JP2017177323A - Machine tool and control method - Google Patents

Machine tool and control method Download PDF

Info

Publication number
JP2017177323A
JP2017177323A JP2017063814A JP2017063814A JP2017177323A JP 2017177323 A JP2017177323 A JP 2017177323A JP 2017063814 A JP2017063814 A JP 2017063814A JP 2017063814 A JP2017063814 A JP 2017063814A JP 2017177323 A JP2017177323 A JP 2017177323A
Authority
JP
Japan
Prior art keywords
threshold
spindle
main shaft
tool
execution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017063814A
Other languages
Japanese (ja)
Other versions
JP6801552B2 (en
Inventor
大士 堀岡
Taishi Horioka
大士 堀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Publication of JP2017177323A publication Critical patent/JP2017177323A/en
Application granted granted Critical
Publication of JP6801552B2 publication Critical patent/JP6801552B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/16Thread cutting; Automatic machines specially designed therefor in holes of workpieces by taps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23GTHREAD CUTTING; WORKING OF SCREWS, BOLT HEADS, OR NUTS, IN CONJUNCTION THEREWITH
    • B23G1/00Thread cutting; Automatic machines specially designed therefor
    • B23G1/44Equipment or accessories specially designed for machines or devices for thread cutting

Abstract

PROBLEM TO BE SOLVED: To provide a machine tool and a control method which can prevent damage of a main spindle even if a difference between rotational speed of the main spindle and target rotational speed is large.SOLUTION: A machine tool includes: a main spindle on which a tool is mounted; a moving mechanism which moves in an axial direction of the main spindle; a motor which rotates the main spindle around axis thereof; a control device which sequentially reads a plurality of instructions configuring a machining program and controls driving of the moving mechanism and the motor; a first detection section which detects an axial direction position of the main spindle; and a second detection section which detects a circumferential direction position of the main spindle. A vertical direction position of the main spindle is calculated from the circumferential direction position of the main spindle which is detected in the second detection section and a screw cutting command. When a difference between the present vertical direction position of the main spindle which is detected in the first detection section and the calculated vertical direction position of the main spindle exceeds a threshold, first termination processing for terminating the machining program after the completion of execution of the screw cutting command is executed or second termination processing for terminating the machining program before the completion of the execution of the screw cutting command is executed.SELECTED DRAWING: Figure 2

Description

本発明は、工具を装着する主軸の軸方向位置及び軸回りの回転速度を制御する工作機械及び制御方法に関する。   The present invention relates to a machine tool and a control method for controlling an axial position of a spindle on which a tool is mounted and a rotational speed around the axis.

工作機械は、工具を装着する主軸、主軸を軸方向に移動する移動機構、主軸を軸回りに回転するモータ、移動機構とモータの駆動を制御する制御装置を備える。制御装置は軸方向の所定位置で目標回転速度に一致するように主軸の回転速度を制御する(例えば特許文献1参照)。   The machine tool includes a spindle on which a tool is mounted, a moving mechanism that moves the spindle in the axial direction, a motor that rotates the spindle around the axis, and a controller that controls the movement mechanism and the driving of the motor. The control device controls the rotational speed of the main shaft so as to coincide with the target rotational speed at a predetermined position in the axial direction (see, for example, Patent Document 1).

特開2013−206330号公報JP2013-206330A

工作機械は螺子切り加工時、主軸の回転量と主軸の上下移動量の差分が大きいと工具がワークに係止し、工具又は主軸が破損することがある。   When a machine tool is threaded, if the difference between the amount of rotation of the main shaft and the amount of vertical movement of the main shaft is large, the tool may be locked to the workpiece and the tool or the main shaft may be damaged.

本発明は斯かる事情に鑑みてなされたものであり、主軸の回転速度と目標回転速度との差分が大きくても、主軸の破損を防止できる工作機械及び制御方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a machine tool and a control method that can prevent damage to the spindle even if the difference between the rotation speed of the spindle and the target rotation speed is large. .

本発明に係る工作機械は、工具を装着する主軸と、該主軸の軸方向への移動を行う移動機構と、前記主軸を軸回りに回転するモータと、加工プログラムを構成する複数の命令を順次読み込み、前記移動機構及びモータの駆動を制御する制御装置と、前記主軸の軸方向位置を検出する第一検出部と、前記主軸の周方向の位置を検出する第二検出部とを備える工作機械において、前記制御装置は、読み込んだ前記命令が工具でワークを螺子切りする螺子切り指令を含む場合、前記第二検出部で検出した第一の前記主軸の周方向の位置、前記第二検出部で検出した第二の前記主軸の周方向の位置及び前記螺子切り指令に基づいて、前記主軸の上下方向の位置を演算し、該演算した前記主軸の上下方向の位置と前記第一検出部で検出した前記主軸の上下方向の位置との差分が予め定めた閾値を超過したか否か判定する判定部と、該判定部は前記差分が前記閾値を超過したと判定した場合、前記螺子切り指令の実行完了後、前記加工プログラムの実行を終了する第一終了処理又は前記螺子切り指令の実行を中止し、前記加工プログラムの実行を終了する第二終了処理の何れかを実行する終了部とを備えることを特徴とする。   A machine tool according to the present invention sequentially receives a spindle on which a tool is mounted, a moving mechanism that moves the spindle in the axial direction, a motor that rotates the spindle around an axis, and a plurality of commands that constitute a machining program. A machine tool comprising: a control device that reads and controls driving of the moving mechanism and the motor; a first detection unit that detects an axial position of the main shaft; and a second detection unit that detects a circumferential position of the main shaft. The control device, when the read command includes a screw cutting command for screwing a workpiece with a tool, the circumferential position of the first spindle detected by the second detection unit, the second detection unit The vertical position of the main shaft is calculated based on the circumferential position of the second main shaft detected in step S and the screw cutting command, and the calculated vertical position of the main shaft and the first detection unit Above the detected spindle A determination unit that determines whether or not the difference between the position of the direction exceeds a predetermined threshold, and when the determination unit determines that the difference exceeds the threshold, after the execution of the screw cutting command is completed, And an end unit that stops either the first end process for ending the execution of the machining program or the second end process for stopping the execution of the machining program. .

本発明に係る工作機械は、前記制御装置は、前記第一終了処理又は第二終了処理の実行を設定する設定部を備え、前記終了部は前記設定部での設定に応じて、前記第一終了処理又は第二終了処理を実行することを特徴とする。   In the machine tool according to the present invention, the control device includes a setting unit configured to set execution of the first end process or the second end process, and the end unit is configured according to the setting in the setting unit. An end process or a second end process is executed.

本発明に係る工作機械は、前記命令はワークに形成した螺子孔から工具を抜き出す抜き出し指令を含み、前記閾値は第一閾値と第二閾値を含み、前記判定部は、前記螺子切り指令を実行する場合、前記差分が前記第一閾値を超過したか否か判定する第一判定部と、前記抜き出し指令を実行する場合、前記差分が前記第二閾値を超過したか否か判定する第二判定部とを備えることを特徴とする。   In the machine tool according to the present invention, the command includes an extraction command for extracting a tool from a screw hole formed in the workpiece, the threshold includes a first threshold and a second threshold, and the determination unit executes the screw cutting command. A first determination unit that determines whether or not the difference exceeds the first threshold; and a second determination that determines whether or not the difference exceeds the second threshold when the extraction command is executed. And a section.

本発明に係る工作機械は、前記閾値は第三閾値と該第三閾値よりも大きい第四閾値を含み、前記判定部は、前記差分が前記第三閾値を超過したか否か判定する第三判定部と、前記差分が前記第四閾値を超過したか否か判定する第四判定部とを備え、前記第三判定部が前記差分は前記第三閾値を超過したと判定し且つ前記第四判定部が前記差分は前記第四閾値を超過していないと判定した場合、前記終了部は前記第一終了処理を実行し、前記第四判定部が前記差分は前記第四閾値を超過したと判定した場合、前記終了部は前記第二終了処理を実行することを特徴とする。   In the machine tool according to the present invention, the threshold includes a third threshold and a fourth threshold larger than the third threshold, and the determination unit determines whether the difference exceeds the third threshold. A determination unit, and a fourth determination unit that determines whether or not the difference exceeds the fourth threshold, wherein the third determination unit determines that the difference exceeds the third threshold and the fourth When the determination unit determines that the difference does not exceed the fourth threshold, the end unit executes the first end process, and the fourth determination unit determines that the difference exceeds the fourth threshold When the determination is made, the end unit executes the second end process.

本発明に係る制御方法は、工具を装着する主軸と、該主軸の軸方向への移動を行う移動機構と、前記主軸を軸回りに回転するモータと、加工プログラムを構成する複数の命令を順次読み込み前記移動機構とモータの駆動を制御する制御装置と、前記主軸の軸方向位置を検出する第一検出部と、前記主軸の周方向の位置を検出する第二検出部とを備える工作機械の制御方法において、読み込んだ前記命令がワークを工具で螺子切りする螺子切り指令を含む場合、前記第二検出部で検出した第一の前記主軸の周方向の位置、前記第二検出部で検出した第二の前記主軸の周方向の位置及び前記螺子切り指令に基づいて前記主軸の上下方向の位置を演算し、該演算した前記主軸の上下方向の位置と前記第一検出部で検出した前記主軸の上下方向の位置との差分が予め定めた閾値を超過したか否か判定し、前記差分が前記閾値を超過したと判定した場合、前記螺子切り指令の実行完了後、前記加工プログラムの実行を終了する第一終了処理又は前記螺子切り指令の実行を中止し、前記加工プログラムの実行を終了する第二終了処理の何れかを実行することを特徴とする。   A control method according to the present invention sequentially includes a spindle on which a tool is mounted, a moving mechanism that moves the spindle in the axial direction, a motor that rotates the spindle around an axis, and a plurality of commands that constitute a machining program. A machine tool comprising: a control device that controls reading and a driving device of a motor; a first detection unit that detects an axial position of the main shaft; and a second detection unit that detects a circumferential position of the main shaft. In the control method, when the read command includes a thread cutting command for threading the workpiece with a tool, the circumferential position of the first spindle detected by the second detection unit is detected by the second detection unit. Based on the circumferential position of the second spindle and the threading command, the vertical position of the spindle is calculated, and the calculated vertical position of the spindle and the spindle detected by the first detector Vertical position of A first end process of ending execution of the machining program after completion of execution of the screw cutting instruction when it is determined whether or not the difference exceeds a predetermined threshold, and when it is determined that the difference exceeds the threshold Alternatively, the execution of the screw cutting command is stopped, and any one of the second end processes for ending the execution of the machining program is executed.

本発明においては、第二検出部で検出した主軸の周方向の位置及び螺子切り指令から主軸の上下方向の位置を演算する。第一検出部で検出した主軸の現在の上下方向の位置と演算した主軸の上下方向の位置との差分が閾値を超過した場合、螺子切り指令の実行完了後に加工プログラムを終了する第一終了処理を実行するか、又は螺子切り指令の実行完了前に加工プログラムを終了する第二終了処理を実行する。   In the present invention, the vertical position of the main spindle is calculated from the circumferential position of the main spindle detected by the second detector and the screw cutting command. A first ending process for ending the machining program after completion of execution of the threading command when the difference between the current vertical position of the main spindle detected by the first detection unit and the calculated vertical position of the main spindle exceeds a threshold value Or a second end process for ending the machining program before the completion of execution of the thread cutting command.

本発明においては、第一終了処理又は第二終了処理の何れかを設定部で設定でき、工具とワークの特性に応じた適切な終了処理を実行できる。   In the present invention, either the first end process or the second end process can be set by the setting unit, and an appropriate end process corresponding to the characteristics of the tool and the workpiece can be executed.

本発明においては、ワークに螺子切りを行い第一検出部で検出した主軸の現在の上下方向の位置と演算した主軸の上下方向の位置の差分が閾値を超過した場合、螺子切り実行中に主軸の回転を止めると、工具の溝にワークが入り込み工具とワークが係止し易い。螺子孔から工具を抜き出し且つ前記差分が閾値を超過した場合、主軸が軸方向に移動すると、ワークに係止した工具が主軸から抜けて主軸が損傷し易い。本発明は螺子切りを行う場合と抜き出しを行う場合に、前記差分が前記閾値を超過したか否か夫々判定し、ワークに工具が係止しても、各場合に応じた適切な主軸の動作を実行し、工具又は主軸の破損を防止する。   In the present invention, when the workpiece is threaded and the difference between the current vertical position of the main spindle detected by the first detector and the calculated vertical position of the main spindle exceeds a threshold value, the main spindle is being cut during threading. When the rotation of the tool is stopped, the work enters the groove of the tool and the tool and the work are easily locked. When the tool is extracted from the screw hole and the difference exceeds the threshold value, when the main shaft moves in the axial direction, the tool locked to the workpiece is detached from the main shaft and the main shaft is easily damaged. The present invention determines whether or not the difference exceeds the threshold value when performing screw cutting and when extracting, and even if the tool is locked to the workpiece, an appropriate operation of the spindle according to each case To prevent damage to the tool or spindle.

本発明においては、前記差分が第三閾値を超過し且つ第四閾値以下である場合、工具のワークへの係止度合が低いと考えられるので、第一終了処理を実行し、螺子切り指令の実行を完了する。前記差分が第四閾値を超過した場合、工具のワークへの係止度合が高いと考えられるので、第二終了処理を実行し、直ちに螺子切り指令の実行を中止する。   In the present invention, when the difference exceeds the third threshold value and is equal to or less than the fourth threshold value, it is considered that the degree of locking of the tool to the work is low. Complete execution. When the difference exceeds the fourth threshold value, it is considered that the degree of locking of the tool to the workpiece is high, so the second end process is executed and the execution of the thread cutting command is immediately stopped.

第二検出部で検出した主軸の周方向の位置と螺子切り指令から主軸の上下方向の位置を演算し、第一検出部で検出した主軸の現在の上下方向の位置と演算した主軸の上下方向の位置の差分が閾値を超過した場合、螺子切り指令の実行完了後に加工プログラムを終了する第一終了処理を実行する又は螺子切り指令の実行完了前に加工プログラムを終了する第二終了処理を実行する。そのため、工具のワークへの係止が発生したとしても、場合に応じた適切な主軸の動作を実行し、工具又は主軸の破損を防止する。   Calculates the vertical position of the main spindle from the circumferential position of the main spindle detected by the second detector and the threading command, and calculates the current vertical position of the main spindle detected by the first detector and the calculated vertical axis of the main spindle. If the difference in position exceeds the threshold value, the first end process is executed to end the machining program after the completion of execution of the screw cutting command, or the second end process is executed to end the processing program before the completion of execution of the screw cutting instruction. To do. For this reason, even if the tool is locked to the workpiece, an appropriate operation of the spindle according to the situation is executed to prevent the tool or the spindle from being damaged.

実施の形態1に係る工作機械を示す斜視図である。1 is a perspective view showing a machine tool according to Embodiment 1. FIG. 制御装置を示すブロック図である。It is a block diagram which shows a control apparatus. 加工プログラムの一例を示す概念図である。It is a conceptual diagram which shows an example of a process program. 主軸の動作を説明する説明図である。It is explanatory drawing explaining operation | movement of a main axis | shaft. 螺子切り加工処理を説明するフローチャートである。It is a flowchart explaining a thread cutting process. 螺子切り加工処理を説明するフローチャートである。It is a flowchart explaining a thread cutting process. 実施の形態2に係る螺子切り加工処理を説明するフローチャートである。12 is a flowchart for explaining a thread cutting process according to the second embodiment.

(実施の形態1)
以下本発明を、実施の形態1に係る工作機械100を示す図面に基づき説明する。図1は実施の形態1に係る工作機械100を示す斜視図である。以下の説明では図中矢印で示す上下、左右、前後を使用する。
(Embodiment 1)
Hereinafter, the present invention will be described based on the drawings showing the machine tool 100 according to the first embodiment. FIG. 1 is a perspective view showing a machine tool 100 according to the first embodiment. In the following description, the top, bottom, left and right, front and back indicated by arrows in the figure are used.

図1に示す如く、工作機械100は前後に延びた矩形の基台1を備える。ワーク保持部3は基台1上部の前側に設ける。ワーク保持部3は左右に延びたA軸と上下に延びたC軸回りに回転可能である。支持台2は基台1上部の後側に設け、立柱4を支持する。   As shown in FIG. 1, the machine tool 100 includes a rectangular base 1 extending in the front-rear direction. The work holding part 3 is provided on the front side of the upper part of the base 1. The work holding unit 3 can rotate around the A axis extending in the left and right directions and the C axis extending in the up and down directions. The support base 2 is provided on the rear side of the upper part of the base 1 and supports the upright column 4.

Y軸方向移動機構10は支持台2上部に設け、移動板16を前後方向に移動する。Y軸方向移動機構10は前後に延びた二つの軌道11、Y軸螺子軸12、Y軸モータ13、軸受14を備える。軌道11は支持台2上部の左と右に設ける。Y軸螺子軸12は前後に延び、二つの軌道11の間に設ける。軸受14はY軸螺子軸12の前端部と中途部(図示略)に設ける。Y軸モータ13はY軸螺子軸12後端部に連結する。ナット(図示略)はY軸螺子軸12に転動体(図示略)を介して螺合する。転動体は例えばボールである。複数の摺動子15は各軌道11に摺動可能に設ける。移動板16は水平方向に延び、ナットと摺動子15上部に連結する。Y軸螺子軸12はY軸モータ13の回転で回転し、ナットは前後方向に移動し、移動板16は前後方向に移動する。   The Y-axis direction moving mechanism 10 is provided on the upper portion of the support base 2 and moves the moving plate 16 in the front-rear direction. The Y-axis direction moving mechanism 10 includes two tracks 11 extending in the front-rear direction, a Y-axis screw shaft 12, a Y-axis motor 13, and a bearing 14. The track 11 is provided on the left and right of the upper part of the support base 2. The Y-axis screw shaft 12 extends in the front-rear direction and is provided between the two tracks 11. The bearings 14 are provided at the front end portion and midway portion (not shown) of the Y-axis screw shaft 12. The Y-axis motor 13 is connected to the rear end portion of the Y-axis screw shaft 12. A nut (not shown) is screwed onto the Y-axis screw shaft 12 via a rolling element (not shown). The rolling element is, for example, a ball. The plurality of sliders 15 are provided on each track 11 so as to be slidable. The moving plate 16 extends in the horizontal direction and is connected to the nut and the upper portion of the slider 15. The Y-axis screw shaft 12 rotates by the rotation of the Y-axis motor 13, the nut moves in the front-rear direction, and the moving plate 16 moves in the front-rear direction.

X軸方向移動機構20は移動板16上面に設け、立柱4を左右方向に移動する。X軸方向移動機構20は左右に延びた二つの軌道21、X軸螺子軸22、X軸モータ23(図2参照)、軸受24を備える。軌道21は移動板16上面の前と後に設ける。X軸螺子軸22は左右に延び、二つの軌道21の間に設ける。軸受24はX軸螺子軸22の左端部と中途部(図示略)に設ける。X軸モータ23はX軸螺子軸22の右端部に連結する。ナット(図示略)はX軸螺子軸22に転動体(図示略)を介して螺合する。複数の摺動子26は各軌道21に摺動可能に設ける。立柱4はナットと摺動子26上部に連結する。X軸螺子軸22はX軸モータ23の回転で回転し、ナットは左右方向に移動し、立柱4は左右方向に移動する。   The X-axis direction moving mechanism 20 is provided on the upper surface of the moving plate 16 and moves the upright column 4 in the left-right direction. The X-axis direction moving mechanism 20 includes two tracks 21 extending to the left and right, an X-axis screw shaft 22, an X-axis motor 23 (see FIG. 2), and a bearing 24. The track 21 is provided before and after the upper surface of the movable plate 16. The X-axis screw shaft 22 extends left and right and is provided between the two tracks 21. The bearings 24 are provided at the left end portion and midway portion (not shown) of the X-axis screw shaft 22. The X-axis motor 23 is connected to the right end portion of the X-axis screw shaft 22. A nut (not shown) is screwed onto the X-axis screw shaft 22 via a rolling element (not shown). The plurality of sliders 26 are provided on each track 21 so as to be slidable. The upright column 4 is connected to the nut and the upper part of the slider 26. The X-axis screw shaft 22 rotates by the rotation of the X-axis motor 23, the nut moves in the left-right direction, and the upright column 4 moves in the left-right direction.

Z軸方向移動機構30は立柱4の前面に設け、主軸ヘッド5を上下方向に移動する。Z軸方向移動機構30は上下に延びた二つの軌道31、Z軸螺子軸32、Z軸モータ33、軸受34を備える。軌道31は立柱4前面の左と右に設ける。Z軸螺子軸32は上下に延び、二つの軌道31の間に設ける。軸受34はZ軸螺子軸32の下端部と中途部(図示略)に設ける。Z軸モータ33はZ軸螺子軸32上端部に連結する。ナット(図示略)はZ軸螺子軸32に転動体(図示略)を介して螺合する。複数の摺動子35は各軌道31に摺動可能に設ける。主軸ヘッド5はナットと摺動子35の前部に連結する。Z軸螺子軸32はZ軸モータ33の回転で回転し、ナットは上下方向に移動し、主軸ヘッド5は上下方向に移動する。   The Z-axis direction moving mechanism 30 is provided on the front surface of the upright column 4 and moves the spindle head 5 in the vertical direction. The Z-axis direction moving mechanism 30 includes two tracks 31 extending vertically, a Z-axis screw shaft 32, a Z-axis motor 33, and a bearing 34. The track 31 is provided on the left and right of the front surface of the upright column 4. The Z-axis screw shaft 32 extends vertically and is provided between the two tracks 31. The bearings 34 are provided at the lower end portion and midway portion (not shown) of the Z-axis screw shaft 32. The Z-axis motor 33 is connected to the upper end portion of the Z-axis screw shaft 32. A nut (not shown) is screwed onto the Z-axis screw shaft 32 via a rolling element (not shown). The plurality of sliders 35 are slidably provided on each track 31. The spindle head 5 is connected to the nut and the front part of the slider 35. The Z-axis screw shaft 32 is rotated by the rotation of the Z-axis motor 33, the nut moves in the vertical direction, and the spindle head 5 moves in the vertical direction.

上下に延びた主軸51は主軸ヘッド5内に設ける。主軸51は軸回りに回転する。主軸モータ6(モータ)は主軸ヘッド5上端部に設ける。主軸51下端部は工具を装着する。主軸51は主軸モータ6の回転で回転し、工具は回転する。回転した工具はワーク保持部3で保持したワークを加工する。   A main shaft 51 extending vertically is provided in the main shaft head 5. The main shaft 51 rotates around the axis. A spindle motor 6 (motor) is provided at the upper end of the spindle head 5. A tool is attached to the lower end of the main shaft 51. The spindle 51 is rotated by the rotation of the spindle motor 6, and the tool is rotated. The rotated tool processes the workpiece held by the workpiece holding unit 3.

工作機械100は工具を交換する工具交換装置(図示略)を備える。工具交換装置は工具マガジン(図示略)に収容した工具と主軸51に装着した工具を交換する。   The machine tool 100 includes a tool changer (not shown) that changes tools. The tool changer exchanges a tool housed in a tool magazine (not shown) and a tool attached to the spindle 51.

図2は制御装置60を示すブロック図、図3は加工プログラムの一例を示す概念図、図4は主軸の動作を説明する説明図である。工作機械100は、モータ6,13,23,33、ワーク保持部3、工具交換装置等の駆動を制御する制御装置60を備える。図2に示す如く、制御装置60はCPU61、ROM62、RAM63、EEPROM等の不揮発性の記憶装置64、入力インタフェース65、出力インタフェース66等を備える。CPU61はROM62に格納した制御プログラムをRAM63に読み出し、モータ6、23、13,33、ワーク保持部3、工具交換装置等の駆動を制御する。   2 is a block diagram showing the control device 60, FIG. 3 is a conceptual diagram showing an example of a machining program, and FIG. 4 is an explanatory diagram for explaining the operation of the spindle. The machine tool 100 includes a control device 60 that controls driving of the motors 6, 13, 23, 33, the work holding unit 3, a tool changer, and the like. As shown in FIG. 2, the control device 60 includes a CPU 61, a ROM 62, a RAM 63, a nonvolatile storage device 64 such as an EEPROM, an input interface 65, an output interface 66, and the like. The CPU 61 reads out a control program stored in the ROM 62 to the RAM 63 and controls driving of the motors 6, 23, 13, 33, the work holding unit 3, the tool changer, and the like.

記憶装置64は加工プログラムの行番号を示す変数n、第一閾値C1、第二閾値C2、切削レベル、抜き出しレベル、ワークを加工する加工プログラム等を格納する。切削レベルはLとH、抜き出しレベルはLとHがある。操作者は受付部67を操作し、切削レベルと抜き出しレベルに対して、LかHを設定する。   The storage device 64 stores a variable n indicating a line number of the machining program, a first threshold C1, a second threshold C2, a cutting level, an extraction level, a machining program for machining the workpiece, and the like. Cutting levels are L and H, and extraction levels are L and H. The operator operates the reception unit 67 to set L or H for the cutting level and the extraction level.

Lは加工指令の実行完了後、加工プログラムの実行を終了することを示す。Hは加工指令の実行完了を待たずに加工指令の実行を中止し、加工プログラムの実行を終了することを示す。   L indicates that the execution of the machining program is terminated after the machining command has been executed. H indicates that the execution of the machining command is stopped without waiting for the completion of execution of the machining command, and the execution of the machining program is terminated.

工作機械100は受付部67(設定部)、Z軸センサ68(第一検出部)、主軸センサ69(第二検出部)を備える。受付部67は例えばキーボード、タッチパネル、表示画面等を備え、使用者の操作を受け付ける。使用者は受付部67を介して例えば後述する第一終了処理か第二終了処理の実行を記憶装置64に設定する。Z軸センサ68は主軸51の上下位置、換言すれば主軸51の軸方向位置を検出する。主軸センサ69は主軸51の周方向の位置を検出する。制御装置60は入力インタフェース65を介して受付部67から指令を入力し、Z軸センサ68から軸方向位置を入力し、主軸センサ69から回転速度を入力する。制御装置60は出力インタフェース66を介して主軸モータ6、X軸モータ23、Y軸モータ13、Z軸モータ33に駆動信号を出力する。尚、主軸センサ69は単位時間当たりの回転量を制御装置60に入力するので、該入力したものは回転速度となる。また、該入力したものを累積すると主軸51の回転位置となる。   The machine tool 100 includes a receiving unit 67 (setting unit), a Z-axis sensor 68 (first detection unit), and a spindle sensor 69 (second detection unit). The reception unit 67 includes, for example, a keyboard, a touch panel, a display screen, and the like, and receives user operations. The user sets, for example, execution of a first end process or a second end process, which will be described later, in the storage device 64 via the reception unit 67. The Z-axis sensor 68 detects the vertical position of the main shaft 51, in other words, the axial position of the main shaft 51. The main shaft sensor 69 detects the circumferential position of the main shaft 51. The control device 60 inputs a command from the receiving unit 67 via the input interface 65, inputs an axial position from the Z-axis sensor 68, and inputs a rotation speed from the spindle sensor 69. The control device 60 outputs drive signals to the spindle motor 6, the X-axis motor 23, the Y-axis motor 13, and the Z-axis motor 33 via the output interface 66. Since the spindle sensor 69 inputs the rotation amount per unit time to the control device 60, the input is the rotation speed. Further, when the input items are accumulated, the rotation position of the main shaft 51 is obtained.

図3に示す如く、「番号」の欄は行番号を示し、「命令」の欄は実行する処理を示す。記憶装置64はワークを加工する為の加工プログラムを格納する。加工プログラムは複数の行(命令)を備える。CPU61は行を順に読み込み、命令を実行する。N1行目のG100は工具交換命令を示し、T1は次に主軸51に装着する工具の番号を示す。X−60は工具交換後の主軸51の左右方向待機位置を示し、Y−20は工具交換後の主軸51の前後方向待機位置を示し、Z20は工具交換後の主軸51の上下方向待機位置を示す。X、Y,Zの後ろの数値は加工原点を0とした場合の位置を示し単位はmmである。尚、一方方向の移動は+で示し、他方向移動はーで示す。N2行目のG84は螺子切り加工命令を示し、M03は主軸51が正回転することを示し、S25000は主軸51の目標回転速度が25000rmpを示し、Z−5は螺子切り加工での上下方向到達位置を示す。I2は螺子きりピッチが2であることを示す。M04は主軸51の逆回転を示し、S15000は主軸51の目標回転速度が15000rmpを示し、Z10は螺子孔からの主軸51の抜き出し動作での上下方向到達位置を示す。主軸51は正回転し、待機位置から螺子切り加工での上下方向到達位置まで移動し、ワークを螺子切りし、ワークに螺子孔を形成する。主軸51は螺子孔形成後、逆回転し、抜き出し動作での上下方向到達位置まで移動する。Nn行目のM30は加工プログラムの終了命令を示す。尚、切削レベルと抜き出しレベルは予め操作者が受付部67を操作し、記憶装置64にLかHを記憶させている。   As shown in FIG. 3, the “number” column indicates a line number, and the “command” column indicates a process to be executed. The storage device 64 stores a machining program for machining a workpiece. The machining program includes a plurality of lines (commands). The CPU 61 reads the rows in order and executes the instructions. G100 on the N1 line indicates a tool change command, and T1 indicates the number of the tool to be mounted on the spindle 51 next. X-60 represents the horizontal standby position of the main shaft 51 after tool replacement, Y-20 represents the front-rear standby position of the main shaft 51 after tool replacement, and Z20 represents the vertical standby position of the main shaft 51 after tool replacement. Show. The numerical values after X, Y, and Z indicate the position when the processing origin is 0, and the unit is mm. The movement in one direction is indicated by +, and the movement in the other direction is indicated by-. N84, G84 indicates a thread cutting command, M03 indicates that the main shaft 51 rotates forward, S25000 indicates a target rotational speed of the main shaft 51 of 25000 rpm, and Z-5 reaches the vertical direction in thread cutting processing. Indicates the position. I2 indicates that the thread pitch is 2. M04 indicates the reverse rotation of the main shaft 51, S15000 indicates the target rotation speed of the main shaft 51 is 15000 rmp, and Z10 indicates the position reached in the vertical direction in the operation of extracting the main shaft 51 from the screw hole. The main shaft 51 rotates in the forward direction, moves from the standby position to a position reached in the vertical direction in the thread cutting process, threads the workpiece, and forms screw holes in the workpiece. After the screw hole is formed, the main shaft 51 rotates in the reverse direction and moves to a position where it reaches the vertical direction in the extraction operation. M30 on the Nn-th line indicates an end command for the machining program. Note that the cutting level and the extraction level are stored in advance in the storage device 64 by the operator operating the receiving unit 67.

図5及び図6は螺子切り加工処理を説明するフローチャートである。図5、図6に示す如く、CPU61は変数nに1を設定し(ステップS1)、加工プログラムのNn行目を読み込む(ステップS2)。CPU61は終了命令(M30)を読み込んだか否か判定する(ステップS3)。終了命令を読み込んだ場合(ステップS3:YES)、CPU61は加工プログラムの実行を終了する。終了命令を読み込んでない場合(ステップS3:NO)、CPU61は螺子切り加工命令を読み込んだか否か判定する(ステップS4)。螺子切り加工命令を読み込んでない場合(ステップS4:NO)、CPU61は読み込んだ命令を実行し(ステップS5)、変数nを一つ加算し(ステップS6)、ステップS2に処理を戻す。   5 and 6 are flowcharts for explaining the thread cutting process. As shown in FIGS. 5 and 6, the CPU 61 sets 1 to the variable n (step S1), and reads the Nn-th line of the machining program (step S2). The CPU 61 determines whether or not an end command (M30) has been read (step S3). When the end command is read (step S3: YES), the CPU 61 ends the execution of the machining program. If the end command has not been read (step S3: NO), the CPU 61 determines whether or not a screw cutting command has been read (step S4). When the thread cutting instruction is not read (step S4: NO), the CPU 61 executes the read instruction (step S5), adds one variable n (step S6), and returns the process to step S2.

螺子切り加工命令を読み込んだ場合(ステップS4:YES)、CPU61は目標回転速度(例えば図3のS25000)を参照し、主軸51を正回転し、ワークに向けて下降する。主軸51が回転且つ下降する前に、主軸センサ69から主軸51の現在の周方向の位置を取得し且つZ軸センサ68から主軸51の現在の上下方向位置を取得する(ステップS7)。   When the thread cutting command is read (step S4: YES), the CPU 61 refers to the target rotation speed (for example, S25000 in FIG. 3), rotates the main shaft 51 forward, and descends toward the workpiece. Before the main shaft 51 rotates and descends, the current circumferential position of the main shaft 51 is acquired from the main shaft sensor 69 and the current vertical position of the main shaft 51 is acquired from the Z-axis sensor 68 (step S7).

CPU61は、主軸センサ69から主軸51の周方向の位置を取得し、該取得した主軸51の周方向の位置にステップ7で取得した主軸51の周方向の位置を累積加算する。CPU61は同時にZ軸センサ68から主軸51の上下方向位置を取得し、該取得した主軸51の上下方向位置にステップ7で取得した上下方向位置を累積加算(主軸51の現在上下方向位置)する。累積加算した主軸51の周方向の位置と螺子きりピッチから主軸51の上下方向位置を演算し(主軸51の目標上下方向位置)、該演算した主軸51の上下方向位置(主軸51の目標上下方向位置)と累積加算した上下方向位置(主軸51の現在上下方向位置)の差分(第一差分)を演算する(ステップS8)。CPU61は第一差分が第一閾値C1を超過したか否か判定する(ステップS9)。第一差分が第一閾値C1を超過した場合(ステップS9:YES)、CPU61は記憶装置64の第一フラグに1を設定し(ステップS10)、切削レベルがLであるか否か判定する(ステップS11)。第一差分が第一閾値C1を超過した場合、工具はワークに係止し易い。   The CPU 61 acquires the circumferential position of the spindle 51 from the spindle sensor 69 and cumulatively adds the circumferential position of the spindle 51 acquired in step 7 to the acquired circumferential position of the spindle 51. At the same time, the CPU 61 acquires the vertical position of the main shaft 51 from the Z-axis sensor 68, and cumulatively adds the vertical position acquired in step 7 to the acquired vertical position of the main shaft 51 (current vertical position of the main shaft 51). The vertical position of the main shaft 51 is calculated from the circumferential position of the main shaft 51 and the thread pitch (accumulated addition) (target vertical position of the main shaft 51), and the calculated vertical position of the main shaft 51 (target vertical direction of the main shaft 51). The difference (first difference) between the position) and the accumulated vertical position (the current vertical position of the spindle 51) is calculated (step S8). The CPU 61 determines whether or not the first difference has exceeded the first threshold C1 (step S9). When the first difference exceeds the first threshold C1 (step S9: YES), the CPU 61 sets 1 to the first flag of the storage device 64 (step S10) and determines whether or not the cutting level is L (step S10). Step S11). When the first difference exceeds the first threshold C1, the tool is easily locked to the workpiece.

切削レベルがLである場合(ステップS11:YES)、CPU61は主軸51が抜き出し動作を開始する位置に到達したか否か、すなわち上下方向到達位置に到達したか否か判定する(ステップS12)。具体的にCPU61はZ軸センサ68から主軸51の上下方向位置を取得し、主軸51がZ−5に位置するか否か判定する(図3参照)。主軸51が上下方向到達位置に到達していない場合(ステップS12:NO)、即ち工具がまだワークを螺子切りする場合、CPU61はステップS8に処理を戻す。   When the cutting level is L (step S11: YES), the CPU 61 determines whether or not the spindle 51 has reached the position where the extraction operation starts, that is, whether or not the vertical position has been reached (step S12). Specifically, the CPU 61 acquires the vertical position of the main shaft 51 from the Z-axis sensor 68, and determines whether or not the main shaft 51 is positioned at Z-5 (see FIG. 3). When the spindle 51 has not reached the vertical position (step S12: NO), that is, when the tool still threads the workpiece, the CPU 61 returns the process to step S8.

主軸51が上下方向到達位置に到達した場合(ステップS12:YES)、主軸センサ69から主軸51の現在の周方向の位置を取得し且つZ軸センサ68から主軸51の現在の上下方向位置を取得する(ステップS13)。CPU61は目標回転速度(例えば図3のS15000)を参照し、主軸51を逆回転し且つ上昇させる(ステップS14)。   When the main shaft 51 has reached the vertical position (step S12: YES), the current circumferential position of the main shaft 51 is acquired from the main shaft sensor 69 and the current vertical position of the main shaft 51 is acquired from the Z-axis sensor 68. (Step S13). The CPU 61 refers to the target rotational speed (for example, S15000 in FIG. 3), and reversely rotates and raises the main shaft 51 (step S14).

CPU61は、主軸センサ69から主軸51の周方向の位置を取得し、該取得した主軸51の周方向の位置にステップ13で取得した主軸51の周方向の位置を累積加算する。CPU61は同時にZ軸センサ68から主軸51の上下方向位置を取得し、該取得した主軸51の上下方向位置にステップ13で取得した上下方向位置を累積加算(主軸51の上下方向位置)する。累積加算した主軸51の周方向位置と螺子切りピッチから主軸51の上下方向位置を演算し(主軸51の目標上下方向位置)、該演算した主軸51の上下方向位置(主軸51の目標上下方向位置)と累積加算した上下方向位置(主軸51の現在上下方向位置)の差分(第二差分)を演算する(ステップS15)。   The CPU 61 obtains the circumferential position of the spindle 51 from the spindle sensor 69 and cumulatively adds the circumferential position of the spindle 51 obtained in step 13 to the obtained circumferential position of the spindle 51. At the same time, the CPU 61 acquires the vertical position of the main shaft 51 from the Z-axis sensor 68, and cumulatively adds the vertical position acquired in step 13 to the acquired vertical position of the main shaft 51 (the vertical position of the main shaft 51). The vertical position of the main shaft 51 is calculated from the circumferential position of the main shaft 51 and the screw cutting pitch (the target vertical position of the main shaft 51), and the calculated vertical position of the main shaft 51 (the target vertical position of the main shaft 51). ) And the cumulatively added vertical position (current vertical position of the spindle 51) (second difference) is calculated (step S15).

CPU61は第二差分が第二閾値C2を超過したか否か判定する(ステップS16)。第二差分が第二閾値C2を超過した場合(ステップS16:YES)、CPU61は記憶装置64の第二フラグに1を設定する(ステップS17)。第二差分が第二閾値C2を超過した場合、工具はワークに係止し易い。その後、CPU61は抜き出しレベルがLであるか否か判定する(ステップS18)。抜き出しレベルがLである場合(ステップS18:YES)、CPU61は抜き出し動作が終了したか否か判定する(ステップS19)。具体的にCPU61はZ軸センサ68から主軸51の上下方向位置を取得し、主軸51がZ10に位置するか否か判定する(図3参照)。抜き出し動作が終了してない場合(ステップS19:NO)、CPU61はステップS15に処理を戻す。   The CPU 61 determines whether or not the second difference has exceeded the second threshold value C2 (step S16). When the second difference exceeds the second threshold C2 (step S16: YES), the CPU 61 sets 1 to the second flag of the storage device 64 (step S17). When the second difference exceeds the second threshold C2, the tool is easily locked on the workpiece. Thereafter, the CPU 61 determines whether or not the extraction level is L (step S18). When the extraction level is L (step S18: YES), the CPU 61 determines whether or not the extraction operation is finished (step S19). Specifically, the CPU 61 acquires the vertical position of the main shaft 51 from the Z-axis sensor 68, and determines whether or not the main shaft 51 is positioned at Z10 (see FIG. 3). When the extraction operation is not completed (step S19: NO), the CPU 61 returns the process to step S15.

抜き出し動作が終了している場合(ステップS19:YES)、CPU61は第一フラグ又は第二フラグに0以外が設定してあるか否か判定する(ステップS20)。第一フラグと第二フラグが何れも0の場合(ステップS20:NO)、CPU61は、変数nを一つ加算し(ステップS23)、ステップS2に処理を戻す。   When the extraction operation has been completed (step S19: YES), the CPU 61 determines whether or not a value other than 0 is set in the first flag or the second flag (step S20). When the first flag and the second flag are both 0 (step S20: NO), the CPU 61 adds one variable n (step S23), and returns the process to step S2.

第一フラグと第二フラグが何れも0である場合、工具がワークに係止する可能性は低い。故にCPU61は加工プログラムの行を順次読み込み、終了命令を読み込む迄、加工プログラムを継続して実行する。終了命令を読み込んだ場合、加工プログラムの実行を終了する。工具がワークに係止する可能性が低いので、CPU61は通常の螺子切り加工を実行し、その後の処理も実行する。   When both the first flag and the second flag are 0, the possibility that the tool is locked to the workpiece is low. Therefore, the CPU 61 sequentially reads the machining program lines and continuously executes the machining program until an end command is read. When the end command is read, execution of the machining program is terminated. Since there is a low possibility that the tool will be locked to the workpiece, the CPU 61 executes normal thread cutting and also performs subsequent processing.

ステップS20で、第一フラグと第二フラグの何れかが0でない場合(ステップS20:YES)、CPU61は加工プログラムを終了し(ステップS21)、螺子切り加工処理を終了する。   If either the first flag or the second flag is not 0 in step S20 (step S20: YES), the CPU 61 ends the machining program (step S21) and ends the thread cutting process.

ステップS9で、第一差分が第一閾値C1を超過していないと判定した場合(ステップS9:NO)、CPU61はステップS12に処理を進める。第一差分が第一閾値C1を超過してない場合、工具がワークに係止する可能性は低い。ステップS16で、第二差分が第二閾値C2を超過してないと判定した場合(ステップS16:NO)、CPU61はステップS19に処理を進める。第二差分が第二閾値C2を超過してない場合、工具がワークに係止する可能性は低い。   If it is determined in step S9 that the first difference does not exceed the first threshold C1 (step S9: NO), the CPU 61 advances the process to step S12. When the first difference does not exceed the first threshold C1, the possibility that the tool is locked to the workpiece is low. If it is determined in step S16 that the second difference does not exceed the second threshold C2 (step S16: NO), the CPU 61 advances the process to step S19. When the second difference does not exceed the second threshold C2, the possibility that the tool is locked to the workpiece is low.

ステップS11で、切削レベルがLでないと判定した場合(ステップS11:NO)、即ち切削レベルがHであると判定した場合、CPU61は螺子切り加工を中止し(ステップS22)、ステップS20に処理を進める。ステップS10で、第一フラグに1を設定したので(ステップS20:YES)、CPU61は加工プログラムの実行を終了する(ステップS21)。   If it is determined in step S11 that the cutting level is not L (step S11: NO), that is, if it is determined that the cutting level is H, the CPU 61 stops the thread cutting process (step S22), and the process proceeds to step S20. Proceed. Since 1 is set to the first flag in Step S10 (Step S20: YES), the CPU 61 ends the execution of the machining program (Step S21).

ステップS18で、抜き出しレベルがLでないと判定し(ステップS18:NO)、即ち抜き出しレベルがHであると判定した場合、CPU61は抜き出し動作を中止し(ステップS22)、ステップS20に処理を進める。ステップS17で第二フラグに1を設定したので(ステップS20:YES)、CPU61は加工プログラムの実行を終了する(ステップS21)。S9、S16を実行するCPU61は判定部に相当する。   If it is determined in step S18 that the extraction level is not L (step S18: NO), that is, if it is determined that the extraction level is H, the CPU 61 stops the extraction operation (step S22) and proceeds to step S20. Since 1 is set in the second flag in step S17 (step S20: YES), the CPU 61 ends the execution of the machining program (step S21). The CPU 61 that executes S9 and S16 corresponds to a determination unit.

S11とS18でNOと判断し、S22、S20、S21を経由する処理が第二終了処理に相当し、S11とS18でYESと判断し、S20、S21を経由する処理が第一終了処理に相当する。該第一終了処理と第二終了処理を実行するCPU61は終了部に相当する。S9を実行するCPU61は第一判定部に相当し、S16を実行するCPU61は第二判定部に相当する。   S11 and S18 are determined as NO, processing through S22, S20, and S21 corresponds to the second end processing, S11 and S18 are determined as YES, and processing through S20 and S21 is equivalent to the first end processing. To do. The CPU 61 that executes the first end process and the second end process corresponds to an end unit. The CPU 61 that executes S9 corresponds to a first determination unit, and the CPU 61 that executes S16 corresponds to a second determination unit.

実施の形態1の工作機械100は主軸51の現在上下方向位置と主軸51の目標上下方向位置の差分が第一閾値C1又は第二閾値C2を超過した場合、即ちステップS11又はステップS18での判定に応じて、螺子切り加工指令又は抜き出し指令の実行完了後、加工プログラムを終了する(第一終了処理を実行する)又は螺子切り加工指令又は抜き出し指令の実行を中止して、加工プログラムを終了する(第二終了処理を実行する)。故にワークへの工具の係止が発生しても、主軸51は適切に動作し、工具又は主軸51の破損を防止できる。   In the machine tool 100 according to the first embodiment, when the difference between the current vertical position of the spindle 51 and the target vertical position of the spindle 51 exceeds the first threshold C1 or the second threshold C2, that is, the determination in step S11 or step S18. Accordingly, after the execution of the thread cutting command or the extraction command is completed, the processing program is terminated (the first termination process is executed), or the execution of the thread cutting command or the extraction command is stopped and the processing program is terminated. (The second end process is executed). Therefore, even if the tool is locked to the workpiece, the main shaft 51 operates appropriately, and the tool or the main shaft 51 can be prevented from being damaged.

作業者は第一終了処理又は第二終了処理の何れかを受付部67で設定でき、工具とワークの特性に応じた適切な終了処理を実行できる。   The operator can set either the first end process or the second end process at the receiving unit 67, and can execute an appropriate end process according to the characteristics of the tool and the workpiece.

ワークに螺子切り中、主軸51の現在上下方向位置と主軸51の目標上下方向位置の差分が第一閾値C1を超過し主軸51の回転を止めた場合、工具はワークに係止し易い。螺子孔から工具を抜き出し中、主軸51の現在上下方向位置と主軸51の目標上下方向位置の差分が第二閾値C2を超過し主軸51が軸方向に移動する場合、ワークに係止した工具は主軸51から抜けて主軸51が損傷し易い。本実施例は螺子切りを行う場合と抜き出しを行う場合について、前記差分が第一閾値C1又は第二閾値C2を超過したか否か判定し、ワークへの工具の係止が発生しても、適切な主軸51の動作を実行し、工具又は主軸51の破損を防止する。   When the workpiece is threaded, if the difference between the current vertical position of the main shaft 51 and the target vertical position of the main shaft 51 exceeds the first threshold C1 and the rotation of the main shaft 51 is stopped, the tool is easily locked to the work. When the tool is being extracted from the screw hole, if the difference between the current vertical position of the main shaft 51 and the target vertical position of the main shaft 51 exceeds the second threshold C2 and the main shaft 51 moves in the axial direction, the tool locked to the workpiece is The main shaft 51 is easily damaged by slipping out of the main shaft 51. In the present embodiment, when the screw cutting and the extraction are performed, it is determined whether the difference exceeds the first threshold C1 or the second threshold C2, and even when the tool is locked to the workpiece, Appropriate spindle 51 motion is performed to prevent damage to the tool or spindle 51.

例えば螺子切り加工を行う場合、切削レベルをLに設定することで、工作機械は前記差分が第一閾値C1を超過しても螺子切りの動作中に加工中止することはない。螺子切り動作中に加工中止すると工具がワークに係止し、作業者がワークから工具を抜く作業が必要になる。前記差分が第一閾値C1を超過しワークとして不良品となるが、切削レベルをLに設定することで工作機械は前述した作業者の作業を無くすことができる。
螺子孔からの抜き出し動作を行う場合、抜き出しレベルをHに設定し、抜き出し動作を中止し、加工プログラムを終了し、工具が主軸51から抜けて主軸51が損傷することを防止する。
For example, when threading is performed, by setting the cutting level to L, the machine tool does not stop machining during the threading operation even if the difference exceeds the first threshold C1. If the machining is stopped during the screw cutting operation, the tool is locked to the workpiece, and the operator needs to remove the tool from the workpiece. The difference exceeds the first threshold C1 and becomes a defective product as a workpiece, but by setting the cutting level to L, the machine tool can eliminate the above-mentioned work of the operator.
When performing the extraction operation from the screw hole, the extraction level is set to H, the extraction operation is stopped, the machining program is terminated, and the tool 51 is prevented from being detached from the main shaft 51 and being damaged.

(実施の形態2)
実施の形態2に係る工作機械100を図面に基づき説明する。尚、実施の形態2に係る構成の内、実施の形態1と同様な構成については同じ符号を付し、その詳細な説明を省略する。図7は螺子切り加工処理を説明するフローチャートである。記憶装置64は第三閾値C3と第三閾値C3よりも大きい第四閾値C4を格納する。図7に示す如く、CPU61は変数nに1を設定し(ステップS31)、加工プログラムのNn行目を読み込む(ステップS32)。CPU61は終了命令(M30)を読み込んだか否か判定する(ステップS33)。終了命令を読み込んだ場合(ステップS33:YES)、CPU61は加工プログラムの実行を終了する。終了命令を読み込んでない場合(ステップS33:NO)、CPU61は螺子切り加工命令を読み込んだか否か判定する(ステップS34)。
(Embodiment 2)
A machine tool 100 according to Embodiment 2 will be described with reference to the drawings. Of the configurations according to the second embodiment, configurations similar to those of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 7 is a flowchart for explaining the thread cutting process. The storage device 64 stores a third threshold C3 and a fourth threshold C4 that is larger than the third threshold C3. As shown in FIG. 7, the CPU 61 sets 1 to the variable n (step S31), and reads the Nn-th line of the machining program (step S32). The CPU 61 determines whether or not an end command (M30) has been read (step S33). When the end command is read (step S33: YES), the CPU 61 ends the execution of the machining program. When the end command has not been read (step S33: NO), the CPU 61 determines whether or not a screw cutting command has been read (step S34).

螺子切り加工命令を読み込んでない場合(ステップS34:NO)、CPU61は読み込んだ命令を実行し(ステップS35)、変数nを一つ加算し(ステップS36)、ステップS32に処理を戻す。螺子切り加工命令を読み込んだ場合(ステップS34:YES)、CPU61は主軸センサ69から主軸51の現在の周方向の位置を取得し且つZ軸センサ68から主軸51の現在の上下方向位置を取得する(ステップS37)。   When the thread cutting command is not read (step S34: NO), the CPU 61 executes the read command (step S35), adds one variable n (step S36), and returns the process to step S32. When the thread cutting command is read (step S34: YES), the CPU 61 acquires the current circumferential position of the spindle 51 from the spindle sensor 69 and the current vertical position of the spindle 51 from the Z-axis sensor 68. (Step S37).

CPU61は目標回転速度(例えば図3のS25000)を参照して、主軸51を正回転し、ワークに向けて下降する(ステップS38)。CPU61は主軸51の正回転及び下降動作完了後、自動的に主軸51の逆回転及び上昇、即ち抜き出し動作を実行する。CPU61は主軸センサ69から主軸51の周方向の位置を取得し、該取得した主軸51の周方向の位置にS37で取得した主軸51の周方向の位置を累積加算する。CPU61は同時にZ軸センサ68から主軸51の上下方向位置を取得し、該取得した主軸51の上下方向位置にS37で取得した上下方向位置を累積加算(主軸51の現在上下方向位置)する。累積加算した主軸51の周方向の位置と螺子切りピッチから主軸51の上下方向位置を演算し(主軸51の目標上下方向位置)、該演算した主軸51の上下方向位置(主軸51の目標上下方向位置)と累積加算した上下方向位置(主軸51の現在上下方向位置)の差分(第一差分)を演算する(ステップS39)。   The CPU 61 refers to the target rotation speed (for example, S25000 in FIG. 3), rotates the spindle 51 forward, and descends toward the workpiece (step S38). After completing the forward rotation and lowering operation of the main shaft 51, the CPU 61 automatically executes reverse rotation and upward movement of the main shaft 51, that is, an extraction operation. The CPU 61 acquires the circumferential position of the spindle 51 from the spindle sensor 69, and cumulatively adds the circumferential position of the spindle 51 acquired in S37 to the acquired circumferential position of the spindle 51. The CPU 61 simultaneously acquires the vertical position of the main shaft 51 from the Z-axis sensor 68, and cumulatively adds the vertical position acquired in S37 to the acquired vertical position of the main shaft 51 (current vertical position of the main shaft 51). The vertical position of the main shaft 51 is calculated from the circumferentially added position of the main shaft 51 and the thread cutting pitch (target vertical position of the main shaft 51), and the calculated vertical position of the main shaft 51 (target vertical direction of the main shaft 51) The difference (first difference) between the position) and the accumulated vertical position (the current vertical position of the spindle 51) is calculated (step S39).

CPU61は前記差分が第三閾値C3を超過したか否か判定する(ステップS40)。前記差分が第三閾値C3を超過した場合(ステップS40:YES)、CPU61は記憶装置64のフラグに1を設定し(ステップS41)、CPU61は前記差分が第四閾値C4を超過したか否か判定する(ステップS42)。前記差分が第四閾値C4を超過してない場合(ステップS42:NO)、即ち前記差分が第三閾値C3を超過し且つ第四閾値C4以下の場合、CPU61は抜き出し動作が終了したか否か判定する(ステップS43)。   The CPU 61 determines whether or not the difference exceeds the third threshold C3 (step S40). When the difference exceeds the third threshold C3 (step S40: YES), the CPU 61 sets 1 in the flag of the storage device 64 (step S41), and the CPU 61 determines whether the difference exceeds the fourth threshold C4. Determination is made (step S42). If the difference does not exceed the fourth threshold value C4 (step S42: NO), that is, if the difference exceeds the third threshold value C3 and is equal to or less than the fourth threshold value C4, the CPU 61 determines whether or not the extraction operation has ended. Determination is made (step S43).

抜き出し動作が終了してない場合(ステップS43:NO)、CPU61はステップS39に処理を戻す。抜き出し動作が終了している場合(ステップS43:YES)、CPU61は記憶装置64のフラグに1を設定したか否か判定する(ステップS44)。フラグに1を設定した場合(ステップS44:YES)、CPU61は、加工プログラムを終了し(ステップS45)、処理を終了する。即ち螺子切り加工と抜き出し動作完了後、他の行を読み込まず、加工プログラムを終了する。前記差分が第三閾値C3を超過し且つ第四閾値C4以下の場合、ワークへの工具の係止が発生しても、係止の度合いは大きくない。故に螺子切り加工と抜き出し動作を完了した後、他の行を読み込まず、加工プログラムを終了する。   When the extraction operation is not completed (step S43: NO), the CPU 61 returns the process to step S39. When the extraction operation has been completed (step S43: YES), the CPU 61 determines whether or not 1 is set in the flag of the storage device 64 (step S44). When 1 is set in the flag (step S44: YES), the CPU 61 ends the machining program (step S45) and ends the process. That is, after completion of the screw cutting and extraction operation, the machining program is terminated without reading other lines. When the difference exceeds the third threshold value C3 and is equal to or less than the fourth threshold value C4, the degree of locking is not large even when the tool is locked to the workpiece. Therefore, after completing the screw cutting and extracting operation, the machining program is terminated without reading other lines.

ステップS40で、前記差分が第三閾値C3を超過してないと判定した場合(ステップS40:NO)、CPU61はステップS43、ステップS44に処理を進める。ステップS41を実行しないので、CPU61は記憶装置64のフラグに1を設定しない(ステップS44:NO)。   If it is determined in step S40 that the difference does not exceed the third threshold C3 (step S40: NO), the CPU 61 advances the process to steps S43 and S44. Since step S41 is not executed, the CPU 61 does not set 1 in the flag of the storage device 64 (step S44: NO).

CPU61は変数nを一つ加算し(ステップS47)、ステップS32に処理を戻す。CPU61は加工プログラムの行を順次読み込み、加工プログラムを継続して実行する。加工プログラムの終了命令を読み込んだ場合(ステップS33:YES)、CPU61は加工プログラムの実行を終了する。フラグに1を設定してない場合、即ち前記差分が第三閾値C3を超過してない場合、工具がワークに係止してない。故にCPU61は加工プログラムの行を順次読み込み、終了命令を読み込む迄、加工プログラムを継続して実行する。   The CPU 61 adds one variable n (step S47), and returns the process to step S32. The CPU 61 sequentially reads the lines of the machining program and continuously executes the machining program. When the end command for the machining program is read (step S33: YES), the CPU 61 ends the execution of the machining program. If the flag is not set to 1, that is, if the difference does not exceed the third threshold C3, the tool is not locked to the workpiece. Therefore, the CPU 61 sequentially reads the machining program lines and continuously executes the machining program until an end command is read.

ステップS42で、前記差分が第四閾値C4を超過したと判定した場合(ステップS42:YES)、CPU61は螺子切り加工又は抜き出し動作を中止し(ステップS46)、ステップS44に処理を進める。CPU61はステップS40でフラグに1を設定済みなので(ステップS44:YES)、加工プログラムの実行を終了する(ステップS45)。前記差分が第四閾値C4を超過した場合、工具がワークに係止している。故に螺子切り加工又は抜き出し動作を直ちに中止し、加工プログラムの他の行を読み込まず、加工プログラムの実行を終了する。   If it is determined in step S42 that the difference has exceeded the fourth threshold C4 (step S42: YES), the CPU 61 stops the thread cutting process or the extracting operation (step S46), and the process proceeds to step S44. Since the CPU 61 has already set 1 in the flag in step S40 (step S44: YES), the execution of the machining program is terminated (step S45). When the difference exceeds the fourth threshold C4, the tool is locked to the workpiece. Therefore, the thread cutting or extracting operation is immediately stopped, the other lines of the machining program are not read, and the execution of the machining program is terminated.

前記差分が第三閾値を超過し且つ第四閾値以下である場合、工具がワークに係止する度合が低いので、実施の形態2の工作機械100は螺子切り加工と抜き出し動作の実行を完了する。その後、終了命令の読み込みを待たずに、加工プログラムを終了する。前記差分が第四閾値を超過した場合、工具がワークに係止する度合が高いので、工作機械100は直ちに螺子切り加工と抜き出し動作の実行を中止し、加工プログラムを終了する。工具がワークに係止しても、適切な主軸の動作を実行し、工具又は主軸の破損を防止する。前記差分が第三閾値以下である場合、工具がワークに係止する可能性は低いので、通常の螺子切り加工を実行し、終了命令を読み込む迄、加工プログラムの実行を継続する。   When the difference exceeds the third threshold value and is equal to or less than the fourth threshold value, the degree to which the tool is locked to the workpiece is low. Therefore, the machine tool 100 according to the second embodiment completes the thread cutting process and the extraction operation. . Thereafter, the machining program is terminated without waiting for the end command to be read. When the difference exceeds the fourth threshold value, the degree to which the tool is locked to the workpiece is high, and therefore the machine tool 100 immediately stops the execution of the thread cutting process and the extraction operation and ends the machining program. Even if the tool is locked to the workpiece, an appropriate operation of the spindle is executed to prevent damage to the tool or the spindle. When the difference is less than or equal to the third threshold value, the possibility that the tool is locked to the workpiece is low, and therefore the normal thread cutting process is executed and the execution of the machining program is continued until the end command is read.

S40を実行するCPU61は第三判定部に相当する。S42を実行するCPU61は第四判定部に相当する。S40でYESと判定し且つS42でNOと判定し、S43〜S45を経由する処理が第一終了処理に相当し、S42でYESと判定し、S46、S44、S45を経由する処理が第二終了処理に相当する。該第一終了処理と第二終了処理を実行するCPU61は終了部に相当する。   The CPU 61 that executes S40 corresponds to a third determination unit. The CPU 61 that executes S42 corresponds to a fourth determination unit. Processing in which S40 is determined as YES and S42 is determined as NO, processing through S43 to S45 is equivalent to first end processing, processing in S42 is determined as YES, and processing through S46, S44, and S45 is second processing. It corresponds to processing. The CPU 61 that executes the first end process and the second end process corresponds to an end unit.

6 主軸モータ
30 Z軸方向移動機構
51 主軸
60 制御装置
61 CPU
62 ROM
63 RAM
64 記憶装置
67 受付部
68 Z軸センサ
69 主軸センサ
100 工作機械
6 Spindle motor 30 Z-axis direction moving mechanism 51 Spindle 60 Control device 61 CPU
62 ROM
63 RAM
64 Storage Device 67 Reception Unit 68 Z-axis Sensor 69 Spindle Sensor 100 Machine Tool

Claims (5)

工具を装着する主軸と、該主軸の軸方向への移動を行う移動機構と、前記主軸を軸回りに回転するモータと、加工プログラムを構成する複数の命令を順次読み込み、前記移動機構及びモータの駆動を制御する制御装置と、前記主軸の軸方向位置を検出する第一検出部と、前記主軸の周方向の位置を検出する第二検出部とを備える工作機械において、
前記制御装置は、
読み込んだ前記命令が工具でワークを螺子切りする螺子切り指令を含む場合、前記第二検出部で検出した第一の前記主軸の周方向の位置、前記第二検出部で検出した第二の前記主軸の周方向の位置及び前記螺子切り指令に基づいて、前記主軸の上下方向の位置を演算し、該演算した前記主軸の上下方向の位置と前記第一検出部で検出した前記主軸の上下方向の位置との差分が予め定めた閾値を超過したか否か判定する判定部と、
該判定部は前記差分が前記閾値を超過したと判定した場合、前記螺子切り指令の実行完了後、前記加工プログラムの実行を終了する第一終了処理又は前記螺子切り指令の実行を中止し、前記加工プログラムの実行を終了する第二終了処理の何れかを実行する終了部と
を備えること
を特徴とする工作機械。
A spindle that mounts a tool, a moving mechanism that moves the spindle in the axial direction, a motor that rotates the spindle around an axis, and a plurality of commands that constitute a machining program are sequentially read, and the moving mechanism and the motor In a machine tool comprising: a control device that controls driving; a first detection unit that detects an axial position of the main shaft; and a second detection unit that detects a circumferential position of the main shaft.
The controller is
When the read command includes a thread cutting command for threading a workpiece with a tool, the circumferential position of the first spindle detected by the second detector, the second detected by the second detector Based on the circumferential position of the main shaft and the screw cutting command, the vertical position of the main shaft is calculated, and the calculated vertical position of the main shaft and the vertical direction of the main shaft detected by the first detection unit A determination unit for determining whether or not a difference between the position of the first position and the second position exceeds a predetermined threshold;
When the determination unit determines that the difference has exceeded the threshold value, after the execution of the screw cutting command is completed, the determination unit stops the first end process to end the execution of the machining program or the execution of the screw cutting command, A machine tool comprising: an end unit that executes any one of second end processes for ending execution of the machining program.
前記制御装置は、前記第一終了処理又は第二終了処理の実行を設定する設定部を備え、
前記終了部は前記設定部での設定に応じて、前記第一終了処理又は第二終了処理を実行すること
を特徴とする請求項1に記載の工作機械。
The control device includes a setting unit configured to set execution of the first end process or the second end process,
The machine tool according to claim 1, wherein the end unit executes the first end process or the second end process according to a setting in the setting unit.
前記命令はワークに形成した螺子孔から工具を抜き出す抜き出し指令を含み、
前記閾値は第一閾値と第二閾値を含み、
前記判定部は、
前記螺子切り指令を実行する場合、前記差分が前記第一閾値を超過したか否か判定する第一判定部と、
前記抜き出し指令を実行する場合、前記差分が前記第二閾値を超過したか否か判定する第二判定部と
を備えることを特徴とする請求項1又は2に記載の工作機械。
The command includes an extraction command for extracting a tool from a screw hole formed in the workpiece,
The threshold includes a first threshold and a second threshold;
The determination unit
When executing the screw cutting command, a first determination unit that determines whether or not the difference exceeds the first threshold;
The machine tool according to claim 1, further comprising: a second determination unit configured to determine whether or not the difference exceeds the second threshold when the extraction command is executed.
前記閾値は第三閾値と該第三閾値よりも大きい第四閾値を含み、
前記判定部は、
前記差分が前記第三閾値を超過したか否か判定する第三判定部と、
前記差分が前記第四閾値を超過したか否か判定する第四判定部と
を備え、
前記第三判定部が前記差分は前記第三閾値を超過したと判定し且つ前記第四判定部が前記差分は前記第四閾値を超過していないと判定した場合、前記終了部は前記第一終了処理を実行し、前記第四判定部が前記差分は前記第四閾値を超過したと判定した場合、前記終了部は前記第二終了処理を実行すること
を特徴とする請求項1に記載の工作機械。
The threshold includes a third threshold and a fourth threshold greater than the third threshold;
The determination unit
A third determination unit for determining whether or not the difference exceeds the third threshold;
A fourth determination unit that determines whether or not the difference exceeds the fourth threshold,
When the third determination unit determines that the difference exceeds the third threshold and the fourth determination unit determines that the difference does not exceed the fourth threshold, the end unit is the first The end process is executed, and when the fourth determination unit determines that the difference exceeds the fourth threshold, the end unit executes the second end process. Machine Tools.
工具を装着する主軸と、該主軸の軸方向への移動を行う移動機構と、前記主軸を軸回りに回転するモータと、加工プログラムを構成する複数の命令を順次読み込み前記移動機構とモータの駆動を制御する制御装置と、前記主軸の軸方向位置を検出する第一検出部と、前記主軸の周方向の位置を検出する第二検出部とを備える工作機械の制御方法において、
読み込んだ前記命令がワークを工具で螺子切りする螺子切り指令を含む場合、前記第二検出部で検出した第一の前記主軸の周方向の位置、前記第二検出部で検出した第二の前記主軸の周方向の位置及び前記螺子切り指令に基づいて前記主軸の上下方向の位置を演算し、該演算した前記主軸の上下方向の位置と前記第一検出部で検出した前記主軸の上下方向の位置との差分が予め定めた閾値を超過したか否か判定し、
前記差分が前記閾値を超過したと判定した場合、前記螺子切り指令の実行完了後、前記加工プログラムの実行を終了する第一終了処理又は前記螺子切り指令の実行を中止し、前記加工プログラムの実行を終了する第二終了処理の何れかを実行すること
を特徴とする工作機械の制御方法。
A spindle for mounting a tool, a moving mechanism for moving the spindle in the axial direction, a motor for rotating the spindle around the axis, and a plurality of commands constituting a machining program are sequentially read, and the moving mechanism and the motor are driven. In a method for controlling a machine tool, comprising: a control device that controls the first spindle; a first detector that detects an axial position of the spindle; and a second detector that detects a circumferential position of the spindle.
When the read command includes a thread cutting command for threading the workpiece with a tool, the circumferential position of the first spindle detected by the second detector, the second detected by the second detector Based on the circumferential position of the main shaft and the screw cutting command, the vertical position of the main shaft is calculated, and the calculated vertical position of the main shaft and the vertical direction of the main shaft detected by the first detection unit are calculated. Determine whether the difference with the position exceeds a predetermined threshold,
When it is determined that the difference exceeds the threshold value, after the execution of the thread cutting command is completed, the first termination process for terminating the execution of the machining program or the execution of the screw cutting instruction is stopped, and the execution of the machining program is executed. One of the 2nd completion processing which completes is performed. The control method of the machine tool characterized by the above-mentioned.
JP2017063814A 2016-03-28 2017-03-28 Machine tools and control methods Active JP6801552B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016064178 2016-03-28
JP2016064178 2016-03-28

Publications (2)

Publication Number Publication Date
JP2017177323A true JP2017177323A (en) 2017-10-05
JP6801552B2 JP6801552B2 (en) 2020-12-16

Family

ID=59983436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017063814A Active JP6801552B2 (en) 2016-03-28 2017-03-28 Machine tools and control methods

Country Status (2)

Country Link
JP (1) JP6801552B2 (en)
CN (1) CN107234485B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112548235A (en) * 2020-12-10 2021-03-26 博峰汽配科技(芜湖)有限公司 Plate processing tapping machining bed capable of being fixed in multi-directional positioning mode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7019396B2 (en) * 2017-11-30 2022-02-15 日本電産マシンツール株式会社 Machine tool control method, machine tool control device, machine tool setting support device, machine tool control system and program
JP2020154956A (en) * 2019-03-22 2020-09-24 ブラザー工業株式会社 Numerical control device and machine tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304814A (en) * 1993-04-22 1994-11-01 Fanuc Ltd Rigid tap control system
JPH08174383A (en) * 1994-12-21 1996-07-09 Fanuc Ltd Tool breakage detecting system
JP2001277075A (en) * 2000-03-30 2001-10-09 Toyoda Mach Works Ltd Load detecting method and device for cutting tool in machine tool
JP2016033705A (en) * 2014-07-31 2016-03-10 ブラザー工業株式会社 Numerical control unit, control method, storage medium

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3259736B2 (en) * 1992-05-18 2002-02-25 株式会社安川電機 Numerical control thread cutting device
JP2002283184A (en) * 2001-03-27 2002-10-03 Toyoda Mach Works Ltd Machining control method, its recording medium and its device
JP5118232B2 (en) * 2011-05-18 2013-01-16 ファナック株式会社 Machine tool control device for tapping
JP5325949B2 (en) * 2011-08-08 2013-10-23 ファナック株式会社 Tapping machine
WO2013183082A1 (en) * 2012-06-05 2013-12-12 三菱電機株式会社 Numeric control device
JP6303357B2 (en) * 2013-09-25 2018-04-04 ブラザー工業株式会社 Machine Tools

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304814A (en) * 1993-04-22 1994-11-01 Fanuc Ltd Rigid tap control system
JPH08174383A (en) * 1994-12-21 1996-07-09 Fanuc Ltd Tool breakage detecting system
JP2001277075A (en) * 2000-03-30 2001-10-09 Toyoda Mach Works Ltd Load detecting method and device for cutting tool in machine tool
JP2016033705A (en) * 2014-07-31 2016-03-10 ブラザー工業株式会社 Numerical control unit, control method, storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112548235A (en) * 2020-12-10 2021-03-26 博峰汽配科技(芜湖)有限公司 Plate processing tapping machining bed capable of being fixed in multi-directional positioning mode
CN112548235B (en) * 2020-12-10 2021-12-07 博峰汽配科技(芜湖)有限公司 Plate processing tapping machining bed capable of being fixed in multi-directional positioning mode

Also Published As

Publication number Publication date
CN107234485A (en) 2017-10-10
CN107234485B (en) 2019-06-28
JP6801552B2 (en) 2020-12-16

Similar Documents

Publication Publication Date Title
JP6560719B2 (en) Numerical control apparatus and numerical control method
JP2016051249A (en) Numerical control device, and control method
US10001770B2 (en) Processing program generation method and device
JP2017177323A (en) Machine tool and control method
JP5958188B2 (en) Numerical controller
JP7195110B2 (en) Machine tools and controllers
JP6398254B2 (en) Numerical control device and control method of numerical control device
JP2017049642A (en) Numerical control device and control method
JP6107306B2 (en) Numerical control apparatus and drive control method
JP6196708B2 (en) Machining program creation method and apparatus
CN104289972B (en) Lathe and its control method
JP6582931B2 (en) Control device, machine tool, control method, and computer program
JP2020013433A (en) Numerical control device, numerical control method, and numerical control program
JP5874478B2 (en) Machine Tools
JP7057703B2 (en) Machine Tools
JP2011073069A (en) Numeric value control device, control program of numeric value control device, storage medium and control method of numeric value control device
JP2008234278A (en) Numerical control device, control program, control program recording medium, and machine tool
JP5861522B2 (en) Machine Tools
JP2010017800A (en) Deburring method and deburring device
JP4261708B2 (en) NC machining equipment
JP7131454B2 (en) Numerical controllers, machine tools, control programs, and storage media
JP6317923B2 (en) NC lathe
JP5897259B2 (en) Machine tool and control method thereof
JP5998575B2 (en) Machine tool and method
WO2023026368A9 (en) Numerical control device and storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201109

R150 Certificate of patent or registration of utility model

Ref document number: 6801552

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150