JP2017176986A - Carbon dioxide separation method - Google Patents
Carbon dioxide separation method Download PDFInfo
- Publication number
- JP2017176986A JP2017176986A JP2016066949A JP2016066949A JP2017176986A JP 2017176986 A JP2017176986 A JP 2017176986A JP 2016066949 A JP2016066949 A JP 2016066949A JP 2016066949 A JP2016066949 A JP 2016066949A JP 2017176986 A JP2017176986 A JP 2017176986A
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- gas
- mixed gas
- water vapor
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 158
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 79
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 72
- 238000000926 separation method Methods 0.000 title claims abstract description 66
- 239000012528 membrane Substances 0.000 claims abstract description 69
- 239000004642 Polyimide Substances 0.000 claims abstract description 14
- 229920001721 polyimide Polymers 0.000 claims abstract description 14
- 229920000642 polymer Polymers 0.000 claims abstract description 12
- 125000003118 aryl group Chemical group 0.000 claims abstract description 9
- 230000018044 dehydration Effects 0.000 claims abstract description 6
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 6
- 238000009833 condensation Methods 0.000 claims abstract description 4
- 230000005494 condensation Effects 0.000 claims abstract description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 37
- 238000000034 method Methods 0.000 claims description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims description 3
- 229930195733 hydrocarbon Natural products 0.000 claims description 3
- 150000002430 hydrocarbons Chemical class 0.000 claims description 3
- 230000007774 longterm Effects 0.000 abstract description 2
- 239000008246 gaseous mixture Substances 0.000 abstract 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 100
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 19
- 239000012510 hollow fiber Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 12
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 11
- 239000002861 polymer material Substances 0.000 description 9
- 230000035699 permeability Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 125000006158 tetracarboxylic acid group Chemical group 0.000 description 5
- -1 aliphatic diamine Chemical class 0.000 description 4
- 150000004984 aromatic diamines Chemical class 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- SXGMVGOVILIERA-UHFFFAOYSA-N (2R,3S)-2,3-diaminobutanoic acid Natural products CC(N)C(N)C(O)=O SXGMVGOVILIERA-UHFFFAOYSA-N 0.000 description 2
- VOZKAJLKRJDJLL-UHFFFAOYSA-N 2,4-diaminotoluene Chemical compound CC1=CC=C(N)C=C1N VOZKAJLKRJDJLL-UHFFFAOYSA-N 0.000 description 2
- HFEPENYPELKAQF-UHFFFAOYSA-N 2,6-dimethyldibenzothiophene-3,7-diamine Chemical compound S1C2=C(C)C(N)=CC=C2C2=C1C=C(N)C(C)=C2 HFEPENYPELKAQF-UHFFFAOYSA-N 0.000 description 2
- UENRXLSRMCSUSN-UHFFFAOYSA-N 3,5-diaminobenzoic acid Chemical compound NC1=CC(N)=CC(C(O)=O)=C1 UENRXLSRMCSUSN-UHFFFAOYSA-N 0.000 description 2
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 description 2
- QHHKLPCQTTWFSS-UHFFFAOYSA-N 5-[2-(1,3-dioxo-2-benzofuran-5-yl)-1,1,1,3,3,3-hexafluoropropan-2-yl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)(C(F)(F)F)C(F)(F)F)=C1 QHHKLPCQTTWFSS-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- WKDNYTOXBCRNPV-UHFFFAOYSA-N bpda Chemical compound C1=C2C(=O)OC(=O)C2=CC(C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 WKDNYTOXBCRNPV-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920005575 poly(amic acid) Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 2
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- DGUACJDPTAAFMP-UHFFFAOYSA-N 1,9-dimethyldibenzo[2,1-b:1',2'-d]thiophene Natural products S1C2=CC=CC(C)=C2C2=C1C=CC=C2C DGUACJDPTAAFMP-UHFFFAOYSA-N 0.000 description 1
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- KEMGPCYBTHJENU-UHFFFAOYSA-N 2,8-dimethyldibenzothiophene-3,7-diamine Chemical compound S1C2=CC(N)=C(C)C=C2C2=C1C=C(N)C(C)=C2 KEMGPCYBTHJENU-UHFFFAOYSA-N 0.000 description 1
- ZGDMDBHLKNQPSD-UHFFFAOYSA-N 2-amino-5-(4-amino-3-hydroxyphenyl)phenol Chemical group C1=C(O)C(N)=CC=C1C1=CC=C(N)C(O)=C1 ZGDMDBHLKNQPSD-UHFFFAOYSA-N 0.000 description 1
- QRUWUSOUUMPANJ-UHFFFAOYSA-N 2-amino-5-[(4-amino-3-carboxyphenyl)methyl]benzoic acid Chemical compound C1=C(C(O)=O)C(N)=CC=C1CC1=CC=C(N)C(C(O)=O)=C1 QRUWUSOUUMPANJ-UHFFFAOYSA-N 0.000 description 1
- GWHLJVMSZRKEAQ-UHFFFAOYSA-N 3-(2,3-dicarboxyphenyl)phthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C(=C(C(O)=O)C=CC=2)C(O)=O)=C1C(O)=O GWHLJVMSZRKEAQ-UHFFFAOYSA-N 0.000 description 1
- ZBMISJGHVWNWTE-UHFFFAOYSA-N 3-(4-aminophenoxy)aniline Chemical compound C1=CC(N)=CC=C1OC1=CC=CC(N)=C1 ZBMISJGHVWNWTE-UHFFFAOYSA-N 0.000 description 1
- LJMPOXUWPWEILS-UHFFFAOYSA-N 3a,4,4a,7a,8,8a-hexahydrofuro[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1C2C(=O)OC(=O)C2CC2C(=O)OC(=O)C21 LJMPOXUWPWEILS-UHFFFAOYSA-N 0.000 description 1
- YBRVSVVVWCFQMG-UHFFFAOYSA-N 4,4'-diaminodiphenylmethane Chemical compound C1=CC(N)=CC=C1CC1=CC=C(N)C=C1 YBRVSVVVWCFQMG-UHFFFAOYSA-N 0.000 description 1
- MYAQZIAVOLKEGW-UHFFFAOYSA-N 4,6-dimethyldibenzothiophene Chemical compound S1C2=C(C)C=CC=C2C2=C1C(C)=CC=C2 MYAQZIAVOLKEGW-UHFFFAOYSA-N 0.000 description 1
- PMXSWKCHEIPJMI-UHFFFAOYSA-N 4,6-dimethyldibenzothiophene-3,7-diamine Chemical compound C12=CC=C(N)C(C)=C2SC2=C1C=CC(N)=C2C PMXSWKCHEIPJMI-UHFFFAOYSA-N 0.000 description 1
- FYYYKXFEKMGYLZ-UHFFFAOYSA-N 4-(1,3-dioxo-2-benzofuran-5-yl)-2-benzofuran-1,3-dione Chemical compound C=1C=C2C(=O)OC(=O)C2=CC=1C1=CC=CC2=C1C(=O)OC2=O FYYYKXFEKMGYLZ-UHFFFAOYSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- HWBVOOWDSUQMHR-UHFFFAOYSA-N 4-[1-(3,4-dicarboxyphenyl)-1,2,2,3,3,3-hexafluoropropyl]phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(F)(C(F)(F)C(F)(F)F)C1=CC=C(C(O)=O)C(C(O)=O)=C1 HWBVOOWDSUQMHR-UHFFFAOYSA-N 0.000 description 1
- APXJLYIVOFARRM-UHFFFAOYSA-N 4-[2-(3,4-dicarboxyphenyl)-1,1,1,3,3,3-hexafluoropropan-2-yl]phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(C(O)=O)C(C(O)=O)=C1 APXJLYIVOFARRM-UHFFFAOYSA-N 0.000 description 1
- YGYCECQIOXZODZ-UHFFFAOYSA-N 4415-87-6 Chemical compound O=C1OC(=O)C2C1C1C(=O)OC(=O)C12 YGYCECQIOXZODZ-UHFFFAOYSA-N 0.000 description 1
- VQVIHDPBMFABCQ-UHFFFAOYSA-N 5-(1,3-dioxo-2-benzofuran-5-carbonyl)-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(C(C=2C=C3C(=O)OC(=O)C3=CC=2)=O)=C1 VQVIHDPBMFABCQ-UHFFFAOYSA-N 0.000 description 1
- QQPYIXJPRJQUDC-UHFFFAOYSA-N 5-(3-phenylphenyl)benzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C=2C=C(C=CC=2)C=2C=CC=CC=2)=C1C(O)=O QQPYIXJPRJQUDC-UHFFFAOYSA-N 0.000 description 1
- JJJDAERKXDTMPH-UHFFFAOYSA-N 5-(4-phenylphenyl)benzene-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(=O)O)=CC(C=2C=CC(=CC=2)C=2C=CC=CC=2)=C1C(O)=O JJJDAERKXDTMPH-UHFFFAOYSA-N 0.000 description 1
- QQGYZOYWNCKGEK-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)oxy]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(OC=2C=C3C(=O)OC(C3=CC=2)=O)=C1 QQGYZOYWNCKGEK-UHFFFAOYSA-N 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- ZPAKUZKMGJJMAA-UHFFFAOYSA-N Cyclohexane-1,2,4,5-tetracarboxylic acid Chemical compound OC(=O)C1CC(C(O)=O)C(C(O)=O)CC1C(O)=O ZPAKUZKMGJJMAA-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920000491 Polyphenylsulfone Polymers 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QLBRROYTTDFLDX-UHFFFAOYSA-N [3-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCCC(CN)C1 QLBRROYTTDFLDX-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- YQLZOAVZWJBZSY-UHFFFAOYSA-N decane-1,10-diamine Chemical compound NCCCCCCCCCCN YQLZOAVZWJBZSY-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005371 permeation separation Methods 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
本発明は、二酸化炭素を含む混合ガスからの分離方法に関する。 The present invention relates to a separation method from a mixed gas containing carbon dioxide.
異なる2種類以上のガスを含む混合ガスを各ガスに分離する方法として、膜に対するガスの透過速度の差を利用した膜分離法が知られている。この方法では、透過ガス及び/又は非透過ガスを回収することにより、目的ガスである高純度の高透過性ガス及び/又は高純度の低透過性ガスを得ることができる。 As a method for separating a mixed gas containing two or more kinds of different gases into each gas, a membrane separation method using a difference in gas permeation rate with respect to the membrane is known. In this method, by collecting the permeation gas and / or the non-permeation gas, a high purity high permeability gas and / or a high purity low permeability gas as the target gas can be obtained.
特許文献1には、所定の主成分ガスに、二酸化炭素及び水蒸気が含まれている原料ガスから二酸化炭素を選択的に分離する装置が記載されている。この装置においては、ポリビニルアルコール−ポリアクリル酸共重合体ゲル膜に2,3−ジアミノプロピオン酸を添加して形成されたCO2促進輸送膜を、分離膜として用いている。そして原料ガスを100℃以上の温度に加熱した状態で、該原料ガスの圧力を、該原料ガス中の水蒸気飽和度が特定の範囲になるように調整して前記装置に供給している。 Patent Document 1 describes an apparatus for selectively separating carbon dioxide from a raw material gas in which carbon dioxide and water vapor are contained in a predetermined main component gas. In this apparatus, a CO 2 facilitated transport membrane formed by adding 2,3-diaminopropionic acid to a polyvinyl alcohol-polyacrylic acid copolymer gel membrane is used as a separation membrane. And in the state which heated source gas to the temperature of 100 degreeC or more, the pressure of this source gas is adjusted so that the water vapor saturation in this source gas may become a specific range, and it supplies to the said apparatus.
ところで二酸化炭素の分離に関し、非特許文献1には、ポリイミド膜を二酸化炭素の分離膜として使用した場合、該ポリイミド膜の二酸化炭素透過性能が、2年間で20%低下すると報告されている。 By the way, regarding the separation of carbon dioxide, Non-Patent Document 1 reports that when a polyimide membrane is used as a carbon dioxide separation membrane, the carbon dioxide permeation performance of the polyimide membrane is reduced by 20% in two years.
特許文献1に記載の技術は、CO2促進輸送膜を用いたガス分離法である。一般的にCO2促進輸送膜は、膜へ導入する原料ガスに水蒸気を同伴させるが、これは、促進輸送膜のキャリアとCO2、更には水蒸気が反応し、透過が促進されるためであり、通常水蒸気濃度が高いほど透過が促進される。特許文献1では、100℃以上の高温で、50%と多量の水蒸気を原料ガスに同伴させており、本発明の思想とは大きく異なる。また、原料ガスの供給圧力を精密に調整する必要があり、しかも供給温度も調整する必要がある。このように、同文献に記載の技術は、工業的規模で長期間にわたる実施を行うには経済的に有利とは言えない。また、非特許文献1に記載のとおり、ガス分離膜としてポリイミドからなるものを用いた場合には、二酸化炭素の透過性能を長期間にわたって維持することが容易でない。 The technique described in Patent Document 1 is a gas separation method using a CO 2 facilitated transport membrane. In general, the CO 2 facilitated transport membrane causes water vapor to accompany the raw material gas introduced into the membrane, because the carrier of the facilitated transport membrane reacts with CO 2 and further water vapor, thereby promoting permeation. Usually, the higher the water vapor concentration, the more the permeation is promoted. In Patent Document 1, a large amount of water vapor of 50% is entrained in the source gas at a high temperature of 100 ° C. or higher, which is greatly different from the idea of the present invention. Further, it is necessary to precisely adjust the supply pressure of the raw material gas, and it is also necessary to adjust the supply temperature. Thus, the technique described in this document is not economically advantageous for long-term implementation on an industrial scale. Moreover, as described in Non-Patent Document 1, when a gas separation membrane made of polyimide is used, it is not easy to maintain the carbon dioxide permeation performance over a long period of time.
したがって本発明の課題は、前述した従来技術が有する欠点を解消し得る二酸化炭素の分離方法を提供することにある。 Accordingly, an object of the present invention is to provide a carbon dioxide separation method that can eliminate the above-mentioned drawbacks of the prior art.
前記の課題を解決すべく本発明者は鋭意検討した結果、意外にも、分離対象となる混合ガス中に、特定量の水蒸気を共存させておくと、ガス分離膜の二酸化炭素透過性が長期間にわたり維持されることを知見した。 As a result of intensive studies by the present inventors to solve the above problems, surprisingly, if a specific amount of water vapor is allowed to coexist in the mixed gas to be separated, the carbon dioxide permeability of the gas separation membrane is long. It was found that it was maintained over time.
本発明は前記の知見に基づきなされたものであり、二酸化炭素を含む混合ガスを高分子ガス分離膜の一方の面に接触させ、該ガス分離膜を透過した二酸化炭素を、該ガス分離膜の他方の面から分離する、二酸化炭素の分離方法であって、
二酸化炭素を含む前記混合ガスが、水蒸気を0.001体積%以上0.2体積%以下含む二酸化炭素の分離方法を提供することにより前記の課題を解決したものである。
The present invention has been made on the basis of the above-mentioned knowledge. A mixed gas containing carbon dioxide is brought into contact with one surface of the polymer gas separation membrane, and the carbon dioxide that has permeated the gas separation membrane is converted into the gas separation membrane. A method for separating carbon dioxide, which is separated from the other surface,
The said mixed gas containing a carbon dioxide solves the said subject by providing the separation method of the carbon dioxide containing 0.001 volume% or more and 0.2 volume% or less of water vapor | steam.
本発明によれば、長期間にわたる使用でも二酸化炭素の分離透過能の低下が抑制され、実使用上非常に有用な二酸化炭素の分離方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, even if it uses for a long period of time, the fall of the separation-permeability of a carbon dioxide is suppressed, and the separation method of a carbon dioxide very useful on actual use is provided.
以下本発明を、その好ましい実施形態に基づき説明する。本発明のガス分離方法においては、分離の対象となる混合ガスとして、二酸化炭素を含むガスを用いる。この混合ガスに含まれる二酸化炭素以外のガスとしては、種々のもの(ただし水蒸気は除く)を用いることができる。例えばメタン等の炭化水素ガス、窒素ガス、空気などを用いることができる。これら二酸化炭素以外のガスは、混合ガス中に1種又は2種以上含まれ得る。混合ガスが例えば天然ガスやバイオガス等である場合には、該混合ガスはメタン等の炭化水素ガスと二酸化炭素を含むものであることが好ましい。 Hereinafter, the present invention will be described based on preferred embodiments thereof. In the gas separation method of the present invention, a gas containing carbon dioxide is used as a mixed gas to be separated. Various gases other than carbon dioxide contained in this mixed gas (however, excluding water vapor) can be used. For example, hydrocarbon gas such as methane, nitrogen gas, air or the like can be used. These gases other than carbon dioxide can be contained in the mixed gas in one or more kinds. When the mixed gas is, for example, natural gas or biogas, the mixed gas preferably contains a hydrocarbon gas such as methane and carbon dioxide.
混合ガスの分離には、例えば高分子材料からなるガス分離膜が用いられる。ガス分離膜は、例えばフィルム状の平膜や、中空繊維状の中空糸膜等の形態で用いることができる。特に、ガス分離膜として中空糸膜を用いて、これを複数本束ねた中空糸膜エレメントに構成して用いることが、処理量を高める点から好ましい。 For separation of the mixed gas, for example, a gas separation membrane made of a polymer material is used. The gas separation membrane can be used in the form of, for example, a film-like flat membrane or a hollow fiber-like hollow fiber membrane. In particular, it is preferable that a hollow fiber membrane is used as a gas separation membrane, and a hollow fiber membrane element in which a plurality of these are bundled is used.
ガス分離膜を構成する高分子材料としては、二酸化炭素の選択的な透過能を有するものが好ましく用いられる。そのような高分子材料としては、例えばポリイミド、ポリアミド、酢酸セルロース、ポリスルホン、ポリエーテルスルホン、ポリフェニルスルホン、シリコンゴム、パーフルオロシリコンゴムなどが挙げられる。特に、合成時に脱水縮合反応を伴い、脱水縮合による結合を有する高分子材料をガス分離膜として用いた場合に、本発明の効果が一層顕著なものとなる。この観点から、ガス分離膜としてポリイミドを用いることが好ましい。 As the polymer material constituting the gas separation membrane, a material having a selective permeability of carbon dioxide is preferably used. Examples of such a polymer material include polyimide, polyamide, cellulose acetate, polysulfone, polyethersulfone, polyphenylsulfone, silicon rubber, and perfluorosilicon rubber. In particular, the effects of the present invention become more prominent when a polymer material that has a dehydration condensation reaction during synthesis and has a bond due to dehydration condensation is used as a gas separation membrane. From this viewpoint, it is preferable to use polyimide as the gas separation membrane.
ガス分離膜としてポリイミドを用いる場合には、テトラカルボン酸成分と、ジアミン成分とを用いてポリアミド酸を合成し、このポリアミド酸を熱処理して脱水・イミド化することで得ることができる。 When polyimide is used as the gas separation membrane, it can be obtained by synthesizing a polyamic acid using a tetracarboxylic acid component and a diamine component, and subjecting the polyamic acid to heat treatment for dehydration and imidization.
テトラカルボン酸成分としては、脂肪族テトラカルボン酸二無水物や芳香族テトラカルボン酸二無水物を用いることができる。一方、ジアミン成分としては、脂肪族ジアミンや芳香族ジアミンを用いることができる。 As the tetracarboxylic acid component, an aliphatic tetracarboxylic dianhydride or an aromatic tetracarboxylic dianhydride can be used. On the other hand, aliphatic diamine or aromatic diamine can be used as the diamine component.
脂肪族テトラカルボン酸二無水物としては、例えば、シクロブタン−1,2,3,4−テトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、ジシクロヘキシル−3,3’,4,4’ −テトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸−1,2:4,5−二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、ビシクロ[2.2.2]オクト−7−エン−2,3;5,6−テトラカルボン酸二無水物などが挙げられる。芳香族テトラカルボン酸二無水物は、好ましくは2〜3個の芳香族環を有するものが好ましく、例えば、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、4,4’−(ヘキサフルオロイソプロピリデン)−ビス(無水フタル酸)(なお、この化合物は2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物ともいう。)、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、ジフェニルスルホンテトラカルボン酸二無水物、p−ターフェニルテトラカルボン酸二無水物、m−ターフェニルテトラカルボン酸二無水物などが挙げられる。 Examples of the aliphatic tetracarboxylic dianhydride include cyclobutane-1,2,3,4-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, dicyclohexyl-3, 3 ′, 4,4′-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic acid-1,2: 4,5-dianhydride, 1,2,3,4-cyclobutanetetra Carboxylic dianhydrides, bicyclo [2.2.2] oct-7-ene-2,3; 5,6-tetracarboxylic dianhydrides and the like. The aromatic tetracarboxylic dianhydride preferably has 2 to 3 aromatic rings. For example, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 4,4 ′ -(Hexafluoroisopropylidene) -bis (phthalic anhydride) (this compound is also referred to as 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride), 2,3,3 ', 4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, 4,4 ' -Oxydiphthalic dianhydride, diphenyl sulfone tetracarboxylic dianhydride, p-terphenyl tetracarboxylic dianhydride, m-terphenyl tetracarboxylic dianhydride, etc. And the like.
脂肪族ジアミンとしては、trans−1,4−ジアミノシクロへキサン、cis−1,4−ジアミノシクロへキサン、1,6−ヘキサメチレンジアミン、1,10−デカメチレンジアミン、1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、重量平均分子量が500以下のポリオキシプロピレンジアミンなどが挙げられる。一方、芳香族ジアミンとしては、パラフェニレンジアミン、メタフェニレンジアミン、4,4’−オキシジアニリン、3,4’−オキシジアニリン、4,4’−ジアミノジフェニルメタン、2,4−トルエンジアミン、3,3’−ジヒドロキシ−4,4’−ジアミノビフェニル、ビス(4−アミノ−3−カルボキシフェニル)メタン、2,4−ジアミノトルエン、3,5−ジアミノ安息香酸、3,7−ジアミノ−2,8−ジメチルジベンゾチオフェン=5,5−ジオキシドを主成分とし、メチル基の位置が異なる異性体3,7−ジアミノ−2,6−ジメチルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−4,6−ジメチルジベンゾチオフェン=5,5−ジオキシドを含む混合物などが挙げられる。 Examples of the aliphatic diamine include trans-1,4-diaminocyclohexane, cis-1,4-diaminocyclohexane, 1,6-hexamethylenediamine, 1,10-decamethylenediamine, 1,3-bis ( Aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, polyoxypropylenediamine having a weight average molecular weight of 500 or less, and the like. On the other hand, examples of the aromatic diamine include paraphenylenediamine, metaphenylenediamine, 4,4′-oxydianiline, 3,4′-oxydianiline, 4,4′-diaminodiphenylmethane, 2,4-toluenediamine, 3 , 3′-dihydroxy-4,4′-diaminobiphenyl, bis (4-amino-3-carboxyphenyl) methane, 2,4-diaminotoluene, 3,5-diaminobenzoic acid, 3,7-diamino-2, Isomers 3,7-diamino-2,6-dimethyldibenzothiophene = 5,5-dioxide, 3,7-diamino-, which is mainly composed of 8-dimethyldibenzothiophene = 5,5-dioxide and has different methyl group positions Examples thereof include a mixture containing 4,6-dimethyldibenzothiophene = 5,5-dioxide.
本発明においては、ポリイミドとして、特に芳香族ポリイミドを用いることが特に好ましい。芳香族ポリイミドは、芳香族テトラカルボン酸成分と、芳香族ジアミン成分とを用いて得ることができる。 In the present invention, it is particularly preferable to use an aromatic polyimide as the polyimide. The aromatic polyimide can be obtained using an aromatic tetracarboxylic acid component and an aromatic diamine component.
ポリイミドからなるガス分離膜を用いる場合には、該ガス分離膜として非対称膜を用いてもよい。非対称膜は一般に、目的とするガスの分離を行う緻密な構造のスキン層と、それを支える多孔質層の2層構造を有している。 When a gas separation membrane made of polyimide is used, an asymmetric membrane may be used as the gas separation membrane. In general, the asymmetric membrane has a two-layer structure of a dense skin layer that separates the target gas and a porous layer that supports the skin layer.
本発明は、ガス分離膜を用いて、二酸化炭素を含む混合ガスから二酸化炭素を選択的に分離するときに、該混合ガス中に水蒸気を含有させる点に特徴の一つを有する。脱水縮合による結合を有する高分子材料をガス分離膜として用いた場合、一般に、処理対象となる混合ガス中に水蒸気が存在していると、その水蒸気によって前記の結合が加水分解で開裂してしまい、高分子材料の各種の特性が低下してしまうと考えられてきた。したがって、処理対象となる混合ガス中には水蒸気を極力含めないようにすることが通常であった。このような従来の技術常識に対して、本発明者らは意外にも、処理対象となる混合ガス中に、特定の量の水蒸気を共存させると、高分子材料の特性の低下を伴わずに、長期間にわたる使用でも二酸化炭素の分離透過能の低下が抑制されることを知見した。この理由は、次のとおりであると本発明者は考えている。二酸化炭素は高分子材料に対して溶解性の高いガスであることが知られている。ガス分離膜を用いた混合ガスからの二酸化炭素の選択的透過分離においては、効率を高めるために、ガス分離膜に対して混合ガスが高圧で作用する。このことと、二酸化炭素が溶解性の高いガスであることとに起因して、高分子材料が可塑化ないしそれに近い現象が起こり、ガス分離膜の分離層の構造が変化してしまう。これが原因で、長期間にわたり二酸化炭素の分離を行うと、ガス分離膜の二酸化炭素分離透過能が漸次低下すると考えられる。これに対して、本発明に従い、混合ガス中に二酸化炭素とともに水蒸気を存在させると、二酸化炭素に起因する分離層の構造変化が水蒸気によって抑制され、その結果、ガス分離膜の二酸化炭素分離透過能の低下が抑制されると考えられる。 One feature of the present invention is that when a gas separation membrane is used to selectively separate carbon dioxide from a mixed gas containing carbon dioxide, water vapor is contained in the mixed gas. When a polymer material having a bond by dehydration condensation is used as a gas separation membrane, generally, if water vapor is present in the mixed gas to be processed, the above bond is cleaved by hydrolysis due to the water vapor. It has been considered that various properties of the polymer material are deteriorated. Therefore, it has been usual that water vapor is not included in the mixed gas to be processed as much as possible. Contrary to such conventional technical common sense, the present inventors surprisingly, when a specific amount of water vapor coexists in the mixed gas to be treated without causing deterioration of the characteristics of the polymer material. It has been found that the decrease in the separation and permeability of carbon dioxide is suppressed even when used over a long period of time. The inventor believes that this reason is as follows. Carbon dioxide is known to be a highly soluble gas for polymer materials. In the selective permeation separation of carbon dioxide from a mixed gas using a gas separation membrane, the mixed gas acts on the gas separation membrane at a high pressure in order to increase efficiency. Due to this and the fact that carbon dioxide is a highly soluble gas, the polymer material is plasticized or a phenomenon close thereto, and the structure of the separation layer of the gas separation membrane changes. For this reason, when carbon dioxide is separated over a long period of time, it is considered that the carbon dioxide separation permeability of the gas separation membrane gradually decreases. In contrast, when water vapor is present together with carbon dioxide in the mixed gas according to the present invention, the structural change of the separation layer caused by carbon dioxide is suppressed by water vapor, and as a result, the carbon dioxide separation permeability of the gas separation membrane is reduced. It is thought that the decrease of the is suppressed.
上述の利点を更に顕著なものとする観点から、混合ガス中に存在させる水蒸気の割合は、0.001体積%以上0.2体積%以下とすることが好ましく、0.005体積%以上0.2体積%以下とすることが更に好ましく、0.01体積%以上0.2体積%以下とすることが一層好ましい。 From the viewpoint of making the above-described advantages more remarkable, the proportion of water vapor present in the mixed gas is preferably 0.001% by volume or more and 0.2% by volume or less, and 0.005% by volume or more and 0.000% by volume or less. It is more preferable to set it as 2 volume% or less, and it is still more preferable to set it as 0.01 volume% or more and 0.2 volume% or less.
混合ガスにおける水蒸気の割合は種々の方法で調整することができる。例えば、(a)水蒸気を0.2体積%以上含み、且つ二酸化炭素を含む混合ガスを除湿して、水蒸気を0.001体積%以上0.2体積%以下に制御することができる。あるいは(b)水蒸気の濃度が0.001体積%以下であり、且つ二酸化炭素を含む混合ガスを加湿して水蒸気を0.001体積%以上0.2体積%以下に制御することができる。なお「水蒸気の濃度が0.001体積%以下」とは、混合ガスが水蒸気を実質的に含まない場合も包含する。このようにして水蒸気の割合が調整された混合ガスを、上述したガス分離膜に供給して二酸化炭素の分離を行えばよい。(a)の場合、除湿方法に特に制限はなく、これまで知られている方法を適宜採用することができる。(b)の場合、加湿方法に特に制限はなく、これまで知られている方法を適宜採用することができる。 The ratio of water vapor in the mixed gas can be adjusted by various methods. For example, (a) the mixed gas containing 0.2% by volume or more of water vapor and carbon dioxide can be dehumidified to control the water vapor to 0.001% by volume or more and 0.2% by volume or less. Alternatively, (b) the water vapor concentration is 0.001% by volume or less, and the mixed gas containing carbon dioxide is humidified to control the water vapor to 0.001% by volume or more and 0.2% by volume or less. Note that “the concentration of water vapor is 0.001% by volume or less” includes the case where the mixed gas does not substantially contain water vapor. The mixed gas with the water vapor ratio adjusted in this way may be supplied to the gas separation membrane described above to separate carbon dioxide. In the case of (a), there is no particular limitation on the dehumidifying method, and a conventionally known method can be appropriately employed. In the case of (b), there is no restriction | limiting in particular in a humidification method, The method known until now can be employ | adopted suitably.
二酸化炭素を含む混合ガスを高分子ガス分離膜の一方の面に接触させるときの該混合ガスの温度に特に制限はない。一般には、−30℃以上100℃以下、特に0℃以上80℃以下の温度範囲の混合ガスを接触させることができる。 There is no particular limitation on the temperature of the mixed gas when the mixed gas containing carbon dioxide is brought into contact with one surface of the polymer gas separation membrane. In general, a mixed gas having a temperature range of −30 ° C. to 100 ° C., particularly 0 ° C. to 80 ° C. can be contacted.
二酸化炭素を含む混合ガスを高分子ガス分離膜の一方の面に接触させるときの該混合ガスの圧力にも特に制限はない。一般には、ゲージ圧で表して0.1MPaG以上20MPaG以下、特に1MPaG以上10MPaG以下の圧力範囲の混合ガスを接触させることができる。 There is no particular limitation on the pressure of the mixed gas when the mixed gas containing carbon dioxide is brought into contact with one surface of the polymer gas separation membrane. In general, a mixed gas having a pressure range of 0.1 MPaG or more and 20 MPaG or less, particularly 1 MPaG or more and 10 MPaG or less can be contacted in terms of gauge pressure.
以上のとおり、本発明によれば、ガス分離膜を用いて、二酸化炭素を含む混合ガスを長期間にわたり分離しても、二酸化炭素の分離透過能の低下が抑制される。本発明者が更に検討した結果、本発明に従い混合ガス中に特定の割合で水蒸気を含有させた場合であっても、分離係数α(つまり二酸化炭素と、混合ガス中に含まれる他のガスとの透過速度の比)も低下しないことが判明した。このことは、二酸化炭素の分離透過を長期間にわたって安定的に行えることを意味している。 As described above, according to the present invention, even when a mixed gas containing carbon dioxide is separated over a long period of time using a gas separation membrane, a decrease in the separation and permeability of carbon dioxide is suppressed. As a result of further investigation by the present inventor, even when water vapor is contained in the mixed gas in a specific ratio according to the present invention, the separation factor α (that is, carbon dioxide and other gases contained in the mixed gas) It has been found that the transmission rate ratio) does not decrease. This means that carbon dioxide can be separated and permeated stably over a long period of time.
以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されず、本発明の効果が損なわれない範囲において種々の実施形態が可能である。 As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment, In the range which does not impair the effect of this invention, various embodiment is possible.
以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.
〔実施例1〕
(1)中空糸膜エレメントの準備
中空糸膜として、芳香族ポリイミドを材質とする非対称膜を用いた。この芳香族ポリイミドは、芳香族テトラカルボン酸成分としてs−BPDAを60mol%,6FDAを40mol%を用い、芳香族ジアミン成分としてTSNを60mol%,DABAを40mol%を用い、常法に従い合成されたものである。中空糸膜は、その内径が130μmであり、外形が280μmであった。また、この中空糸膜は非対称構造を有するものであった。この中空糸膜を3本束にし、その両端をエポキシ樹脂で固定して、長さ5mmの中空糸エレメントを得た。
なお、前記の略称の正式名称は以下のとおりである。
s−BPDA:3,3’,4,4’−ビフェニルテトラカルボン酸二無水物
6FDA:4,4’−(ヘキサフルオロイソプロピリデン)−ビス(無水フタル酸)(なお、この化合物は2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物ともいう。)
TSN:3,7−ジアミノ−2,8−ジメチルジベンゾチオフェン=5,5−ジオキシドを主成分とし、メチル基の位置が異なる異性体3,7−ジアミノ−2,6−ジメチルジベンゾチオフェン=5,5−ジオキシド、3,7−ジアミノ−4,6−ジメチルジベンゾチオフェン=5,5−ジオキシドを含む混合物
DABA:3,5−ジアミノ安息香酸
[Example 1]
(1) Preparation of hollow fiber membrane element An asymmetric membrane made of aromatic polyimide was used as the hollow fiber membrane. This aromatic polyimide was synthesized according to a conventional method using 60 mol% of s-BPDA as an aromatic tetracarboxylic acid component, 40 mol% of 6FDA, and 60 mol% of TSN and 40 mol% of DABA as an aromatic diamine component. Is. The hollow fiber membrane had an inner diameter of 130 μm and an outer shape of 280 μm. The hollow fiber membrane had an asymmetric structure. Three hollow fiber membranes were bundled, and both ends thereof were fixed with an epoxy resin to obtain a hollow fiber element having a length of 5 mm.
The formal names of the abbreviations are as follows.
s-BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 6FDA: 4,4 ′-(hexafluoroisopropylidene) -bis (phthalic anhydride) (note that this compound is 2,2 -Also referred to as bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride.)
TSN: 3,7-diamino-2,8-dimethyldibenzothiophene = 5,5-dioxide as a main component, and isomers 3,7-diamino-2,6-dimethyldibenzothiophene = 5 having different methyl group positions DABA mixture containing 5-dioxide, 3,7-diamino-4,6-dimethyldibenzothiophene = 5,5-dioxide: 3,5-diaminobenzoic acid
(2)混合ガスからの二酸化炭素の分離
前記の(1)で得られた中空糸膜エレメントをケーシング内に収容し、中空糸膜モジュールとした。この中空糸膜モジュールを用いて、二酸化炭素及びメタンを含む混合ガスからの二酸化炭素の分離を行った。混合ガス中の二酸化炭素とメタンとの体積比は40vol%:60vol%に設定した。この混合ガスに、15℃の飽和水蒸気を接触させて、混合ガス中に水蒸気を含有させた。混合ガス中の水蒸気の割合は0.021vol%であった。この混合ガスを、60℃、8MPaGの条件で中空糸膜モジュールに供給し、中空糸膜の外側から内側に向けてガスを透過させた。混合ガスの供給量は75ml/minとした。中空糸膜を透過してきたガスの透過流量、供給圧、及び有効面積から二酸化炭素及びメタンそれぞれについて透過速度P’CO2,P’CH4を算出した。また、分離係数α、すなわちP’CO2/P’CH4を算出した。測定は、1000時間にわたって行った。その結果を図1及び図2に示す。なお、図1に示す透過速度P’CO2のグラフにおいては、本実施例の結果と、後述する各比較例の結果との対比を行いやすくするために、透過速度P’CO2を規格化してある。
(2) Separation of carbon dioxide from mixed gas The hollow fiber membrane element obtained in (1) above was housed in a casing to obtain a hollow fiber membrane module. Using this hollow fiber membrane module, carbon dioxide was separated from a mixed gas containing carbon dioxide and methane. The volume ratio of carbon dioxide and methane in the mixed gas was set to 40 vol%: 60 vol%. Saturated steam at 15 ° C. was brought into contact with this mixed gas so that the mixed gas contained water vapor. The ratio of water vapor in the mixed gas was 0.021 vol%. This mixed gas was supplied to the hollow fiber membrane module under the conditions of 60 ° C. and 8 MPaG, and the gas was permeated from the outside to the inside of the hollow fiber membrane. The supply amount of the mixed gas was 75 ml / min. The permeation rates P ′ CO2 and P ′ CH4 were calculated for carbon dioxide and methane, respectively, from the permeation flow rate, supply pressure, and effective area of the gas that had permeated the hollow fiber membrane. Further, the separation coefficient α, that is, P ′ CO 2 / P ′ CH 4 was calculated. The measurement was performed over 1000 hours. The results are shown in FIGS. In the graph of the permeation speed P ′ CO2 shown in FIG. 1, the permeation speed P ′ CO2 is standardized so that the results of this example can be easily compared with the results of the comparative examples described later. .
〔比較例1〕
本比較例においては、二酸化炭素及びメタンを含む混合ガスに水蒸気を含有させなかった。これ以外は実施例1と同様にして二酸化炭素の分離を行った。その結果を図1及び図2に示す。
[Comparative Example 1]
In this comparative example, water vapor was not included in the mixed gas containing carbon dioxide and methane. Other than this, carbon dioxide was separated in the same manner as in Example 1. The results are shown in FIGS.
〔比較例2〕
本比較例においては、二酸化炭素及びメタンを含む混合ガスに、60℃の飽和水蒸気を接触させて、混合ガス中に水蒸気を含有させた。混合ガス中の水蒸気の割合は0.24vol%であった。これ以外は実施例1と同様にして二酸化炭素の分離を行った。その結果を図1及び図2に示す。
[Comparative Example 2]
In this comparative example, 60 ° C. saturated water vapor was brought into contact with a mixed gas containing carbon dioxide and methane, and water vapor was contained in the mixed gas. The ratio of water vapor in the mixed gas was 0.24 vol%. Other than this, carbon dioxide was separated in the same manner as in Example 1. The results are shown in FIGS.
〔考察〕
図1に示す実施例1と比較例1との結果の対比から明らかなとおり、分離の初期段階においては、実施例1よりも比較例1の方が、透過速度P’CO2が若干高いことが判る。これに対して分離処理が600時間を超えると、比較例1の透過速度P’CO2が低下し始め、実施例1の透過速度P’CO2を下回るようになることが判る。特筆すべきは、実施例1の透過速度P’CO2が、処理時間が1000時間を経過しても変化がないことである。比較例2は、処理の初期段階において、透過速度P’CO2の急激な低下が観察された。また、処理時間が1000時間に達する前に、膜の劣化が生じて測定を継続できなかった。
[Discussion]
As apparent from the comparison results of Example 1 and Comparative Example 1 shown in FIG. 1, in the initial stage of separation, towards the Comparative Example 1 than in Example 1, permeation rate P 'CO2 is that slightly higher I understand. On the other hand, it can be seen that when the separation process exceeds 600 hours, the permeation speed P ′ CO2 of Comparative Example 1 starts to decrease and becomes lower than the permeation speed P ′ CO2 of Example 1. It should be noted that the permeation speed P ′ CO2 of Example 1 does not change even when the processing time passes 1000 hours. In Comparative Example 2, a rapid decrease in the permeation rate P ′ CO 2 was observed in the initial stage of the treatment. Further, before the treatment time reached 1000 hours, the film was deteriorated, and the measurement could not be continued.
一方、図2に示す結果から明らかなとおり、実施例1及び各比較例のいずれにおいても、二酸化炭素とメタンとの分離係数は、1000時間を経過しても変化がないことが判る。 On the other hand, as is apparent from the results shown in FIG. 2, it can be seen that in both Example 1 and each Comparative Example, the separation coefficient between carbon dioxide and methane does not change even after 1000 hours.
Claims (6)
二酸化炭素を含む前記混合ガスが、水蒸気を0.001体積%以上0.2体積%以下含む二酸化炭素の分離方法。 A carbon dioxide separation method in which a mixed gas containing carbon dioxide is brought into contact with one surface of a polymer gas separation membrane, and carbon dioxide permeated through the gas separation membrane is separated from the other surface of the gas separation membrane. And
The method for separating carbon dioxide, wherein the mixed gas containing carbon dioxide contains water vapor in an amount of 0.001 vol% to 0.2 vol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016066949A JP6733260B2 (en) | 2016-03-30 | 2016-03-30 | Carbon dioxide separation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016066949A JP6733260B2 (en) | 2016-03-30 | 2016-03-30 | Carbon dioxide separation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017176986A true JP2017176986A (en) | 2017-10-05 |
JP6733260B2 JP6733260B2 (en) | 2020-07-29 |
Family
ID=60009004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016066949A Active JP6733260B2 (en) | 2016-03-30 | 2016-03-30 | Carbon dioxide separation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6733260B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6551640B1 (en) * | 2018-02-05 | 2019-07-31 | 三菱瓦斯化学株式会社 | Asymmetric membrane |
WO2019151337A1 (en) * | 2018-02-05 | 2019-08-08 | 三菱瓦斯化学株式会社 | Asymmetric membrane |
JP2023021800A (en) * | 2021-08-02 | 2023-02-14 | 環境工学株式会社 | Carbon dioxide permeable agent, carbon dioxide permeation apparatus and carbon dioxide permeation method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04180812A (en) * | 1990-11-16 | 1992-06-29 | Nkk Corp | Removal of vapor and carbon dioxide gas |
US6565626B1 (en) * | 2001-12-28 | 2003-05-20 | Membrane Technology And Research, Inc. | Natural gas separation using nitrogen-selective membranes |
-
2016
- 2016-03-30 JP JP2016066949A patent/JP6733260B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04180812A (en) * | 1990-11-16 | 1992-06-29 | Nkk Corp | Removal of vapor and carbon dioxide gas |
US6565626B1 (en) * | 2001-12-28 | 2003-05-20 | Membrane Technology And Research, Inc. | Natural gas separation using nitrogen-selective membranes |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6551640B1 (en) * | 2018-02-05 | 2019-07-31 | 三菱瓦斯化学株式会社 | Asymmetric membrane |
WO2019151337A1 (en) * | 2018-02-05 | 2019-08-08 | 三菱瓦斯化学株式会社 | Asymmetric membrane |
KR20190103470A (en) * | 2018-02-05 | 2019-09-04 | 미츠비시 가스 가가쿠 가부시키가이샤 | Asymmetric membrane |
CN110382097A (en) * | 2018-02-05 | 2019-10-25 | 三菱瓦斯化学株式会社 | Anisotropic membrane |
KR102047641B1 (en) | 2018-02-05 | 2019-11-21 | 미츠비시 가스 가가쿠 가부시키가이샤 | Asymmetric membrane |
US10610834B2 (en) | 2018-02-05 | 2020-04-07 | Mitsubishi Gas Chemical Company, Inc. | Asymmetric membrane |
CN110382097B (en) * | 2018-02-05 | 2020-07-07 | 三菱瓦斯化学株式会社 | Asymmetric membrane |
JP2023021800A (en) * | 2021-08-02 | 2023-02-14 | 環境工学株式会社 | Carbon dioxide permeable agent, carbon dioxide permeation apparatus and carbon dioxide permeation method |
Also Published As
Publication number | Publication date |
---|---|
JP6733260B2 (en) | 2020-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4249138B2 (en) | Polyimide blends for gas separation membranes | |
US9567436B2 (en) | Super high selectivity aromatic block copolyimide membranes for separations | |
US20090277327A1 (en) | High Permeability Membrane Operated at Elevated Temperature for Upgrading Natural Gas | |
US9233344B1 (en) | High selectivity polyimide membrane for natural gas upgrading and hydrogen purification | |
JPS6242723A (en) | Method for dehumidifying mixed gas | |
JP6733260B2 (en) | Carbon dioxide separation method | |
US10610834B2 (en) | Asymmetric membrane | |
JP3471918B2 (en) | New polyimide gas separation membrane | |
US9480954B2 (en) | High selectivity epoxysilicone-cross-linked polyimide membranes for gas separations | |
US20150328594A1 (en) | Polyimide membranes with very high separation performance for olefin/paraffin separations | |
US9266058B1 (en) | High selectivity polyimide membrane for natural gas upgrading and hydrogen purification | |
JP6880485B2 (en) | Asymmetric membrane | |
US9751053B2 (en) | Asymmetric integrally-skinned flat sheet membranes for H2 purification and natural gas upgrading | |
JPS63236517A (en) | Dehumidification method for mixed gas | |
JP5359957B2 (en) | Polyimide gas separation membrane and gas separation method | |
JP5747730B2 (en) | Polyimide gas separation membrane and gas separation method | |
US9308487B1 (en) | Polyimide blend membranes for gas separations | |
US9308499B1 (en) | Polyimide blend membranes for gas separations | |
JP2011161396A (en) | Gas separation membrane made of polyimide and gas separation method | |
RU2696131C2 (en) | Asymmetric, entirely coated with a shell flat-sheet membranes for cleaning h2 and enrichment of natural gas | |
JP6500893B2 (en) | Asymmetric gas separation membrane and method for separating and recovering gas | |
JPH10156157A (en) | Aromatic polyimide gas separation film | |
JP6551640B1 (en) | Asymmetric membrane | |
JP2018086620A (en) | Gas separation method | |
JP2010202864A (en) | New polyimide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6733260 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |