JP2017174750A - Fuel cell system - Google Patents
Fuel cell system Download PDFInfo
- Publication number
- JP2017174750A JP2017174750A JP2016062282A JP2016062282A JP2017174750A JP 2017174750 A JP2017174750 A JP 2017174750A JP 2016062282 A JP2016062282 A JP 2016062282A JP 2016062282 A JP2016062282 A JP 2016062282A JP 2017174750 A JP2017174750 A JP 2017174750A
- Authority
- JP
- Japan
- Prior art keywords
- value
- fuel cell
- load
- unit
- merit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
Abstract
Description
本発明は、運転継続と運転停止とを選択制御可能な固体酸化物形燃料電池から発生したエネルギーをエネルギー負荷部に供給する燃料電池システムに関する。 The present invention relates to a fuel cell system that supplies energy generated from a solid oxide fuel cell capable of selectively controlling operation continuation and operation stop to an energy load unit.
燃料電池、特に固体酸化物形は、高効率ではあるが、起動停止に対する耐性が低く、連続運転が適している。もちろん、燃料電池では、電力負荷部の電力負荷の大きさに応じてその発電電力を変化させるような電力負荷追従運転が可能であるが、電力負荷が非常に小さい場合や熱負荷が非常に小さい場合などでは、燃料電池を最低出力で運転しても燃料電池で発生した電力や熱が余るため、燃料電池を運転することによって得られるはずであった運転メリット(例えば、消費一次エネルギー削減量、エネルギーコスト削減量、排出二酸化炭素削減量など)が減少する。そのため、電力負荷が非常に小さい場合や熱負荷が非常に小さい場合などでは、燃料電池の運転を停止することが要求される。 Fuel cells, particularly solid oxide forms, are highly efficient but have low resistance to start and stop and are suitable for continuous operation. Of course, in the fuel cell, it is possible to follow the power load so as to change the generated power according to the size of the power load of the power load section, but the power load is very small or the heat load is very small. In some cases, even if the fuel cell is operated at the minimum output, the power and heat generated in the fuel cell are left, so the operating merit that should have been obtained by operating the fuel cell (for example, primary energy consumption reduction, Energy cost reduction, emission carbon dioxide reduction, etc.). Therefore, when the power load is very small or the heat load is very small, it is required to stop the operation of the fuel cell.
例えば、固体酸化物形燃料電池を備える燃料電池システムが記載されている特許文献1には、固体酸化物形燃料電池から負荷への電力供給が一定以下の状態が一定時間以上継続した場合に自動的に固体酸化物形燃料電池の停止動作を行うとともに、系統電力から負荷への電力供給が一定以上の状態が一定時間以上継続した場合に自動的に固体酸化物形燃料電池の起動動作を行うように制御することが開示されている。さらには、夜間は電力消費量が少ないため発電を停止させ、朝方起動させるような、DSS運転(デイリースタートストップ運転)も開示されている。 For example, Patent Document 1, which describes a fuel cell system including a solid oxide fuel cell, automatically detects when power supply from a solid oxide fuel cell to a load continues for a certain time or longer. In addition, the solid oxide fuel cell is automatically stopped and the solid oxide fuel cell is automatically activated when the power supply from the grid power to the load continues for a certain period of time. It is disclosed that control is performed. Further, DSS operation (daily start / stop operation) in which power generation is stopped at night and power generation is stopped and started in the morning is also disclosed.
しかしながら、特に固体酸化物形燃料電池では、作動温度が非常に高く、固体高分子形燃料電池と比べて起動及び停止に長い時間がかかるので、DSS運転を実質的に行うことは問題がある。さらに、運転中の高温状態から停止中の常温まで部材の温度が上下動することになるため、そのような起動及び停止が繰り返されると、部品に加わる応力変化などの影響から部品の耐久性や信頼性が低下するおそれがある。 However, the solid oxide fuel cell, in particular, has a very high operating temperature and takes a long time to start and stop as compared with the solid polymer fuel cell, so that there is a problem in performing the DSS operation substantially. Furthermore, since the temperature of the member moves up and down from the high temperature state during operation to the normal temperature during stoppage, if such start and stop are repeated, the durability of the component and Reliability may be reduced.
本発明は、上述の実情に鑑みてなされたものであり、その目的は、固体酸化物形燃料電池が頻繁に起動及び停止を繰り返すことを避けながら、適切なタイミングで固体酸化物形燃料電池の運転と停止を行うことで、運転メリット(例えば省光熱費、省エネルギー、省二酸化炭素)の低下が抑制される燃料電池システムを提供する点にある。 The present invention has been made in view of the above circumstances, and its object is to prevent the solid oxide fuel cell from being frequently started and stopped, and to perform the solid oxide fuel cell at an appropriate timing. The object is to provide a fuel cell system in which a decrease in operating merits (for example, energy saving, energy saving, and carbon dioxide saving) is suppressed by operating and stopping.
上記目的を達成するための本発明に係る燃料電池システムは、運転継続と運転停止とを選択制御可能な固体酸化物形燃料電池から発生したエネルギーをエネルギー負荷部に供給する燃料電池システムであり、前記エネルギー負荷部で要求される負荷エネルギーを計測する負荷計測部と、所定の判定対象期間にわたって計測された前記負荷計測部の負荷計測値の平均演算値を算出する負荷演算部と、前記平均演算値または前記平均演算値から導出される代替値のいずれかと判定しきい値とに基づいて、前記固体酸化物形燃料電池の運転継続または運転停止を判定する運転判定部と、前記判定しきい値を設定するしきい値設定部と、前記運転判定部の判定結果に基づいて、前記固体酸化物形燃料電池に対する運転継続指令または運転停止指令を与える運転制御部とを備えている。 In order to achieve the above object, a fuel cell system according to the present invention is a fuel cell system that supplies energy generated from a solid oxide fuel cell capable of selectively controlling operation continuation and operation stop to an energy load unit, A load measurement unit that measures load energy required by the energy load unit; a load calculation unit that calculates an average calculation value of load measurement values of the load measurement unit measured over a predetermined determination target period; and the average calculation A determination unit for determining whether to continue or stop the operation of the solid oxide fuel cell based on either a value or an alternative value derived from the average calculation value and a determination threshold; and the determination threshold Based on the determination result of the threshold setting unit and the operation determination unit, the operation continuation command or the operation stop command is given to the solid oxide fuel cell. And a that operation control unit.
この構成では、固体酸化物形燃料電池の運転を継続するかまたは運転を停止するかの判定は、所定の判定対象期間において取得された負荷計測値から算出された平均演算値、またはこの平均演算値から導出される、平均演算値の代替となる値である代替値と、前もってしきい値設定部によって設定されている判定しきい値との比較評価でなされる。運転継続との判定結果が出力されると、運転継続指令が運転制御部に与えられ、固体酸化物形燃料電池の運転が継続される。運転停止との判定結果が出力されると、運転停止指令が運転制御部に与えられ、固体酸化物形燃料電池の運転が停止される。なお、ここでの平均演算値には、算術平均値、移動平均値、重み付き平均値、中間値、最頻値などが含まれ、通常は算術平均値が用いられる。 In this configuration, whether to continue the operation of the solid oxide fuel cell or whether to stop the operation is determined based on the average calculation value calculated from the load measurement value acquired in the predetermined determination target period, or the average calculation This is performed by comparing and evaluating an alternative value derived from the value, which is an alternative to the average calculation value, and a determination threshold value set in advance by the threshold value setting unit. When the determination result that the operation is continued is output, an operation continuation command is given to the operation control unit, and the operation of the solid oxide fuel cell is continued. When the determination result of the operation stop is output, an operation stop command is given to the operation control unit, and the operation of the solid oxide fuel cell is stopped. The average calculation value here includes an arithmetic average value, a moving average value, a weighted average value, an intermediate value, a mode value, and the like, and an arithmetic average value is usually used.
所定の判定対象期間での負荷の平均演算値が用いられるので、突発的なイベントによる負荷の増大や減少が平坦化されるので、ロバストな判定結果が得られる。判定の際に用いられる判定しきい値は、過去の継時的負荷計測群の平均演算値と、そのような平均演算値が得られた時点での固体酸化物形燃料電池の運転がもたらす運転メリット(例えば省光熱費、省エネルギー、省二酸化炭素など)の実績値との関係を、統計的に処理することで得られる。なお、平均演算値をそのまま判定に用いるのではなく、平均演算値をさらに明確な判定が可能となる数値に換算することで得られる代替値を用いてもよい。 Since the average calculation value of the load in a predetermined determination target period is used, an increase or decrease in load due to an unexpected event is flattened, and a robust determination result is obtained. The determination threshold value used in the determination is the average operation value of the past continuous load measurement group and the operation brought about by the operation of the solid oxide fuel cell when such an average operation value is obtained. It can be obtained by statistically processing the relationship with the actual value of merit (for example, energy saving, energy saving, carbon dioxide saving, etc.). Instead of using the average calculation value as it is for the determination, an alternative value obtained by converting the average calculation value into a numerical value that allows a clearer determination may be used.
運転部判定部による判定では、運転メリットが判定のベースとなっているので、負荷の平均演算値を、運転メリットを表すような数値(代替値)に換算することが好ましい。このために、前記代替値は、前記平均演算値から前記固体酸化物形燃料電池の運転メリットを導出する運転メリット関数の関数値であり、前記しきい値設定部は、前記運転メリットに換算された判定しきい値、つまりメリット判定しきい値を設定するように構成することができる。このような運転メリット関数は、第1の変数として所定の判定対象期間に発生した負荷の平均演算値群を割り当て、第2の変数として各平均演算値に対応する運転メリットの実績値を割り当て、この第1の変数と第2の変数との相関関係に基づいて決定することができる。運転メリット関数は、数学的な意味での関数でなくてもよく、各平均演算値とこれに対応する運転メリットの実績値をマトリックス化し、その間を補間処理で埋められたルックアップテーブルのようなものでもよい。これにより、代替値は、運転メリットを体現する値となり、この代替値を用いた運転判定は、運転メリットを考慮した判定結果を生み出すことになる。 In the determination by the driving unit determination unit, since the driving merit is the basis of the determination, it is preferable to convert the average calculation value of the load into a numerical value (alternative value) that represents the driving merit. Therefore, the substitute value is a function value of an operation merit function that derives the operation merit of the solid oxide fuel cell from the average calculation value, and the threshold value setting unit is converted into the operation merit. The determination threshold value, that is, the merit determination threshold value can be set. Such a driving merit function assigns an average calculation value group of loads generated in a predetermined determination target period as a first variable, and assigns a driving merit actual value corresponding to each average calculation value as a second variable, It can be determined based on the correlation between the first variable and the second variable. The driving merit function does not have to be a function in the mathematical sense. It is like a lookup table in which each average operation value and the corresponding actual driving merit value are made into a matrix and interpolated between them. It may be a thing. As a result, the substitute value becomes a value that embodies the driving merit, and the driving determination using the alternative value generates a determination result in consideration of the driving merit.
固体酸化物形燃料電池の運転メリットとして利用される量は、固体酸化物形燃料電池の運転にともなって得られる消費一次エネルギー削減量又はエネルギーコスト削減量又は排出二酸化炭素削減量、あるいはそれらを組み合わせた量である。消費一次エネルギー削減量は、固体酸化物形燃料電池を運転することで削減できる消費一次エネルギー量であり、負荷部に負荷エネルギーを供給するために固体酸化物形燃料電池を動作させなかったときの消費一次エネルギー量から、負荷部に負荷エネルギーを供給するために固体酸化物形燃料電池を動作させたときの消費一次エネルギー量を減算して得られる。エネルギーコスト削減量は、固体酸化物形燃料電池を運転することで削減できるエネルギーコストであり、消費一次エネルギー削減量と同様に、負荷部に負荷エネルギーを供給するために固体酸化物形燃料電池を動作させなかったときのエネルギーコストから、負荷部に負荷エネルギーを供給するために固体酸化物形燃料電池を動作させたときのエネルギーコストを減算して得られる。排出二酸化炭素削減量は、固体酸化物形燃料電池を運転することで削減できる排出二酸化炭素量であり、負荷部に負荷エネルギーを供給するために固体酸化物形燃料電池を動作させなかったときの排出二酸化炭素量から、負荷部に負荷エネルギーを供給するために固体酸化物形燃料電池を動作させたときの排出二酸化炭素量を減算して得られる。したがって、固体酸化物形燃料電池の運転メリットとして、消費一次エネルギー削減量、エネルギーコスト削減量、排出二酸化炭素削減量、のいずれか、あるいはそれらの組み合わせを取り扱うことで、コストや環境を考慮した、適正な固体酸化物形燃料電池の運転が実現する。 The amount used as the operating merit of the solid oxide fuel cell is the amount of primary energy reduction, energy cost reduction or emission carbon dioxide reduction obtained by the operation of the solid oxide fuel cell, or a combination thereof. Amount. The primary energy consumption reduction is the primary energy consumption that can be reduced by operating the solid oxide fuel cell. When the solid oxide fuel cell is not operated to supply load energy to the load section It is obtained by subtracting from the consumed primary energy amount, the consumed primary energy amount when the solid oxide fuel cell is operated to supply load energy to the load section. The energy cost reduction amount is the energy cost that can be reduced by operating the solid oxide fuel cell. Similar to the primary energy consumption reduction amount, the solid oxide fuel cell is used to supply load energy to the load section. It is obtained by subtracting the energy cost when the solid oxide fuel cell is operated in order to supply the load energy to the load portion from the energy cost when not operating. The amount of CO2 emission reduction is the amount of CO2 emission that can be reduced by operating the solid oxide fuel cell. When the solid oxide fuel cell is not operated to supply load energy to the load section It is obtained by subtracting the amount of discharged carbon dioxide when the solid oxide fuel cell is operated to supply load energy to the load portion from the amount of discharged carbon dioxide. Therefore, as an operating merit of the solid oxide fuel cell, considering the cost and environment by handling any one of the primary energy consumption reduction, energy cost reduction, emission carbon dioxide reduction, or a combination thereof, Appropriate operation of the solid oxide fuel cell is realized.
所定の判定対象期間の平均演算値は、その元となる負荷計測値のばらつき(分散)が大きく異なっていても、ほぼ同じ値となることがある。つまり、負荷の平均演算値またはこの平均演算値に基づいて算出される代替値に基づいて、運転継続または運転中止を判定する場合、判定対象期間における負荷計測値のばらつきを考慮することができない。この問題を解決するために、前記負荷演算部が、前記判定対象期間を区分けした各区間に含まれる負荷計測値に基づいて前記判定対象期間での標準偏差を算出し、前記平均演算値から前記標準偏差を減じたロワー値を用いて前記運転メリット関数から導出された関数値である第1値と、前記代替値に前記標準偏差を加えたアッパー値を用いて前記運転メリット関数から導出された関数値である第2値との間の値を評価メリット値として算出し、前記運転判定部は、前記評価メリット値と前記メリット判定しきい値とに基づいて前記固体酸化物形燃料電池の運転継続または運転停止を判定するように構成することができる。つまり、密に分布している平均演算値に対応する代替値値域の下限を平均演算値から標準偏差を減じた値の代替値とするとともに、値域の上限を平均演算値に標準偏差を加えた値の代替値とし、そのような値域から選択した値、好ましくはその値域の中間点を評価メリット値として算出するのである。これにより、運転判定のために評価されるべき代替値の算出に、代替値の元になっている負荷計測値のばらつき(分散)が考慮されることになり、より信頼性の高い運転判定が可能となる。 The average calculation value in a predetermined determination target period may be almost the same value even if the variation (variance) of the load measurement value that is the basis thereof is greatly different. That is, when determining whether to continue or stop driving based on the average calculated value of load or an alternative value calculated based on this average calculated value, it is not possible to take into account variations in load measurement values during the determination target period. In order to solve this problem, the load calculation unit calculates a standard deviation in the determination target period based on a load measurement value included in each section obtained by dividing the determination target period, and calculates the standard calculation value from the average calculation value. A first value that is a function value derived from the driving merit function using a lower value obtained by subtracting a standard deviation, and an upper value obtained by adding the standard deviation to the substitute value, and derived from the driving merit function A value between the second value which is a function value is calculated as an evaluation merit value, and the operation determination unit operates the solid oxide fuel cell based on the evaluation merit value and the merit determination threshold value. It can be configured to determine continuation or shutdown. In other words, the lower limit of the alternative value range corresponding to the densely calculated average calculated value is used as the alternative value of the average calculated value minus the standard deviation, and the upper limit of the range is added to the average calculated value by the standard deviation. As an alternative value, a value selected from such a range, preferably the midpoint of the range, is calculated as the evaluation merit value. As a result, the calculation of the substitute value to be evaluated for driving determination takes into account the variation (dispersion) of the load measurement value that is the basis of the alternative value, so that a more reliable driving determination can be made. It becomes possible.
さらに、運転判定において、代替値の元になっている負荷計測値のばらつき(分布)を考慮するために、前記判定対象期間を区分けした各区間に含まれる負荷計測値に基づいて前記判定対象期間での標準偏差を算出し、前記しきい値設定部が、前記標準偏差を用いて導出される関数値を、前記メリット判定しきい値として設定するように構成することも可能である。この構成では、平均演算値の標準偏差を変数として、メリット判定しきい値が算定されるので、当該メリット判定しきい値を用いた運転判定では、負荷計測値のばらつき(分散)が考慮されることになる。平均演算値の標準偏差を変数としてメリット判定しきい値を導出するしきい値関数は、標準偏差が大きくなるほど、メリット判定しきい値が増加する増加関数となるが、必ずしも単調増加関数でなくてもよいし、段階的に増加するような関数であってもよい。 Furthermore, in the driving determination, in order to consider the variation (distribution) of the load measurement value that is the source of the alternative value, the determination target period based on the load measurement value included in each section into which the determination target period is divided It is also possible to calculate the standard deviation at, and the threshold value setting unit may set a function value derived using the standard deviation as the merit determination threshold value. In this configuration, the merit determination threshold value is calculated using the standard deviation of the average calculation value as a variable. Therefore, in the operation determination using the merit determination threshold value, variation (dispersion) of the load measurement value is taken into consideration. It will be. The threshold function that derives the merit determination threshold value using the standard deviation of the average operation value as a variable is an increasing function that increases the merit determination threshold value as the standard deviation increases, but it is not necessarily a monotonically increasing function. Alternatively, it may be a function that increases step by step.
前記平均演算値から運転メリットを導出する運転メリット関数は、一般的には、実験値や経験値などに基づいて統計的な手法で求められるので、後に変更(バージョンアップ)しなければならない場合がある。このような変更をスムーズかつ確実に行うため、前記運転メリット関数の演算アルゴリズムまたはルックアップテーブルは、システム外部からのインストールを通じて更新可能となるように構成される。 The driving merit function for deriving the driving merit from the average operation value is generally obtained by a statistical method based on experimental values, experience values, etc., and may have to be changed (versioned up) later. is there. In order to make such a change smoothly and reliably, the calculation algorithm or lookup table of the driving merit function is configured to be updatable through installation from outside the system.
この燃料電池システムは電力の発生時に熱の発生を伴うので、電力及び熱を供給することができる。熱の供給は、一般には、給湯の形態で行われる。この燃料電池システムで取り扱われる負荷エネルギーは、熱負荷エネルギーまたは電力負荷エネルギーあるいはその両方である。したがって、熱負荷エネルギー及び電力負荷エネルギーが取り扱われる場合には、前記負荷エネルギーとして、熱負荷エネルギーと電力負荷エネルギーとから導出される統合エネルギーが用いられるように構成される。特に、熱負荷エネルギーと電力負荷エネルギーの両方が運転判定のために取り入れられる場合には、負荷計測部において、熱負荷エネルギーと電力負荷エネルギーとを変数として統合負荷エネルギーを導出する関数(ルックアップテーブル)を予め求めておくと、上述した演算処理をそのまま流用することができる。 Since this fuel cell system involves generation of heat when generating electric power, it can supply electric power and heat. The supply of heat is generally performed in the form of hot water. The load energy handled in this fuel cell system is heat load energy and / or power load energy. Therefore, when heat load energy and power load energy are handled, integrated energy derived from heat load energy and power load energy is used as the load energy. In particular, when both heat load energy and power load energy are taken in for operation determination, a function (look-up table) for deriving integrated load energy using heat load energy and power load energy as variables in the load measurement unit. ) Is obtained in advance, the above-described arithmetic processing can be used as it is.
まず、図1の機能ブロック図を参照して、本発明に係る燃料電池システムを含む設備の基本的な構成について説明する。図1に示すように、燃料電池システムは、運転により発生したエネルギーをエネルギー負荷部Lに供給する固体酸化物形燃料電池1と、その固体酸化物形燃料電池1の運転を制御する運転制御装置100とを備える。エネルギー負荷部Lは、電力負荷部3と熱負荷部4とで構成される。固体酸化物形燃料電池1の運転により発生した電気エネルギーは電力負荷部3に供給され、固体酸化物形燃料電池1の運転により発生した熱エネルギーは熱負荷部4に供給される。電力負荷部3は商用電源15から供給される電力を消費することもでき、熱負荷部4は、例えば燃料を燃焼して熱を発生する補助熱源装置11から供給される熱を消費することもできる。運転制御装置100は、情報処理機能及び情報記憶機能及び情報通信機能などを有するコンピュータシステムを用いて実現できる。
First, a basic configuration of equipment including a fuel cell system according to the present invention will be described with reference to the functional block diagram of FIG. As shown in FIG. 1, a fuel cell system includes a solid oxide fuel cell 1 that supplies energy generated by operation to an energy load L, and an operation control device that controls the operation of the solid oxide fuel cell 1. 100. The energy load unit L is composed of a
〔電力負荷部3への電力の供給〕
固体酸化物形燃料電池1の発電電力はインバータ12に供給される。インバータ12は、固体酸化物形燃料電池1の発電電力を商用電源15から受電する受電電力と同じ電圧及び同じ周波数にする。インバータ12の動作は運転制御装置100が制御する。インバータ12は、発電電力供給ライン13を介して受電電力供給ライン14に電気的に接続される。固体酸化物形燃料電池1からの発電電力がインバータ12及び発電電力供給ライン13及び受電電力供給ライン14を介して電力負荷部3に供給される。受電電力供給ライン14は商用電源15に接続されているので、電力負荷部3には、固体酸化物形燃料電池1及び商用電源15の少なくとも何れか一方から電力が供給されることになる。
[Supplying power to the power load unit 3]
The power generated by the solid oxide fuel cell 1 is supplied to the
受電電力供給ライン14には、電力負荷部3の電力負荷を計測する電力負荷計測手段16が負荷計測部Sとして設けられる。運転制御装置100は、インバータ12により固体酸化物形燃料電池1から受電電力供給ライン14に供給される発電電力が、電力負荷計測手段16で検出される電力負荷と等しくなるような制御を行う。但し、電力負荷計測手段16で検出される電力負荷が、固体酸化物形燃料電池1の最低発電電力(即ち、インバータ12により受電電力供給ライン14に供給される最低発電電力)よりも小さい場合、余剰電力が発生する。そのような場合、余剰電力は、電力を熱に代えて回収する余剰電力消費用の電気ヒータ9で消費される。
In the received
電気ヒータ9は、複数の抵抗加熱器から構成され、排熱回収用ポンプ7の作動により排熱回収路6を通流する固体酸化物形燃料電池1の冷却水を加熱する。電気ヒータ9のON/OFFは、インバータ12の出力側に接続された作動スイッチ10により切り換えられる。また、作動スイッチ10は、固体酸化物形燃料電池1の余剰電力の大きさが大きくなるほど、電気ヒータ9の消費電力が大きくなるように切り換えられる。作動スイッチ10の動作は運転制御装置100が制御する。
The
尚、電力負荷部3にどのような装置を含めるのかは適宜設定可能である。例えば、固体酸化物形燃料電池1を運転するために用いられる補機や、熱負荷部4へ供給する湯水の凍結を防止する凍結防止用ヒータなどを、本実施形態の電力負荷部3から除外するような設定も可能である。また、電力負荷部3の待機電力を、本実施形態で計測する電力負荷から減算してもよい。
In addition, what kind of apparatus is included in the
〔熱負荷部4への熱の供給〕
貯湯タンク2には、固体酸化物形燃料電池1で発生した熱が湯水の形態で蓄えられる。
本実施形態では、貯湯タンク2には、温度成層を形成する状態で湯水が貯えられる。つまり、貯湯タンク2の内部では、相対的に低温の湯水がその下部に貯えられ、相対的に高温の湯水がその上部に貯えられるように構成されている。貯湯タンク2に貯えられている湯水は、排熱回収路6を通って固体酸化物形燃料電池1と貯湯タンク2との間で循環する。
排熱回収路6における湯水の流動は、排熱回収用ポンプ7によって行われる。排熱回収用ポンプ7の動作は運転制御装置100が制御する。例えば、運転制御装置100は、固体酸化物形燃料電池1の運転を開始して、固体酸化物形燃料電池1の冷却を行う必要が生じると、排熱回収用ポンプ7を動作させて、貯湯タンク2の下部に貯えられている相対的に低温の湯水を排熱回収路6に流す。つまり、排熱回収路6を循環する湯水は、固体酸化物形燃料電池1の冷却水として利用される。排熱回収路6を流れる相対的に低温の湯水は、固体酸化物形燃料電池1から排出される熱を回収し(即ち、固体酸化物形燃料電池1の排熱によって湯水は昇温され)、相対的に高温の湯水となって貯湯タンク2の上部へと流入する。
[Supply of heat to the heat load section 4]
The hot
In the present embodiment, hot water is stored in the hot
Flow of hot water in the exhaust
加えて、排熱回収路6の途中には、排熱回収路6を通って貯湯タンク2から固体酸化物形燃料電池1へと流れる湯水からの放熱を行うための放熱器8が設置されている。運転制御装置100は、貯湯タンク2から固体酸化物形燃料電池1へと流れる湯水の温度が設定上限温度未満の場合にはこの放熱器8の動作を停止させている。但し、運転制御装置100は、貯湯タンク2から固体酸化物形燃料電池1へと流れる湯水の温度が上記設定上限温度以上である場合には(即ち、湯水により固体酸化物形燃料電池1の冷却を適切に行えない場合には)、この放熱器8を放熱作動させて湯水の温度を低下させる。また、上述した電気ヒータ9に通電することで発生したジュール熱は、排熱回収路6の途中の、固体酸化物形燃料電池1から貯湯タンク2へと流れる湯水によって回収される。
In addition, in the middle of the exhaust
貯湯タンク2の上部に貯留されている相対的に高温の湯水は、貯湯タンク2の上部に接続されている湯水供給路5を通して熱負荷部4に供給される。熱負荷部4は、給湯用途や暖房用途などである。熱負荷部4が給湯用途の場合、湯水は貯湯タンク2へ帰還しない。
熱負荷部4が暖房用途の場合、湯水が保有している熱のみが消費されて、湯水は貯湯タンク2へと帰還することもある。湯水供給路5には、その湯水供給路5を流れる湯水を加熱するための補助熱源装置11が設けられている。運転制御装置100は、貯湯タンク2の上部から流出した湯水の温度が、熱負荷部4で要求される湯水の温度よりも低いとき、補助熱源装置11を運転して、熱負荷部4へ供給される湯水の温度が所望の温度となるような制御を行う。湯水供給路5の途中には熱負荷部4で消費される熱量を計測する熱負荷計測手段17が負荷計測部Sとして設けられている。
The relatively hot water stored in the upper part of the hot
When the
燃料電池システムの運用者は、運転制御装置100との間で情報のやり取りを行う情報入出力装置IODを使用することができる。情報入出力装置IODには、一般的には浴室リモコンや台所リモコンなどの名称で設置される通信端末が含まれており、このようなリモコンには、操作ボタン、情報表示部、音声出力部などが備えられている。
An operator of the fuel cell system can use the information input / output device IOD that exchanges information with the
次に、図2を用いて、燃料電池システムにおける固体酸化物形燃料電池1の運転継続と運転停止とを選択する制御における情報の流れを説明する。
図2に示すように、運転制御装置100は、負荷計測部Sからの負荷計測値(図2ではLoで示されている)を入力し、固体酸化物形燃料電池(以下単に燃料電池と略称する)1は対する運転継続指令または運転停止指令を出力する。負荷計測部Sは、エネルギー負荷部Lで要求される負荷エネルギーを所定の判定対象期間(例えば1か月)にわたって所定のサンプリング間隔(例えば、1時間から数時間)で計測して、負荷計測値を運転制御装置100に送る計測プロセスを繰り返す。
Next, the flow of information in the control for selecting the operation continuation and the operation stop of the solid oxide fuel cell 1 in the fuel cell system will be described with reference to FIG.
As shown in FIG. 2, the
図2で示された例では、運転制御装置100の基本的な機能を実行する機能部は、負荷演算部51と、しきい値設定部52と、運転判定部53と、運転制御部54とである。負荷演算部51は、負荷計測値の平均演算値を算出する。平均演算値としては、所定期間における負荷計測値群を代表する値である、算術平均値、重み付き平均値、中間値、最頻値などを採用することができるが、一般には、算術平均値が用いられる。運転制御装置100において、平均演算値だけが取り扱われるのではなく、この平均演算値から導出される代替値が取り扱われる場合には、負荷演算部51は、この代替値を算出する。代替値は、平均演算値を変数として導出される関数値、いわゆる換算値である。ここでは、代替値は、平均演算値から燃料電池1の運転メリットを導出する運転メリット関数の関数値である。つまり、平均演算値をEとし、代替値(運転メリット値)をMとすれば、その関数式は、M=h(E)で表すことができる。運転メリットは、燃料電池1の運転にともなって得られる消費一次エネルギー削減量又はエネルギーコスト削減量又は排出二酸化炭素削減量、あるいはそれらを組み合わせた量であり、負荷が増大すれば運転メリットも増大する。ただし、燃料電池1が賄える負荷量には限界があるため、負荷が大きな領域では、運転メリットの増加は次第に頭打ちとなる。例えば、負荷を横軸、運転メリットを縦軸とすると、運転メリット関数のグラフ形状は、対数関数に似た形状となる。実際には、運転メリット関数は、実験値や経験値等を用いた統計的な処理で求めることができる。
In the example shown in FIG. 2, the functional units that execute the basic functions of the
運転判定部53は、平均演算値または代替値(運転メリット値)を、対応する判定しきい値と比較して、判定しきい値を超えた場合は、運転継続(運転開始を含む)、判定しきい値以下の場合は、運転停止の判定結果を出力する。運転制御部54は、運転判定部53の判定結果に基づいて、燃料電池1に対する運転継続指令または運転停止指令を出力する。
The driving
しきい値設定部52の基本的な構成では、しきい値設定部52は、運転判定に平均演算値が用いられる場合には、燃料電池1を運転させた方が良いと見なされる平均演算値の領域と、燃料電池1を運休させた方が良いと見なされる平均演算値の領域の境界値を判定しきい値として予め算定しておく。運転判定に運転メリット関数の関数値である代替値(運転メリット値)が用いられる場合には、燃料電池1を運転させた方が良いと見なされる代替値の領域と、燃料電池1を運休させた方が良いと見なされる代替値の領域の境界値をメリット判定しきい値(運転メリット値のための判定しきい値)として予め算定しておく。
In the basic configuration of the threshold
単純に、平均演算値や代替値を運転判定に用いた場合、平均演算値を算出する際の元データとしての負荷計測値のばらつきが考慮されなくなる。これは、負荷計測値が広い範囲にわたって分布している状態と、負荷計測値が特定の値の付近に密集分布している状態とで、同じ運転判定を行う可能性がある。本願発明者の知見によれば、負荷計測値がばらついて分布している状態の方が、負荷計測値が密集して分布している状態より、運転メリットは大きいことがわかっている。 Simply, when an average calculation value or an alternative value is used for operation determination, variations in load measurement values as original data when calculating the average calculation value are not taken into consideration. There is a possibility that the same operation determination is performed in a state where the load measurement values are distributed over a wide range and in a state where the load measurement values are densely distributed near a specific value. According to the knowledge of the inventor of the present application, it is known that the driving merit is larger in a state where load measurement values are distributed and distributed than in a state where load measurement values are densely distributed.
図3を用いて運転判定に負荷計測値のばらつき具合を組み入れる方法を説明する。負荷演算部51は、判定対象期間を区分けした各区間に含まれる負荷計測値に基づいて前記判定対象期間での標準偏差(図3ではσで示されている)を算出する。判定対象期間においてサンプリングされた負荷計測値の平均演算値はEで示され、各区間における負荷計測値の平均演算値はei(iは区間を識別する添え字である)で示されている。標準偏差:σは、k個の平均演算値:eiから良く知られた式を用いて算出される。さらに、負荷演算部51は、負荷計測値のばらつき具合を加味した評価メリット値として、前記平均演算値から前記標準偏差を減じたロワー値を用いて前記運転メリット関数から導出された関数値である第1値と、前記代替値に前記標準偏差を加えたアッパー値を用いて前記運転メリット関数から導出された関数値である第2値との間の値、例えば第1値と前記第2値との平均値を算出する。この評価メリット値の算出を式で表すと、
MV=(1/2)×(h(E−σ)+h(E+σ))
となる。ここで、MVは評価メリット値、σは上記標準偏差、Eは、上記平均演算値、h()は運転メリット関数である。
このようにして算出された評価メリット値は、運転判定部53で、メリット判定しきい値と比較判定され、燃料電池1の運転継続(運転開始を含む)または運転停止の判定結果が出力される。
A method of incorporating the variation of the load measurement value into the driving determination will be described with reference to FIG. The
MV = (1/2) × (h (E−σ) + h (E + σ))
It becomes. Here, MV is an evaluation merit value, σ is the standard deviation, E is the average calculation value, and h () is an operation merit function.
The evaluation merit value calculated in this manner is compared with the merit determination threshold value by the
負荷計測値の標準偏差を変数として算出される評価メリット値を運転判定に用いる方法以外で、運転判定に負荷計測値のばらつき具合を組み入れる方法を以下に説明する。この方法では、しきい値設定部52が、上述したように負荷演算部51によって算出された標準偏差を用いて導出される関数値を、メリット判定しきい値として設定する。つまり、負荷計測値のばらつき具合に応じてメリット判定しきい値を変更している。具体的には、メリット判定しきい値を負荷計測値(日別負荷)の標準偏差の関数値とし、この関数は、標準偏差が大きいほどメリット判定しきい値が大きくなるものである。図4に、そのような関数の一例がグラフの形で示されている。このように、負荷計測値の標準偏差に応じて動的に変化するメリット判定しきい値を用いることで、運転判定に負荷計測値のばらつき具合を組み入れることができる。負荷計測部Sによって計測され、運転判定のために用いられるエネルギー負荷が、熱負荷エネルギーと電力負荷エネルギーとの両方である場合、熱負荷エネルギーの負荷計測値と電力負荷エネルギーの負荷計測値とを変数とし、統合負荷計測値を導出する関数を用いることができる。この統合負荷計測値を負荷計測値とすることにより、上述した運転判定を行うことができる。
A method for incorporating the degree of variation in the load measurement value into the driving determination will be described below in addition to the method of using the evaluation merit value calculated with the standard deviation of the load measurement value as a variable for the driving determination. In this method, the threshold
この運転制御装置100を用いれば、運転判定部53の判定結果に基づいて、燃料電池1の運転継続(運転開始を含む)または運転停止が自動的に行われる。しかしながら、運転継続や運転停止の最終的な判断をユーザに委ねる場合には、運転判定部53の判定結果を一般的には浴室リモコンや台所リモコンなどの名称で設置されているリモコン等を介してユーザに報知し、リモコンを用いたユーザの指示によって、運転継続指令または運転停止指令が与えられるように構成される。
If this
次に、上述した燃料電池システムのいくつかの運用形態を説明する。これらの運用形態を実現することができる、共通のシステム構成の一例が図5に示されている。ここでは、運転制御装置100は、図2を用いて説明された各機能部を備えており、運転制御装置100の情報入出力装置IODとして浴室や台所に設置されるリモコンLCが用いられている。さらに、運転制御装置100は、通信ユニット50を通じて、この燃料電池システムを管理している管理会社が運営する遠隔地の管理センタ(管理コンピュータ)200とデータ交換可能に接続可能である。
Next, several modes of operation of the above-described fuel cell system will be described. An example of a common system configuration capable of realizing these operation modes is shown in FIG. Here, the
ここで運転制御装置100の機能を構築している、負荷演算部51と、しきい値設定部52と、運転判定部53と、運転制御部54に関しては、図2を用いて説明した内容が流用される。上記以外に、運転制御装置100には、運転メリット関数格納部55、出力データ処理部56、入力データ処理部57、報知処理部58が構築されている。この実施形態では、運転メリット関数格納部55は、図2と図3とを用いて説明した、負荷演算部51で算出された平均演算値:Eから運転メリットを示す値である運転メリット値(代替値の一種):Mを導出する運転メリット関数:M=h(E)をルックアップテーブルの形態で格納している。さらに、運転メリット関数格納部55には、負荷演算部51で算出された上述した平均演算値:Eおよび標準偏差:σから、評価メリット値を導出する式、つまり
MV=(1/2)×(h(E−σ)+h(E+σ))
をルックアップテーブルの形態で格納している。この式においても、運転メリット関数を用いるので、上記の2つのルックアップテーブルは統合して構築することが可能である。
Here, the
Are stored in the form of a lookup table. Also in this equation, since the driving merit function is used, the above two look-up tables can be integrated and constructed.
出力データ処理部56は、図1で示したような燃料電池システムにおける各種動作機器を制御するための制御信号を、運転制御部54の指令に基づいて送信する。制御対象となる動作機器には、燃料電池1の運転を行うための燃料電池動作機器D1、電力負荷部3へ電力を供給するために電力系動作機器D2、給湯器等の熱負荷部4に湯を供給するための給湯系動作機器D3などが含まれる。さらに、出力データ処理部56は、リモコンLCに組み込まれている報知デバイス60に報知信号を送信する。報知デバイス60には、液晶等のディスプレイ61、ブザー62、ランプ63が含まれており、その報知データは報知処理部58で生成される。図示されていないが、同様の報知デバイス60は、リモコンLCとは別な箇所に、設置されてもよい。
The output
入力データ処理部57は、電力負荷計測手段16から送られてくる電力負荷計測値と熱負荷計測手段17から送られてくる熱負荷計測値とを信号処理して、負荷演算部51に与える。さらに、入力データ処理部57は、リモコンLCとも接続しており、リモコンのタッチパネル64を通じて送られてくる操作信号を処理して、運転制御部54などに与え、この燃料電池システムに対する手動での管理や制御を可能にする。
The input
管理センタ(管理コンピュータ)200には、運転メリット関数管理部201と燃料電池運営情報管理部202とが構築されている。管理センタ200では、各種コストの変動などに基づいて、運転メリット関数の修正が行われている。運転メリット関数管理部201は、そのような運転メリット関数の修正に基づいて、各ユーザ宅の運転制御装置100にアクセスして、運転メリット関数格納部55に格納されているルックアップテーブルを更新する。燃料電池運営情報管理部202は、各ユーザ宅での燃料電池システムの運営状況(動作仕様、動作条件、動作履歴など)を記録、管理している。
The management center (management computer) 200 includes an operation merit
次に、このように構成された燃料電池システムで用いられている、具体的な運用例を説明する。この燃料電池システムでは、ユーザの好みに応じて種々の運用モードから選択された運用モードで運転するように構成することができる。そのような場合、使用する運用モードがリモコンLCのタッチパネル64を通じて選択される。なお、以下に説明する運用例は、燃料電池1による運転(発電)を行うかどうかの判定に関する運用の部分だけを取り上げている。なお、運用例0は、判定対象となる値は、電力負荷計測値に基づく平均演算値である。運用例1から運用例4は、判定対象となる値は、電力負荷計測値からさらに運転メリット関数を用いて求められる評価メリット値である。
Next, a specific operation example used in the fuel cell system configured as described above will be described. This fuel cell system can be configured to operate in an operation mode selected from various operation modes according to the user's preference. In such a case, the operation mode to be used is selected through the
(運用例0):図6参照
まず、運転判定のタイミングであるかどうか、つまり運転/停止を判定する日であるかどうかがチェックされる(#01)。例えば、この運転判定のタイミングが月一回で、月末であると設定されていると、カレンダ機能を用いて現時点が月末であるとみなされると(#01でYes分岐)、負荷演算部51が、判定期間(1か月)で蓄積された電力負荷計測値を読み出し、例えば1日当たりの電力負荷計測値である平均演算値を、例えば算術平均で算出する(#02)。運転判定部53は、算出された平均演算値と、しきい値設定部52で設定された判定しきい値、例えば4.1kWh/日とを比較し(#03)、平均演算値が判定しきい値以上であれば(#03でYes分岐)、運転判定部53は、運転開始または運転継続の判定結果を運転制御部54に与える(#04)。平均演算値が判定しきい値を下回っていれば(#03でNo分岐)、運転判定部53は、運転停止または停止継続の判定結果を運転制御部54に与える(#04)。運転制御部54は、受け取った判定結果に基づく指令を燃料電池動作機器D1に送信する。
(Operation Example 0): Refer to FIG. 6 First, it is checked whether or not it is a timing for driving determination, that is, whether or not it is a date for determining driving / stopping (# 01). For example, if the operation determination timing is set once a month and the end of the month, and the current time is regarded as the end of the month using the calendar function (Yes branch at # 01), the
(運用例1):図7参照
まず、運転判定のタイミングであるかどうか、つまり運転/停止を判定する日であるかどうかがチェックされる(#11)。例えば、この運転判定のタイミングが月一回で、月末であると設定されていると、カレンダ機能を用いて現時点が月末であるとみなされると(#11でYes分岐)、負荷演算部51が、判定期間(1か月)で蓄積された電力負荷計測値を読み出し、その平均演算値(例えば算術平均値)を算出し、その平均演算値から、運転メリット関数を用いて評価メリット値を導出する(#12)。運転判定部53は、導出された評価メリット値と、しきい値設定部52で設定されたメリット判定しきい値とを比較し(#13)、評価メリット値がメリット判定しきい値以上であれば(#13でYes分岐)、運転判定部53は、運転開始または運転継続の判定結果を運転制御部54に与える(#14)。評価メリット値がメリット判定しきい値を下回っていれば(#13でNo分岐)、運転判定部53は、運転停止または停止継続の判定結果を運転制御部54に与える(#14)。運転制御部54は、受け取った判定結果に基づく指令を燃料電池動作機器D1に送信する。
(Operation Example 1): Refer to FIG. 7 First, it is checked whether or not it is a timing for driving determination, that is, whether or not it is a date for determining driving / stopping (# 11). For example, if the operation determination timing is set once a month and the end of the month, and the current time is regarded as the end of the month using the calendar function (Yes in # 11), the
(運用例2):図8参照
ステップ#21からステップ#24は、図7で示した運用例1のステップ#11からステップ#14と同じである。ステップ#23のチェックで、評価メリット値がメリット判定しきい値を下回っていれば(#23でNo分岐)、リモコンLCのディスプレイ61を通じてユーザに運転停止の予告を行う(#25)。リモコンLCのタッチパネル64を通じての、運転停止の予告に対するユーザの回答を促す(#26)。ユーザ回答が、運転の開始または運転の継続であれば、ステップ#24に移行し、運転判定部53は、運転開始または運転継続の判定結果を運転制御部54に与える。ユーザ回答が、運転停止または停止の継続あるいは所定時間(例えば1日)内で無回答の場合、運転判定部53は、運転停止または停止継続の判定結果を運転制御部54に与える(#27)。
(Operation Example 2): Steps # 21 to # 24 of FIG. 8 are the same as steps # 11 to # 14 of Operation Example 1 shown in FIG. If the evaluation merit value is lower than the merit determination threshold value in the check at step # 23 (No branch at # 23), the user is notified of the operation stop through the
(運用例3):図9参照
この運用例は、上述の運用例2において、評価メリット値に代えて、上述の運用例0で扱われている平均演算値を用いたものである。まず、運転/停止を判定する日であるかどうかがチェックされる(#121)。例えば、この運転判定のタイミングが月一回で、月末であると設定されていると、カレンダ機能を用いて現時点が月末であるとみなされると(#121でYes分岐)、負荷演算部51が、判定期間(1か月)で蓄積された電力負荷計測値を読み出し、例えば1日当たりの電力負荷計測値である平均演算値(算術平均値)を算出する(#122)。運転判定部53は、算出された平均演算値と、しきい値設定部52で設定された判定しきい値、例えば4.1kWh/日とを比較し(#123)、平均演算値が判定しきい値以上であれば(#123でYes分岐)、運転判定部53は、運転開始または運転継続の判定結果を運転制御部54に与える(#124)。平均演算値が判定しきい値を下回っていれば(#123でNo分岐)、リモコンLCのディスプレイ61を通じてユーザに運転停止の予告を行う(#125)。リモコンLCのタッチパネル64を通じての、運転停止の予告に対するユーザの回答を促す(#126)。ユーザ回答が、運転の開始または運転の継続であれば、ステップ#124に移行し、運転判定部53は、運転開始または運転継続の判定結果を運転制御部54に与える。ユーザ回答が、運転停止または停止の継続あるいは所定時間(例えば1日)内で無回答の場合、運転判定部53は、運転停止または停止継続の判定結果を運転制御部54に与える(#127)。
(Operation Example 3): See FIG. 9 This operation example uses the average operation value handled in the above-described operation example 0 in place of the evaluation merit value in the above-described operation example 2. First, it is checked whether it is a day for determining operation / stop (# 121). For example, if the operation determination timing is set once a month and the end of the month, and the current time is regarded as the end of the month using the calendar function (Yes in # 121), the
(運用例4):図10参照
まず、運転判定のタイミングであるかどうか、つまり運転/停止を判定する日であるかどうかがチェックされる(#31)。例えば、この運転判定のタイミングが月一回で、月末であると設定されていると、カレンダ機能を用いて現時点が月末であるとみなされると(#31でYes分岐)、負荷演算部51が、判定期間(1か月)で蓄積された一日単位の電力負荷計測値を読み出し、1か月間の平均演算値(例えば算術平均値)及びその標準偏差を算出する(#32)。さらに、平均演算値と標準偏差とから評価メリット関数を用いて評価メリット値を算出する(#33)。運転判定部53は、導出された評価メリット値と、しきい値設定部52で設定されているメリット判定しきい値とを比較し(#34)、評価メリット値がメリット判定しきい値以上であれば(#34でYes分岐)、運転判定部53は、運転開始または運転継続の判定結果を運転制御部54に与える(#35)。評価メリット値がメリット判定しきい値を下回っていれば(#34でNo分岐)、運転判定部53は、運転停止または停止継続の判定結果を運転制御部54に与える(#36)。運転制御部54は、受け取った判定結果に基づく指令を燃料電池動作機器D1に送信する。
(Operation Example 4): Refer to FIG. 10. First, it is checked whether or not it is a timing for driving determination, that is, whether or not it is a date for determining driving / stopping (# 31). For example, if the operation determination timing is set once a month and the end of the month, and the current time is considered to be the end of the month using the calendar function (Yes branch at # 31), the
(運用例5):図11参照
まず、運転判定のタイミングであるかどうか、つまり運転/停止を判定する日であるかどうかがチェックされる(#41)。例えば、この運転判定のタイミングが月一回で、月末であると設定されていると、カレンダ機能を用いて現時点が月末であるとみなされると(#41でYes分岐)、負荷演算部51が、判定期間(1か月)で蓄積された一日単位の電力負荷計測値を読み出し、1か月間の平均演算値(例えば算術平均値)及びその標準偏差を算出するとともに、当該平均演算値から、運転メリット関数を用いて評価メリット値を導出する(#42)。さらに、しきい値設定部52は、図3を用いて説明した、標準偏差からメリット判定しきい値を導出する関数を用いて、月単位での標準偏差に応じて動的に変化するメリット判定しきい値を求め、これを、メリット判定しきい値として設定する(#43)。運転判定部53は、ステップ#42で算出した評価メリット値と、しきい値設定部52で設定された動的なメリット判定しきい値とを比較し(#44)、評価メリット値が動的なメリット判定しきい値以上であれば(#44でYes分岐)、運転判定部53は、運転開始または運転継続の判定結果を運転制御部54に与える(#45)。評価メリット値が動的なメリット判定しきい値を下回っていれば(#44でNo分岐)、運転判定部53は、運転停止または停止継続の判定結果を運転制御部54に与える(#46)。運転制御部54は、受け取った判定結果に基づく指令を燃料電池動作機器D1に送信する。
(Operation Example 5): Refer to FIG. 11 First, it is checked whether or not it is the timing for driving determination, that is, whether or not it is the date for determining driving / stopping (# 41). For example, if the operation determination timing is set once a month and the end of the month, and the current time is considered to be the end of the month using the calendar function (Yes in # 41), the
図6から図11を用いて説明した運用例は、この燃料電池システムの運用参考例を示すものであり、上述した運用例に限定されるものではない。例えば、上述した運用例の組み合わせや、部分的な機能の削除や部分的な機能の追加ももちろん可能である。 The operation example described with reference to FIGS. 6 to 11 shows an operation reference example of the fuel cell system, and is not limited to the operation example described above. For example, it is of course possible to combine the operation examples described above, delete partial functions, or add partial functions.
上述した実施形態において、運転制御装置100に構築されている各機能部は、制御の説明を分かりやすくするために重きをおいて、区分けされたものであり、それらの機能部の統合や更なる分割は本発明の枠内で自由に行うことができる。
In the above-described embodiment, each functional unit constructed in the
なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。 Note that the configurations disclosed in the above-described embodiments (including other embodiments, the same applies hereinafter) can be applied in combination with the configurations disclosed in the other embodiments as long as no contradiction arises. The embodiment disclosed in this specification is an exemplification, and the embodiment of the present invention is not limited to this. The embodiment can be appropriately modified without departing from the object of the present invention.
本発明は、固体酸化物形燃料電池が頻繁に起動及び停止を繰り返すことを避けながら、適切なタイミングで運転と停止が行われるようにした燃料電池システムに利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for a fuel cell system in which the solid oxide fuel cell is operated and stopped at an appropriate timing while avoiding frequent start and stop.
1 :固体酸化物形燃料電池(燃料電池)
16 :電力負荷計測手段
17 :熱負荷計測手段
50 :通信ユニット
51 :負荷演算部
52 :しきい値設定部
53 :運転判定部
54 :運転制御部
55 :運転メリット関数格納部
56 :出力データ処理部
57 :入力データ処理部
58 :報知処理部
60 :報知デバイス
61 :ディスプレイ
64 :タッチパネル
100 :運転制御装置
200 :管理センタ
201 :運転メリット関数管理部
IOD :情報入出力装置
L :エネルギー負荷部
LC :リモコン
S :負荷計測部
1: Solid oxide fuel cell (fuel cell)
16: Power load measurement means 17: Thermal load measurement means 50: Communication unit 51: Load calculation unit 52: Threshold setting unit 53: Operation determination unit 54: Operation control unit 55: Operation merit function storage unit 56: Output data processing Unit 57: Input data processing unit 58: Notification processing unit 60: Notification device 61: Display 64: Touch panel 100: Operation control device 200: Management center 201: Operation merit function management unit IOD: Information input / output device L: Energy load unit LC : Remote control S: Load measurement unit
Claims (8)
前記エネルギー負荷部で要求される負荷エネルギーを計測する負荷計測部と、
所定の判定対象期間にわたって計測された前記負荷計測部の負荷計測値の平均演算値を算出する負荷演算部と、
前記平均演算値または前記平均演算値から導出される代替値のいずれかと判定しきい値とに基づいて、前記固体酸化物形燃料電池の運転継続または運転停止を判定する運転判定部と、
前記判定しきい値を設定するしきい値設定部と、
前記運転判定部の判定結果に基づいて、前記固体酸化物形燃料電池に対する運転継続指令または運転停止指令を与える運転制御部と、
を備えた燃料電池システム。 A fuel cell system for supplying energy generated from a solid oxide fuel cell capable of selectively controlling operation continuation and operation stop to an energy load unit,
A load measuring unit that measures load energy required by the energy load unit;
A load calculation unit that calculates an average calculation value of the load measurement values of the load measurement unit measured over a predetermined determination target period;
An operation determination unit that determines whether the solid oxide fuel cell is continuously operated or stopped based on either the average calculated value or an alternative value derived from the average calculated value and a determination threshold;
A threshold setting unit for setting the determination threshold;
Based on the determination result of the operation determination unit, an operation control unit that gives an operation continuation command or an operation stop command to the solid oxide fuel cell;
A fuel cell system comprising:
前記運転判定部は、前記評価メリット値と前記メリット判定しきい値とに基づいて前記固体酸化物形燃料電池の運転継続または運転停止を判定する請求項2または3に記載の燃料電池システム。 The load calculation unit calculates a standard deviation in the determination target period based on a load measurement value included in each section into which the determination target period is divided, and calculates a lower value obtained by subtracting the standard deviation from the average calculation value. A first value that is a function value derived from the driving merit function using a second value that is a function value derived from the driving merit function using an upper value obtained by adding the standard deviation to the substitute value; The value between is calculated as an evaluation merit value,
The fuel cell system according to claim 2 or 3, wherein the operation determination unit determines whether the solid oxide fuel cell is continuously operated or stopped based on the evaluation merit value and the merit determination threshold value.
前記しきい値設定部が、前記標準偏差を用いて導出される関数値を、前記メリット判定しきい値として設定する請求項2または3に記載の燃料電池システム。 The load calculation unit calculates a standard deviation in the determination target period based on a load measurement value included in each section dividing the determination target period,
The fuel cell system according to claim 2 or 3, wherein the threshold value setting unit sets a function value derived using the standard deviation as the merit determination threshold value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016062282A JP6656040B2 (en) | 2016-03-25 | 2016-03-25 | Fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016062282A JP6656040B2 (en) | 2016-03-25 | 2016-03-25 | Fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017174750A true JP2017174750A (en) | 2017-09-28 |
JP6656040B2 JP6656040B2 (en) | 2020-03-04 |
Family
ID=59973445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016062282A Active JP6656040B2 (en) | 2016-03-25 | 2016-03-25 | Fuel cell system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6656040B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021068543A (en) * | 2019-10-21 | 2021-04-30 | 京セラ株式会社 | Fuel cell system |
JP2021072258A (en) * | 2019-11-01 | 2021-05-06 | 京セラ株式会社 | Fuel cell system |
CN116432478A (en) * | 2023-06-15 | 2023-07-14 | 广东电网有限责任公司东莞供电局 | Energy determination method, device, equipment and medium for electric power system |
JP7540940B2 (en) | 2020-12-18 | 2024-08-27 | 東京瓦斯株式会社 | Fuel cell system and method for operating the fuel cell system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002352834A (en) * | 2001-05-23 | 2002-12-06 | Matsushita Electric Ind Co Ltd | Power generation controlling system and program |
JP2011027408A (en) * | 2004-06-15 | 2011-02-10 | Osaka Gas Co Ltd | Cogeneration system |
JP2011175742A (en) * | 2010-02-23 | 2011-09-08 | Panasonic Corp | Fuel cell system |
JP2013225445A (en) * | 2012-04-23 | 2013-10-31 | Osaka Gas Co Ltd | Fuel cell system and its control method |
-
2016
- 2016-03-25 JP JP2016062282A patent/JP6656040B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002352834A (en) * | 2001-05-23 | 2002-12-06 | Matsushita Electric Ind Co Ltd | Power generation controlling system and program |
JP2011027408A (en) * | 2004-06-15 | 2011-02-10 | Osaka Gas Co Ltd | Cogeneration system |
JP2011175742A (en) * | 2010-02-23 | 2011-09-08 | Panasonic Corp | Fuel cell system |
JP2013225445A (en) * | 2012-04-23 | 2013-10-31 | Osaka Gas Co Ltd | Fuel cell system and its control method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021068543A (en) * | 2019-10-21 | 2021-04-30 | 京セラ株式会社 | Fuel cell system |
JP2021072258A (en) * | 2019-11-01 | 2021-05-06 | 京セラ株式会社 | Fuel cell system |
JP7348031B2 (en) | 2019-11-01 | 2023-09-20 | 京セラ株式会社 | fuel cell system |
JP7540940B2 (en) | 2020-12-18 | 2024-08-27 | 東京瓦斯株式会社 | Fuel cell system and method for operating the fuel cell system |
CN116432478A (en) * | 2023-06-15 | 2023-07-14 | 广东电网有限责任公司东莞供电局 | Energy determination method, device, equipment and medium for electric power system |
CN116432478B (en) * | 2023-06-15 | 2023-09-08 | 广东电网有限责任公司东莞供电局 | Energy determination method, device, equipment and medium for electric power system |
Also Published As
Publication number | Publication date |
---|---|
JP6656040B2 (en) | 2020-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4501923B2 (en) | Home energy management system | |
JP6656040B2 (en) | Fuel cell system | |
EP2533395A2 (en) | Energy supply/demand control system | |
JP6641455B2 (en) | Hot water supply system and water heater control method | |
JP5934041B2 (en) | Power system, apparatus and method | |
JP2015065009A (en) | Cogeneration apparatus | |
JP2013219848A (en) | Apparatus control system | |
KR20050021906A (en) | Cogeneration system, operation control apparatus for cogeneration equipment, and computer readable storage medium storing operation control program for cogeneration equipment | |
JP2020513523A (en) | Electric radiator type heating device including voltage converter | |
JP4523864B2 (en) | Heat source control device | |
JP6494234B2 (en) | Fuel cell system | |
JP2015208129A (en) | System, device and method for power control | |
JP7108220B2 (en) | Storage hot water heater | |
JP2005283028A (en) | Cogeneration device for domestic purpose, its utilizing method, and controller | |
JP3970239B2 (en) | Cogeneration system energy saving degree calculation method | |
JP6502562B1 (en) | Power generation system | |
JP2023139865A (en) | fuel cell system | |
JP2004257590A (en) | Heat source system | |
JP2004263620A (en) | Cogeneration system | |
JP4614809B2 (en) | Energy supply system | |
JP3979953B2 (en) | Cogeneration system | |
JP2007274821A (en) | Cogeneration system | |
JP7165613B2 (en) | Energy management controller | |
JP2019160639A (en) | Fuel cell system | |
JP2004263622A (en) | Cogeneration system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191008 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6656040 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |