JP2017175795A - Power conversion device and ground fault detection method therefor - Google Patents
Power conversion device and ground fault detection method therefor Download PDFInfo
- Publication number
- JP2017175795A JP2017175795A JP2016059951A JP2016059951A JP2017175795A JP 2017175795 A JP2017175795 A JP 2017175795A JP 2016059951 A JP2016059951 A JP 2016059951A JP 2016059951 A JP2016059951 A JP 2016059951A JP 2017175795 A JP2017175795 A JP 2017175795A
- Authority
- JP
- Japan
- Prior art keywords
- inverter
- output voltage
- power
- bias
- high resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inverter Devices (AREA)
Abstract
Description
この発明は、電力変換装置及びその地絡検出方法に関する。 The present invention relates to a power conversion device and a ground fault detection method thereof.
電力変換装置の地絡検出を行うには、通常は、例えば直流リンク部を高抵抗接地し、接地電流が所定の閾値を超えたとき地絡と見做すようにしている。この場合、地絡検出のレベルと感度が重要となるが、電力変換装置の出力周波数が大きく変化する場合、周波数の高い領域において漂遊キャパシタンスの影響によって零相電流が流れるルートのインピーダンスが低下し、そのために検出感度が低下するので、これを補正すべきとの報告が為されている(例えば特許文献1参照。)。 In order to detect the ground fault of the power converter, normally, for example, the DC link portion is grounded with high resistance, and when the ground current exceeds a predetermined threshold, it is considered as a ground fault. In this case, the level and sensitivity of ground fault detection are important, but when the output frequency of the power converter changes greatly, the impedance of the route through which the zero-phase current flows due to the influence of stray capacitance in the high frequency region, For this reason, since the detection sensitivity is lowered, it has been reported that this should be corrected (for example, see Patent Document 1).
特許文献1に示された手法は、全ての周波数領域で地絡電流検出感度を一定とすべく、周波数の高い領域では、地絡の有無にかかわらず生じる零相の充電電流の影響を考慮した検出を行おうとするものである。ところが、低インピーダンスの地絡事故を検出しようとすると、周波数の影響はあまり関係なく、むしろ電圧が低い領域での地絡検出が困難であるのが現実である。 The technique disclosed in Patent Document 1 takes into consideration the influence of zero-phase charging current that occurs regardless of the presence or absence of a ground fault in a high frequency region in order to make the ground fault current detection sensitivity constant in all frequency regions. It tries to detect. However, when trying to detect a low-impedance ground fault, the influence of frequency is not so much, and it is actually difficult to detect a ground fault in a low voltage region.
この発明は上記問題点に鑑みてなされたもので、低電圧領域での地絡検出精度を向上させた電力変換装置及びその地絡検出方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a power converter and a ground fault detection method thereof that improve the ground fault detection accuracy in a low voltage region.
上記目的を達成するために、本発明の電力変換装置は、直流電力を供給する直流電源と、
前記直流電源の出力電圧を交流に変換して交流電動機を駆動するインバータと、前記直流電源の出力端を高抵抗接地する高抵抗と、この高抵抗に流れる電流を検出し、電流の大きさが所定の閾値以上のとき装置の地絡と判断する接地検出手段と、前記インバータの出力を制御する主制御部とを具備し、前記主制御部は、前記インバータの出力電圧が所定の閾閾値以下であるとき、前記インバータの各相の出力電圧基準に所定の直流バイアスを加えるようにしたことを特徴としている。
In order to achieve the above object, a power converter according to the present invention includes a DC power supply for supplying DC power,
An inverter that drives the AC motor by converting the output voltage of the DC power supply to AC, a high resistance that grounds the output terminal of the DC power supply with high resistance, and a current that flows through the high resistance are detected. A ground detecting means for determining a ground fault of the apparatus when the threshold is equal to or greater than a predetermined threshold; and a main controller for controlling the output of the inverter, wherein the main controller has an output voltage of the inverter equal to or lower than a predetermined threshold In this case, a predetermined DC bias is applied to the output voltage reference of each phase of the inverter.
この発明によれば、低電圧領域での地絡検出精度を向上させた電力変換装置及びその地絡検出方法を提供することが可能となる。 According to the present invention, it is possible to provide a power conversion device and a ground fault detection method thereof with improved ground fault detection accuracy in a low voltage region.
以下、本発明の一実施例に係る電力変換装置を、図1乃至図4を参照して説明する。 Hereinafter, a power converter according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.
図1は、本発明に係る電力変換装置の回路構成図である。直流電源1からインバータ3に直流電力が給電され、これを所望の交流電圧に変換して交流電動機4を駆動する。直流電源1と並列に高抵抗2A及び2Bの直列回路が接続され、この直列回路の中点が接地されている。そしてこの接地電流、すなわち高抵抗2A及び2Bに流れる電流の和が電流検出器6によって検出され、接地検出回路7にその検出信号を与えている。接地検出回路7は、電流検出器6によって検出された接地電流のRMS値が所定の閾値を超えたとき、装置の運転停止乃至アラーム発信などの保護・警報動作を行う。 FIG. 1 is a circuit configuration diagram of a power converter according to the present invention. DC power is fed from the DC power source 1 to the inverter 3 and converted into a desired AC voltage to drive the AC motor 4. A series circuit of high resistances 2A and 2B is connected in parallel with the DC power source 1, and the middle point of the series circuit is grounded. The ground current, that is, the sum of the currents flowing through the high resistances 2A and 2B is detected by the current detector 6, and the detection signal is given to the ground detection circuit 7. When the RMS value of the ground current detected by the current detector 6 exceeds a predetermined threshold value, the ground detection circuit 7 performs a protection / alarm operation such as stopping the operation of the apparatus or issuing an alarm.
交流電動機4の回転位置は回転角検出器5で検出され、また交流電動機4の入力電流は電流検出器8で検出され、これらの検出量はインバータ3を制御するための主制御部9にフィードバック量として与えられている。以下、主制御部9の内部構成について説明する。 The rotational position of the AC motor 4 is detected by the rotation angle detector 5, the input current of the AC motor 4 is detected by the current detector 8, and the detected amount is fed back to the main control unit 9 for controlling the inverter 3. Is given as a quantity. Hereinafter, the internal configuration of the main control unit 9 will be described.
回転角検出器5で検出された位相角は微分器91により回転速度ωrに変換され、与えられた速度基準ωr*と、主制御器である電動機制御器92の内部で比較増幅されて電流基準となる。そしてこの電流基準は、別途与えられる磁束基準と共に、電動機制御器92の内部で、電流検出器8の出力を2軸変換したものと各々比較増幅されてd軸及びq軸の電圧基準ED_R、EQ_Rを得る。これ等の2軸変換のために回転角検出器5で検出された位相角に基づく位相基準θ1が用いられる。d軸電圧基準ED_R及びq軸電圧基準EQ_Rは、電圧基準変換器93において、再び位相基準θ1を用いて交流量である3相基本電圧基準EU_R、EV_R及びEW_Rに変換される。この3相基本電圧基準EU_R、EV_R及びEW_Rの各々にバイアス発生器95の出力が加算器94によって加算され、結果として出力電圧基準VU_REF、VV_REF及びVW_REFが得られる。そして、これらの3相電圧基準VU_REF、VV_REF及びVW_REFはPWM制御器96によって所定のPWMキャリアと比較され、各スイッチング素子のゲート信号が生成される。 The phase angle detected by the rotation angle detector 5 is converted into the rotation speed ωr by the differentiator 91, and compared with the given speed reference ωr * and the electric motor controller 92 which is the main controller, and is amplified by the current reference. It becomes. This current reference, together with a separately provided magnetic flux reference, is amplified and compared with the two-axis converted output of the current detector 8 inside the motor controller 92, respectively, and d- and q-axis voltage references ED_R and EQ_R. Get. The phase reference θ1 based on the phase angle detected by the rotation angle detector 5 is used for these two-axis conversions. The d-axis voltage reference ED_R and the q-axis voltage reference EQ_R are converted by the voltage reference converter 93 into the three-phase basic voltage references EU_R, EV_R, and EW_R, which are AC quantities, using the phase reference θ1 again. The output of the bias generator 95 is added to each of the three-phase basic voltage references EU_R, EV_R, and EW_R by an adder 94, resulting in output voltage references VU_REF, VV_REF, and VW_REF. These three-phase voltage references VU_REF, VV_REF, and VW_REF are compared with a predetermined PWM carrier by the PWM controller 96, and a gate signal for each switching element is generated.
図2はバイアス発生器95の動作を示す説明図である。横軸は交流電動機4の回転速度、縦軸は電圧の大きさを示している。図2において、0点を通る右上がりの直線は本来の電圧基準すなわち、3相基本電圧基準EU_R、EV_R及びEW_Rの電圧の大きさを表している。ここで電圧の大きさとは、例えば1相分の交流の3相基本電圧基準のRMS値を想定すれば良い。そして、回転速度0で電圧VT、回転速度ωTで電圧0となる直線(破線)で示しているのがバイアス発生器95の出力である0相バイアスVbiasである。後述するようにこのVbiasは正または負の直流電圧であっても良く、また交流電圧であっても良いが、ここでは正の直流電圧とする。 FIG. 2 is an explanatory diagram showing the operation of the bias generator 95. The horizontal axis represents the rotational speed of the AC motor 4, and the vertical axis represents the magnitude of the voltage. In FIG. 2, a straight line going up to the right through the zero point represents the voltage level of the original voltage reference, that is, the three-phase basic voltage references EU_R, EV_R, and EW_R. Here, the magnitude of the voltage may be assumed to be, for example, an RMS value based on an AC three-phase basic voltage for one phase. A straight line (broken line) in which the voltage VT is 0 at the rotation speed 0 and the voltage 0 is the rotation speed ωT is the zero-phase bias Vbias that is the output of the bias generator 95. As will be described later, this Vbias may be a positive or negative DC voltage or an AC voltage, but here it is a positive DC voltage.
このようにすれば、3相電圧基準VU_REF、VV_REF及びVW_REFの各々の大きさは図2の太い実線で示したようになる。但し、速度0から速度ωTまでの一定値は単純に3相基本電圧基準の電圧の大きさに0相バイアスVbiasを加えたものを示している点、注意が必要である。 In this way, the sizes of the three-phase voltage references VU_REF, VV_REF, and VW_REF are as shown by the thick solid lines in FIG. However, it should be noted that the constant value from the speed 0 to the speed ωT simply indicates a value obtained by adding the zero-phase bias Vbias to the voltage magnitude based on the three-phase basic voltage reference.
以上の構成における低電圧領域での地絡検出精度の向上効果のシミュレーション結果を図3及び図4に示す。シミュレーション条件は、直流電源1の出力電圧が600Vであり、電動機速度ωrが定格の5%のとき、インバータ3の3相出力母線のうち1相が時刻0においてインーダンス1Ωで地絡したとしている。図3(a)の上段に示したように0相バイアスVbiasが0(pu)のときの接地検出回路7の検出電流I_GR_FLT(mA)を図3(a)の下段に示す。また、図3(b)の上段に示したように0相バイアスVbiasが0.7(pu)のときの接地検出回路7の検出電流I_GR_FLT(mA)を図3(b)の下段に示す。図3(a)の0相バイアスなしの従来の方法では、I_GR_FLTは0.8mA程度の検出値となり、検出量が非常に小さいが、図3(b)の正の直流バイアスをかけた場合には、0相電圧が印加されるため、約13mAと15倍以上の検出値となり、地絡検出の感度が上がることが分かる。 3 and 4 show simulation results of the effect of improving the ground fault detection accuracy in the low voltage region in the above configuration. The simulation condition is that when the output voltage of the DC power supply 1 is 600 V and the motor speed ωr is 5% of the rated value, one phase of the three-phase output buses of the inverter 3 is grounded at an impedance of 1Ω at time 0. The detection current I_GR_FLT (mA) of the ground detection circuit 7 when the zero-phase bias Vbias is 0 (pu) as shown in the upper part of FIG. 3A is shown in the lower part of FIG. Further, as shown in the upper part of FIG. 3B, the detection current I_GR_FLT (mA) of the ground detection circuit 7 when the zero-phase bias Vbias is 0.7 (pu) is shown in the lower part of FIG. In the conventional method without the zero-phase bias in FIG. 3A, I_GR_FLT has a detection value of about 0.8 mA and the detection amount is very small, but when the positive DC bias in FIG. 3B is applied. Since a zero-phase voltage is applied, the detection value is about 13 mA, which is 15 times or more, and it can be seen that the sensitivity of ground fault detection increases.
尚、図2におけるVTは定格電圧の数10%とすることが好ましい。これを仮に40%としたとき、VTは240V程度となる。また、図3(a)のバイアスなしの状態において、回転速度または出力電圧を上昇させれば、ほぼその上昇分に比例して検出電流I_GR_FLTは増大する。これは、インバータ3の出力に含まれる0相成分が出力電圧に比例するためと考えられる。図2におけるVTを定格電圧の40%とすれば、回転速度ωT(出力電圧VT)における検出電流I_GR_FLTは図3(a)の約8倍の6mA程度となり誤検出なしに十分検出可能である。 Note that VT in FIG. 2 is preferably set to several tens of percent of the rated voltage. If this is 40%, VT will be about 240V. Further, when the rotation speed or the output voltage is increased in the state of no bias shown in FIG. 3A, the detection current I_GR_FLT increases substantially in proportion to the increase. This is considered because the zero-phase component included in the output of the inverter 3 is proportional to the output voltage. If VT in FIG. 2 is 40% of the rated voltage, the detected current I_GR_FLT at the rotational speed ωT (output voltage VT) is about 8 mA, which is about 8 times that in FIG. 3A, and can be sufficiently detected without erroneous detection.
図4は0相バイアスVbiasが交流の場合のシミュレーション結果である。図4(a)には、上段に示したように0相バイアスVbiasを波高値0.7(pu)、周波数10Hzの正弦波とした場合のI_GR_FLTを下段に示す。同様に、図4(b)には上段に示したように0相バイアスVbiasを波高値0.7(pu)、周波数10Hzの矩形波とした場合のI_GR_FLTを下段に示す。何れの場合も検出電流は0相バイアスのリップルを含むが、正弦波の場合は7mA程度、矩形波の場合は11mA程度であり十分検出可能な値が得られている。尚、図3、図4共、時刻0において検出電流の遅れが観測されているが、この遅れは接地検出回路7の内部のRMS演算器の演算時間の遅れに対応している。 FIG. 4 shows simulation results when the zero-phase bias Vbias is alternating current. FIG. 4A shows I_GR_FLT when the zero-phase bias Vbias is a sine wave having a peak value of 0.7 (pu) and a frequency of 10 Hz as shown in the upper part. Similarly, FIG. 4B shows I_GR_FLT in the lower stage when the zero-phase bias Vbias is a rectangular wave having a peak value of 0.7 (pu) and a frequency of 10 Hz as shown in the upper stage. In either case, the detection current includes a zero-phase bias ripple, but about 7 mA for a sine wave and about 11 mA for a rectangular wave, a sufficiently detectable value is obtained. 3 and 4, a delay in the detected current is observed at time 0. This delay corresponds to a delay in the calculation time of the RMS calculator inside the ground detection circuit 7.
尚、図2に示したようにこの実施例によれば、低電圧または低速時にのみバイアスを加えているので、装置に不要なストレスをかけることがなく、より安全に装置を運転することが可能である。これに対して高速域でもバイアスをかけるようにすると、例えば、交流電動機4のベアリングに流れる軸電流が増加してベアリングの寿命に影響を与えることがあるので注意が必要である。 As shown in FIG. 2, according to this embodiment, since a bias is applied only at a low voltage or low speed, the apparatus can be operated more safely without applying unnecessary stress to the apparatus. It is. On the other hand, if the bias is applied even in the high speed range, for example, the shaft current flowing through the bearing of the AC motor 4 may increase, which may affect the life of the bearing.
以上本発明の実施例を説明したが、これは例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施例やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiments of the present invention have been described above, they are presented as examples and are not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
例えば、図1の直流電源1は、通常は商用交流電源を入力とした整流器乃至コンバータが用いられるが、直流電力を供給する機器であれば良い。 For example, the DC power source 1 in FIG. 1 is normally a rectifier or converter that uses a commercial AC power source as an input, but may be any device that supplies DC power.
また、図1においてインバータ3は2レベルインバータとしているが、3レベル以上の多レベルインバータであっても良い。 In FIG. 1, the inverter 3 is a two-level inverter, but it may be a multi-level inverter having three or more levels.
また、図1の主制御部9は2軸制御乃至ベクトル制御を行うものとしたが、ベクトル制御以外の制御、例えばV/f一定制御であっても良い。 1 performs two-axis control or vector control. However, control other than vector control, for example, V / f constant control may be used.
また、図1における回転検出器5は、速度検出器に置き換えても良く、更にこれらの検出器は省略しても良い。この場合は所謂センサレス制御によって間接的に回転速度を推定する。 Further, the rotation detector 5 in FIG. 1 may be replaced with a speed detector, and these detectors may be omitted. In this case, the rotational speed is indirectly estimated by so-called sensorless control.
また、接地検出回路7はRMS演算を行う検出回路と説明したが、電流の大きさを検出するもの、例えば絶対値検出回路であっても良い。 Further, although the ground detection circuit 7 has been described as a detection circuit that performs RMS calculation, it may be a circuit that detects the magnitude of current, for example, an absolute value detection circuit.
また、図2には0相バイアスVbiasを速度の増加に対して単調減少となるような直線で示したが、低速域で地絡検出の感度が上がるようなバイアスであれば良く、例えば所定の速度ωTまで一定のバイアスを加えるようにしても良い。 In FIG. 2, the zero-phase bias Vbias is shown as a straight line that monotonously decreases with an increase in speed. However, any bias that increases the sensitivity of ground fault detection in a low speed range may be used. A constant bias may be applied up to the speed ωT.
1 直流電源
2A、2B 高抵抗
3 インバータ
4 交流電動機
5 回転検出器
6 電流検出器
7 接地検出回路
8 電流検出器
9 主制御部
91 微分器
92 電動機制御器
93 電圧基準変換器
94 加算器
95 バイアス発生器
96 PWM制御器
DESCRIPTION OF SYMBOLS 1 DC power supply 2A, 2B High resistance 3 Inverter 4 AC motor 5 Rotation detector 6 Current detector 7 Ground detection circuit 8 Current detector 9 Main control part 91 Differentiator 92 Motor controller 93 Voltage reference converter 94 Adder 95 Bias Generator 96 PWM controller
Claims (8)
前記直流電源の出力電圧を交流に変換して交流電動機を駆動するインバータと、
前記直流電源の出力端を高抵抗接地する高抵抗と、
この高抵抗に流れる電流を検出し、電流の大きさが所定の閾値以上のとき装置の地絡と判断する接地検出手段と、
前記インバータの出力を制御する主制御部と
を具備し、
前記主制御部は、
前記インバータの出力電圧が所定の閾値以下であるとき、前記インバータの各相の出力電圧基準に所定の直流バイアスを加えるようにしたことを特徴とする電力変換装置。 A DC power supply for supplying DC power;
An inverter that drives the AC motor by converting the output voltage of the DC power source into AC;
A high resistance for grounding the output end of the DC power supply with a high resistance;
A ground detection means for detecting a current flowing through the high resistance and determining a ground fault of the device when the magnitude of the current is equal to or greater than a predetermined threshold;
A main control unit for controlling the output of the inverter;
The main control unit
When the output voltage of the said inverter is below a predetermined threshold value, the predetermined DC bias is added to the output voltage reference | standard of each phase of the said inverter, The power converter device characterized by the above-mentioned.
前記直流電源の出力電圧を交流に変換して交流電動機を駆動するインバータと、
前記直流電源の出力端を高抵抗接地する高抵抗と、
この高抵抗に流れる電流を検出し、電流の大きさが所定の閾値以上のとき装置の地絡と判断する接地検出手段と、
前記交流電動機の回転速度を直接または間接的に検出する速度検出手段と、
前記インバータの出力を制御する主制御部と
を具備し、
前記主制御部は、
前記速度検出手段で検出された回転速度が所定の閾値以下であるとき、前記インバータの各相の出力電圧基準に所定の直流バイアスを加えるようにしたことを特徴とする電力変換装置。 A DC power supply for supplying DC power;
An inverter that drives the AC motor by converting the output voltage of the DC power source into AC;
A high resistance for grounding the output end of the DC power supply with a high resistance;
A ground detection means for detecting a current flowing through the high resistance and determining a ground fault of the device when the magnitude of the current is equal to or greater than a predetermined threshold;
Speed detecting means for directly or indirectly detecting the rotational speed of the AC motor;
A main control unit for controlling the output of the inverter;
The main control unit
A power conversion apparatus, wherein a predetermined DC bias is applied to an output voltage reference for each phase of the inverter when the rotational speed detected by the speed detection means is equal to or less than a predetermined threshold.
前記直流電源の出力電圧を交流に変換して交流電動機を駆動するインバータと、
前記直流電源の出力端を高抵抗接地する高抵抗と、
この高抵抗に流れる電流を検出する電流検出器と、
前記インバータの出力を制御する主制御部であって、前記インバータの出力電圧が所定の閾値以下であるとき、前記インバータの各相の出力電圧基準に所定の直流バイアスを加えるようにした主制御部と
で構成された電力変換装置において、
前記電流検出器の検出電流の大きさが所定の閾値以上のとき装置の地絡と判断するようにしたことを特徴とする電力変換装置の地絡検出方法。 A DC power supply for supplying DC power;
An inverter that drives the AC motor by converting the output voltage of the DC power source into AC;
A high resistance for grounding the output end of the DC power supply with a high resistance;
A current detector for detecting the current flowing through the high resistance;
A main control unit for controlling an output of the inverter, wherein when the output voltage of the inverter is equal to or lower than a predetermined threshold, a predetermined DC bias is applied to an output voltage reference of each phase of the inverter. In the power conversion device composed of
A ground fault detection method for a power converter, wherein the ground fault of the device is determined when the magnitude of the detected current of the current detector is equal to or greater than a predetermined threshold.
前記直流電源の出力電圧を交流に変換して交流電動機を駆動するインバータと、
前記直流電源の出力端を高抵抗接地する高抵抗と、
この高抵抗に流れる電流を検出する電流検出器と、
前記交流電動機の回転速度を直接または間接的に検出する速度検出手段と、
前記インバータの出力を制御する主制御部であって、前記速度検出手段で検出された回転速度が所定の閾値以下であるとき、前記インバータの各相の出力電圧基準に所定の直流バイアスを加えるようにした主制御部と
で構成された電力変換装置において、
前記電流検出器の検出電流の大きさが所定の閾値以上のとき装置の地絡と判断するようにしたことを特徴とする電力変換装置の地絡検出方法。 A DC power supply for supplying DC power;
An inverter that drives the AC motor by converting the output voltage of the DC power source into AC;
A high resistance for grounding the output end of the DC power supply with a high resistance;
A current detector for detecting the current flowing through the high resistance;
Speed detecting means for directly or indirectly detecting the rotational speed of the AC motor;
A main control unit for controlling an output of the inverter, wherein a predetermined DC bias is applied to an output voltage reference of each phase of the inverter when the rotational speed detected by the speed detection means is equal to or less than a predetermined threshold value; In the power conversion device configured with the main control unit,
A ground fault detection method for a power converter, wherein the ground fault of the device is determined when the magnitude of the detected current of the current detector is equal to or greater than a predetermined threshold.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016059951A JP2017175795A (en) | 2016-03-24 | 2016-03-24 | Power conversion device and ground fault detection method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016059951A JP2017175795A (en) | 2016-03-24 | 2016-03-24 | Power conversion device and ground fault detection method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017175795A true JP2017175795A (en) | 2017-09-28 |
Family
ID=59973433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016059951A Pending JP2017175795A (en) | 2016-03-24 | 2016-03-24 | Power conversion device and ground fault detection method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017175795A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019146114A1 (en) | 2018-01-29 | 2019-08-01 | 東芝三菱電機産業システム株式会社 | Insulation degradation monitoring device and insulation degradation monitoring method |
JP2020091250A (en) * | 2018-12-07 | 2020-06-11 | タナシン電機株式会社 | Leakage current detection device and ground leakage current detection method |
JP2020137306A (en) * | 2019-02-21 | 2020-08-31 | 積水化学工業株式会社 | Power management device, power management method, and program |
CN112154332A (en) * | 2019-04-10 | 2020-12-29 | 丹佛斯电力电子有限公司 | Method, control unit, computer program product and electrical converter for detecting a low impedance condition at an output of the electrical converter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06276739A (en) * | 1993-03-18 | 1994-09-30 | Toshiba Corp | Grounding detection system of cycloconverter |
JP2003230284A (en) * | 2002-01-31 | 2003-08-15 | Toshiba Corp | Inverter apparatus |
JP2010187513A (en) * | 2009-02-13 | 2010-08-26 | Daihen Corp | Dc ground fault detector and system linkage inverter system including the same |
-
2016
- 2016-03-24 JP JP2016059951A patent/JP2017175795A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06276739A (en) * | 1993-03-18 | 1994-09-30 | Toshiba Corp | Grounding detection system of cycloconverter |
JP2003230284A (en) * | 2002-01-31 | 2003-08-15 | Toshiba Corp | Inverter apparatus |
JP2010187513A (en) * | 2009-02-13 | 2010-08-26 | Daihen Corp | Dc ground fault detector and system linkage inverter system including the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019146114A1 (en) | 2018-01-29 | 2019-08-01 | 東芝三菱電機産業システム株式会社 | Insulation degradation monitoring device and insulation degradation monitoring method |
US11606022B2 (en) | 2018-01-29 | 2023-03-14 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Insulation deterioration monitoring apparatus and insulation deterioration monitoring method |
JP2020091250A (en) * | 2018-12-07 | 2020-06-11 | タナシン電機株式会社 | Leakage current detection device and ground leakage current detection method |
JP2020137306A (en) * | 2019-02-21 | 2020-08-31 | 積水化学工業株式会社 | Power management device, power management method, and program |
JP7249166B2 (en) | 2019-02-21 | 2023-03-30 | 積水化学工業株式会社 | Power management device, power management method and program |
CN112154332A (en) * | 2019-04-10 | 2020-12-29 | 丹佛斯电力电子有限公司 | Method, control unit, computer program product and electrical converter for detecting a low impedance condition at an output of the electrical converter |
US11837964B2 (en) | 2019-04-10 | 2023-12-05 | Danfoss Power Electronics A/S | Method for detecting low impedance condition at output of electrical converter, control unit, computer program product and electrical converter |
CN112154332B (en) * | 2019-04-10 | 2024-03-08 | 丹佛斯电力电子有限公司 | Method for detecting a low impedance condition at an output of an electrical converter, control unit, computer program product and electrical converter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2845282B1 (en) | System and method for ground fault detection and protection in adjustable speed drives | |
CN104009684B (en) | Magnetic flux estimating device, exception subtract magnetic decision maker, synchronous motor driving apparatus and electric car | |
US9294024B2 (en) | Motor drive device having function of detecting abnormality of DC link unit | |
JP2017175795A (en) | Power conversion device and ground fault detection method therefor | |
KR20110123165A (en) | Compensation apparatus and method for output current distortion of inverter | |
JP2010154642A (en) | Device for protecting power supply circuit of three-phase inverter | |
EP3078977A1 (en) | Method for detecting ground fault in inverter | |
JP2016111782A (en) | Electronic device | |
JP6179389B2 (en) | Electric motor control device | |
JP2015204709A (en) | Motor driving device with fault detection function for insulation resistance deterioration detection part of motor, and fault detection method | |
JP2017103993A (en) | Motor control device | |
CN110320396B (en) | Inverter peak current detection device | |
JP6188928B2 (en) | AC rotating machine control device | |
JP6001622B2 (en) | Induction motor controller | |
Manikandan et al. | Voltage Signature based Open Circuit Switch Fault Diagnosis Strategy for IM Drives with MPC | |
JP2011217575A (en) | Power conversion apparatus | |
JP5282064B2 (en) | Motor drive circuit and motor control device with failure detection function for inrush current suppression circuit | |
JP2009254032A (en) | Control device of power converter | |
KR20140090470A (en) | Apparatus for driving motor | |
JP5631200B2 (en) | Synchronous motor control device and synchronous generator control device | |
JP2017085727A (en) | Power conversion equipment | |
JP2010017080A (en) | Phase current detector | |
KR20200090005A (en) | Apparatus for controlling compressor and method for controlling compressor | |
KR20140090471A (en) | Apparatus for driving motor | |
WO2019021547A1 (en) | Multi-level inverter control device and control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20160422 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190118 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190125 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190716 |