等のβ−アミノ酸、γ−アミノ酪酸等のγ−アミノ酸、オルニチン、シトルリン、サルコシン、クレアチン、オパイン、トリメチルグリシン、テアニン、トリコロミン酸、カイニン酸、シスチン、ヒドロキシプロリン、ヒロシキシリシン、サイロキシン、O−ホスホセリン、デスモシン等のα−アミノ酸以外のアミノ酸などを用いることもできる。 Examples of amino acids include 20 kinds of α-amino acids (amino acids having an amino group bonded to carbon to which a carboxyl group is bonded) constituting a protein in a living body. Among α-amino acids, there are D-type and L-type optical isomers, any of which may be used. β-amino acids such as β-alanine, γ-amino acids such as γ-aminobutyric acid, ornithine, citrulline, sarcosine, creatine, opine, trimethylglycine, theanine, tricolominic acid, kainic acid, cystine, hydroxyproline, hiroxylysine, thyroxine Amino acids other than α-amino acids such as O-phosphoserine and desmosine can also be used.
(フィチン酸又はその塩)
フィチン酸はmyo-イノシトールの六リン酸エステルである。またフィチン塩としてはフィチン酸ナトリウムやフィチン酸カルシウムといったフィチン酸のアルカリ金属塩やアルカリ土類金属塩などが挙げられるが、これらの例示には限定されない。本発明ではフィチン酸とフィチン酸塩のいずれの形態でも用いることができ、取扱い性や組成物の製造工程を考慮して適宜選択することができる。
本発明に用いるフィチン酸は天然由来、たとえば米,大豆や小麦などの植物から抽出したものを用いることができる。また、化学合成法などにより合成して得られたものや試薬を用いることもできる。
(Phytic acid or its salt)
Phytic acid is a hexaphosphate ester of myo-inositol. Examples of phytic salts include alkali metal salts and alkaline earth metal salts of phytic acid such as sodium phytate and calcium phytate, but are not limited to these examples. In the present invention, any form of phytic acid and phytate can be used, and it can be appropriately selected in consideration of handling properties and the production process of the composition.
The phytic acid used in the present invention may be naturally derived, for example, extracted from plants such as rice, soybeans and wheat. Moreover, what was synthesize | combined by the chemical synthesis method etc. and a reagent can also be used.
(フィチン酸結合体)
本発明におけるフィチン酸結合体とは、上記のアミノ態有機窒素化合物とフィチン酸もしくはその塩とが結合したものであるが、カルシウムなどのカチオンを介した間接的なキレート結合ではなく、アミノ態有機窒素化合物のアミノ基とフィチン酸のリン酸基とが直接結合したものを指す(以下、「本結合体」と称する場合がある)。カチオンによるキレート結合を介したフィチン酸結合体の場合、これを経口で摂取した場合に胃酸で容易に結合が外れてしまうことが予見される。これはキレート結合が酸性条件下で容易に結合が外れるためである。
一方、本結合物は直接結合であるため、生体内においても比較的安定である。このような直接結合は、アミノ態有機窒素化合物とフィチン酸とを単に混合するだけでは生じず、自然界では種子に代表される植物由来の一部に限られる。
(Phytic acid conjugate)
The phytic acid conjugate in the present invention is a combination of the above amino organic nitrogen compound and phytic acid or a salt thereof, but is not an indirect chelate bond via a cation such as calcium, but an amino organic organic compound. This refers to a direct combination of an amino group of a nitrogen compound and a phosphate group of phytic acid (hereinafter sometimes referred to as “the present conjugate”). In the case of a phytic acid conjugate via a chelate bond by a cation, it is foreseen that when this is taken orally, the bond is easily released by gastric acid. This is because the chelate bond is easily detached under acidic conditions.
On the other hand, since this conjugate is a direct linkage, it is relatively stable in vivo. Such a direct bond does not occur simply by mixing an amino organic nitrogen compound and phytic acid, and is limited to a part derived from plants represented by seeds in nature.
本結合体はより簡便には、アミノ態有機窒素化合物とフィチン酸の共存下で、人為的な修飾工程を経ることにより得ることができる。 More simply, this conjugate can be obtained through an artificial modification step in the presence of an amino organic nitrogen compound and phytic acid.
人為的な修飾工程を経て本結合体を得る方法の一つの態様として、次のように行うことができる。
まず、例えばアミノ態有機窒素化合物とフィチン酸もしくはその塩を水系下に混合して混合物を得て、両化合物を共存させる。次に、該混合物のpHを5.5以下の酸性に調整する。該pHの上限はさらに5以下、4.5以下、4以下、3.5以下又は3以下とすることが好ましい。該pHの下限は特に限定されないが、1以上とすることができる。pH調製後、必要により撹拌しつつ当該pHを維持する。維持時間は特に限定されないが、本結合体が生成するために十分な時間維持すればよく、例えば10分間〜24時間、好ましくは10分間〜3時間程度維持する。次に、当該pHのまま、あるいは必要によりアルカリでpHをよりアルカリ性側に上げ、例えばpH6〜8程度に中和してから、混合物を遠心分離して、沈殿物を回収することにより、本結合体を含む画分を得る。
One embodiment of a method for obtaining the present conjugate through an artificial modification step can be performed as follows.
First, for example, an amino organic nitrogen compound and phytic acid or a salt thereof are mixed in an aqueous system to obtain a mixture, and both compounds are allowed to coexist. Next, the pH of the mixture is adjusted to an acidity of 5.5 or less. The upper limit of the pH is further preferably 5 or less, 4.5 or less, 4 or less, 3.5 or less, or 3 or less. The lower limit of the pH is not particularly limited, but can be 1 or more. After pH adjustment, the pH is maintained with stirring as necessary. Although the maintenance time is not particularly limited, it may be maintained for a time sufficient for the production of the present conjugate. For example, the maintenance time is 10 minutes to 24 hours, preferably 10 minutes to 3 hours. Next, with this pH, or if necessary, raise the pH to the alkaline side with an alkali and neutralize it to, for example, about pH 6-8, and then centrifuge the mixture to collect the precipitate. A fraction containing the body is obtained.
ただし、アミノ態有機窒素化合物が低分子のために、pHを酸性に調整しても沈殿が生じない場合には、膜分画等の分画手段により本結合体を濃縮することができる。あるいは、高分子の蛋白質の状態でフィチン酸との結合体を得てから、プロテアーゼ等の酵素により低分子のペプチドやアミノ酸に分解してもよい。 However, since the amino organic nitrogen compound is a low molecule, the precipitate can be concentrated by fractionation means such as membrane fractionation if precipitation does not occur even when the pH is adjusted to acidic. Alternatively, after obtaining a conjugate with phytic acid in the state of a high molecular protein, it may be decomposed into a low molecular weight peptide or amino acid by an enzyme such as a protease.
本結合体中のフィチン酸の含有量は、アミノ態有機窒素化合物の組成などによって直接結合できるフィチン酸の飽和量が異なるため、特に限定されない。 The content of phytic acid in the conjugate is not particularly limited because the saturation amount of phytic acid that can be directly bonded varies depending on the composition of the amino organic nitrogen compound.
以上のような方法で、アミノ態有機窒素化合物のアミノ基とフィチン酸のリン酸基とを直接結合することにより、アミノ態有機窒素化合物に抗炎症能を付与することができる。 By directly bonding the amino group of the amino organic nitrogen compound and the phosphate group of phytic acid by the method as described above, anti-inflammatory ability can be imparted to the amino organic nitrogen compound.
(抗炎症用添加剤)
本発明の抗炎症用添加剤は、上記の本結合体を有効成分とするものであり、本結合体そのものを抗炎症用添加剤として用いることができ、また必要により賦形剤等の他原料を混合することもできる。また抗炎症作用を有する他の有効成分を組み合わせることもできる。
(Anti-inflammatory additive)
The anti-inflammatory additive of the present invention comprises the above-mentioned conjugate as an active ingredient, and the conjugate itself can be used as an anti-inflammatory additive, and if necessary, other raw materials such as excipients Can also be mixed. Also, other active ingredients having an anti-inflammatory action can be combined.
本発明の抗炎症用添加剤は、食品添加剤、医薬添加剤、飼料添加剤、皮膚外用剤添加剤、化粧用添加剤等の種々の分野の用途にも用いることができる。また該抗炎症用添加剤を使用する対象も特に限定されるものではなく、例えばヒトの他、霊長類(チンパンジー、サルなど)、家畜動物(ウシ、ブタ、ニワトリ、ウマなど)、愛玩動物(イヌ、ネコなど)、実験動物(マウス、ラット、ウサギなど)等の哺乳動物や鳥類、その他の動物に有効成分を摂取させるための添加剤として用いるとができる。 The anti-inflammatory additive of the present invention can also be used in various fields such as food additives, pharmaceutical additives, feed additives, external skin additives, cosmetic additives and the like. Further, the subject to which the anti-inflammatory additive is used is not particularly limited. For example, in addition to humans, primates (chimpanzees, monkeys, etc.), livestock animals (cattle, pigs, chickens, horses, etc.), pet animals ( It can be used as an additive for ingesting active ingredients to mammals such as dogs and cats) and laboratory animals (such as mice, rats and rabbits), birds and other animals.
本発明の抗炎症用添加剤は、炎症性の疾患又は症状を効果的に予防又は治療することができる。該添加剤は生体内において炎症性サイトカインの産生を低下または抑制するため、炎症性サイトカインに起因する炎症性疾患又は症状に対し特に有効である。このような症状としては、炎症性腸疾患、肥満、関節リウマチ、変形性関節症、サルコペニア、慢性炎症、動脈硬化、生活習慣病や肥満による炎症などが挙げられる。 The anti-inflammatory additive of the present invention can effectively prevent or treat inflammatory diseases or symptoms. Since the additive reduces or suppresses the production of inflammatory cytokines in vivo, it is particularly effective for inflammatory diseases or symptoms caused by inflammatory cytokines. Such symptoms include inflammatory bowel disease, obesity, rheumatoid arthritis, osteoarthritis, sarcopenia, chronic inflammation, arteriosclerosis, lifestyle-related diseases and inflammation due to obesity.
以下、実施例により本発明の実施態様をさらに具体的に説明する。なお、単位の「%」や「部」は特段断りのない限り、「重量%」や「重量部」を意味するものとする。 Hereinafter, embodiments of the present invention will be described more specifically with reference to examples. The unit “%” or “part” means “% by weight” or “part by weight” unless otherwise specified.
(実施例1)タンパク質−フィチン酸結合体の調製
以下の通り、タンパク質へのフィチン酸修飾を行い、タンパク質−フィチン酸結合体を調製した。
0.792%水溶液濃度になるように6.3Lのカゼインナトリウムと分離大豆タンパクの2種類の水溶液をそれぞれ調製し、塩酸によりpH2に調整した。水酸化ナトリウムによりpH7に調整した400μMのフィチン酸ナトリウム水溶液を6.3L混和させた。ただちに塩酸によりpH2に再調整し、室温で30分間攪拌した。6,000gで15分間遠心分離した後、沈殿を回収した。該沈殿を10倍希釈したリン酸緩衝生理食塩水(PBS(-)溶液)で洗浄した後、再度6,000gで15分間遠心分離を行い、沈殿を回収した。該沈殿を凍結乾燥し、カゼインナトリウムと分離大豆タンパクにフィチン酸がそれぞれ結合した修飾体1、修飾体2を得た。
酸性領域ではフィチン酸とカチオンとの結合が起こらずフィチン酸のリン酸基が遊離している。一方でタンパク質の等電点以下の酸性領域ではタンパク質はアミノ基がプラス電荷にチャージされており、これらが直接結合してタンパク質とフィチン酸の結合体が沈殿として生じたと考えられる。
(Example 1) Preparation of protein-phytic acid conjugate As described below, phytic acid modification was performed on a protein to prepare a protein-phytic acid conjugate.
Two aqueous solutions of 6.3 L sodium caseinate and separated soy protein were prepared so as to obtain a 0.792% aqueous solution concentration, and the pH was adjusted to 2 with hydrochloric acid. 6.3 L of 400 μM sodium phytate aqueous solution adjusted to
In the acidic region, phytic acid and cation are not bonded, and the phosphate group of phytic acid is released. On the other hand, in the acidic region below the isoelectric point of the protein, the amino group of the protein is charged with a positive charge, and it is considered that the protein and phytic acid conjugates were formed as a direct bond and formed as a precipitate.
(実施例2)人工消化物の調製
以下の通り、カゼインナトリウムと分離大豆タンパク、実施例1で得られた修飾体1、修飾体2の人工消化処理物を調製した。
2.5%水溶液濃度になるように、カゼインナトリウム、分離大豆タンパク、修飾体1、修飾体2の4種類の水溶液を調製し、塩酸によりpH2に調整した。ペプシンを対基質1%添加して、37℃で2時間反応させた。
水酸化ナトリウムによりpH8に調整後、トリプシンを対基質1.7%、α−キモトリプシンを対基質0.03%添加して、37℃で2時間反応させた。5分間の煮沸で酵素を失活させた後、1,000gで10分間の遠心分離を行い、上清を回収後に凍結乾燥して4種類の人工消化物を得た。
(Example 2) Preparation of Artificial Digestion Artificial digestion products of sodium caseinate and separated soybean protein, modified
Four aqueous solutions of sodium caseinate, separated soybean protein, modified
After adjusting to
(実施例3)フィチン態リン含量の測定
以下の通り、実施例2で得られた4種類の人工消化物について、フィチン態リン含量の測定を行った。
タンパク質含量が2%程度になるように水溶液を8ml調製した。該水溶液に15%トリクロロ酢酸水溶液を2ml加えて15分間攪拌した。該水溶液を3,000gで15分間遠心分離した後に上清を0.45μmフィルターで濾過した。
該上清5mlに3mlの1% FeCl3・6H2Oおよび5% Na2SO4(in 1M 塩酸)溶液を加え、30分間煮沸した。次に該溶液を遠心分離して上清を除去した後、沈殿に3%トリクロロ酢酸水溶液を5ml加えて攪拌した。
該溶液を遠心分離して上清を除去した後、沈殿に0.17M塩酸を5ml加えて攪拌した。該溶液を遠心分離して上清を除去した後、沈殿に温めた超純水を5ml加えて攪拌した。
該溶液を遠心分離して上清を除去した後、沈殿に60%過塩素酸を0.5ml加えて懸濁させた。重量測定した試験管に該溶液を分注して、180℃で2時間加熱した。
次に2Mの塩酸を2ml加えた後、30分間煮沸した。該溶液にフェノールフタレインを加えた後に20%水酸化ナトリウムで中和して試験管の重量を測定した。
100μlの試料溶液と検量線用標準液(KH2PO4, 0〜200μg/ml)に超純水を400μl加えて攪拌した。60%過塩素酸を50μl加えて攪拌した。
バナジン酸アンモニウム溶液(メタバナジン酸アンモニウム1.17gを温めた超純水に溶解、冷却後に60%過塩素酸を20ml加え、MiliQで500mlにメスアップ)を該溶液に150μl加えて攪拌した。3.53%モリブデン酸アンモニウム溶液(モリブデン酸アンモニウム35.3gを超純水に溶解し、1Lにメスアップ)を該溶液に300μl加えて攪拌した。
該溶液を室温で30分間静置後、96穴プレートに200μl分注し、420nmの吸光度を測定した。フィチン酸測定溶液から算出された全リン量からフィチン酸(MW=660.8)の含量を換算して算出した。測定結果を表1に示した。
(Example 3) Measurement of phytic phosphorus content The phytic phosphorus content of the four types of artificial digests obtained in Example 2 was measured as follows.
8 ml of an aqueous solution was prepared so that the protein content was about 2%. 2 ml of 15% trichloroacetic acid aqueous solution was added to the aqueous solution and stirred for 15 minutes. The aqueous solution was centrifuged at 3,000 g for 15 minutes, and then the supernatant was filtered through a 0.45 μm filter.
To 5 ml of the supernatant, 3 ml of 1% FeCl 3 .6H 2 O and 5% Na 2 SO 4 (in 1 M hydrochloric acid) solution were added and boiled for 30 minutes. Next, the solution was centrifuged to remove the supernatant, and 5 ml of 3% trichloroacetic acid aqueous solution was added to the precipitate and stirred.
The solution was centrifuged to remove the supernatant, and then 5 ml of 0.17M hydrochloric acid was added to the precipitate and stirred. The solution was centrifuged to remove the supernatant, and 5 ml of warm ultrapure water was added to the precipitate and stirred.
The solution was centrifuged to remove the supernatant, and 0.5 ml of 60% perchloric acid was added to the precipitate to suspend it. The solution was dispensed into a weighed test tube and heated at 180 ° C. for 2 hours.
Next, 2 ml of 2M hydrochloric acid was added, followed by boiling for 30 minutes. After adding phenolphthalein to the solution, it was neutralized with 20% sodium hydroxide and the weight of the test tube was measured.
400 μl of ultrapure water was added to 100 μl of the sample solution and the standard solution for calibration curve (KH 2 PO 4 , 0 to 200 μg / ml) and stirred. 50 μl of 60% perchloric acid was added and stirred.
150 μl of an ammonium vanadate solution (dissolved in 1.17 g of ammonium metavanadate in warm ultrapure water, 20 ml of 60% perchloric acid after cooling, and made up to 500 ml with MiliQ) was added to the solution and stirred. 300 μl of a 3.53% ammonium molybdate solution (35.3 g of ammonium molybdate dissolved in ultrapure water and made up to 1 L) was added to the solution and stirred.
The solution was allowed to stand at room temperature for 30 minutes, and then 200 μl was dispensed into a 96-well plate, and the absorbance at 420 nm was measured. The content of phytic acid (MW = 660.8) was calculated from the total phosphorus amount calculated from the phytic acid measurement solution. The measurement results are shown in Table 1.
(表1)フィチン態リン含量
(Table 1) Phytic phosphorus content
(考察)
表1の通り、フィチン酸結合修飾を行ったカゼインナトリウムを原料とする修飾体1、分離大豆タンパクを原料とする修飾体2のいずれにおいても、人工消化後のフィチン酸含量が未修飾のタンパク質よりも高値であることが認められた。すなわち、これらの修飾体はタンパク質とフィチン酸の結合が為されていること、そして人工消化後でもタンパク質とフィチン酸との結合が維持されていることが示された。
(Discussion)
As shown in Table 1, the phytic acid content after artificial digestion is higher than that of the unmodified protein in both the modified
(実施例4)抗炎症評価のための細胞培養
実施例2で得られた人工消化物のマクロファージに対する抗炎症作用の評価を行うため、下記の手法により細胞培養を行った。
マウスマクロファージ細胞として「J774.1細胞」(理化学研究所より提供)を使用した。また「RPMI-1640」培地(和光純薬(株)製)に終濃度10%となるようにウシ血清を添加し、抗生物質として終濃度100IU/mlペニシリン及び100μg/mlストレプトマイシンを添加して細胞培養用培地とした。
J774.1細胞を細胞培養用培地にて37℃、5%CO2条件下で培養し、10cmシャーレでコンフルエントになるまで培養を行った。コンフルエントに達した細胞を回収し、2.5×105個/mlになるように希釈し、24穴細胞培養用プレートに1mlずつ添加した。
37℃、5%CO2条件下で24時間培養し、培地をアスピレーターにて除去した。除去後、終濃度5μg/mlになるように調製した人工消化物を350μl、及び炎症誘導物質として「Pam3CSK4」(InvivoGen社製)を終濃度10ng/mlになるように350μl添加し、37℃、5%CO2条件下で24時間培養した。その後、培養上清を200μl回収した。
(Example 4) Cell culture for anti-inflammatory evaluation In order to evaluate the anti-inflammatory action of the artificial digest obtained in Example 2 on macrophages, cell culture was performed by the following method.
“J774.1 cells” (provided by RIKEN) were used as mouse macrophage cells. Add bovine serum to RPMI-1640 medium (Wako Pure Chemical Industries, Ltd.) to a final concentration of 10%, and add 100 IU / ml penicillin and 100 μg / ml streptomycin as antibiotics. A culture medium was used.
J774.1 cells were cultured in a cell culture medium at 37 ° C. under 5% CO 2 , and cultured in a 10 cm petri dish until confluent. Cells that reached confluence were collected, diluted to 2.5 × 10 5 cells / ml, and 1 ml each was added to a 24-well cell culture plate.
The cells were cultured for 24 hours under conditions of 37 ° C. and 5% CO 2 , and the medium was removed with an aspirator. After removal, 350 μl of artificial digest prepared to a final concentration of 5 μg / ml and 350 μl of “Pam3CSK4” (InvivoGen) as an inflammation inducer to a final concentration of 10 ng / ml were added, The cells were cultured for 24 hours under 5% CO 2 conditions. Thereafter, 200 μl of the culture supernatant was collected.
(実施例5)ELISAによるIL-6濃度の測定
以下の通り、実施例4で細胞培養した各培地中の炎症性サイトカインIL-6濃度をELISA法により測定した。
「Purified rat anti-mouse IL-6」(1次抗体)、「Biotinylated rat anti-mouse IL-6」(2次抗体)、「Recombinant mouse IL-6」(標準IL-6)及び「Streptavidin-Alkalin Phosphate」は、すべてBD Biosciences社から購入し使用した。
1次抗体を0.1M Na2HPO4 buffer(pH9.0)で0.5μg/mlになるように調製したものを96ウェルマイクロプレートに50μl/wellずつ添加し、室温で2時間静置した。次にPBS-Tween20(PBS-T)で3回洗浄し、十分に水切りを行った。
その後、3% BSA in PBS-Tを100μl/wellずつ添加し、室温で1時間静置後、PBS-Tで3回洗浄し、十分に水切りを行った。PBS-Tで適宜希釈した培養上清サンプルを50μl/wellずつ添加し、4℃で24時間放置後、PBS-Tで3回洗浄し、十分に水切りを行った。
PBS-Tで0.5μg/mlに調製した2次抗体を50μl/wellずつ添加し、アルミホイルで遮光して室温で1時間静置後、PBS-Tで3回洗浄し、十分に水切りを行った。「Streptavidin-Alkalin Phosphate in PBS-T」を50μl/wellずつ添加し、アルミホイルで遮光して室温で1時間静置後、PBS-Tで3回洗浄し、十分に水切りを行った。
0.2mg/mlの4−二トロフェニルリン酸2ナトリウムin 1Mジエタノールアミンbufferを50μl/wellずつ入れて、アルミホイルで遮光して20分間静置後、マイクロプレートリーダーにて405nm(参考波長492nm)の吸光度を2回測定し、平均値を算出した。測定結果を図1に示した。
(Example 5) Measurement of IL-6 concentration by ELISA As described below, the inflammatory cytokine IL-6 concentration in each medium cultured in Example 4 was measured by ELISA.
“Purified rat anti-mouse IL-6” (primary antibody), “Biotinylated rat anti-mouse IL-6” (secondary antibody), “Recombinant mouse IL-6” (standard IL-6) and “Streptavidin-Alkalin” “Phosphate” was purchased from BD Biosciences and used.
A primary antibody prepared with 0.1 M Na 2 HPO 4 buffer (pH 9.0) to a concentration of 0.5 μg / ml was added to a 96-well microplate at 50 μl / well and allowed to stand at room temperature for 2 hours. Next, the plate was washed 3 times with PBS-Tween20 (PBS-T) and thoroughly drained.
Thereafter, 3% BSA in PBS-T was added at 100 μl / well, allowed to stand at room temperature for 1 hour, washed 3 times with PBS-T, and thoroughly drained. A culture supernatant sample diluted appropriately with PBS-T was added in an amount of 50 μl / well, allowed to stand at 4 ° C. for 24 hours, washed 3 times with PBS-T, and sufficiently drained.
Add 50 μl / well of the secondary antibody prepared at 0.5 μg / ml with PBS-T, shield from light with aluminum foil, let stand at room temperature for 1 hour, wash with PBS-T three times, and drain thoroughly. It was. “Streptavidin-Alkalin Phosphate in PBS-T” was added in an amount of 50 μl / well, light-shielded with aluminum foil, allowed to stand at room temperature for 1 hour, washed 3 times with PBS-T, and thoroughly drained.
Put 0.2 mg / ml of disodium 4-ditrophenyl phosphate in 1M diethanolamine buffer at 50 μl / well, light-shield with aluminum foil and let stand for 20 minutes, then 405 nm (reference wavelength 492 nm) with a microplate reader. Absorbance was measured twice and the average value was calculated. The measurement results are shown in FIG.
(考察)
各人工消化物の抗炎症作用を検証した結果、図1に示すようにカゼインナトリウム人工消化物は、ポジティブコントロールのIL-6産生量と比較しても変化は見られず、抗炎症作用は認められなかった。
一方、修飾体1人工消化物ではIL-6産生量が大きく低下しており、抗炎症作用を獲得させることができた。
また、分離大豆タンパク人工消化物はフィチン酸修飾前でもIL-6産生量が抑制されているが、修飾体2人工消化物ではIL-6産生量がさらに大きく低下しており、フィチン酸を修飾することで抗炎症作用が増強されていることが示された。
(Discussion)
As a result of verifying the anti-inflammatory action of each artificial digest, as shown in FIG. 1, the casein sodium artificial digest showed no change compared with the positive control IL-6 production, and the anti-inflammatory action was recognized. I couldn't.
On the other hand, the modified
In addition, IL-6 production was suppressed in the isolated soybean protein artificial digest even before phytic acid modification, but IL-6 production was significantly reduced in the modified 2 artificial digest, which modified phytic acid. It was shown that the anti-inflammatory action was enhanced.
(実施例6)腸管炎症動物試験
生体内での抗炎症作用を評価するため、デキストラン硫酸ナトリウム(DSS)を用いたマウスの腸管炎症モデルの動物試験を行った。
マウス(C57BL/6、雌、7週齢)は日本SLC社より購入し、順化中の飼料は「CRF-1」(オリエンタル酵母工業(株)製)を、試験期間中はAIN93G組成食を与えた。飲水はイオン交換水を与えた。
飼料、飲料共にマウスに自由摂食させ、12時間周期の明期の下飼育した。全ての動物は3日間予備飼育してから本実験に用い、未投与群(n=6),DSS投与群(n=6),修飾体1群(n=6),フィチン酸群(n=6)の4群に分けた。
順化後に5日間、未投与群とDSS投与群はイオン交換水を、修飾体1群は実施例2に記載した修飾体1人工消化物の0.5%水溶液を、フィチン酸群は0.0285%フィチン酸ナトリウム水溶液を、自由飲水させた。
その後、DSS投与群、修飾体1群、フィチン酸群の自由飲水の溶液中に、DSS(MP Biochemicals社より購入、Mw36,000-50,000)を2.25%添加して自由飲水させた。図2に15日間の試験期間中における各群の体重変化を示した。
解剖はDSS投与開始から11日後に行った。解剖では大腸組織を回収した後、RNAの抽出を行い、炎症性サイトカイン(TNF-α、IL-1β、IL-6)の発現量を測定した。各サイトカインの測定結果を図3〜5に示した。
(Example 6) Intestinal inflammation animal test In order to evaluate the anti-inflammatory action in vivo, an animal test of a mouse intestinal inflammation model using dextran sulfate sodium (DSS) was performed.
Mice (C57BL / 6, female, 7 weeks old) were purchased from Japan SLC, and the acclimatized feed was “CRF-1” (produced by Oriental Yeast Co., Ltd.). Gave. Drinking water was given ion exchange water.
Mice were allowed to freely feed and drink and were kept under a 12-hour light period. All animals were preliminarily raised for 3 days before being used in this experiment, and the untreated group (n = 6), DSS administered group (n = 6), modified group 1 (n = 6), phytic acid group (n = Divided into 4 groups of 6).
For 5 days after acclimatization, the non-administered group and the DSS-administered group had ion exchange water, the modified
Thereafter, 2.25% of DSS (purchased from MP Biochemicals, Mw 36,000-50,000) was added to the DSS-administered group, modified
Dissection was performed 11 days after the start of DSS administration. In dissection, colon tissue was collected, RNA was extracted, and the expression levels of inflammatory cytokines (TNF-α, IL-1β, IL-6) were measured. The measurement results of each cytokine are shown in FIGS.
(考察)
図2に示した通り、DSSの自由飲水により腸管炎症が引き起こされ、DSS投与群では体重が著しく減少した。一方、フィチン酸群では体重減少の抑制効果が少し見られた。しかし、フィチン酸群と等量のフィチン酸が修飾された修飾体1群では、フィチン酸群よりも強い体重減少抑制効果が確認された。
また、図3〜5に示した通り、炎症性サイトカインの発現では、フィチン酸群ではTNF-α、IL-6では効果が無かったのに対し、修飾体1群では全てのサイトカインにおいてフィチン酸群よりも強い発現抑制効果を示した。すなわち、生体内ではフィチン酸単体では抗炎症作用は薄いが、等量であってもタンパク質とフィチン酸との結合体にすることで、より顕著な抗炎症作用を示していた。
(Discussion)
As shown in FIG. 2, intestinal inflammation was caused by DSS free drinking, and body weight was significantly reduced in the DSS administration group. On the other hand, the phytic acid group showed a slight effect of suppressing weight loss. However, in the modified
In addition, as shown in FIGS. 3 to 5, in the expression of inflammatory cytokines, TNF-α and IL-6 had no effect in the phytic acid group, whereas in the modified
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016064627A JP6922156B2 (en) | 2016-03-28 | 2016-03-28 | Anti-inflammatory additives |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016064627A JP6922156B2 (en) | 2016-03-28 | 2016-03-28 | Anti-inflammatory additives |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017178796A true JP2017178796A (en) | 2017-10-05 |
JP6922156B2 JP6922156B2 (en) | 2021-08-18 |
Family
ID=60004963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016064627A Active JP6922156B2 (en) | 2016-03-28 | 2016-03-28 | Anti-inflammatory additives |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6922156B2 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0638745A (en) * | 1992-03-18 | 1994-02-15 | Natl Fedelation Of Agricult Coop Assoc | Neutral phytase and its production |
JPH1192414A (en) * | 1997-09-25 | 1999-04-06 | New Food Creation Gijutsu Kenkyu Kumiai | Production of concentrated vitamin k2 product |
JP2002159290A (en) * | 2000-11-27 | 2002-06-04 | Hiroshima Industrial Technology Organization | New lipase and method for producing the same |
JP2006225269A (en) * | 2005-02-15 | 2006-08-31 | Yoshihiro Futamura | Tripeptide having collagenase inhibition, fermentation product, food preparation and cosmetic preparation containing the same |
JP2012250217A (en) * | 2011-06-07 | 2012-12-20 | Kirishima Kogen Beer Kk | Pretreatment method for organic waste and method for separating foreign matter from organic waste |
JP2014027913A (en) * | 2012-07-31 | 2014-02-13 | Gekkeikan Sake Co Ltd | Reduction method of saccharide in sake, and production method of sake |
JP2016021869A (en) * | 2014-07-16 | 2016-02-08 | 池田食研株式会社 | Production method of tea extract |
-
2016
- 2016-03-28 JP JP2016064627A patent/JP6922156B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0638745A (en) * | 1992-03-18 | 1994-02-15 | Natl Fedelation Of Agricult Coop Assoc | Neutral phytase and its production |
JPH1192414A (en) * | 1997-09-25 | 1999-04-06 | New Food Creation Gijutsu Kenkyu Kumiai | Production of concentrated vitamin k2 product |
JP2002159290A (en) * | 2000-11-27 | 2002-06-04 | Hiroshima Industrial Technology Organization | New lipase and method for producing the same |
JP2006225269A (en) * | 2005-02-15 | 2006-08-31 | Yoshihiro Futamura | Tripeptide having collagenase inhibition, fermentation product, food preparation and cosmetic preparation containing the same |
JP2012250217A (en) * | 2011-06-07 | 2012-12-20 | Kirishima Kogen Beer Kk | Pretreatment method for organic waste and method for separating foreign matter from organic waste |
JP2014027913A (en) * | 2012-07-31 | 2014-02-13 | Gekkeikan Sake Co Ltd | Reduction method of saccharide in sake, and production method of sake |
JP2016021869A (en) * | 2014-07-16 | 2016-02-08 | 池田食研株式会社 | Production method of tea extract |
Also Published As
Publication number | Publication date |
---|---|
JP6922156B2 (en) | 2021-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kumari et al. | Invitro anti-inflammatory and anti-artheritic property of Rhizopora mucronata leaves | |
JP4975751B2 (en) | Minerals, collagens and chelates and their production and use | |
Zhao et al. | Simulated gastrointestinal digest from preserved egg white exerts anti-inflammatory effects on Caco-2 cells and a mouse model of DSS-induced colitis | |
JP2020511399A (en) | Composition of fish skin collagen peptide and its use as a drug | |
JP2023022318A (en) | Compositions comprising peptide wkdeagkplvk | |
JP2010090162A (en) | Peptide based on sequence of human lactoferrin and use thereof | |
Gong et al. | Antimicrobial peptides in gut health: a review | |
AU2020277930B2 (en) | Novel peptide compound or pharmaceutically acceptable salt thereof | |
Cakir-Kiefer et al. | In vitro digestibility of α-casozepine, a benzodiazepine-like peptide from bovine casein, and biological activity of its main proteolytic fragment | |
RU2744573C2 (en) | Curcumin-peptide conjugates and their compositions | |
KR100260110B1 (en) | Immunomodulating compositions from bile | |
JP2022046576A (en) | Therapies for treating inflammatory disorders | |
Jayathilakan et al. | Bioactive compounds and milk peptides for human health-a review | |
JP6922156B2 (en) | Anti-inflammatory additives | |
WO2017119481A1 (en) | Cyclic dipeptide-containing composition for preventing neurological diseases | |
RU2509775C1 (en) | Agent, having antitumour, anticoagulant, wound-healing, anti-inflammatory and antioxidant activity, capacity to inhibit collagenase and angiotensin converting enzyme, and method for production thereof | |
EP2760888B1 (en) | IgY COMPOSITION FOR USE IN COELIAC DISEASE | |
KR101732714B1 (en) | Immune-enhancing composition comprsing arabinoxylan from corn or corn processing by-product | |
CN105612177B (en) | Methods of use of secretory IgA | |
AT512342A1 (en) | COMPOSITION | |
NZ505179A (en) | Immune suppressive food product comprising polypeptide fragments of allergens | |
CA2778170A1 (en) | Fish-derived protein lysate, and uses thereof as immunomodulatory and/or anti-inflammatory agent | |
JP2892300B2 (en) | HSP47 synthesis inhibitor | |
US9526717B2 (en) | Composition for treating immune diseases containing daurinol compound as active ingredient | |
JPH10114674A (en) | Promoter of mineral absorption and preventive for hyperlipemia and hypercholesterolemia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200310 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200709 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201208 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210629 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6922156 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |