JP2017176915A - Crushing device - Google Patents

Crushing device Download PDF

Info

Publication number
JP2017176915A
JP2017176915A JP2016063514A JP2016063514A JP2017176915A JP 2017176915 A JP2017176915 A JP 2017176915A JP 2016063514 A JP2016063514 A JP 2016063514A JP 2016063514 A JP2016063514 A JP 2016063514A JP 2017176915 A JP2017176915 A JP 2017176915A
Authority
JP
Japan
Prior art keywords
plate
flow
bodies
space
pulverization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016063514A
Other languages
Japanese (ja)
Inventor
哲哉 森
Tetsuya Mori
哲哉 森
智 藤田
Satoshi Fujita
智 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2016063514A priority Critical patent/JP2017176915A/en
Publication of JP2017176915A publication Critical patent/JP2017176915A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a crushing device capable of efficiently performing so-called surface crushing as a purpose of crushing, for instance, a resin and the like.SOLUTION: A crushing device includes: a crushing chamber having a space S between plate-like bodies formed between the pair of plate-like bodies 10a; a carrying flow inflow mechanism having a jet nozzle Ngx and flowing a crushing object carrying flow F into the space S between plate-like bodies at one side of the space S between plate-like bodies; a carrying flow receiving mechanism receiving the crushing object carrying flow F outflowing from the space S between plate-like bodies; and a classification mechanism classifying a crushing object X after crushing treatment from the crushing object carrying flow F received by the carrying flow receiving mechanism.SELECTED DRAWING: Figure 2

Description

本発明は、ジェットノズルから粉砕対象物搬送流としての噴流が噴射流入される粉砕室を備え、当該粉砕室において室内に投入される粉砕対象物を粉砕する粉砕装置に関する。   The present invention relates to a pulverization apparatus that includes a pulverization chamber into which a jet flow as a pulverization target conveying flow is jetted from a jet nozzle, and pulverizes the pulverization target that is input into the pulverization chamber.

粉砕室内において、ジェットノズルから噴出された高圧ガス噴流により高速の粉砕対象物搬送流を生成し、粉体をこれに巻き込み、粉体を構成する粒子を相互に衝突させ、或は粒子を粉砕室内に設けられたターゲットや粉砕室周壁面に衝突させ、粉砕を行なう技術が、ジェットミルとして良く知られている(特許文献1、特許文献2)。   In the pulverization chamber, a high-speed gas jet flow ejected from the jet nozzle generates a high-speed pulverization object conveyance flow, the powder is entrained in this, the particles constituting the powder collide with each other, or the particles are crushed in the pulverization chamber A technique of colliding with a target or a crushing chamber peripheral wall surface provided in a crushing and crushing is well known as a jet mill (Patent Document 1, Patent Document 2).

このように、粉砕対象物を相互に或は衝突対象物(ターゲットや粉砕室周壁面)に衝突させると、その粉砕は、粉体の中心近傍に界面を生じて微粒化が進む、所謂、体積粉砕となる。図3(b)に、この体積粉砕を模式的に示した。   In this way, when the objects to be crushed collide with each other or the object to be collided (the target or the peripheral wall surface of the pulverization chamber), the pulverization generates an interface near the center of the powder and the atomization proceeds, so-called volume Crushing. FIG. 3 (b) schematically shows this volume grinding.

一方、粉砕対象物を粉砕する粉砕手法としては、例えば、粉砕対象物が樹脂、比較的軟質の金属(銅、アルミニウム等)である場合に採用されるビーズミルを使用する手法がある(特許文献3(段落〔0057〕)。
ビーズミル法は、例えば球形のビーズ間に形成される隙間に粉砕対象物を挟み込んで、その表面を剥離させる手法であり、粉砕は、粉体の表面に界面を生じて微粒化が進む、所謂、表面粉砕である。図3(a)に、この表面粉砕を模式的に示している。
図3(a)は、本発明に係る並行に配置した平板間に形成される表面粉砕の状態を示しているが、ビーズミルの場合は、互いに相対移動する球体間に挟まれて図3(a)に示すような形態で表面粉砕(表面の剥離)が起こる。
On the other hand, as a pulverization method for pulverizing an object to be pulverized, for example, there is a method using a bead mill adopted when the object to be pulverized is a resin or a relatively soft metal (such as copper or aluminum) (Patent Document 3). (Paragraph [0057]).
The bead mill method is, for example, a method in which an object to be pulverized is sandwiched between gaps formed between spherical beads and the surface thereof is peeled off. Surface grinding. FIG. 3 (a) schematically shows this surface grinding.
FIG. 3 (a) shows a state of surface grinding formed between flat plates arranged in parallel according to the present invention. In the case of a bead mill, it is sandwiched between spheres that move relative to each other. Surface crushing (surface peeling) occurs in the form shown in FIG.

特開平06−254427号公報Japanese Patent Laid-Open No. 06-254427 特開平10−296115号公報JP-A-10-296115 特開2016−1613号公報Japanese Patent Laying-Open No. 2006-1613

粉砕対象物が、樹脂、比較的軟質の金属等である場合、特許文献1、特許文献2に記載されているように、ジェットノズルからの噴流に随伴させて粉砕対象物をターゲットや粉砕室内壁面に衝突させると、表面破壊が起こり難く、これら物質の粉砕には不向きである。   When the object to be pulverized is a resin, a relatively soft metal, or the like, as described in Patent Document 1 and Patent Document 2, the object to be pulverized is associated with a jet from a jet nozzle and the wall surface of the target or pulverization chamber When it is made to collide, it is difficult to cause surface destruction and is not suitable for pulverization of these substances.

これに対して、ビーズミル法を採用すると、ピーズ間に粉砕対象物を挟んだ状態で、ビーズの相対移動により粒子接線方向の擦れ(こすれ)を起こすことができ好ましいが生産性が低いという問題がある。   On the other hand, when the bead mill method is adopted, it is preferable that the crushed object is sandwiched between the peas, and the relative movement of the beads can cause rubbing in the particle tangential direction. is there.

この実情に鑑み、本発明の主たる課題は、例えば樹脂等の粉砕を目的として、所謂表面粉砕を効率的に起こすことができる粉砕装置を得ることにある。   In view of this situation, a main object of the present invention is to obtain a pulverizing apparatus capable of efficiently causing so-called surface pulverization, for example, for the purpose of pulverizing a resin or the like.

上記目的を達成するための、本発明の第1特徴構成は、
ジェットノズルから粉砕対象物搬送流としての噴流が噴射流入される粉砕室を備え、当該粉砕室において室内に投入される粉砕対象物を粉砕する粉砕装置であって、
対を成す板状体の間に形成される板状体間空間を前記粉砕室に備え、
前記ジェットノズルを有し、前記粉砕対象物搬送流を前記板状体間空間に流入させる搬送流流入機構を、前記板状体間空間の一方の側に備えるとともに、
前記板状体間空間から流出する前記粉砕対象物搬送流を受け入れる搬送流受入機構を備え、前記搬送流受入機構により受け入れられた粉砕対象物搬送流から粉砕処理後の前記粉砕対象物を分級する分級機構を備えた点にある。
In order to achieve the above object, the first characteristic configuration of the present invention is:
A pulverization apparatus comprising a pulverization chamber into which a jet flow as a pulverization target conveyance flow is jetted from a jet nozzle, and pulverizes a pulverization target to be introduced into the chamber in the pulverization chamber,
A space between the plate-like bodies formed between the plate-like bodies forming a pair is provided in the crushing chamber,
A transport flow inflow mechanism that includes the jet nozzle and allows the pulverized object transport flow to flow into the inter-plate body space is provided on one side of the inter-plate body space,
A conveyance flow receiving mechanism for receiving the pulverized object conveyance flow flowing out from the space between the plate-like bodies is provided, and the pulverized object after pulverization processing is classified from the pulverized object conveyance flow received by the conveyance flow receiving mechanism. It has a classification mechanism.

本構成によれば、粉砕室には対を成す板状体間に形成される板状体間空間が備えられ、この空間の一方の側からジェットノズルから噴出する噴流を粉砕物搬送流として、粉砕対象物が吹き込まれる。
ここで、この噴き込み方向は、一対の板状体の内面に沿った方向となるため、粉砕対象物の移動方向は、板状体の内面に沿った長手方向とできる。さらに、ジェットノズルからある程度広がる状態で粉砕対象物は板状体間空間に流入するため、板状体の内面に沿って、所謂、擦られる状態で衝突され、表面粉砕が促進できる。そして、一方の板状体の内面に衝突すると跳ね返って、他方の板状体の内面に向いさらに衝突するという、両板状体間で擦れ状態での衝突の繰り返し操作を受けるため、結果的に、従来より格段に高い効率で表面粉砕を受けることとなる。
According to this configuration, the crushing chamber is provided with a space between the plate-like bodies formed between the paired plate-like bodies, and a jet jetted from the jet nozzle from one side of this space is used as the crushed material transporting flow. The object to be crushed is blown.
Here, since the injection direction is a direction along the inner surfaces of the pair of plate-like bodies, the moving direction of the object to be crushed can be a longitudinal direction along the inner surfaces of the plate-like bodies. Furthermore, since the object to be crushed flows into the space between the plate-like bodies in a state of spreading from the jet nozzle to some extent, it is collided along the inner surface of the plate-like body in a so-called rubbing state, and surface crushing can be promoted. And, when it collides with the inner surface of one plate-like body, it bounces back, and further collides toward the inner surface of the other plate-like body. Therefore, the surface is crushed with a much higher efficiency than before.

また、ジェットノズルからの噴流は拡散傾向を示すが、例えば、一方の板状体側に拡散する噴流部分により搬送される粉砕対象物に対して、他方の板状体側に拡散する噴流部分により搬送される粉砕対象物が当然に存在するため、これらの粉砕対象物は、板状体内面に衝突するとともに、板状体表面から跳ね返されてくる粉砕対象物の衝突機会も増加するため、結果的に、本発明が目的とする表面粉砕を非常に効率よく進めることができる。   In addition, the jet from the jet nozzle shows a tendency to diffuse, but for example, it is conveyed by the jet portion that diffuses to the other plate-like object side with respect to the pulverized object conveyed by the jet portion that diffuses to the one plate-like body side. Naturally, there are objects to be crushed, and these objects to be crushed collide with the inner surface of the plate-like body, and the collision opportunity of the object to be crushed bounced off from the surface of the plate-like body also increases. The surface grinding intended by the present invention can be carried out very efficiently.

そして、搬送流流入機構及び搬送流受入機構を備えることにより、板状体間空間への粉砕対象物の送り込みと取出しとをスムーズに行いながら、分級機構により微粒化された粉砕対象物を、その所望の程度(粒径)に従って取り出すことができる。   Then, by providing the transport flow inflow mechanism and the transport flow receiving mechanism, the pulverized object that has been atomized by the classification mechanism can be removed while smoothly feeding and taking out the pulverized object into the space between the plate-like bodies. It can be taken out according to the desired degree (particle size).

結果、例えば樹脂等の粉砕を目的として、所謂表面粉砕を効率的に起こすことができる粉砕装置を得ることができた。   As a result, for example, for the purpose of pulverizing a resin or the like, a pulverizing apparatus capable of efficiently causing so-called surface pulverization could be obtained.

本発明の第2特徴構成は、
前記板状体が平板であり、
前記板状体間空間が、並行配置される平板間に形成される点にある。
The second characteristic configuration of the present invention is:
The plate-like body is a flat plate;
The space between the plate-like bodies is formed between flat plates arranged in parallel.

本構成によれば、板状体としての平板を並行配置して使用することで、非常に簡単な構成で、本発明の要点である板状体間空間を実現できる。
また、本発明にあっては、ジェットノズルから噴出される噴流の速度及び流量、所定の条件下での板状体間の隙間(板状体間空間の厚み)の程度が、粉砕対象物の粒子径及び微細化後に目的とする粒子径との関係で非常に重要な運転パラメータとなるが、並行配置をする場合は、隙間の調整を容易に行うことが可能な機構を容易に備えることができる。
According to this structure, the space between plate-shaped bodies which is the main point of this invention is realizable by a very simple structure by arrange | positioning and using the flat plate as a plate-shaped body in parallel.
Further, in the present invention, the speed and flow rate of the jet ejected from the jet nozzle, and the degree of the gap between the plate-like bodies (thickness of the space between the plate-like bodies) under a predetermined condition are determined by the pulverization target. It becomes a very important operating parameter in relation to the particle size and the target particle size after miniaturization, but in the case of parallel arrangement, it is easy to provide a mechanism that can easily adjust the gap. it can.

本発明の第3特徴構成は、
前記板状体が平板であり、
前記板状体間空間が、前記粉砕対象物搬送流の流れ方向に直交する断面の断面積に関し、前記搬送流流入機構側から前記搬送流受入機構側に向かうに従って小さくなる狭隘化配置平板間に形成される点にある。
The third characteristic configuration of the present invention is:
The plate-like body is a flat plate;
The space between the plate-like bodies is between narrowed and arranged flat plates that become smaller from the carrier flow inflow mechanism side toward the carrier flow receiving mechanism side with respect to the cross-sectional area of the cross section perpendicular to the flow direction of the grinding object conveyance flow. It is in the point to be formed.

本構成によれば、上記の並行配置された板状体間に形成される板状体間空間での粉砕誘起の作用・効果を得ることができるとともに、板状体空間に向かう一対の板状体の内面間の距離が断面積の減少に伴って小さくなるため、微粒化がある程度進んだ粉砕対象物の更なる微粒化を良好に行うことができる。   According to this configuration, it is possible to obtain the action and effect of crushing induction in the space between the plate-like bodies formed between the plate-like bodies arranged in parallel, and a pair of plate-like shapes toward the plate-like body space. Since the distance between the inner surfaces of the body becomes smaller as the cross-sectional area decreases, further pulverization of the pulverized object whose pulverization has progressed to some extent can be performed well.

そして、本発明の第4特徴構成は、前記板状体の前記板状体間空間側に複数の凸状体を備える点にある。   And the 4th characteristic structure of this invention exists in the point provided with several convex body in the said inter-plate-space space side of the said plate-shaped body.

本構成によれば、複数の凸状体(換言すると突起)を板上体の板状体間空間側に設けることで、板状体間空間の長手方向において直進傾向となる粉砕対象物の軌跡を、凸状体との衝突により屈折させたり、曲げたりすることで、複雑な軌跡を描かせて、表面粉砕の機会をさらに増加させ、粉砕効率を高めることができる。また、ある程度、体積粉砕も行える。   According to this configuration, a plurality of convex bodies (in other words, protrusions) are provided on the space between the plate-like bodies of the upper plate body so that the trajectory of the pulverized object that tends to go straight in the longitudinal direction of the space between the plate-like bodies. Can be refracted or bent by the collision with the convex body, thereby drawing a complicated trajectory, further increasing the chance of surface crushing, and improving crushing efficiency. Moreover, volume grinding can be performed to some extent.

本発明の第5特徴構成は、前記搬送流流入機構と前記搬送流受入機構とが直線を成して配置されている点にある。   A fifth characteristic configuration of the present invention is that the transport flow inflow mechanism and the transport flow receiving mechanism are arranged in a straight line.

本構成により、搬送流流入機構の直線流入方向を辿った先に搬送流受入機構を備えることとなるが、このような配置とすることで、ジェットノズルからの噴流をできるだけ阻害することなく搬送流受入機構に受入れることとなるため、粉砕対象物が強く板状体間空間の内面に擦れることとなり、表面粉砕の効率を高く保つことができる。   With this configuration, the transport flow receiving mechanism is provided ahead of the straight flow direction of the transport flow inflow mechanism. With this arrangement, the transport flow can be prevented without obstructing the jet flow from the jet nozzle as much as possible. Since the material is received by the receiving mechanism, the object to be crushed is strongly rubbed against the inner surface of the space between the plate-like bodies, and the efficiency of surface pulverization can be kept high.

本発明の第6特徴構成は、前記搬送流流入機構に複数の前記ジェットノズルを備え、前記粉砕対象物搬送流の流れ方向に直交する断面に関し、前記板状体間空間の広がり方向に複数のジェットノズルが分散配置されている点にある。   A sixth characteristic configuration of the present invention includes a plurality of jet nozzles in the transport flow inflow mechanism, and a plurality of jet nozzles in a direction in which the space between the plate-like bodies extends in a cross section orthogonal to the flow direction of the pulverized object transport flow. The jet nozzles are distributed.

本構成によれば、これまで説明してきた単一のジェットノズルに関する効果に加えて、複数・分散配置されたジェットノズルからの噴流が干渉することによる噴流ジェットを相互に混合できる効果に加えて、それらの流れで搬送される粉砕対象物相互間で衝突が発生することにより、粉砕が良好に進行する。   According to this configuration, in addition to the effect related to the single jet nozzle described so far, in addition to the effect that jets from a plurality of dispersedly arranged jet nozzles can be mixed with each other, The pulverization proceeds well by the collision between the pulverized objects conveyed in the flow.

本発明の第7特徴構成は、前記粉砕対象物の粒径をd、前記板状体間空間の隙間をDとして、d/Dが、0.005〜0.1の範囲にある点にある。   The seventh characteristic configuration of the present invention is that d / D is in the range of 0.005 to 0.1, where d is the particle size of the object to be crushed and D is the gap between the plate-like bodies. .

本構成によれば、0.005より小さいと、ジェットノズルからの噴流が拡がりすぎて、充分な擦れ効果(表面粉砕効果)を得ることができなくなる。一方、0.1より大きいと、噴流、それに付随する粉砕対象物の搬送に関して抵抗が大きくなりすぎ、良好に粉砕を行えなくなる傾向が高くなる。   According to this configuration, if it is smaller than 0.005, the jet flow from the jet nozzle is too widened to obtain a sufficient rubbing effect (surface grinding effect). On the other hand, when the ratio is larger than 0.1, the resistance becomes too large with respect to the jet flow and the conveyance of the object to be pulverized therewith, and the tendency that pulverization cannot be performed well becomes high.

粉砕装置の全体構成を示す図Diagram showing the overall configuration of the crusher 板状体間空間内の粉砕対象物の流れを示す図The figure which shows the flow of the grinding | pulverization target object in the space between plate-shaped bodies 板状体間空間における粉砕対象物の表面粉砕の説明図(a)及び体積粉砕の説明図(b)Explanatory drawing (a) of surface crushing of object to be crushed in space between plate-like bodies and explanatory drawing (b) of volume crushing

本発明の粉砕装置100の一実施形態を、以下、図面に基づいて説明する。   An embodiment of the crusher 100 of the present invention will be described below with reference to the drawings.

図1、図2に示すように、粉砕装置100は、本発明独特の板状体間空間Sを有する粉砕室10を主体として構成され、粉砕室10に粉砕対象物Xをその搬送流(粉砕対象物搬送流F)に随伴させて流入させる搬送流流入機構11と、粉砕室10から流出する粉砕対象物搬送流Fを受け入れる搬送流受入機構12とを備え、搬送流受入機構12により受け入れられた粉砕対象物搬送流Fから粉砕処理後の粉砕対象物Xを分級する分級機構13を備えて構成されている。   As shown in FIGS. 1 and 2, the pulverization apparatus 100 is mainly configured by a pulverization chamber 10 having a plate-like space S unique to the present invention. A transport flow inflow mechanism 11 that flows in along with the object transport flow F) and a transport flow receiving mechanism 12 that receives the pulverized target transport flow F that flows out of the crushing chamber 10, and is received by the transport flow receiving mechanism 12. In addition, a classification mechanism 13 that classifies the pulverized object X after the pulverization process from the pulverized object conveyance flow F is provided.

この構成を採用することにより、粉砕され微細粒子となっている粉砕対象物Xaは、分級機構13の微細粒子取出し口13aから取り出すことができる。一方、粉砕が不十分な粗粒子のままの粉砕対象物Xbは、分級機構13の粗粒子取出し口13bから取り出される。図1に示す実施形態では、微粒化が不十分な粉砕対象物Xbは、高圧ガス路14に帰還される構成が採用されている。   By adopting this configuration, the pulverized object Xa that has been pulverized into fine particles can be taken out from the fine particle take-out port 13 a of the classification mechanism 13. On the other hand, the pulverized object Xb that remains as coarse particles with insufficient pulverization is taken out from the coarse particle take-out port 13b of the classification mechanism 13. In the embodiment shown in FIG. 1, a configuration is adopted in which the pulverized object Xb that is insufficiently atomized is returned to the high-pressure gas path 14.

以下の説明では、搬送流流入機構11、板状体間空間Sを有する粉砕室10、搬送流受入機構12の順に説明する。   In the following description, the conveyance flow inflow mechanism 11, the crushing chamber 10 having the interplate space S, and the conveyance flow receiving mechanism 12 will be described in this order.

搬送流流入機構
搬送流流入機構11は、粉砕対象物Xを搬送する粉砕対象物搬送流Fを生成し、この粉砕対象物搬送流Fで搬送する形態で、粉砕室10内に設けられている板状体間空間Sに粉砕対象物Xを噴出・流入させる。
Conveyance Flow Inflow Mechanism The conveyance flow inflow mechanism 11 is provided in the pulverization chamber 10 in a form in which a pulverized object conveyance flow F for conveying the pulverization target object X is generated and conveyed by the pulverization object conveyance flow F. The object X to be crushed is jetted and introduced into the space S between the plate-like bodies.

図1に示すように、搬送流流入機構11は、上流側が高圧ガスG(具体的には高圧ガス供給源である高圧ポンプ(図示省略)により発生される高圧空気)が流れる高圧ガス路14に接続される分散室11aと、この高圧ガス路14から高圧ガスGを受け入れ、前記板状体間空間Sに分散して噴出するノズル室11bとを備えて構成されている。   As shown in FIG. 1, the carrier flow inflow mechanism 11 is connected to a high-pressure gas path 14 through which a high-pressure gas G (specifically, high-pressure air generated by a high-pressure pump (not shown) as a high-pressure gas supply source) flows. A dispersion chamber 11a to be connected and a nozzle chamber 11b that receives the high-pressure gas G from the high-pressure gas passage 14 and scatters and ejects the space between the plate-like bodies S are configured.

この実施形態では、高圧ガス路14に粉砕対象物Xの原料を供給する原料供給路15と、分級機構13から帰還されてくる粉砕対象物Xbを高圧ガス路14に戻す帰還路16とが接続されている。原料供給路15の上手はホッパー(図示省略)とされ、このホッパーの開閉動作により粉砕対象物Xを供給できる。この構成により、原料供給路15及び帰還路16からの粉砕対象物Xの供給は、高圧ガスGの有する吸引力により行うことができる。   In this embodiment, the raw material supply path 15 for supplying the raw material of the object X to be pulverized to the high pressure gas path 14 and the return path 16 for returning the object Xb to be crushed returned from the classification mechanism 13 to the high pressure gas path 14 are connected. Has been. The upper part of the raw material supply path 15 is a hopper (not shown), and the object X can be supplied by opening and closing the hopper. With this configuration, the supply of the pulverized object X from the raw material supply path 15 and the return path 16 can be performed by the suction force of the high-pressure gas G.

搬送流流入機構11は、高圧ガスGの流れ方向に従って流路が広がる分散室11aと、複数の原料供給用ジェットノズルNgxが横方向に並んで備えられるノズル室11bとを備えて構成さている。また、ノズル室11bに設けられた原料供給用ジェットノズルNgxの噴射口oは、板状体間空間Sの一方の側部で、一対の板状体10aに挟まれた状態で形成される板状体間空間Sの隙間(空間厚み)に向けて開口するように配設されている。   The transport flow inflow mechanism 11 includes a dispersion chamber 11a in which a flow path expands in accordance with the flow direction of the high-pressure gas G, and a nozzle chamber 11b in which a plurality of raw material supply jet nozzles Ngx are arranged in the horizontal direction. Further, the injection port o of the raw material supply jet nozzle Ngx provided in the nozzle chamber 11b is a plate formed in a state sandwiched between a pair of plate-like bodies 10a on one side of the inter-plate-like space S. It arrange | positions so that it may open toward the clearance gap (space thickness) of the space S between shape bodies.

従って、高圧ガスGを粉砕対象物搬送流Fとする粉砕対象物Xは、分散室11aで分散・混合されて各原料供給用ジェットノズルNgxに分散供給され、板状体間空間Sに噴射流入される。   Therefore, the pulverized object X using the high-pressure gas G as the pulverized object transport flow F is dispersed and mixed in the dispersion chamber 11a, dispersedly supplied to the raw material supply jet nozzles Ngx, and injected into the inter-plate body space S. Is done.

粉砕室
図2(a)に、板状体間空間Sを移動する粉砕対象物Xを模式的に示し、図2(b)に粉砕室10に備えられる板状体間空間Sの縦断面図を示した。
Crushing chamber FIG. 2 (a) schematically shows an object X to be crushed that moves in the inter-plate body space S, and FIG. 2 (b) shows a longitudinal sectional view of the inter-plate body space S provided in the pulverization chamber 10. showed that.

これらの図からも判明するように、本発明に係る板状体間空間Sは、対を成す板状体10aの間に形成される隙間としての空間であり、この空間Sは、板状体10aの並行設置方向(図2(b)の上下方向)に直交する方向D1,D2に充分な広がりを備えた空間とされている。
そして、先にも説明したが、原料供給用ジェットノズルNgxは、この板状体10aの一方の端辺Saに沿って複数が並行配置される構造となっている。
As can be seen from these figures, the inter-plate-shaped space S according to the present invention is a space as a gap formed between the pair of plate-shaped bodies 10a, and this space S is a plate-shaped body. The space is sufficiently wide in the directions D1 and D2 perpendicular to the parallel installation direction 10a (vertical direction in FIG. 2B).
As described above, a plurality of raw material supply jet nozzles Ngx are arranged in parallel along one end side Sa of the plate-like body 10a.

本実施形態では、粉砕対象物の粒径をd、板状体間空間の隙間をDとして、d/Dを、0.005〜0.1の範囲としている。   In this embodiment, the particle size of the object to be crushed is d, the gap between the plate-like bodies is D, and d / D is in the range of 0.005 to 0.1.

さらに、図2からも判明するように、板状体10a自体は平板としているが、その板状体間空間S側に複数の凸状体10bを備えている。ここで、凸状体10bは半球状としており、その球径を、板状体間空間Sの隙間Dよりわずかに短い程度としている。
これら複数の凸状体10bの配置は、所謂、千鳥配置としている。そして、粉砕対象物搬送流Fの直進方向D1において、前後一対となる凸状体10bの離間長さを板状体間空間Sの隙間Dよりわずかに長い程度とし、粉砕対象物搬送流Fの直進方向D1に直交する方向D2のそれは、板状体間空間Sの隙間Dより短くしている。
このように、複数の凸状体10bを設けることにより、本発明が主目的とする表面粉砕状態を確保しながら、一部、粗粒径で残っているものに関しては、体積粉砕も起こすことができる。単純な並行配置した平板間で起る表面粉砕を図3(a)に示した。
Further, as can be seen from FIG. 2, the plate-like body 10 a itself is a flat plate, but includes a plurality of convex bodies 10 b on the space S between the plate-like bodies. Here, the convex body 10b is hemispherical, and its spherical diameter is set to be slightly shorter than the gap D of the inter-plate body space S.
The arrangement of the plurality of convex bodies 10b is a so-called staggered arrangement. Then, in the rectilinear direction D1 of the pulverized object transport flow F, the separation length of the pair of front and rear convex bodies 10b is set to be slightly longer than the gap D of the inter-plate body space S, and That in the direction D2 orthogonal to the rectilinear direction D1 is shorter than the gap D of the interplate space S.
Thus, by providing a plurality of convex bodies 10b, volume pulverization may occur with respect to what remains with a coarse particle size while securing the surface pulverization state which is the main purpose of the present invention. it can. The surface crushing that occurs between simple parallel plates is shown in FIG. 3 (a).

図示する実施形態では、半球状の凸状体10bを設けたが、この形状を問うものではなく、板状体10aの内面の一部を表面粗さが他の面部位よりも粗い強粉砕処理面としておいても良い。   In the illustrated embodiment, the hemispherical convex body 10b is provided, but this shape is not questioned, and a part of the inner surface of the plate-like body 10a is subjected to a strong pulverization process in which the surface roughness is rougher than other surface portions. You may leave it as a surface.

搬送流受入機構
搬送流受入機構12は、上流側を板状体間空間Sに接続され、下流側が前記分級機構13に接続される、所謂、絞り路として構成されている。
従って、板状体間空間Sで所定の粉砕操作を受けて粉砕対象物Xを粉砕対象物搬送流Fに搬送された状態で受入、分級機構13に送る。
Transport Flow Accepting Mechanism The transport flow receiving mechanism 12 is configured as a so-called throttle path in which the upstream side is connected to the interplate-like space S and the downstream side is connected to the classification mechanism 13.
Accordingly, the crushed object X is received and sent to the classification mechanism 13 in a state where the crushed object X is conveyed in the pulverized object conveyance flow F in response to a predetermined pulverization operation in the interplate-like space S.

図1、図2からも判明するように、この実施形態では、搬送流流入機構11と搬送流受入機構12とを直線上に配置することで、粉砕対象物搬送流Fの直進性を確保し、表面粉砕の発生を確保している。   As can be seen from FIGS. 1 and 2, in this embodiment, the conveyance flow inflow mechanism 11 and the conveyance flow receiving mechanism 12 are arranged on a straight line, thereby ensuring the straightness of the pulverized object conveyance flow F. , Ensuring the occurrence of surface crushing.

図2に示すように、原料供給用ジェットノズルNgxの噴射口oは、噴射口oと板状体間空間Sの入口端辺Saの延設方向に対して角度はほぼ90度としている。   As shown in FIG. 2, the angle of the injection port o of the raw material supply jet nozzle Ngx is approximately 90 degrees with respect to the extending direction of the injection port o and the inlet end side Sa of the inter-plate space S.

粉砕装置100により粉砕対象物Xの粉砕を行うに際しては、高圧ガス供給源から、高圧ガスGを連続して原料供給用ジェットノズルNgxに送り込む。このような高圧ガスGとしては、窒素や炭酸ガス等の様々な不活性ガスを用いることも可能であるが、高圧ガスGとして圧搾空気を使用することが一般的である。なお、高圧ガスGの供給源としては、ボンベに蓄えた圧搾空気を放出させるようにしても良いし、或いはコンプレッサ等のガス圧縮装置を用いて圧搾空気を連続供給させるようにしても良い。   When the pulverization target object X is pulverized by the pulverization apparatus 100, the high pressure gas G is continuously fed from the high pressure gas supply source to the raw material supply jet nozzle Ngx. As such a high-pressure gas G, various inert gases such as nitrogen and carbon dioxide can be used, but compressed air is generally used as the high-pressure gas G. In addition, as a supply source of the high pressure gas G, the compressed air stored in the cylinder may be discharged, or the compressed air may be continuously supplied using a gas compression device such as a compressor.

高圧ガスGの圧力(単位はMPa:メガパスカル)の値については、特に限定されるものではないが通常は、
1.2MPa ≧ P ≧ 0.6MPa
程度の値を用いる。
粉砕処理物Xとしては、樹脂を対象とした。
The value of the pressure of the high-pressure gas G (unit: MPa: megapascal) is not particularly limited, but usually,
1.2 MPa ≧ P ≧ 0.6 MPa
Use a value of degree.
As the pulverized product X, a resin was used.

〔別実施形態〕
(1)上記の実施形態では、板状体間空間Sを形成する板状体10aの内面に、半球状の凸状体10bを設けたが、本発明が主に目的とする粉砕は表面粉砕であるため、凸状体10bを設けない、平板で板状体を構成しても良いし、僅かに波打った断面波状の板としてもよい。図3(a)に模式的に示したのがこの構成例である。
[Another embodiment]
(1) In the above embodiment, the hemispherical convex body 10b is provided on the inner surface of the plate-like body 10a that forms the space S between the plate-like bodies. Therefore, the convex body 10b is not provided, and a plate-like body may be constituted by a flat plate, or a slightly corrugated cross-sectional board may be used. This configuration example is schematically shown in FIG.

さらに、凸状体10bを設ける場合に、先に説明したように、千鳥状にするのみならず、任意の配置とできる。粉砕対象物搬送流Fの流れ方向に凸状体10bを設けるゾーンと設けないゾーンとを交互に設けてもよい。
このように交互に設ける構成を採用すると、粉砕対象物Xが内面で擦れた後、搬送流に加速される等の粉砕状態を交互に起こさせることも可能となる。
Furthermore, when providing the convex-shaped body 10b, as demonstrated previously, it can be set not only in zigzag form but arbitrary arrangement | positioning. Zones in which the convex bodies 10b are provided and zones in which the convex bodies 10b are not provided may be alternately provided in the flow direction of the pulverized object transport flow F.
By adopting such a configuration in which they are alternately provided, it is possible to alternately cause a pulverization state such that the object X to be crushed is rubbed on the inner surface and then accelerated to a conveying flow.

(2)先にも示したが、これら板状体の板状体間空間S側となる内面は、所定の程度粗面としておいてもよい、部分的に粗面としておくことも好ましい。粉砕対象物搬送流の流れ方向において、粗面と円滑面とが交互に出現する構成を採用すると、粉砕対象物Xが内面で擦れた後、搬送流に加速される等の粉砕状態を交互に起こさせることも可能となる。 (2) As described above, the inner surface of the plate-like body on the side between the plate-like bodies S may be a rough surface to a predetermined extent, and is preferably a partially rough surface. By adopting a configuration in which a rough surface and a smooth surface appear alternately in the flow direction of the object to be crushed, the state of pulverization such that the object to be crushed X is rubbed on the inner surface and then accelerated to the carrier flow alternately It can also be awakened.

(3)上記の実施形態では、対を成す板状体が粉砕対象物搬送流の流れ方向において、同一の隙間に設定される例を示したが、流れ方向で下流側となる側程、隙間間隔を小さくしておいてもよい。
このように下流側程、隙間を小さくすることで、上流側で表面粉砕を受け、事実上粒径が小さくなった粒子の更なる粉砕を促進することができる。
(3) In the above embodiment, the example in which the pair of plate-like bodies are set to the same gap in the flow direction of the object to be crushed has been shown. The interval may be reduced.
Thus, by further reducing the gap toward the downstream side, it is possible to promote further pulverization of particles that have undergone surface pulverization on the upstream side and that have practically become smaller in particle size.

(4)さらに、板状体間に形成される隙間間隔を調整可能としておいてもよい。 (4) Further, the gap interval formed between the plate-like bodies may be adjustable.

(5)上記の実施形態では、搬送流流入機構11には原料供給用ジェットノズルNgxの複数を、粉砕対象物搬送流Fの流れ方向(噴出方向)に直交する方向に並行配置するのに、互いの噴出方向、それらの流れ方向における噴出部位置を一致させることとしたが、ジェットノズルからの噴流が干渉を起こすように、噴出方向を僅かづつ変更したり、位置をずらせてもよい。 (5) In the above embodiment, the plurality of raw material supply jet nozzles Ngx are arranged in parallel in the direction perpendicular to the flow direction (spout direction) of the pulverized object conveyance flow F in the conveyance flow inflow mechanism 11. Although the jetting positions in the flow direction and the jetting part positions in the flow direction are made to coincide with each other, the jetting direction may be changed little by little or the position may be shifted so that the jet flow from the jet nozzle causes interference.

(6)さらに、上記の実施形態では、原料供給用ジェットノズルのみを設ける例を示したが、原料搬送を伴わないジェットノズルのみも追加的に備えてともよい。 (6) Furthermore, in the above-described embodiment, an example in which only the raw material supply jet nozzle is provided has been described, but only a jet nozzle that does not involve raw material conveyance may be additionally provided.

(7)また、複数備えられるジェットノズルの基端側に開閉弁等のノズル作動動作機構をそれぞれ設け、全てのジェットノズルが働く状態と一部のジェットノズルのみが働く状態とを切換可能とすることも、粉砕対象物Xが様々であることに対応するために有効である。 (7) In addition, a nozzle operating mechanism such as an on-off valve is provided on the base end side of a plurality of jet nozzles so that a state in which all the jet nozzles work and a state in which only some of the jet nozzles work can be switched. This is also effective for dealing with various crushed objects X.

(8)粉砕対象物原料の供給形態は、高圧ガス路への吸引供給に拘わらず、粉砕室に備える板状体間空間Sへ、その搬送流が流入する前であれば、どの部位でも良い。 (8) Regardless of the suction supply to the high-pressure gas path, the supply form of the material to be pulverized may be any part as long as the conveyance flow flows into the inter-plate body space S provided in the pulverization chamber. .

10 粉砕室
10a 板状体
10b 凸状体
11 搬送流流入機構
12 搬送流受入機構
13 分級機構
15 原料供給路
16 帰還路
100 粉砕装置
d 粉砕処理前の粉砕対象物の粒径
D 両板状体間に形成される隙間距離
D1 粉砕対象物搬送流の流れ方向
D2 D1及び隙間に直交する方向
G 高圧ガス
Ngx 原料供給用ジェットノズル
S 板状体間空間
X 粉砕対象物
Xa 微細粒子
Xb 粗粒子

DESCRIPTION OF SYMBOLS 10 Crushing chamber 10a Plate-shaped body 10b Convex-shaped body 11 Conveyance flow inflow mechanism 12 Conveyance flow receiving mechanism 13 Classification mechanism 15 Raw material supply path 16 Return path 100 Grinding apparatus d Particle size D of crushed object before pulverization processing Both plate-shaped bodies Gap distance D1 formed between the flow direction D2 D1 of the conveying flow of the object to be crushed and the direction G perpendicular to the gap G High pressure gas Ngx Raw material supply jet nozzle S Space between plate bodies X Ground object Xa Fine particles Xb Coarse particles

Claims (7)

ジェットノズルから粉砕対象物搬送流としての噴流が噴射流入される粉砕室を備え、当該粉砕室において室内に投入される粉砕対象物を粉砕する粉砕装置であって、
対を成す板状体の間に形成される板状体間空間を前記粉砕室に備え、
前記ジェットノズルを有し、前記粉砕対象物搬送流を前記板状体間空間に流入させる搬送流流入機構を、前記板状体間空間の一方の側に備えるとともに、
前記板状体間空間から流出する前記粉砕対象物搬送流を受け入れる搬送流受入機構を備え、前記搬送流受入機構により受け入れられた粉砕対象物搬送流から粉砕処理後の前記粉砕対象物を分級する分級機構を備えた粉砕装置。
A pulverization apparatus comprising a pulverization chamber into which a jet flow as a pulverization target conveyance flow is jetted from a jet nozzle, and pulverizes a pulverization target to be introduced into the chamber in the pulverization chamber,
A space between the plate-like bodies formed between the plate-like bodies forming a pair is provided in the crushing chamber,
A transport flow inflow mechanism that includes the jet nozzle and allows the pulverized object transport flow to flow into the inter-plate body space is provided on one side of the inter-plate body space,
A conveyance flow receiving mechanism for receiving the pulverized object conveyance flow flowing out from the space between the plate-like bodies is provided, and the pulverized object after pulverization processing is classified from the pulverized object conveyance flow received by the conveyance flow receiving mechanism. A crusher equipped with a classification mechanism.
前記板状体が平板であり、
前記板状体間空間が、並行配置される平板間に形成される請求項1記載の粉砕装置。
The plate-like body is a flat plate;
The crushing apparatus according to claim 1, wherein the space between the plate-like bodies is formed between flat plates arranged in parallel.
前記板状体が平板であり、
前記板状体間空間が、前記粉砕対象物搬送流の流れ方向に直交する断面の断面積に関し、前記搬送流流入機構側から前記搬送流受入機構側に向かうに従って小さくなる狭隘化配置平板間に形成される請求項1記載の粉砕装置。
The plate-like body is a flat plate;
The space between the plate-like bodies is between narrowed and arranged flat plates that become smaller from the carrier flow inflow mechanism side toward the carrier flow receiving mechanism side with respect to the cross-sectional area of the cross section perpendicular to the flow direction of the grinding object conveyance flow. The crushing apparatus according to claim 1, which is formed.
前記板状体の前記板状体間空間側に複数の凸状体を備える請求項1〜3の何れか一項記載の粉砕装置。   The pulverization apparatus according to any one of claims 1 to 3, further comprising a plurality of convex bodies on the space between the plate bodies. 前記搬送流流入機構と前記搬送流受入機構とが直線を成して配置されている請求項1〜4の何れか一項記載の粉砕装置。   The grinding apparatus according to any one of claims 1 to 4, wherein the transport flow inflow mechanism and the transport flow receiving mechanism are arranged in a straight line. 前記搬送流流入機構に複数の前記ジェットノズルを備え、前記粉砕対象物搬送流の流れ方向に直交する断面に関し、前記板状体間空間の広がり方向に複数のジェットノズルが分散配置されている請求項1〜5の何れか一項記載の粉砕装置。   A plurality of jet nozzles are provided in the transport flow inflow mechanism, and a plurality of jet nozzles are dispersedly arranged in a direction in which the space between the plate-like bodies spreads with respect to a cross section perpendicular to the flow direction of the crushed object transport flow. Item 6. The grinding apparatus according to any one of Items 1 to 5. 前記粉砕対象物の粒径をd、前記板状体間空間の隙間をDとして、d/Dが、0.005〜0.1範囲にある請求項1〜6の何れか一項記載の粉砕装置。   The pulverization according to any one of claims 1 to 6, wherein d / D is in the range of 0.005 to 0.1, where d is the particle size of the object to be pulverized, and D is the gap between the plate-like bodies. apparatus.
JP2016063514A 2016-03-28 2016-03-28 Crushing device Pending JP2017176915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016063514A JP2017176915A (en) 2016-03-28 2016-03-28 Crushing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016063514A JP2017176915A (en) 2016-03-28 2016-03-28 Crushing device

Publications (1)

Publication Number Publication Date
JP2017176915A true JP2017176915A (en) 2017-10-05

Family

ID=60004803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063514A Pending JP2017176915A (en) 2016-03-28 2016-03-28 Crushing device

Country Status (1)

Country Link
JP (1) JP2017176915A (en)

Similar Documents

Publication Publication Date Title
US6951312B2 (en) Particle entraining eductor-spike nozzle device for a fluidized bed jet mill
PL187868B1 (en) Method of and apparatus for producing a high-velocity jet of particles
US7621473B2 (en) Ring jet nozzle and process of using the same
KR970001784B1 (en) Method and device for fluidized bed jet mill grinding
JP2010046770A (en) Multilayer jet type nozzle device
US6942170B2 (en) Plural odd number bell-like openings nozzle device for a fluidized bed jet mill
TWI441716B (en) Spray nozzles for jetting
JP2017176915A (en) Crushing device
TWI569876B (en) A pulverizing device and a processing device having the pulverizing device
US3467317A (en) Fluid energy grinding method and means
JPH0667492B2 (en) Jet airflow crusher
JPH0852376A (en) Collision type airflow grinder
JPH02152559A (en) Pulverizing and coating device
JP4575017B2 (en) Solid-gas mixing ejector and jet mill
JPH0525711Y2 (en)
JPH0760150A (en) Impact type pneumatic pulverizer
JP2005118725A (en) Pulverization nozzle, feed nozzle, and jet mill provided with them, and method of crushing materials to be pulverized using the same
KR101883615B1 (en) Air flow collision apparatus
JP3219918B2 (en) Crusher
JP2001025678A (en) Collision type crusher
US8777139B2 (en) Pulverizer, pulverization method, toner production method, and toner
KR102312837B1 (en) Outlet structure for horizontal type ultra fine grinding apparatus
JP7146173B2 (en) Polishing device, polishing system and polishing method
JP2018075533A (en) Pulverization device
JP2004255323A (en) Crushing apparatus