JP2017177190A - Extrusion member - Google Patents

Extrusion member Download PDF

Info

Publication number
JP2017177190A
JP2017177190A JP2016070491A JP2016070491A JP2017177190A JP 2017177190 A JP2017177190 A JP 2017177190A JP 2016070491 A JP2016070491 A JP 2016070491A JP 2016070491 A JP2016070491 A JP 2016070491A JP 2017177190 A JP2017177190 A JP 2017177190A
Authority
JP
Japan
Prior art keywords
stress
extruded
compressive stress
residual compressive
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016070491A
Other languages
Japanese (ja)
Other versions
JP6769723B2 (en
Inventor
寛哲 細井
Hiroaki Hosoi
寛哲 細井
隆広 志鎌
Takahiro Shikama
隆広 志鎌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016070491A priority Critical patent/JP6769723B2/en
Publication of JP2017177190A publication Critical patent/JP2017177190A/en
Application granted granted Critical
Publication of JP6769723B2 publication Critical patent/JP6769723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Extrusion Of Metal (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for achieving higher reliability in prevention of stress corrosion crack in a member (for example, an automotive component) made of a 7000 series aluminum alloy extruded material as a raw material.SOLUTION: An extruded member comprises a 7000 series aluminum alloy extruded material having a 0.2% proof stress of 350 MPa or more, and a hollow-cross section, as a raw material. The extruded member comprises: an area to which a residual compression stress is applied, in the whole part or a part of the surface. The residual compression stress in the outermost layer in said area corresponds to 10-30% of durability of the raw material. The residual compression stress may be applied, for example, by a peening process.SELECTED DRAWING: Figure 6

Description

本発明は、高強度の7000系アルミニウム合金押出材を素材とする自動車用等の押出部材に関し、特に耐応力腐食割れ性が改善された押出部材に関する。   The present invention relates to an extruded member for automobiles and the like made of a high-strength 7000 series aluminum alloy extruded material, and more particularly to an extruded member having improved stress corrosion cracking resistance.

近年、エネルギー問題や環境問題(地球温暖化)の深刻化を背景として、自動車の燃費改善の動きが加速している。自動車の燃費改善には車体の軽量化も有効であり、従来の鋼製から、密度が約1/3となるアルミニウム合金製の板材、押出材、鍛造材、鋳造材への部品単位での置換が進んでいる。   In recent years, with the background of the seriousness of energy problems and environmental problems (global warming), movements for improving the fuel efficiency of automobiles are accelerating. Weight reduction of the car body is also effective for improving the fuel efficiency of automobiles, replacing the conventional steel products with aluminum alloy plate materials, extruded materials, forged materials, and cast materials that have a density of about 1/3 in parts. Is progressing.

アルミニウム合金押出材は、追加の加工なく、任意の肉厚配分を有する閉断面の長尺材が得られるため、自動車フレーム部品や、エネルギー吸収部材などへの積極的な採用が拡大している。
強度が求められる自動車用部材(部品)において、鋼部材からアルミニウム合金製押出部材への置換による軽量化効果は、アルミニウム合金の機械的性質に大きく依存する。強度が求められる部材としては、ドア補強材、バンパー補強材、ルーフ補強材、又はサイドメンバーやピラーなどの車体フレーム部材がある。このような部材向けに、高強度アルミニウム合金の開発が進められている。
The aluminum alloy extruded material can be used for automobile frame parts, energy absorbing members, and the like because a long cross-section material having an arbitrary thickness distribution can be obtained without additional processing.
In automobile parts (parts) that require strength, the effect of weight reduction by replacing steel members with aluminum alloy extruded members depends greatly on the mechanical properties of the aluminum alloy. Examples of members that require strength include door reinforcement members, bumper reinforcement members, roof reinforcement members, and body frame members such as side members and pillars. Development of high-strength aluminum alloys for such members is in progress.

近年、特にアルミニウム合金押出材からなるドア補強材の需要が高まっている。ドア補強材は、ドアインナパネルとドアアウタパネルの間の挟小部に他の機構部分と共に設置されるためにスペース制約が厳しく、所定の強度を満足するために高強度合金が望まれている。また、十分なスペースがないために、アルミニウム合金製押出材からなるドア補強材の断面形状は、正対する2本のフランジとそれを支える2本のウエブで構成される略矩形断面となることが多い。
また、他部材との締結と、スペース制約のために、アルミニウム合金製押出材によるドア補強材の両端部は潰し加工等による断面形状の扁平化や斜め方向の切断加工等が施されることも一般的である(特許文献1,2参照)。
In recent years, demand for door reinforcements made of extruded aluminum alloys has been increasing. Since the door reinforcement member is installed together with other mechanism parts in a small portion between the door inner panel and the door outer panel, space restrictions are severe, and a high strength alloy is desired in order to satisfy a predetermined strength. Further, since there is not enough space, the cross-sectional shape of the door reinforcement made of the aluminum alloy extruded material may be a substantially rectangular cross-section composed of two opposed flanges and two webs supporting the flange. Many.
In addition, due to fastening with other members and space constraints, both ends of the door reinforcement made of aluminum alloy extruded material may be subjected to flattening of the cross-sectional shape by crushing processing, oblique cutting processing, etc. It is general (see Patent Documents 1 and 2).

高強度アルミニウム合金として一般的なものは、析出硬化型合金である6000系(Al−Mg−Si−(Cu)系)及び7000系(Al−Zn−Mg−(Cu)系)である。一般的に、6000系合金は0.2%耐力で200〜350MPa程度、7000系合金は0.2%耐力で300〜500MPa程度が得られる。機械的性質は、調質及び添加元素の組成に主に依存し、ほかに鋳造品質(結晶粒サイズ)、加工プロセスにも依存する。   Commonly used high-strength aluminum alloys are the precipitation hardening type alloys 6000 series (Al-Mg-Si- (Cu) series) and 7000 series (Al-Zn-Mg- (Cu) series). Generally, a 6000 series alloy has a 0.2% yield strength of about 200 to 350 MPa, and a 7000 series alloy has a 0.2% yield strength of about 300 to 500 MPa. The mechanical properties mainly depend on the tempering and the composition of additive elements, and also depend on the casting quality (grain size) and the processing process.

しかし、高強度の6000系や7000系アルミニウム合金では、調質によって、応力腐食割れ(SCC)と呼ばれる、腐食環境下で引張応力が絶えず生じている場所においてクラックが発生することが知られている。クラックの形態は一般に極めて鋭敏であり、応力拡大係数が高いために進展が速く、予期できない破断を生じる危険性が高いために強く忌避される。SCCは一般に高強度材であるほど生じやすく、その意味で7000系合金は6000系合金に比べてSCCのリスクが高い。このSCCがネックとなって、自動車部品への高強度7000系合金の採用が見送られることもある。   However, high-strength 6000 series and 7000 series aluminum alloys are known to crack due to tempering, which is called stress corrosion cracking (SCC), where tensile stress is constantly generated in a corrosive environment. . The form of cracks is generally very sensitive and is strongly repelled because of its high stress intensity factor and rapid growth and high risk of unexpected fracture. In general, SCC is more likely to occur as the strength of the material increases. In this sense, the 7000 series alloy has a higher risk of SCC than the 6000 series alloy. With this SCC as a bottleneck, adoption of high-strength 7000 series alloys for automobile parts may be postponed.

SCCは、部材が腐食環境にさらされ、かつ引張応力が常にあるしきい値以上に生じている部位で発生する。部材への外部からの荷重やモーメントに起因する引張方向は常に生じることはまれであり、SCCは、製造中の加工、熱処理工程において生じた引張方向のの残留応力が要因となって生じることが多い。
特許文献3〜7には、7000系アルミニウム合金押出材において、成形加工後の残留引張応力を低減し、SCCの発生を防止することが記載されている。
SCC occurs at a site where the member is exposed to a corrosive environment and the tensile stress is always above a certain threshold. The tensile direction due to external loads and moments on the member rarely occurs at all times, and SCC may be caused by the residual stress in the tensile direction generated during processing and heat treatment during manufacturing. Many.
Patent Documents 3 to 7 describe that in a 7000 series aluminum alloy extruded material, the residual tensile stress after forming is reduced to prevent the occurrence of SCC.

特開2001−301462号公報JP 2001-301462 A 特開2003−118367公報JP 2003-118367 A 特開2002−362157号公報JP 2002-362157 A 特許第5419401号公報Japanese Patent No. 5419401 特開2010−207832号公報JP 2010-207832 A 特許第5671422号公報Japanese Patent No. 5671422 特開2014−145119号公報JP 2014-145119 A

アルミニウム合金製押出材の残留引張応力は、熱処理あるいは機械加工によって発生する。熱処理では、高温加熱後に急速な冷却が施されるときに、部材内に生じる温度勾配に起因して残留引張応力が生じる。
機械加工は、塑性加工と切削・切断加工に大別できる。塑性加工の代表例としては、曲げ加工、変断面加工がある。曲げ加工はプレス曲げ、押し付け曲げ、引張曲げ、ロール曲げなど、様々な方法があるが、総じて、曲げ内側R(凹側)と側面の一部において長手方向に高い残留引張応力が生じる。変断面加工は、内面からの圧力(液体、固体、電磁力)を加えて膨らます方法や、外面からの荷重によって小さくする(潰し加工)方法などがあるが、総じて、変断面加工に伴い曲げ変形する辺の凹側の面の断面周方向に高い残留応力が生じる。
切削・切断加工(打抜加工もこれに含まれる)では、加工面に高い残留引張応力が生じるケースがあることが知られている。
The residual tensile stress of the aluminum alloy extruded material is generated by heat treatment or machining. In heat treatment, when rapid cooling is performed after high-temperature heating, residual tensile stress is generated due to a temperature gradient generated in the member.
Machining can be broadly divided into plastic working and cutting / cutting. Typical examples of plastic working include bending and cross section processing. There are various bending methods such as press bending, pressing bending, tensile bending, and roll bending, but generally, a high residual tensile stress is generated in the longitudinal direction at the bending inner side R (concave side) and a part of the side surface. There are two methods for changing cross-sections: a method of expanding by applying pressure (liquid, solid, electromagnetic force) from the inner surface and a method of reducing (crushing) by a load from the outer surface. High residual stress is generated in the circumferential direction of the cross section of the concave side surface.
In cutting / cutting (including punching), it is known that there are cases in which a high residual tensile stress is generated on the processed surface.

特許文献3〜7には、7000系アルミニウム合金押出材を素材とするドア補強材等の部材に生じる残留引張応力を抑制する技術として、加工条件や断面形状の工夫(特許文献3〜5)、及び塑性加工後の復元処理(特許文献6,7)などが記載されている。しかし、これらの技術を適用した場合でも、SCCの原因である残留引張応力自体は部材表面に存在している。
従って、本発明は、7000系アルミニウム合金押出材を素材とする部材において、SCCを防止する上でより高い信頼性を実現することを目的とする。
Patent Documents 3 to 7 devise processing conditions and cross-sectional shapes (Patent Documents 3 to 5) as techniques for suppressing residual tensile stress generated in a member such as a door reinforcement made of a 7000 series aluminum alloy extruded material. And a restoration process after plastic working (Patent Documents 6 and 7). However, even when these techniques are applied, the residual tensile stress itself that causes SCC exists on the surface of the member.
Therefore, an object of the present invention is to realize higher reliability in preventing SCC in a member made of a 7000 series aluminum alloy extruded material.

本発明は、0.2%耐力が350MPa以上で中空断面を有する7000系アルミニウム合金押出材を素材とする押出部材(自動車用等の部品)に係り、表面の全体又は一部に残留圧縮応力が付与された領域Aを有し、前記領域Aの最表層の残留圧縮応力が素材耐力の10〜30%に相当することを特徴とする。なお、上記表面には、押出材の外表面及び内表面、切断端面のほか、押出後に切削・切断加工が行われた場合は、穴の内周面や切断面も含まれる。また、領域Aの「A」は、素材耐力の10〜30%の残留圧縮応力が付与された領域を、他の領域と区別するためにのみ付与している。   The present invention relates to extruded members (parts for automobiles, etc.) made of a 7000 series aluminum alloy extruded material having a 0.2% proof stress of 350 MPa or more and having a hollow cross section. Residual compressive stress is present on the entire surface or a part of the surface. It has the provided area | region A, The residual compressive stress of the outermost layer of the said area | region A is equivalent to 10 to 30% of material proof stress, It is characterized by the above-mentioned. In addition to the outer surface and inner surface of the extruded material, and the cut end surface, the surface includes an inner peripheral surface and a cut surface of a hole when cutting / cutting is performed after the extrusion. Further, “A” in the region A is given only to distinguish the region to which the residual compressive stress of 10 to 30% of the material yield strength is given from other regions.

上記7000系アルミニウム合金中空押出材は、例えば、2本のフランジと、それらを連結する2本のウエブからなる略矩形断面形状を有する。この断面形状を有する押出部材は例えばドア補強材であり、押出方向に沿った一部(主として端部)に前記ウエブが湾曲した変断面部が設けられることがあり、この場合、前記変断面部のウエブの曲げ内側表面が前記領域Aに含まれることが好ましい。
また、上記押出部材は、例えば、押出方向に沿った一部に穴又は切断面を有する場合があり、この場合、前記穴の内面又は切断面とその近傍領域が前記領域Aに含まれることが好ましい。
ピーニング処理により残留圧縮応力を付与する場合、前記領域Aの表面には、多数の亜結晶粒界が導入された表面改質層が形成される。
The 7000 series aluminum alloy hollow extruded material has, for example, a substantially rectangular cross-sectional shape including two flanges and two webs connecting them. The extruded member having this cross-sectional shape is, for example, a door reinforcing material, and a deformed cross-sectional portion in which the web is curved may be provided in a part (mainly an end portion) along the extruding direction. It is preferable that the bent inner surface of the web is included in the region A.
Moreover, the said extrusion member may have a hole or a cut surface in a part along an extrusion direction, for example, In this case, the inner surface or cut surface of the said hole, and its vicinity area | region may be included in the said area | region A. preferable.
When the residual compressive stress is applied by the peening process, a surface modified layer into which a large number of subgrain boundaries are introduced is formed on the surface of the region A.

本発明に係る押出部材は、350MPa以上の耐力を有する高強度の7000系アルミニウム合金押出材を素材とし、表面の全体又は一部に、残留圧縮応力が付与された領域Aを有する。このため、従来例のように残留引張応力が残存している場合に比べ、SCCを防止する上で信頼性が高い。領域Aは、熱処理あるいは機械加工により大きい残留引張応力が生じる箇所及びその近傍に設定すればよい。領域Aの残留圧縮応力は、ピーニング処理等の表面処理で付与することができる。
本発明に係る押出部材において、領域Aの残留圧縮応力は、素材耐力の10〜30%の大きさに設定される。これにより、領域AのSCC臨界応力は、残留圧縮応力を付与しない通常の場合に比べ、0.2%耐力比で0.2程度増加する(例えば500MPaの素材では、SCC臨界応力は100MPa程度増加と見込める)。また、残留圧縮応力の最大値が0.2%耐力比で余り高くないことにより、外力による残留圧縮応力の消失リスク(後述)が回避できる。
The extruded member according to the present invention is made of a high-strength 7000 series aluminum alloy extruded material having a yield strength of 350 MPa or more, and has a region A to which residual compressive stress is applied on the entire surface or a part thereof. For this reason, compared with the case where a residual tensile stress remains like the conventional example, reliability is high in preventing SCC. The region A may be set at a location where a larger residual tensile stress is generated during heat treatment or machining and in the vicinity thereof. The residual compressive stress in the region A can be applied by a surface treatment such as a peening treatment.
In the extruded member according to the present invention, the residual compressive stress in the region A is set to 10 to 30% of the material yield strength. As a result, the SCC critical stress in the region A is increased by about 0.2 at a 0.2% yield strength ratio compared to a normal case where no residual compressive stress is applied (for example, in the case of a 500 MPa material, the SCC critical stress is increased by about 100 MPa. Can be expected). Moreover, since the maximum value of the residual compressive stress is not so high at the 0.2% yield strength ratio, the risk of disappearance of the residual compressive stress due to external force (described later) can be avoided.

本発明に係る押出部材の正面図(1A)及びI−I断面図(1B)である。It is the front view (1A) and II sectional view (1B) of the extrusion member which concern on this invention. 本発明に係る別の押出部材の正面図(2A)及びII−II断面図(2B)である。It is the front view (2A) and II-II sectional drawing (2B) of another extrusion member which concern on this invention. 本発明に係る別の押出部材の正面図(3A)及びIII−III断面図(3B)である。It is the front view (3A) and III-III sectional drawing (3B) of another extrusion member which concerns on this invention. 本発明に係るさらに別の押出部材の正面図(4A)、平面図(4B)及びIV−IV断面図(4C)である。It is a front view (4A), a top view (4B), and IV-IV sectional drawing (4C) of another extrusion member which concerns on this invention. 本発明に係る押出部材の正面図(5A)、平面図(5B)及びV−V断面図(5C)である。It is the front view (5A), top view (5B), and VV sectional drawing (5C) of the extrusion member which concerns on this invention. 実施例で求めた最表層の残留圧縮応力とSCC臨界応力(いずれも0.2%耐力比)の関係を示すグラフである。It is a graph which shows the relationship between the residual compressive stress of the outermost layer calculated | required in the Example, and SCC critical stress (all are 0.2% yield strength ratio).

以下、本発明に係る押出部材について、より具体的に説明する。
[アルミニウム合金押出材]
本発明に係る押出部材は、0.2%耐力が350MPa以上の高強度を有する7000系(Al−Zn−Mg−(Cu)系)アルミニウム合金押出材を素材とする。0.2%耐力が350MPa以上であれば、自動車部材として使用できる。350MPa以上の0.2%耐力は、熱間押出材をオンラインで焼き入れ後、時効処理するか(T5調質)、オフラインで溶体化処理及び焼き入れ後、時効処理する(T6調質)ことにより達成される。ただし、SCCは一般に高強度材ほど生じやすい。
調質後の押出材の表面には、一般に0〜20MPa程度の残留引張応力又は残留圧縮応力が存在する。これに機械加工を加えると、先に述べたような箇所に大きい残留引張応力が発生し、耐SCC性が低下する。
Hereinafter, the extruded member according to the present invention will be described more specifically.
[Aluminum alloy extruded material]
The extruded member according to the present invention is made of a 7000 series (Al-Zn-Mg- (Cu)) aluminum alloy extruded material having a high strength with a 0.2% proof stress of 350 MPa or more. If the 0.2% proof stress is 350 MPa or more, it can be used as an automobile member. For 0.2% proof stress of 350 MPa or more, hot-extrusion material should be subjected to aging treatment after online quenching (T5 tempering), or solution treatment and quenching offline and aging treatment (T6 tempering). Is achieved. However, SCC is generally more likely to occur with higher strength materials.
In general, residual tensile stress or residual compressive stress of about 0 to 20 MPa exists on the surface of the extruded material after tempering. When machining is applied to this, a large residual tensile stress is generated at the above-described locations, and the SCC resistance is lowered.

[表面処理による残留圧縮応力付与の方法]
押出部材の表面への残留圧縮応力の付与方法として、表面処理による方法が最も適しており、表面処理の代表的なものにピーニング処理がある。ピーニング処理のうち、投射材と呼ばれる通常は個体の微細粒子を高速で被加工材に投射するショットピーニング処理が最も一般的であり、鋼製ばねや鋼製歯車などにおいて広く実用化されている。特開2000−233625号公報、特開2000−343429号公報に、中空材の内面にショットピーニング処理を施す方法、装置が開示されている。
なお、ピーニング処理で部材表面に残留圧縮応力を付与し、疲労強度の改善を行うことは従来より行われているが、SCCを防止するために行われている例を、本発明者らは知らない。
[Method of applying residual compressive stress by surface treatment]
As a method for imparting residual compressive stress to the surface of the extruded member, a method by surface treatment is the most suitable, and a typical surface treatment is peening. Of the peening treatments, the shot peening treatment, which is usually called a projecting material and usually projects individual fine particles onto a workpiece at a high speed, is the most common, and is widely used in steel springs and steel gears. Japanese Patent Application Laid-Open Nos. 2000-233625 and 2000-343429 disclose a method and apparatus for performing shot peening on the inner surface of a hollow material.
Although it has been conventionally performed to apply residual compressive stress to a member surface by peening treatment to improve fatigue strength, the present inventors know an example that is performed to prevent SCC. Absent.

ピーニング処理には、ほかに、超音波による振動現象を利用する超音波ピーニング、水中でレーザを照射することで高圧プラズマを発生させ被加工材を圧縮変形させるレーザピーニング、水中でキャビテーションを発生させて被加工材を圧縮変形させるキャビテーションピーニングなどがある。特開2015−105402号公報には、アルミニウム合金部材にレーザピーニング処理を施し、硬化した表面改質層を形成して、高温環境下での疲労強度を改善することが開示されている。
ピーニング処理以外の残留圧縮応力の付与方法として、バレル研磨処理などもあり、比較的小型で大量生産が必要な部材において広く実用化されている。また、バニシング加工と呼ばれるものも存在する。
In addition to the peening treatment, ultrasonic peening that uses the vibration phenomenon caused by ultrasonic waves, laser peening that generates high-pressure plasma by irradiating a laser in water and compressively deforms the workpiece, and cavitation is generated in water. There is cavitation peening that compresses and deforms workpieces. Japanese Patent Application Laid-Open No. 2015-105402 discloses that an aluminum alloy member is subjected to laser peening treatment to form a cured surface modified layer to improve fatigue strength in a high temperature environment.
As a method for applying a residual compressive stress other than the peening treatment, there is a barrel polishing treatment or the like, which has been widely put into practical use in a relatively small member requiring mass production. There is also what is called burnishing.

[ピーニング処理による残留圧縮応力の分布]
ピーニング処理で被加工材表面に生じる残留圧縮応力は、通常、深さ方向に対して山なりの分布を示す。一般的に、ピークは最表層(深さ0μm)から深さ50〜150μmの位置にあり、深さ300μm程度の位置では残留圧縮応力はほぼゼロになる。最表層の残留圧縮応力は、ピーク値の30〜60%程度をとることが多い。一般に、投射材の運動エネルギが高い(投射材が重く、大きく、速度が高い)ほど、残留圧縮応力のピーク値が高くなる傾向がある。また、投射材の運動エネルギが高いほど、最表層の残留圧縮応力値が低くなり、最表層の残留圧縮応力値とピーク値の差が大きくなる傾向がある。
本発明では、7000系アルミニウム合金押出材を素材とする押出部材の最表層の残留圧縮応力値を、後述する実施例の結果に基づき、素材耐力の10〜30%とした。
[Residual compressive stress distribution by peening]
The residual compressive stress generated on the surface of the workpiece by the peening process usually shows a mountain-like distribution in the depth direction. In general, the peak is located at a depth of 50 to 150 μm from the outermost layer (depth of 0 μm), and the residual compressive stress is substantially zero at a depth of about 300 μm. The residual compressive stress of the outermost layer often takes about 30 to 60% of the peak value. Generally, the higher the kinetic energy of the projection material (the projection material is heavier, larger, and higher in speed), the higher the peak value of the residual compressive stress tends to be. Moreover, the higher the kinetic energy of the projection material, the lower the residual compressive stress value of the outermost layer, and the difference between the residual compressive stress value of the outermost layer and the peak value tends to increase.
In the present invention, the residual compressive stress value of the outermost layer of the extruded member made of a 7000 series aluminum alloy extruded material is set to 10 to 30% of the material yield strength based on the results of Examples described later.

[残留圧縮応力の深さ]
自動車部材は、塩水等を含む腐食環境にさらされることも多い。腐食環境下では、一般に腐食速度の遅いアルミニウム合金押出材を素材とする部材においても、合金種や調質などにも大きく依存するものの、腐食による表層の欠落は進行していく。アルミニウム合金押出材製の自動車部材の信頼性の観点から、最表層のみに高い残留圧縮応力があるよりは、ある程度の深さ(100〜150μm程度)まで比較的高い残留圧縮応力がある方が好ましい。投射材の運動エネルギが高いほど、残留圧縮応力が導入される深さが大きくなる傾向がある。
[Depth of residual compressive stress]
Automobile members are often exposed to corrosive environments including salt water. In a corrosive environment, even in a member made of an extruded aluminum alloy material having a slow corrosion rate as a raw material, the surface layer loss due to corrosion progresses greatly depending on the alloy type and tempering. From the viewpoint of the reliability of an automobile member made of an aluminum alloy extruded material, it is preferable to have a relatively high residual compressive stress up to a certain depth (about 100 to 150 μm) rather than a high residual compressive stress only in the outermost layer. . The higher the kinetic energy of the projection material, the greater the depth at which the residual compressive stress is introduced.

[ピーニング処理のメリット(結晶粒微細化)]
アルミニウム合金押出材の表層(深さ0〜100μm程度)の組織は、内部に比べ大ひずみが与えられるために粗大な再結晶組織となりやすく、内部の微細な(主に繊維状の)加工組織とは異なるケースが多い。粗大な結晶粒は、微細な結晶粒に比べてSCC臨界応力が低い。ピーニング処理で表層に大ひずみが導入されることで、このような粗大な再結晶組織の中に多くの亜結晶粒界が現れ、結晶粒微細化に似た効果が得られる。結晶粒微細化効果は、一般に投射材の運動エネルギーが高いほど大きい傾向がある。ピーニング処理において結晶粒微細化の効果が得られた表層部は表面改質層といわれる。
[Merit of peening process (crystal grain refinement)]
The structure of the surface layer of the aluminum alloy extruded material (depth of about 0 to 100 μm) is likely to be a coarse recrystallized structure because a large strain is given compared to the inside, and the internal fine structure (mainly fibrous) There are many different cases. Coarse crystal grains have a lower SCC critical stress than fine crystal grains. When a large strain is introduced into the surface layer by the peening treatment, many sub-grain boundaries appear in such a coarse recrystallized structure, and an effect similar to crystal grain refinement can be obtained. The grain refinement effect generally tends to increase as the kinetic energy of the projection material increases. The surface layer portion where the effect of crystal grain refinement is obtained in the peening process is called a surface modified layer.

[残留圧縮応力付与のデメリット]
一方、表面処理で残留圧縮応力を付与することで、SCC防止効果は見込めるものの、デメリットもある。デメリットの一つとして、処理に伴うコストアップがある。従って、処理は必要な領域に限定することが好ましい。
また、ピーニング処理全般に、表面粗さが増加することで応力集中係数が増加するというデメリットがある。従って、ピーニング処理による表面粗さの増大が、SCC臨界応力の低下に結びつくものと普通は推測される。しかし、後述する実施例に示すように、7000系アルミニウム合金押出材において、表面粗さ(算術平均粗さRa)とSCC臨界応力(素材の0.2%耐力比)の間に明確な関係は見出せなかった。これは、ピーニング処理による表面粗さの増大が、本発明に関してはデメリットにはならないことを意味する。
[Disadvantages of applying residual compressive stress]
On the other hand, by applying the residual compressive stress by the surface treatment, the SCC prevention effect can be expected, but there is also a disadvantage. One of the disadvantages is an increase in costs associated with processing. Therefore, it is preferable to limit the processing to a necessary area.
Further, the peening process generally has a demerit that the stress concentration factor increases as the surface roughness increases. Therefore, it is usually assumed that an increase in surface roughness due to the peening treatment leads to a decrease in SCC critical stress. However, as shown in the examples described later, in the 7000 series aluminum alloy extruded material, there is a clear relationship between the surface roughness (arithmetic mean roughness Ra) and the SCC critical stress (0.2% yield strength ratio of the material). I couldn't find it. This means that the increase in surface roughness due to the peening process is not a disadvantage for the present invention.

ほかに、残留圧縮応力が大きい(例えば素材の0.2%耐力に接近する)と、部材に外力が作用したときに生じる圧縮応力によって塑性変形が起こり、付与されていた残留圧縮応力が消失するリスクもある。従って、残留圧縮応力をいたずらに高くすることは適切ではない。本発明では、7000系アルミニウム合金押出材を素材とする押出部材の最表層の残留圧縮応力値の最大値が、素材の0.2%耐力比で30%以下と比較的小さく、このリスクを回避しやすい。   In addition, if the residual compressive stress is large (for example, approaching the 0.2% proof stress of the material), plastic deformation occurs due to the compressive stress generated when an external force is applied to the member, and the applied residual compressive stress disappears. There are also risks. Therefore, it is not appropriate to increase the residual compressive stress unnecessarily. In the present invention, the maximum value of the residual compressive stress value of the outermost layer of the extruded member made of a 7000 series aluminum alloy extruded material is relatively small as 30% or less in the 0.2% yield strength ratio of the material, and this risk is avoided. It's easy to do.

[押出部材における領域Aの形態]
(1)図1に示す押出部材はドア補強材の例であり、ドアのインナーパネルに固定される両端部の外表面及び内表面に、素材耐力の10〜30%に相当する残留圧縮応力が付与されている。この例では、領域Aは押出部材の両端部の外表面及び内表面(ドットで示す箇所)である。
(2)図2に示す押出部材はドア補強材の例であり、長手方向全体にわたり外表面及び内表面に、素材耐力の10〜30%に相当する残留圧縮応力が付与されている。この例では、領域Aは押出部材の外表面及び内表面全体(ドットで示す箇所)である。
[Form of region A in extruded member]
(1) The extruded member shown in FIG. 1 is an example of a door reinforcing material. Residual compressive stress corresponding to 10 to 30% of the material yield strength is applied to the outer surface and inner surface of both ends fixed to the inner panel of the door. Has been granted. In this example, the region A is the outer surface and inner surface (locations indicated by dots) at both ends of the extruded member.
(2) The extruded member shown in FIG. 2 is an example of a door reinforcing material, and a residual compressive stress corresponding to 10 to 30% of the material yield strength is applied to the outer surface and the inner surface over the entire longitudinal direction. In this example, the region A is the entire outer surface and inner surface (location indicated by dots) of the extruded member.

(3)図3に示す押出部材はドア補強材の例であり、ドアのインナーパネルに固定される両端部が、両フランジに対し垂直方向に変断面加工(潰し加工)を受け、両ウエブが外側に湾曲している。このような変断面加工では、湾曲した両ウエブの凹側の面(内表面)の中央部、及び両ウエブの外表面のフランジとの境界部(いずれも矢印で示す箇所)に残留引張応力が発生する。この例では、潰し加工部を含む両端部のウエブ側内表面及び外表面の全体(ドットで示す箇所)に、素材耐力の10〜30%に相当する残留圧縮応力が付与され、そこが領域Aである。なお、特許文献7に記載されているとおり、このような変断面加工では、変断面加工を行った箇所と行っていない箇所(押出ままの箇所)の境界付近に、高い残留引張応力が発生する傾向がある。 (3) The extruded member shown in FIG. 3 is an example of a door reinforcing material, and both ends fixed to the inner panel of the door are subjected to cross-section processing (crushing processing) in a direction perpendicular to both flanges, Curved outward. In such cross section processing, residual tensile stress is applied to the central part of the concave surface (inner surface) of both curved webs and to the boundary part (both indicated by arrows) of the outer surface of both webs. Occur. In this example, a residual compressive stress corresponding to 10 to 30% of the material proof stress is applied to the entire inner surface and outer surface of the web (both indicated by dots) at both ends including the crushed portion, and this is the region A. It is. In addition, as described in Patent Document 7, in such cross section processing, a high residual tensile stress is generated in the vicinity of the boundary between the portion where the cross section processing is performed and the portion where the cross section processing is not performed (the portion where the extrusion is performed). Tend.

(4)図4に示す押出部材はドア補強材の例であり、ドアのインナーパネルに固定される両端部において、両フランジにプレス打抜き又はミーリングにより穴が形成されている。このような打抜き、切削加工では、穴の内周面に加工方向に沿って残留引張応力が発生する。この例では、ドットで示す穴の内周面及びその近傍領域(外表面)に、素材耐力の10〜30%に相当する残留圧縮応力が付与され、そこが領域Aである。 (4) The extrusion member shown in FIG. 4 is an example of a door reinforcement, and holes are formed in both flanges by press punching or milling at both ends fixed to the inner panel of the door. In such punching and cutting, residual tensile stress is generated along the processing direction on the inner peripheral surface of the hole. In this example, a residual compressive stress corresponding to 10 to 30% of the material yield strength is applied to the inner peripheral surface of the hole indicated by the dots and the vicinity thereof (outer surface).

(5)図5に示す押出部材はドア補強材の例であり、ドアのインナーパネルに固定される両端部が、斜めに切断されている。このような切断加工では、切断面に沿って残留引張応力が発生する。この例では、ドットで示す切断面に、素材耐力の10〜30%に相当する残留圧縮応力が付与され、そこが領域Aである。 (5) The pushing member shown in FIG. 5 is an example of a door reinforcing material, and both ends fixed to the inner panel of the door are cut obliquely. In such a cutting process, a residual tensile stress is generated along the cut surface. In this example, a residual compressive stress corresponding to 10 to 30% of the material yield strength is applied to the cut surface indicated by dots, and this is the region A.

Al−6.5Zn−1.3Mg−0.15Cu−0.03Cr−0.05Mn−0.15Zr(数値はいずれも質量%)からなる7000系アルミニウム合金押出材に対して、ショットピーニングを施した後にSCC試験に供し、SCC臨界応力の変化を調査し、本発明の効果を検証した。なお、上記成分組成以外の7000系アルミニウム合金押出材であっても、本発明の効果が得られる。
供試材はT5調質された断面矩形の中空押出材である。中空押出材の板状部(肉厚1.8mmt)から押出平行方向に、JISZ2201:2005(金属材料引張試験片)に記載のJIS5号試験片を機械加工によって採取し、下記要領で0.2%耐力値を測定した。
(0.2%耐力の測定)
JISZ2241の規定に準拠して、引張試験を行い、0.2%耐力を求めた。押出平行方向の0.2%耐力値は430MPaであった。
Shot peening was performed on a 7000 series aluminum alloy extruded material made of Al-6.5Zn-1.3Mg-0.15Cu-0.03Cr-0.05Mn-0.15Zr (both numerical values are mass%). Later, it was subjected to the SCC test, the change of the SCC critical stress was investigated, and the effect of the present invention was verified. In addition, even if it is 7000 series aluminum alloy extrusion material other than the said component composition, the effect of this invention is acquired.
The test material is a hollow extruded material having a rectangular cross section subjected to T5 tempering. A JIS No. 5 test piece described in JISZ2201: 2005 (metal material tensile test piece) was sampled by machining from the plate-like portion (wall thickness 1.8 mmt) of the hollow extruded material in the direction parallel to the extrusion, and 0.2 by the following procedure. The% proof stress value was measured.
(Measurement of 0.2% proof stress)
A tensile test was performed in accordance with the provisions of JISZ2241, and a 0.2% yield strength was obtained. The 0.2% yield strength value in the direction parallel to the extrusion was 430 MPa.

同様に、中空押出材の板状部(肉厚1.8mmt)から押出平行方向に、JISH8711:2000(アルミニウム合金の応力腐食割れ試験方法)に記載の板曲げ試験片(ISO7539)を機械加工によって採取した。採取した試験片は、後述するSCC試験の各付加応力について2個ずつとし、これらの試験片に、以下の要領で圧縮残留応力を付与し(表1のNo.1〜14)又は付与せず(表1のNo.15)、各種測定試験を行った。
(圧縮残留応力の付与)
エア式ショットピーニング装置(新東工業株式会社製)を用いて、試験片の片面に、空気圧、投射材、ノズル種類の異なる計14条件(No.1〜14)でショットピーニング処理を施し、圧縮残留応力を付与した。表1の使用ノズルの欄において、AはBより投射材の数及び投射速度が小さい。なお、圧縮残留応力を付与した試験片の数は、各条件ごとに12個ずつ(SCC試験の各付加応力について2個ずつ)である。
Similarly, a plate bending test piece (ISO7539) described in JISH8711: 2000 (stress corrosion cracking test method of aluminum alloy) is processed by machining in the direction parallel to the extrusion from the plate-like portion (wall thickness 1.8 mmt) of the hollow extruded material. Collected. Two specimens were collected for each additional stress in the SCC test described later, and compressive residual stress was applied to these specimens in the following manner (Nos. 1 to 14 in Table 1) or not. (No. 15 in Table 1) and various measurement tests were performed.
(Applying compressive residual stress)
Using an air-type shot peening device (manufactured by Shinto Kogyo Co., Ltd.), shot peening is performed on one side of the test piece under a total of 14 conditions (No. 1 to 14) with different air pressure, projection material, and nozzle type, and compressed. Residual stress was applied. In the column of used nozzles in Table 1, A has a smaller number of projection materials and a lower projection speed than B. In addition, the number of the test pieces to which the compressive residual stress was applied is 12 for each condition (2 for each additional stress in the SCC test).

ショットピーニング処理後の試験片(No.1〜14)について、それぞれ1つを用い、ショットピーニング処理を施した面の残留応力と表面粗さを測定した。同試験片もSCC試験に供した。SCC試験では、押出平行方向に応力を付加した。ショットピーニング処理を施していない試験片(No.15)についても、同様に残留応力と表面粗さを測定した。
(残留応力の測定)
X線応力測定装置MSF−3M(リガク株式会社製)を用いて最表面の押出平行方向の残留圧縮応力を測定した。測定条件及び解析条件を表2に示す。
(表面粗さ測定)
小型表面粗さ測定機サーフテストSJ−310(株式会社ミツトヨ製)を用い、押出平行方向の表面粗さ(JISB0601:2001の算術平均粗さRaに相当)を測定した。測定区間は2.5mmで5回繰り返し測定を行った。
About each test piece (No. 1-14) after a shot peening process, the residual stress and surface roughness of the surface which performed the shot peening process were measured using one each. The test piece was also subjected to the SCC test. In the SCC test, stress was applied in the direction parallel to the extrusion. For the test piece (No. 15) not subjected to shot peening treatment, the residual stress and the surface roughness were measured in the same manner.
(Measurement of residual stress)
The residual compressive stress in the extrusion parallel direction of the outermost surface was measured using an X-ray stress measurement apparatus MSF-3M (manufactured by Rigaku Corporation). Table 2 shows measurement conditions and analysis conditions.
(Surface roughness measurement)
Using a small surface roughness measuring machine Surf Test SJ-310 (manufactured by Mitutoyo Corporation), the surface roughness in the extrusion parallel direction (corresponding to the arithmetic average roughness Ra of JISB0601: 2001) was measured. The measurement interval was 2.5 mm and the measurement was repeated 5 times.

(SCC試験)
SCC試験は板曲げ試験(JISH8711:2001)の3点付加方式を採用し、No.1〜14の試験片は圧縮残留応力を付与した面が凸面になるようにした。No.1〜14の付加応力は220MPa、240MPa、260MPa、270MPa、280MPa及び300MPaの6段階とし、No.15の付加応力はより低い値に設定した。付加応力は、引張応力最大となる中央部凸面の長手方向に貼付したひずみゲージで管理した。腐食液としてクロム酸溶液(蒸留水1リットル当たりNaCl:3g、KCr:30g、CrO:36g)を作製し、SCCを促進させるため温度を95℃以上に保持した。試験時間は16時間とした。
試験後の試験片は、SCCの可能性のある位置を切断し、樹脂埋め込み、研磨の後に光学顕微鏡を用いて観察し、SCCの有無を判定した。付加応力が同じ2個の試験片の両方にSCCの発生が観察されなかった場合、当該付加応力においてSCC無しと判定し、付加応力が同じ2個の試験片の少なくとも一方にSCCの発生が観察された場合、当該付加応力においてSCC有りと判定した。SCC無しと判定された最大応力を、その試験片のSCC臨界応力とした。
(SCC test)
The SCC test employs a three-point addition method of a plate bending test (JISH8711: 2001). The test pieces 1 to 14 were made such that the surfaces to which compressive residual stress was applied became convex. No. The applied stress of 1 to 14 is six stages of 220 MPa, 240 MPa, 260 MPa, 270 MPa, 280 MPa and 300 MPa. The applied stress of 15 was set to a lower value. The applied stress was controlled by a strain gauge attached in the longitudinal direction of the convex surface at the center where the tensile stress was maximum. A chromic acid solution (NaCl: 3 g, K 2 Cr 2 O 7 : 30 g, CrO 3 : 36 g per liter of distilled water) was prepared as a corrosive liquid, and the temperature was maintained at 95 ° C. or higher to promote SCC. The test time was 16 hours.
The test piece after the test was cut at a position where there was a possibility of SCC, embedded with resin, and observed with an optical microscope after polishing to determine the presence or absence of SCC. When the occurrence of SCC is not observed in both of the two specimens having the same applied stress, it is determined that there is no SCC in the applied stress, and the occurrence of SCC is observed in at least one of the two specimens having the same added stress. When it was, it was determined that there was SCC at the applied stress. The maximum stress determined as having no SCC was defined as the SCC critical stress of the test piece.

Figure 2017177190
Figure 2017177190

Figure 2017177190
Figure 2017177190

各試験結果を表1に、最表層の押出平行方向の残留圧縮応力と押出平行方向SCC臨界応力の関係を図6に示す。表1及び図6において、残留圧縮応力値及びSCC臨界応力値は、すべて素材の0.2%耐力比として無次元化した。
図6より、押出平行方向SCC臨界応力は、若干のばらつきも見られるが、同じ方向の残留圧縮応力に対して、なだらかな山なりの関係を示し、残留圧縮応力の0.2%耐力比0.1〜0.3で概ね一定、0.2で略ピークを示した。残留圧縮応力の0.2%耐力比が0.2のときに、SCC臨界応力は、残留圧縮応力が付加されていないNo.15と比較して、約0.2増加している。
Each test result is shown in Table 1, and the relationship between the residual compressive stress in the extrusion parallel direction of the outermost layer and the SCC critical stress in the extrusion parallel direction is shown in FIG. In Table 1 and FIG. 6, the residual compressive stress value and the SCC critical stress value were all made dimensionless as the 0.2% yield strength ratio of the material.
From FIG. 6, although the SCC critical stress in the extrusion parallel direction shows some variation, it shows a gentle mountain relation with the residual compressive stress in the same direction, and the 0.2% yield strength ratio of the residual compressive stress is 0. 0.1 to 0.3 showed a substantially constant value, and 0.2 showed a substantially peak. When the 0.2% yield strength ratio of the residual compressive stress is 0.2, the SCC critical stress is No. with no residual compressive stress added. Compared to 15, there is an increase of about 0.2.

図6に示すように、最表層の残留圧縮応力が0.2%耐力比で0.3を超えて高くなっても、押出平行方向SCC臨界応力が向上しなかった。なお、こういう結果になった理由は、次のように推測される。(1)腐食環境下でSCCが進行すると、アルミニウム合金の表層から金属の溶出が進行し、表層は徐々に欠落していく。(2)最表層の残留圧縮応力が高いほど、前記したように投射材の運動エネルギーが小さく、残留圧縮応力のピーク値が低く、残留圧縮応力が導入される深さも浅い傾向がある。(3)このため、最表層の残留応力が高い場合(0.2%耐力比で0.3超のとき)、残留圧縮応力が導入された表層部が腐食環境下で早期に欠落しやすく、その結果、SCC臨界応力が向上しなかった。(4)加えて、最表層の残留圧縮応力が高いほど運動エネルギーが低いため、表層部の結晶粒微細化効果も相対的に小さくなった。
以上の結果から、7000系アルミニウム合金押出材の最表層の残留圧縮応力は、0.2%耐力比0.1〜0.3の範囲に留めることが最適であると考えられる。
As shown in FIG. 6, even when the residual compressive stress of the outermost layer was higher than 0.3 in the 0.2% yield strength ratio, the extrusion parallel direction SCC critical stress was not improved. The reason for such a result is presumed as follows. (1) When SCC proceeds in a corrosive environment, metal elution progresses from the surface layer of the aluminum alloy, and the surface layer gradually disappears. (2) The higher the residual compressive stress of the outermost layer, the smaller the kinetic energy of the projection material as described above, the lower the peak value of the residual compressive stress, and the shallower the depth at which the residual compressive stress is introduced. (3) For this reason, when the residual stress of the outermost layer is high (when the 0.2% proof stress ratio exceeds 0.3), the surface layer portion into which the residual compressive stress is introduced is likely to be lost early in a corrosive environment, As a result, the SCC critical stress was not improved. (4) In addition, the higher the residual compressive stress of the outermost layer, the lower the kinetic energy, so the effect of refining the crystal grains in the surface layer portion was also relatively small.
From the above results, it is considered optimal that the residual compressive stress of the outermost layer of the 7000 series aluminum alloy extruded material is kept within the range of 0.2% proof stress ratio of 0.1 to 0.3.

Claims (6)

0.2%耐力が350MPa以上で中空断面を有する7000系アルミニウム合金押出材を素材とし、表面の全体又は一部に残留圧縮応力が付与された領域Aを有し、前記領域Aの最表層の残留圧縮応力が素材耐力の10〜30%に相当することを特徴とする押出部材。 Using a 7000 series aluminum alloy extruded material having a 0.2% proof stress of 350 MPa or more and a hollow cross section as a raw material, it has a region A in which residual compressive stress is applied to the whole or a part of the surface, and the outermost layer of the region A An extruded member, wherein the residual compressive stress corresponds to 10 to 30% of the material yield strength. 前記7000系アルミニウム合金中空押出材が、2本のフランジと、それらを連結する2本のウエブからなる略矩形断面形状を有し、押出方向に沿った一部に前記ウエブが湾曲した変断面部が設けられていて、前記変断面部のウエブの曲げ内側表面が前記領域Aに含まれることを特徴とする請求項1に記載された押出部材。 The 7000 series aluminum alloy hollow extruded material has a substantially rectangular cross-sectional shape composed of two flanges and two webs connecting the flanges, and the cross-section portion in which the web is curved in part along the extrusion direction 2. The extruded member according to claim 1, wherein the region A includes a bent inner surface of the web of the variable cross section. 自動車のドア補強材であることを特徴とする請求項1又は2に記載された押出部材。 The extruded member according to claim 1, wherein the extruded member is a door reinforcement material for an automobile. 押出方向に沿った一部に穴が形成され、前記穴の内周面が前記領域Aに含まれることを特徴とする請求項1に記載された押出部材。 2. The extruded member according to claim 1, wherein a hole is formed in a part along the extrusion direction, and an inner peripheral surface of the hole is included in the region A. 3. 両端部に切断面を有し、前記切断面が前記領域Aに含まれることを特徴とする請求項1に記載された押出部材。 The extruded member according to claim 1, wherein the extruded member has a cut surface at both ends, and the cut surface is included in the region A. 前記領域Aに亜結晶粒界が導入された表面改質層が形成されていることを特徴とする請求項1〜5のいずれかに記載された押出部材。 The extruded member according to any one of claims 1 to 5, wherein a surface modified layer in which subgrain boundaries are introduced in the region A is formed.
JP2016070491A 2016-03-31 2016-03-31 Extruded member Active JP6769723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016070491A JP6769723B2 (en) 2016-03-31 2016-03-31 Extruded member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016070491A JP6769723B2 (en) 2016-03-31 2016-03-31 Extruded member

Publications (2)

Publication Number Publication Date
JP2017177190A true JP2017177190A (en) 2017-10-05
JP6769723B2 JP6769723B2 (en) 2020-10-14

Family

ID=60003352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016070491A Active JP6769723B2 (en) 2016-03-31 2016-03-31 Extruded member

Country Status (1)

Country Link
JP (1) JP6769723B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320838A (en) * 1992-05-21 1993-12-07 Furukawa Electric Co Ltd:The Manufacture of aluminum alloy material excellent in stress corrosion cracking resistance
JP2002180209A (en) * 2000-12-18 2002-06-26 Osaka Gas Co Ltd Low thermal expansion coefficient alloy, and surface- treated alloy with low thermal expansion coefficient
JP2011240393A (en) * 2010-05-20 2011-12-01 Kobe Steel Ltd Device for press-bending metallic shape
JP2012184505A (en) * 2011-02-18 2012-09-27 Kyoei-Seisakusho Co Ltd Aluminum alloy hollow shaped member excellent in fatigue strength and method for manufacturing the same, and swing arm for motorcycle
JP2013023753A (en) * 2011-07-25 2013-02-04 Kobe Steel Ltd Method of manufacturing high-strength 7000 series aluminum alloy member and the high-strength 7000 series aluminum alloy member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320838A (en) * 1992-05-21 1993-12-07 Furukawa Electric Co Ltd:The Manufacture of aluminum alloy material excellent in stress corrosion cracking resistance
JP2002180209A (en) * 2000-12-18 2002-06-26 Osaka Gas Co Ltd Low thermal expansion coefficient alloy, and surface- treated alloy with low thermal expansion coefficient
JP2011240393A (en) * 2010-05-20 2011-12-01 Kobe Steel Ltd Device for press-bending metallic shape
JP2012184505A (en) * 2011-02-18 2012-09-27 Kyoei-Seisakusho Co Ltd Aluminum alloy hollow shaped member excellent in fatigue strength and method for manufacturing the same, and swing arm for motorcycle
JP2013023753A (en) * 2011-07-25 2013-02-04 Kobe Steel Ltd Method of manufacturing high-strength 7000 series aluminum alloy member and the high-strength 7000 series aluminum alloy member

Also Published As

Publication number Publication date
JP6769723B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
Ramos et al. Improvement in fatigue life of Al 7475-T7351 alloy specimens by applying ultrasonic and microshot peening
Muñoz-Cubillos et al. Deep rolling effect on fatigue behavior of austenitic stainless steels
Gryguc et al. Monotonic and cyclic behaviour of cast and cast-forged AZ80 Mg
Ebrahimi et al. Correlating the microstructure to mechanical properties and wear behavior of an accumulative back extruded Al-Mg2Si in-situ composite
US20160130679A1 (en) Post Machining Multi-Step Material Working Treatment of Fluid End Housing
KR20130138169A (en) Processing of alpha/beta titanium alloys
Fong et al. Enabling wider use of Magnesium Alloys for lightweight applications by improving the formability by Groove Pressing
RU2709568C1 (en) Improved finishing methods of extruded titanium articles
Ghosh et al. Development of ultrafine grained Al–Zn–Mg–Cu alloy by equal channel angular pressing: microstructure, texture and mechanical properties
Khatami et al. Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding
Lim et al. In-situ warm shot peening on Ti-6Al-4V alloy: effects of temperature on fatigue life, residual stress, microstructure and mechanical properties
Jenix Rino et al. On the influence of repetitive corrugation and straightening on the microstructure and mechanical properties of AA 8090 Al-Li alloy
Vini et al. Fabrication of bimetal aluminum-5% alumina-bromine composites by warm accumulative roll bonding
Sahli et al. Modelling and numerical simulation of steel sheet fine blanking process
Grinspan et al. A novel surface modification technique for the introduction of compressive residual stress and preliminary studies on Al alloy AA6063
JP2004169065A (en) Method for improving strength of cold-worked part with ultrasonic shock treatment and its metallic product
Thiyaneshwaran et al. Microstructure, mechanical and wear properties of aluminum 5083 alloy processed by equal channel angular extrusion
Rao et al. Influence of cold rolling and annealing on the tensile properties of aluminum 7075 alloy
JP2017177190A (en) Extrusion member
Shantharaja Mechanical behaviour of pure aluminum processed by constrained groove pressing
JP2016182657A (en) Suspension arm made of aluminum alloy, and manufacturing method thereof
JP6465040B2 (en) Manufacturing method of molded member
Dai et al. Effects of different contact film thicknesses on the surface roughness evolution of LY2 aluminum alloy milled surface subjected to laser shock wave planishing
Mohammadi et al. The effects of combination of severe plastic deformation and Shot Peening surface treatment on fatigue behavior of 6082 aluminum alloy
JP7244195B2 (en) Method for manufacturing 7000 series aluminum alloy member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200924

R150 Certificate of patent or registration of utility model

Ref document number: 6769723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150